1
|
Zheng H, Liu J, Sun L, Meng Z. The role of N-acetylcysteine in osteogenic microenvironment for bone tissue engineering. Front Cell Dev Biol 2024; 12:1435125. [PMID: 39055649 PMCID: PMC11269162 DOI: 10.3389/fcell.2024.1435125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bone defect is a common clinical symptom which can arise from various causes. Currently, bone tissue engineering has demonstrated positive therapeutic effects for bone defect repair by using seeding cells such as mesenchymal stem cells and precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable antioxidant that shows promising prospects in bone tissue engineering due to the ability to attenuate oxidative stress and enhance the osteogenic potential and immune regulatory function of cells. This review systematically introduces the antioxidant mechanism of NAC, analyzes the advancements in NAC-related research involving mesenchymal stem cells, precursor cells, innate immune cells and animal models, discusses its function using the classic oral microenvironment as an example, and places particular emphasis on the innovative applications of NAC-modified tissue engineering biomaterials. Finally, current limitations and future prospects are proposed, with the aim of providing inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haowen Zheng
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- School of Dentistry, Tianjin Medical University, Tianjin, China
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Lanxin Sun
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
2
|
Zhang X, Yang Z, Xu Q, Xu C, Shi W, Pang R, Zhang K, Liang X, Li H, Li Z, Zhang H. Dexamethasone Induced Osteocyte Apoptosis in Steroid-Induced Femoral Head Osteonecrosis through ROS-Mediated Oxidative Stress. Orthop Surg 2024; 16:733-744. [PMID: 38384174 PMCID: PMC10925516 DOI: 10.1111/os.14010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Glucocorticoid (GC) overuse is strongly associated with steroid-induced osteonecrosis of the femoral head (SINFH). However, the underlying mechanism of SINFH remains unclear. This study aims to investigate the effect of dexamethasone (Dex)-induced oxidative stress on osteocyte apoptosis and the underlying mechanisms. METHODS Ten patients with SINFH and 10 patients with developmental dysplasia of the hips (DDH) were enrolled in our study. Sixty rats were randomly assigned to the Control, Dex, Dex + N-Acetyl-L-cysteine (NAC), Dex + Dibenziodolium chloride (DPI), NAC, and DPI groups. Magnetic resonance imaging (MRI) was used to examine edema in the femoral head of rats. Histopathological staining was performed to assess osteonecrosis. Immunofluorescence staining with TUNEL and 8-OHdG was conducted to evaluate osteocyte apoptosis and oxidative damage. Immunohistochemical staining was carried out to detect the expression of NOX1, NOX2, and NOX4. Viability and apoptosis of MLO-Y4 cells were measured using the CCK-8 assay and TUNEL staining. 8-OHdG staining was conducted to detect oxidative stress. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure reactive oxygen species (ROS). The expression of NOX1, NOX2, and NOX4 in MLO-Y4 cells was analyzed by Western blotting. Multiple comparisons were performed using one-way analysis of variance (ANOVA). RESULTS In patients and the rat model, hematoxylin-eosin (HE) staining revealed a significantly higher rate of empty lacunae in the SINFH group than in the DDH group. Immunofluorescence staining indicated a significant increase in TUNEL-positive cells and 8-OHdG-positive cells in the SINFH group compared to the DDH group. Immunohistochemical staining demonstrated a significant increase in the expression of NOX1, NOX2, and NOX4 proteins in SINFH patients compared to DDH patients. Moreover, immunohistochemical staining showed a significant increase in the proportion of NOX2-positive cells compared to the Control group in the femoral head of rats. In vitro, Dex significantly inhibited the viability of osteocyte cells and induced apoptosis. After Dex treatment, the intracellular ROS level increased. However, Dex treatment did not alter the expression of NOX proteins in vitro. Additionally, NAC and DPI inhibited the generation of intracellular ROS and partially alleviated osteocyte apoptosis in vivo and in vitro. CONCLUSION This study demonstrates that GC promotes apoptosis of osteocyte cells through ROS-induced oxidative stress. Furthermore, we found that the increased expression of NOXs induced by GC serves as an important source of ROS generation.
Collapse
Affiliation(s)
- Xinglong Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Zhenhuan Yang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Qian Xu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Chunlei Xu
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Wei Shi
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Ran Pang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
- Department of OrthopaedicsTianjin Nankai HospitalTianjinChina
| | - Kai Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Xinyu Liang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Hui Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhijun Li
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| | - Huafeng Zhang
- Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
3
|
Pedersen K, Watt J, Maimone C, Hang H, Denys A, Schroder K, Suva LJ, Chen JR, Ronis MJJ. Deletion of NADPH oxidase 2 in chondrocytes exacerbates ethanol-mediated growth plate disruption in mice without major effects on bone architecture or gene expression. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:2233-2247. [PMID: 38151780 DOI: 10.1111/acer.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Excess reactive oxygen species generated by NADPH oxidase 2 (Nox2) in response to ethanol exposure mediate aspects of skeletal toxicity including increased osteoclast differentiation and activity. Because perturbation of chondrocyte differentiation in the growth plate by ethanol could be prevented by dietary antioxidants, we hypothesized that Nox2 in the growth plate was involved in ethanol-associated reductions in longitudinal bone growth. METHODS Nox2 conditional knockout mice were generated, where the essential catalytic subunit of Nox2, cytochrome B-245 beta chain (Cybb), is deleted in chondrocytes using a Cre-Lox model with Cre expressed from the collagen 2a1 promoter (Col2a1-Cre). Wild-type and Cre-Lox mice were fed an ethanol Lieber-DeCarli-based diet or pair-fed a control diet for 8 weeks. RESULTS Ethanol treatment significantly reduced the number of proliferating chondrocytes in the growth plate, enhanced bone marrow adiposity, shortened femurs, reduced body length, reduced cortical bone volume, and decreased mRNA levels of a number of osteoblast and chondrocyte genes. Conditional knockout of Nox2 enzymatic activity in chondrocytes did not consistently prevent any ethanol effects. Rather, knockout mice had fewer proliferating chondrocytes than wild-type mice in both the ethanol- and control-fed animals. Additional analysis of tibia samples from Nox4 knockout mice showed that loss of Nox4 activity also reduced the number of proliferating chondrocytes and altered chondrocyte size in the growth plate. CONCLUSIONS Although Nox enzymatic activity regulates growth plate development, ethanol-associated disruption of the growth plate morphology is independent of ethanol-mediated increases in Nox2 activity.
Collapse
Affiliation(s)
- K Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - J Watt
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - C Maimone
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - H Hang
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - A Denys
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - K Schroder
- Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - L J Suva
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, USA
| | - J-R Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - M J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Xie Q. Are Mindfulness and Self-Compassion Related to Peace of Mind? The Mediating Role of Nonattachment. Psychol Rep 2023:332941231198511. [PMID: 37658758 DOI: 10.1177/00332941231198511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Peace of mind is an important affective well-being valued in Chinese culture. Mindfulness and self-compassion could potentially promote peace of mind. However, the mechanisms underlying these effects were not well understood. The current cross-sectional study aimed to investigate whether nonattachment explained the effects of mindfulness and self-compassion on peace of mind. A sample of 364 Chinese adults was recruited from WeChat, a popular Chinese social media platform. Participants filled out an online survey including measures of dispositional mindfulness, self-compassion, nonattachment, and peace of mind. The results of correlation analyses revealed significant and positive associations among mindfulness, self-compassion, nonattachment, and peace of mind. Furthermore, nonattachment significantly mediated the associations between mindfulness and self-compassion with peace of mind. Moderated mediation analyses indicated that the relationships between mindfulness and self-compassion with nonattachment were stronger for women than for men. Gender did not moderate the direct effects of mindfulness and self-compassion on peace of mind, the relationship between nonattachment and peace of mind, and the mediating effects of mindfulness and self-compassion on peace of mind through nonattachment. These findings suggest that nonattachment may be a potential mechanism through which mindfulness and self-compassion promote peace of mind among Chinese adults. If the mediating effects are confirmed in future longitudinal and experimental studies, mindfulness and self-compassion interventions can emphasize nonattachment to optimize their effects on peace of mind. It may also be important to tailor mindfulness and self-compassion training for men and women given the gender differences in the relationships between mindfulness and self-compassion with nonattachment.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Counseling Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Chen JR, Lazarenko OP, Blackburn ML, Chen JF, Randolph CE, Zabaleta J, Schroder K, Pedersen KB, Ronis MJJ. Nox4 expression in osteo-progenitors controls bone development in mice during early life. Commun Biol 2022; 5:583. [PMID: 35701603 PMCID: PMC9198054 DOI: 10.1038/s42003-022-03544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Oxana P. Lazarenko
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Jennifer F. Chen
- grid.411017.20000 0001 2151 0999Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR 72701 USA
| | - Christopher E. Randolph
- grid.488749.eCenter for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Jovanny Zabaleta
- grid.279863.10000 0000 8954 1233Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Katrin Schroder
- grid.7839.50000 0004 1936 9721Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - Kim B. Pedersen
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| | - Martin J. J. Ronis
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| |
Collapse
|
6
|
Sorkina O, Zaitseva O, Khudyakov A. The effect of long-term alcohol intoxication on the morphological structures and enzymatic activity of rat salivary glands. Alcohol 2022; 99:23-33. [PMID: 34883230 DOI: 10.1016/j.alcohol.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND To study changes in the morphological structures and enzymatic activity of the submandibular salivary gland (SMG) and parotid salivary gland (PG) in rats after prolonged alcohol intoxication. METHODS Sexually mature male Wistar rats consumed 20% ethanol (6.9 g/kg/day) for 180 consecutive days. The PG and SMG were collected for morphometric and histochemical analyses (nonparametric Mann-Whitney U test, p < 0.05). RESULTS After exposure to ethanol for 180 days, the PG showed a change in the shape of the acini and the secretory cells that formed them, uneven expansion of the interlobular excretory ducts, and moderate fatty infiltration in the stroma. After exposure to ethanol for 180 days, the SMG showed fatty infiltration and stromal edema, and changes in acinar cells, intercalated ducts, and striated ducts. There was a significant decrease in the relative and absolute weight of the SMG. The number of mast cells in the PG and SMG and their degranulation index increased 2-fold after exposure to ethanol. All mast cells were highly active. After ethanol exposure, the activity of alkaline phosphatase increased significantly in the myoepithelial cells of the SMG and PG; the activity of NADPH oxidase increased only in the acini SMG, and the activity of succinate dehydrogenase remained at the control level in the acini of both glands. In the ducts of these glands, the activity of other enzymes did not change. CONCLUSIONS Changes in the morphological structures, morphometric parameters, and enzymatic activity of the rat salivary glands after 180 days of ethanol intoxication are shown for the first time. The most pronounced changes were found in the SMG.
Collapse
Affiliation(s)
- Olga Sorkina
- Chuvash State University, 428015, 15 Moskovsky Prospect, Chuvash Republic, Cheboksary, Russia
| | - Oksana Zaitseva
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 167982, 50 Pervomayskaya str., Komi Republic, Syktyvkar, Russia.
| | - Andrey Khudyakov
- Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 167982, 50 Pervomayskaya str., Komi Republic, Syktyvkar, Russia
| |
Collapse
|
7
|
Denys A, Pedersen KB, Watt J, Norman AR, Osborn ML, Chen JR, Maimone C, Littleton S, Vasiliou V, Ronis MJJ. Binge Ethanol Exposure in Mice Represses Expression of Genes Involved in Osteoblast Function and Induces Expression of Genes Involved in Osteoclast Differentiation Independently of Endogenous Catalase. Toxicol Sci 2022; 185:232-245. [PMID: 34755883 PMCID: PMC9019842 DOI: 10.1093/toxsci/kfab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive ethanol consumption is a risk factor for osteopenia. Since a previous study showed that transgenic female mice with overexpression of catalase are partially protected from ethanol-mediated trabecular bone loss, we investigated the role of endogenous catalase in skeletal ethanol toxicity comparing catalase knockout to wild-type mice. We hypothesized that catalase depletion would exacerbate ethanol effects. The mice were tested in a newly designed binge ethanol model, in which 12-week-old mice were exposed to 4 consecutive days of gavage with ethanol at 3, 3, 4, and 4.5 g ethanol/kg body weight. Binge ethanol decreased the concentration of serum osteocalcin, a marker of bone formation. The catalase genotype did not affect the osteocalcin levels. RNA sequencing of femoral shaft RNA from males was conducted. Ethanol exposure led to significant downregulation of genes expressed in cells of the osteoblastic lineage with a role in osteoblastic function and collagen synthesis, including the genes encoding major structural bone proteins. Binge ethanol further induced a smaller set of genes with a role in osteoclastic differentiation. Catalase depletion affected genes with expression in erythroblasts and erythrocytes. There was no clear interaction between binge ethanol and the catalase genotype. In an independent experiment, we confirmed that the binge ethanol effects on gene expression were reproducible and occurred throughout the skeleton in males. In conclusion, the binge ethanol exposure, independently of endogenous catalase, reduces expression of genes involved in osteoblastic function and induces expression of genes involved in osteoclast differentiation throughout the skeleton in males.
Collapse
Affiliation(s)
- Alexandra Denys
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Kim B Pedersen
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - James Watt
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Allison R Norman
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Michelle L Osborn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s Nutrition Center, Little Rock, Arkansas 72202, USA
| | - Cole Maimone
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Shana Littleton
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, USA
| | - Martin J J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| |
Collapse
|
8
|
Clayton ZS, Hauffe L, Liu C, Kern M, Hong MY, Brasser SM, Hooshmand S. Chronic ethanol consumption does not reduce true bone density in male Wistar rats. Alcohol 2021; 93:17-23. [PMID: 33662519 DOI: 10.1016/j.alcohol.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
Osteoporosis is characterized by reduced bone mineral density (BMD) and increased bone fragility, which may be modified by lifestyle behaviors. In observational studies, chronic moderate ethanol consumption is associated with higher BMD, but results are inconsistent and underlying mechanisms are unknown. To understand the influence of chronic ethanol consumption on true bone density (Archimedes principal), bone mechanical properties (Young's Modulus of bend), and osteogenic gene expression, 12-month-old male Wistar rats were randomly assigned to a control group or ethanol intervention (20% ethanol in drinking water on alternate days) group for 13 weeks and tibiae and femurs were collected. Blood was collected to assess alcohol content and antioxidant enzyme activities. We hypothesized that chronic ethanol consumption would increase true bone density and mechanical properties and increase osteoblastic gene expression and serum antioxidant enzyme activity. Ethanol consumption did not influence femoral or tibial true bone density but did result in lower tibial Young's modulus of bend (p = 0.0002). However, there was no influence of ethanol on other measures of mechanical properties. Femoral pro-osteoclastic gene expression of Dkk1 was lower (p = 0.0006) and pro-osteoblastic gene expression of Ctnnb1 was higher (p = 0.02) with ethanol consumption. We observed no differences in circulating antioxidant activities between groups, other than a tendency for greater (p = 0.08) glutathione peroxidase in the ethanol group. Results showed chronic ethanol consumption did not influence true bone density, only modestly reduced tibial mechanical properties (lower Young's modulus of bend), and moderately impacted expression of genes within the femur known to regulate both osteoblast and osteoclast activities.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Laura Hauffe
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Susan M Brasser
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States.
| |
Collapse
|
9
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Thomes PG, Rasineni K, Saraswathi V, Kharbanda KK, Clemens DL, Sweeney SA, Kubik JL, Donohue TM, Casey CA. Natural Recovery by the Liver and Other Organs after Chronic Alcohol Use. Alcohol Res 2021; 41:05. [PMID: 33868869 PMCID: PMC8041137 DOI: 10.35946/arcr.v41.1.05] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic, heavy alcohol consumption disrupts normal organ function and causes structural damage in virtually every tissue of the body. Current diagnostic terminology states that a person who drinks alcohol excessively has alcohol use disorder. The liver is especially susceptible to alcohol-induced damage. This review summarizes and describes the effects of chronic alcohol use not only on the liver, but also on other selected organs and systems affected by continual heavy drinking—including the gastrointestinal tract, pancreas, heart, and bone. Most significantly, the recovery process after cessation of alcohol consumption (abstinence) is explored. Depending on the organ and whether there is relapse, functional recovery is possible. Even after years of heavy alcohol use, the liver has a remarkable regenerative capacity and, following alcohol removal, can recover a significant portion of its original mass and function. Other organs show recovery after abstinence as well. Data on studies of both heavy alcohol use among humans and animal models of chronic ethanol feeding are discussed. This review describes how (or whether) each organ/tissue metabolizes ethanol, as metabolism influences the organ’s degree of injury. Damage sustained by the organ/tissue is reviewed, and evidence for recovery during abstinence is presented.
Collapse
Affiliation(s)
- Paul G Thomes
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Karuna Rasineni
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Viswanathan Saraswathi
- Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska.,Department of Internal Medicine, Section of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Dahn L Clemens
- Department of Internal Medicine, Section of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sarah A Sweeney
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Jacy L Kubik
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Terrence M Donohue
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, Section of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska.,Research Service, U.S. Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
11
|
Lee HI, Lee GR, Lee J, Kim N, Kwon M, Kim HJ, Kim NY, Park JH, Jeong W. Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis. BMB Rep 2021. [PMID: 31964469 PMCID: PMC7196184 DOI: 10.5483/bmbrep.2020.53.4.220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.
Collapse
Affiliation(s)
- Hye In Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Gong-Rak Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Jiae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Narae Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Minjeong Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Hyun Jin Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Nam Young Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Jin Ha Park
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Woojin Jeong
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
Martiniakova M, Sarocka A, Kovacova V, Kapusta E, Goc Z, Gren A, Formicki G, Omelka R. Antagonistic Impact of Acrylamide and Ethanol on Biochemical and Morphological Parameters Consistent with Bone Health in Mice. Animals (Basel) 2020; 10:ani10101835. [PMID: 33050161 PMCID: PMC7600557 DOI: 10.3390/ani10101835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Alcohol consumption, the drinking of beverages containing ethanol, represents a growing problem worldwide. Alcohol intake is often combined with an improper diet based on highly processed starch products that are rich in acrylamide. Both acrylamide and alcohol have a harmful impact on bone health. We previously demonstrated that adverse effects of ethanol on cortical bone structure were partly reduced by a relatively high dose of acrylamide in mice after one remodelling cycle. The present research was designated to reveal whether the antagonistic impact of both aforementioned toxins can also be achieved using a lower dose of acrylamide. According to our results, individual administrations of acrylamide and ethanol had adverse impacts on biochemical and morphological parameters consistent with bone health in mice. However, the most detrimental effects of ethanol were again alleviated by acrylamide at the dose used in this study. Abstract The aim of present study was to verify antagonistic effect of acrylamide (AA) and ethanol (Et) on bone quality parameters. Adult mice (n = 20) were segregated into four groups following 2 weeks administration of toxins: group E1, which received AA (20 mg/kg body weight daily); group E2, which received 15% Et (1.7 g 100% Et/kg body weight daily); group E12, which received simultaneously both toxins; and a control group. An insignificant impact of individual applications of AA, Et or their simultaneous supplementation on the total body weight of mice and the length and weight of their femoral bones was identified. In group E1, higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), a decreased level of glutathione (GSH) and elevated endocortical bone remodelling were determined. A significantly lower relative volume of cortical bone, bone mineral density (BMD), elevated endocortical bone remodelling and cortical porosity, higher levels of ALT, AST, lower values for total proteins (TP), GSH, alkaline phosphatase (ALP), calcium, and phosphorus were recorded in group E2. In the mice from group E12, the highest endocortical bone remodelling, decreased values for BMD, TP, GSH and ALP and increased levels of ALT and AST were found. Our findings confirmed the antagonistic impact of AA and Et at doses used in this study on biochemical and morphological parameters consistent with bone health in an animal model.
Collapse
Affiliation(s)
- Monika Martiniakova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| | - Anna Sarocka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Veronika Kovacova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
| | - Edyta Kapusta
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Zofia Goc
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Agnieszka Gren
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Grzegorz Formicki
- Faculty of Exact and Natural Sciences, Pedagogical University of Cracow, 30 084 Cracow, Poland; (E.K.); (Z.G.); (A.G.); (G.F.)
| | - Radoslav Omelka
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (A.S.); (V.K.)
- Correspondence: (M.M.); (R.O.); Tel.: +421-376-408-718 (M.M.)
| |
Collapse
|
13
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
14
|
Chen J, Lazarenko OP, Zhao H, Wankhade UD, Pedersen K, Watt J, Ronis MJJ. Nox4 Expression Is Not Required for OVX-Induced Osteoblast Senescence and Bone Loss in Mice. JBMR Plus 2020; 4:e10376. [PMID: 32803108 PMCID: PMC7422714 DOI: 10.1002/jbm4.10376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen deficiency and aging play critical roles in the pathophysiology of bone as a result of increased oxidative stress. It has been suggested that prevention of NADPH oxidase- (Nox-) dependent accumulation of ROS may be an approach to potentially minimize bone loss caused by these conditions. Using ovariectomized (OVX) and Nox4 gene-deletion mouse models, we investigated the role of Nox4 in OVX-induced bone loss and osteoblast senescence signaling. Six-month-old WT C57Bl6 mice were allocated to a sham control group, OVX, and OVX plus E2 treatment group for 8 weeks. Decreased bone mass including BMD and BMC were found in the OVX group compared with the sham control (p < 0.05); E2 treatment completely reversed OVX-induced bone loss. Interestingly, the prevention of OVX-induced bone loss by E2 was associated with the elimination of increased senescence signaling in bone osteoblastic cells from the OVX group. E2 blunted OVX-induced p53 and p21 overexpression, but not p16 and Nox4 in bone. In addition, 8- and 11-month-old Nox4 KO female mice were OVX for 8 weeks. Significant bone loss and increased bone osteoblastic cell senescence signaling occurred not only in Nox4 KO OVX mice compared with sham-operated animals, but also in 11-month-old Nox4 KO sham mice compared with 8-month-old Nox4 KO sham mice (p < 0.05). These data suggest that Nox4-mediated ROS in bone osteoblastic cells may be dispensable for sex steroid deficiency-induced bone loss and senescence. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin‐Ran Chen
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Oxana P Lazarenko
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Haijun Zhao
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Umesh D Wankhade
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Kim Pedersen
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - James Watt
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin J J Ronis
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
15
|
Impact of Alcohol on Bone Health, Homeostasis and Fracture repair. CURRENT PATHOBIOLOGY REPORTS 2020; 8:75-86. [PMID: 33767923 DOI: 10.1007/s40139-020-00209-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of review Alcohol use continues to rise globally. We review the current literature on the effect of alcohol on bone health, homeostasis and fracture repair to highlight what has been learned in people and animal models of alcohol consumption. Recent findings Recently, forkhead box O (FoxO) has been found to be upregulated and activated in mesenchymal stem cells (MSC) exposed to alcohol. FoxO has also been found to modulate Wnt/β-catenin signaling, which is necessary for MSC differentiation. Recent evidence suggests alcohol activates FoxO signaling, which may be dysregulating Wnt/β-catenin signaling in MSCs cultured in alcohol. Summary This review highlights the negative health effects learned from people and chronic and episodic binge alcohol consumption animal models. Studies using chronic alcohol exposure or alcohol exposure then bone fracture repair model have explored several different cellular and molecular signaling pathways important for bone homeostasis and fracture repair, and offer potential for future experiments to explore additional signaling pathways that may be dysregulated by alcohol exposure.
Collapse
|
16
|
Pedersen KB, Osborn ML, Robertson AC, Williams AE, Watt J, Denys A, Schröder K, Ronis MJ. Chronic Ethanol Feeding in Mice Decreases Expression of Genes for Major Structural Bone Proteins in a Nox4-Independent Manner. J Pharmacol Exp Ther 2020; 373:337-346. [PMID: 32213546 DOI: 10.1124/jpet.119.264374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Bone loss in response to alcohol intake has previously been hypothesized to be mediated by excessive production of reactive oxygen species via NADPH oxidase (Nox) enzymes. Nox4 is one of several Nox enzymes expressed in bone. We investigated the role of Nox4 in the chondro-osteoblastic lineage of the long bones in mice during normal chow feeding and during chronic ethanol feeding for 90 days. We generated mice with a genotype (PrxCre +/- Nox4 fl/fl) allowing conditional knockout of Nox4 in the limb bud mesenchyme. Adult mice had 95% knockdown of Nox4 expression in the femoral shafts. For mice on regular chow, only whole-body Nox4 knockout mice had clearly increased cortical thickness and bone mineral density in the tibiae. When chronically fed a liquid diet with and without ethanol, conditional Nox4 knockout mice had slightly reduced dimensions of the cortical and trabecular regions of the tibiae (P < 0.1). The ethanol diet caused a significant reduction in cortical bone area and cortical thickness relative to a control diet without ethanol (P < 0.05). The ethanol diet further reduced gene expression of Frizzled related protein (Frzb), myosin heavy chain 3, and several genes encoding collagen and other major structural bone proteins (P < 0.05), whereas the Nox4 genotype had no effects on these genes. In conclusion, Nox4 expression from both mesenchymal and nonmesenchymal cell lineages appears to exert subtle effects on bone. However, chronic ethanol feeding reduces cortical bone mass and cortical gene expression of major structural bone proteins in a Nox4-independent manner. SIGNIFICANCE STATEMENT: Excessive alcohol intake contributes to osteopenia and osteoporosis, with oxidative stress caused by the activity of NADPH oxidases hypothesized to be a mediator. We tested the role of NADPH oxidase (Nox) 4 in osteoblast precursors in the long bones of mice with a conditional Nox4 knockout model. We found that Nox4 exerted effects independent of alcohol intake, and ethanol effects on bone were Nox4-independent.
Collapse
Affiliation(s)
- Kim B Pedersen
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Michelle L Osborn
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Alex C Robertson
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Ashlee E Williams
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - James Watt
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Alexandra Denys
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Katrin Schröder
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| | - Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State Health Sciences Center (LSUHSC), New Orleans, Louisiana (K.B.P., A.C.R., A.E.W., J.W., A.D., M.J.R.); Comparative Biomedical Sciences, Louisiana State University (LSU) School of Veterinary Medicine, Baton Rouge, Louisiana (M.L.O.); and Institute of Physiology I, Goethe-University, Frankfurt, Germany (K.S.)
| |
Collapse
|
17
|
Watt J, Schuon J, Davis J, Ferguson TF, Welsh DA, Molina PE, Ronis MJJ. Reduced Serum Osteocalcin in High-Risk Alcohol Using People Living With HIV Does Not Correlate With Systemic Oxidative Stress or Inflammation: Data From the New Orleans Alcohol Use in HIV Study. Alcohol Clin Exp Res 2019; 43:2374-2383. [PMID: 31483873 PMCID: PMC7489311 DOI: 10.1111/acer.14186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND HIV infection is now largely a chronic condition as a result of the success of antiretroviral therapy. However, several comorbidities have emerged in people living with HIV (PLWH), including alcohol use disorders and musculoskeletal disorders. Alcohol use has been associated with lower bone mineral density, alterations to circulating bone turnover markers, and hypocalcemia. The pathophysiological basis of bone loss in the PLWH population is unclear but has been suggested to be linked to oxidative stress and inflammation. To test the hypothesis that PLWH consuming excessive alcohol have altered markers of bone turnover and/or calcium homeostasis in association with oxidative stress, we correlated measurements of alcohol consumption with markers of oxidative stress and inflammation, serum calcium concentrations, and measurements of bone turnover, including c-terminal telopeptide cross-links (CTX-1) and osteocalcin. METHODS Data were drawn from cross-sectional baseline data from the ongoing New Orleans Alcohol Use in HIV (NOAH) study, comprised of 365 in care PLWH. Alcohol consumption measures (Alcohol Use Disorders Test, 30-day timeline follow-back calendar, and phosphatidylethanol [PEth]) were measured in a subcohort of 40 subjects selected based on highest and lowest PEth measurements. Multivariate linear regression was performed to test the relationships between alcohol consumption and systemic oxidative stress (4-hydroxynonenal; 4-HNE) and inflammation (c-reactive protein; CRP). RESULTS Serum calcium and CTX-1 did not differ significantly between the high and low-PEth groups. Individuals in the high-PEth group had significantly lower serum osteocalcin (median low-PEth group: 13.42 ng/ml, inter-quartile range [IQR] 9.26 to 14.99 ng/ml; median high-PEth group 7.39 ng/ml, IQR 5.02 to 11.25 ng/ml; p = 0.0005, Wilcoxon rank-sum test). Osteocalcin negatively correlated with PEth (Spearman r = -0.45, p = 0.05) and self-reported measures after adjusting for covariates. Alcohol consumption showed mild, but significant, positive associations with serum 4-HNE, but not with CRP. Osteocalcin did not correlate with either 4-HNE or CRP. CONCLUSIONS In this subcohort of PLWH, we detected significant associations between at-risk alcohol use and osteocalcin, and at-risk alcohol use and serum 4-HNE, suggesting suppression of bone formation independent of increased systemic oxidative stress with increasing alcohol consumption.
Collapse
Affiliation(s)
- James Watt
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - Jonathan Schuon
- Department of Orthopedics, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - Jacob Davis
- Department of Orthopedics, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - Tekeda F Ferguson
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - David A Welsh
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - Patricia E Molina
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans LA, 70112
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| | - Martin JJ Ronis
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans LA, 70112
| |
Collapse
|
18
|
Chen JR, Wankhade UD, Alund AW, Blackburn ML, Shankar K, Lazarenko OP. 3-(3-Hydroxyphenyl)-Propionic Acid (PPA) Suppresses Osteoblastic Cell Senescence to Promote Bone Accretion in Mice. JBMR Plus 2019; 3:e10201. [PMID: 31667457 PMCID: PMC6808226 DOI: 10.1002/jbm4.10201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Phenolic acids (PAs) are metabolites derived from polyphenolic compounds found in fruits and vegetables resulting from the actions of gut bacteria. Previously, we reported that the levels of seven individual PAs were found to be at least 10 times higher in the serum of rats fed a blueberry (BB)‐containing diet compared to those fed a control diet. We have characterized the effects of one such BB‐associated serum PA, 3‐(3‐hydroxyphenyl)‐propionic acid (PPA), on senescence signaling and promotion of mesenchymal stem cell differentiation toward osteoblasts, while suppressing adipogenesis in the stem cells. To better understand the mechanistic actions of PPA on bone formation in vivo, we administered four doses of PPA (0.1, 0.5, 1, and 5 mg/kg/day; daily i.p.) to 1‐month‐old female C57BL6/J mice for 30 days. We did not observe significant effects of PPA on cortical bone; however, there were significantly higher bone volume and trabecular thickness and increased osteoblastic cell number, but decreased osteoclastic cell number in PPA‐treated groups compared to controls. These morphological and cellular outcomes of bone were reflected in changes of bone formation markers in serum and bone marrow plasma. PPA treatment reduced senescence signaling as evaluated by senescence‐associated β‐galactosidase activity, PPARγ, p53, and p21 expression in bone. In conclusion, PPA is capable of altering the mesenchymal stem cell differentiation program and bone cell senescence. This raises the possibility that BB‐rich diets promote bone growth through increasing systemic PAs, a question that merits additional investigation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Alexander W Alund
- Graduate Program in Interdisciplinary Biomedical Sciences University of Arkansas for Medical Sciences Little Rock AR USA
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
19
|
NADPH Oxidase Isoforms Are Involved in Glucocorticoid-Induced Preosteoblast Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9192413. [PMID: 31049140 PMCID: PMC6458927 DOI: 10.1155/2019/9192413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023]
Abstract
Oxidative stress induced by long-term glucocorticoid (GC) use weakens the repair capacity of bone tissue. Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase (NOX) is a superoxide-generating enzyme that plays an important role in regulating bone metabolism. To clarify the role of nonphagocytic NOX isoforms in osteoblast reactive oxygen species (ROS) generation and apoptosis, dexamethasone was used to establish a high-dose GC environment in vitro. A dose-dependent increase in intracellular ROS generation was demonstrated, which was accompanied by increased osteoblastic MC3T3-E1 cell apoptosis. Addition of the ROS inhibitor NAC (N-acetyl-L-cysteine) or NOX inhibitor DPI (diphenyleneiodonium) reversed this effect, indicating that NOX-derived ROS can induce osteoblast apoptosis under high-dose dexamethasone stimulation. NOX1, NOX2, and NOX4 are NOX homologs recently identified in bone tissue. To clarify the NOX isoforms that play a role in osteoblast ROS generation, Nox1, Nox2, and Nox4 mRNA expression and NOX2 and NOX4 protein expression were analyzed. Nox1 and Nox4 mRNA expression was elevated in a dose-dependent manner after culture in 100 nM, 250 nM, 500 nM, or 1000 nM dexamethasone, and the increased expression of NOX1 mRNA was more significant compared with NOX4 mRNA. Small interfering RNAs (siRNAs) were used to confirm the role of NOX1 and NOX4 in ROS generation. To clarify the signaling pathway in ROS-induced osteoblast apoptosis, mitogen-activated protein kinase (MAPK) signaling molecules were analyzed. Phosphorylated ASK1 and p38 levels were significantly higher in the 1000 nM dexamethasone group, which NAC or DPI markedly attenuated. However, the total mRNA and protein levels of ASK1 and p38 between the dexamethasone group and control were not significantly different. This is related to ROS regulating the posttranslational modification of ASK1 and p38 in MC3T3-E1 cell apoptosis. Altogether, NOX1- and NOX4-derived ROS plays a pivotal role in high-dose dexamethasone-induced preosteoblast apoptosis by increasing phosphorylated ASK1 and p38 and may be an important mechanism in steroid-induced avascular necrosis of the femoral head (SANFH).
Collapse
|
20
|
Martiniakova M, Sarocka A, Babosova R, Grosskopf B, Kapusta E, Goc Z, Formicki G, Omelka R. Changes in the microstructure of compact and trabecular bone tissues of mice subchronically exposed to alcohol. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:8. [PMID: 29876325 PMCID: PMC5968607 DOI: 10.1186/s40709-018-0079-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/18/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Alcohol is one of the most commonly consumed neurotoxins by humans. Its negative effect on bone health is known for a long time. However, its impact on qualitative and quantitative 2D characteristics of the compact bone is still unclear. Therefore, the aim of this study was to investigate in detail the effects of subchronic alcohol exposure on compact and trabecular bone tissues microstructure of laboratory mice using 2D and 3D imaging methods. Ten clinically healthy 12 weeks-old mice (males) were randomly divided into two groups. Animals from experimental group (group E; n = 5) drank a solution composed of 15% ethanol and water (1.7 g 100% ethanol kg-1 b.w. per day) for 8 weeks, while those from control group (group C; n = 5) drank only water. RESULTS Subchronic exposure to alcohol leads to several changes in qualitative 2D characteristics of the compact bone such as the presence of primary vascular radial bone tissue in pars anterior of endosteal border and a higher number of resorption lacunae (five times more) in the middle part of substantia compacta. Morphometrical 2D evaluations of the compact bone showed significantly increased sizes of primary osteons' vascular canals (p < 0.05) in mice from the experimental group (E group). Sizes of Haversian canals and secondary osteons were not affected by alcohol consumption. In mice from the E group, significantly lower values for relative bone volume and bone mineral density of the compact bone were observed. In the trabecular bone, decreased values for bone volume, trabecular number, trabecular thickness and bone surface (p < 0.05) were documented. CONCLUSIONS Alcohol decreased not only bone volume and density of the compact bone, but it also reduced trabecular bone volume and leads to trabecular thinning. It caused vasodilation of primary osteons' vascular canals and increased porosity in the compact bone.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Anna Sarocka
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Ramona Babosova
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| | - Birgit Grosskopf
- Institute of Zoology and Anthropology, Georg-August University, 37 073 Göttingen, Germany
| | - Edyta Kapusta
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084 Cracow, Poland
| | - Zofia Goc
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084 Cracow, Poland
| | - Grzegorz Formicki
- Department of Animal Physiology and Toxicology, Pedagogical University of Cracow, 30 084 Cracow, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
21
|
Lee J, Son HS, Lee HI, Lee GR, Jo YJ, Hong SE, Kim N, Kwon M, Kim NY, Kim HJ, Lee YJ, Seo EK, Jeong W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling. FASEB J 2018; 33:2026-2036. [PMID: 30216110 DOI: 10.1096/fj.201800866rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many bone diseases, such as osteoporosis and rheumatoid arthritis, are attributed to an increase in osteoclast number or activity; therefore, control of osteoclasts has significant clinical implications. This study shows how skullcapflavone II (SFII), a flavonoid with anti-inflammatory activity, regulates osteoclast differentiation, survival, and function. SFII inhibited osteoclastogenesis with decreased activation of MAPKs, Src, and cAMP response element-binding protein (CREB), which have been known to be redox sensitive. SFII decreased reactive oxygen species by scavenging them or activating nuclear factor-erythroid 2-related factor 2 (Nrf2), and its effects were partially reversed by hydrogen peroxide cotreatment or Nrf2 deficiency. In addition, SFII attenuated survival, migration, and bone resorption, with a decrease in the expression of integrin β3, Src, and p130 Crk-associated substrate, and the activation of RhoA and Rac1 in differentiated osteoclasts. Furthermore, SFII inhibited osteoclast formation and bone loss in an inflammation- or ovariectomy-induced osteolytic mouse model. These findings suggest that SFII inhibits osteoclastogenesis through redox regulation of MAPKs, Src, and CREB and attenuates the survival and resorption function by modulating the integrin pathway in osteoclasts. SFII has therapeutic potential in the treatment and prevention of bone diseases caused by excessive osteoclast activity.-Lee, J., Son, H. S., Lee, H. I., Lee, G.-R., Jo, Y.-J., Hong, S.-E., Kim, N., Kwon, M., Kim, N. Y., Kim, H. J., Lee, Y. J., Seo, E. K., Jeong, W. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling.
Collapse
Affiliation(s)
- Jiae Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Han Saem Son
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hye In Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Gong-Rak Lee
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - You-Jin Jo
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Hong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Narae Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Minjeong Kwon
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Nam Young Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun Jin Kim
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Yoo Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Woojin Jeong
- Department of Life Science, Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
22
|
Abstract
OBJECTIVES To explore how alcohol affects the BMP-2 signaling pathway, which is known to play a critical role in bone and cartilage formation during fracture healing. METHODS A rat model was used to demonstrate the detrimental effects of alcohol exposure on tibia fracture healing. Specific components of the BMP-2 pathway were analyzed in fracture callus on days 3, 7, 14, and 21 after fracture via western immunoassays and enzyme-linked immunosorbent assay. RESULTS Alcohol exposure before tibia fracture demonstrated attenuation of downstream BMP-2 signaling. The BMP-2 antagonist, Chordin, may be the central component of the BMP-2-related changes demonstrated in this study. Although alcohol affected BMP-related proteins at all time points, it seems that day 14 after fracture is a critical time point for alcohol-related modulation of callus formation in our model. CONCLUSIONS This study may provide the scientific basis for further studies addressing whether the application of exogenous BMP-2 in patients with a history of alcohol abuse who sustain long bone fractures may or may not be of benefit.
Collapse
|
23
|
Duryee MJ, Dusad A, Hunter CD, Kharbanda KK, Bruenjes JD, Easterling KC, Siebler JC, Thiele GM, Chakkalakal DA. N-Acetyl Cysteine Treatment Restores Early Phase Fracture Healing in Ethanol-Fed Rats. Alcohol Clin Exp Res 2018; 42:1206-1216. [PMID: 29698568 DOI: 10.1111/acer.13765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fracture healing in alcoholics is delayed and often associated with infections resulting in prolonged rehabilitation. It has been reported that binge drinking of alcohol increases oxidative stress and delays fracture healing in rats, which is prevented by treatment with the antioxidant n-acetyl cysteine (NAC). Oxidative stress is a significant factor in pathologies of various organs resulting from chronic alcoholism. Therefore, we hypothesize that treatment with NAC reduces oxidative stress and restores fracture healing in chronic alcoholics. METHODS Rats (10 months old) were pair-fed the Lieber-DeCarli ethanol (EtOH) diet or control diet for 16 weeks. A closed fracture was performed and rats allowed to recover for 72 hours. Rats were divided into 4 groups-control, control + NAC, EtOH, and EtOH + NAC-and injected intraperitoneally with 200 mg/kg of NAC daily for 3 days. Serum and bone fracture callus homogenates were collected and assayed for traditional markers of inflammation, oxidative stress, and bone regeneration. RESULTS The oxidative stress marker malondialdehyde (MDA) was increased in both serum and bone tissue in EtOH-fed animals compared to controls. NAC treatment significantly (p < 0.01) reduced MDA to near normal levels and dramatically increased the index of antioxidant efficacy (catalase/MDA ratio) (p < 0.01). Inflammatory markers tumor necrosis factor-α, interferon-γ, and interleukin-6 were significantly decreased in serum and callus following NAC treatment. NAC treatment reduced EtOH-induced bone resorption as evidenced by significant decreases in C-telopeptide of type-I-collagen levels (p < 0.05) and band-5 tartrate-resistant acid phosphatase levels in the tissue (p < 0.001). CONCLUSIONS Oxidative stress and excessive inflammation are involved in the inhibition of fracture healing by EtOH. In this study, early short-term treatment of EtOH-fed animals with the antioxidant NAC reduced oxidative stress and normalized the innate immune response to fracture in the early phase of fracture healing, thereby restoring the normal onset of bone regeneration.
Collapse
Affiliation(s)
- Michael J Duryee
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Anand Dusad
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carlos D Hunter
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kusum K Kharbanda
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Gastroenterology-Hepatology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joseph D Bruenjes
- Department of Surgery , Creighton University Medical Center, Omaha, Nebraska
| | - Karen C Easterling
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Justin C Siebler
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Surgery , Creighton University Medical Center, Omaha, Nebraska.,Department of Orthopedic Surgery , University of Nebraska Medical Center, Omaha, Nebraska
| | - Geoffrey M Thiele
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Internal Medicine , Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology , University of Nebraska Medical Center, Omaha, Nebraska
| | - Dennis A Chakkalakal
- Veteran Affairs Nebraska-Western Iowa Health Care System , Omaha, Nebraska.,Department of Surgery , Creighton University Medical Center, Omaha, Nebraska.,Department of Orthopedic Surgery , University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
24
|
Watt J, Alund AW, Pulliam CF, Mercer KE, Suva LJ, Chen JR, Ronis MJJ. NOX4 Deletion in Male Mice Exacerbates the Effect of Ethanol on Trabecular Bone and Osteoblastogenesis. J Pharmacol Exp Ther 2018; 366:46-57. [PMID: 29653963 DOI: 10.1124/jpet.117.247262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
Chronic alcohol consumption increases bone resorption and decreases bone formation. A major component of ethanol (EtOH) pathology in bone is the generation of excess reactive oxygen species (ROS). The ROS-generating NADPH oxidase-4 (NOX4) is proposed to drive much of the EtOH-induced suppression of bone formation. Here, 13-week-old male wild-type (WT) and NOX4-/- mice were pair fed (PF) a high-fat (35%), Lieber-DeCarli liquid diet with or without EtOH at 30% of their total calories for 12 weeks. Micro-computed tomography analysis demonstrated significant decreases in trabecular bone volume/total volume (BV/TV) percentage and cortical thickness in WT, EtOH-fed mice compared with PF controls. EtOH-fed NOX4-/- mice also displayed decreased trabecular BV/TV and trabecular number compared with PF (P < 0.05). However, NOX4-/- mice were protected against EtOH-induced decreases in cortical thickness (P < 0.05) and decreases in collagen1 and osteocalcin mRNA expression in cortical bone (P < 0.05). In WT and NOX4-/- vertebral bone, EtOH suppressed expression of Wnt signaling components that promote osteoblast maturation. A role for NOX4 in EtOH inhibition of osteoblast differentiation was further demonstrated by protection against EtOH inhibition of osteoblastogenesis in ex vivo bone marrow cultures from NOX4-/-, but not p47phox-/- mice lacking active NADPH oxidase-2. However, bone marrow cultures from NOX4-/- mice formed fewer osteoblastic colonies compared with WT cultures (P < 0.05), suggesting a role for NOX4 in the maintenance of mesenchymal progenitor cell populations. These data suggest that NOX4 deletion is partially protective against EtOH effects on osteoblast differentiation, but may predispose bone to osteogenic impairments.
Collapse
Affiliation(s)
- James Watt
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Alexander W Alund
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Kelly E Mercer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Larry J Suva
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Jin-Ran Chen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| | - Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.W., C.F.P., M.J.J.R.); Interdisciplinary Biological Sciences Program (A.W.A.) and Department of Pediatrics, Arkansas Children's Nutrition Center (K.E.M., J.-R.C.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (L.J.S.)
| |
Collapse
|
25
|
Luo Z, Liu Y, Liu Y, Chen H, Shi S, Liu Y. Cellular and molecular mechanisms of alcohol-induced osteopenia. Cell Mol Life Sci 2017; 74:4443-4453. [PMID: 28674727 PMCID: PMC11107754 DOI: 10.1007/s00018-017-2585-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.
Collapse
Affiliation(s)
- Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Yao Liu
- Liaoning Province Key Laboratory of Oral Disease, 117 Nanjing North Street, Shenyang, 110002, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China
| | - Hui Chen
- Liaoning Province Key Laboratory of Oral Disease, 117 Nanjing North Street, Shenyang, 110002, People's Republic of China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
26
|
Sönmez TT, Bayer A, Cremer T, Hock JVP, Lethaus B, Kweider N, Wruck CJ, Drescher W, Jahr H, Lippross S, Pufe T, Tohidnezhad M. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss ® ) on ethanol impaired osteoblasts. Ann Anat 2017; 214:36-42. [DOI: 10.1016/j.aanat.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/17/2017] [Accepted: 07/12/2017] [Indexed: 01/02/2023]
|
27
|
Alund AW, Mercer KE, Pulliam CF, Suva LJ, Chen JR, Badger TM, Ronis MJJ. Partial Protection by Dietary Antioxidants Against Ethanol-Induced Osteopenia and Changes in Bone Morphology in Female Mice. Alcohol Clin Exp Res 2016; 41:46-56. [PMID: 27987315 DOI: 10.1111/acer.13284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic alcohol consumption leads to increased fracture risk and an elevated risk of osteoporosis by decreasing bone accrual through increasing osteoclast activity and decreasing osteoblast activity. We have shown that this mechanism involves the generation of reactive oxygen species (ROS) produced by NADPH oxidases. It was hypothesized that different dietary antioxidants, N-acetyl cysteine (NAC; 1.2 mg/kg/d), and α-tocopherol (Vit.E; 60 mg/kg/d) would be able to attenuate the NADPH oxidase-mediated ROS effects on bone due to chronic alcohol intake. METHODS To study the effects of these antioxidants, female mice received a Lieber-DeCarli liquid diet containing ethanol (EtOH) with or without additional antioxidant for 8 weeks. RESULTS Tibias displayed decreased cortical bone mineral density in both the EtOH and EtOH + antioxidant groups compared to pair-fed (PF) and PF + antioxidant groups (p < 0.05). However, there was significant protection from trabecular bone loss in mice fed either antioxidant (p < 0.05). Microcomputed tomography analysis demonstrated a significant decrease in bone volume (bone volume/tissue volume) and trabecular number (p < 0.05), along with a significant increase in trabecular separation in the EtOH compared to PF (p < 0.05). In contrast, the EtOH + NAC and EtOH + Vit.E did not statistically differ from their respective PF controls. Ex vivo histologic sections of tibias were stained for nitrotyrosine, an indicator of intracellular damage by ROS, and tibias from mice fed EtOH exhibited significantly more staining than PF controls. EtOH treatment significantly increased the number of marrow adipocytes per mm as well as mRNA expression of aP2, an adipocyte marker in bone. Only NAC was able to reduce the number of marrow adipocytes to PF levels. EtOH-fed mice exhibited reduced bone length (p < 0.05) and had a reduced number of proliferating chondrocytes within the growth plate. NAC and Vit.E prevented this (p < 0.05). CONCLUSIONS These data show that alcohol's pathological effects on bone extend beyond decreasing bone mass and suggest a partial protective effect of the dietary antioxidants NAC and Vit.E at these doses with regard to alcohol effects on bone turnover and bone morphology.
Collapse
Affiliation(s)
- Alexander W Alund
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Interdisciplinary Biomedical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| | - Larry J Suva
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Martin J J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana
| |
Collapse
|
28
|
Alund AW, Mercer KE, Suva LJ, Pulliam CF, Chen JR, Badger TM, Van Remmen H, Ronis MJJ. Reactive Oxygen Species Differentially Regulate Bone Turnover in an Age-Specific Manner in Catalase Transgenic Female Mice. J Pharmacol Exp Ther 2016; 358:50-60. [PMID: 27189961 DOI: 10.1124/jpet.116.233213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 12/19/2022] Open
Abstract
Chronic ethyl alcohol (EtOH) consumption results in reactive oxygen species (ROS) generation in bone and osteopenia due to increased bone resorption and reduced bone formation. In this study, transgenic C57Bl/6J mice overexpressing human catalase (TgCAT) were used to test whether limiting excess hydrogen peroxide would protect against EtOH-mediated bone loss. Micro-computed tomography analysis of the skeletons of 6-week-old female chow-fed TgCAT mice revealed a high bone mass phenotype with increased cortical bone area and thickness as well as significantly increased trabecular bone volume (P < 0.05). Six-week-old wild-type (WT) and TgCAT female mice were chow fed or pair fed (PF) liquid diets with or without EtOH, approximately 30% of calories, for 8 weeks. Pair feeding of WT had no demonstrable effect on the skeleton; however, EtOH feeding of WT mice significantly reduced cortical and trabecular bone parameters along with bone strength compared with PF controls (P < 0.05). In contrast, EtOH feeding of TgCAT mice had no effect on trabecular bone compared with PF controls. At 14 weeks of age, there was significantly less trabecular bone and cortical cross-sectional area in TgCAT mice than WT mice (P < 0.05), suggesting impaired normal bone accrual with age. TgCAT mice expressed less collagen1α and higher sclerostin mRNA (P < 0.05), suggesting decreased bone formation in TgCAT mice. In conclusion, catalase overexpression resulted in greater bone mass than in WT mice at 6 weeks and lower bone mass at 14 weeks. EtOH feeding induced significant reductions in bone architecture and strength in WT mice, but TgCAT mice were partially protected. These data implicate ROS signaling in the regulation of bone turnover in an age-dependent manner, and indicate that excess hydrogen peroxide generation contributes to alcohol-induced osteopenia.
Collapse
Affiliation(s)
- Alexander W Alund
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Larry J Suva
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Casey F Pulliam
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Jin-Ran Chen
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Thomas M Badger
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Holly Van Remmen
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| | - Martin J J Ronis
- Arkansas Children's Nutrition Center (A.W.A., K.E.M., J.-R.C., T.M.B.), Interdisciplinary Biomedical Sciences (A.W.A.), Department of Pediatrics (K.E.M., J.-R.C., T.M.B.), and Department of Orthopedic Surgery (L.J.S.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana (C.F.P., M.J.J.R.); and Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma (H.V.R.)
| |
Collapse
|
29
|
Gaddini GW, Turner RT, Grant KA, Iwaniec UT. Alcohol: A Simple Nutrient with Complex Actions on Bone in the Adult Skeleton. Alcohol Clin Exp Res 2016; 40:657-71. [PMID: 26971854 DOI: 10.1111/acer.13000] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 01/02/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alcohol is an important nonessential component of diet, but the overall impact of drinking on bone health, especially at moderate levels, is not well understood. Bone health is important because fractures greatly reduce quality of life and are a major cause of morbidity and mortality in the elderly. Regular alcohol consumption is most common following skeletal maturity, emphasizing the importance of understanding the skeletal consequences of drinking in adults. METHODS This review focuses on describing the complex effects of alcohol on the adult skeleton. Studies assessing the effects of alcohol on bone in adult humans as well as skeletally mature animal models published since the year 2000 are emphasized. RESULTS Light to moderate alcohol consumption is generally reported to be beneficial, resulting in higher bone mineral density (BMD) and reduced age-related bone loss, whereas heavy alcohol consumption is generally associated with decreased BMD, impaired bone quality, and increased fracture risk. Bone remodeling is the principal mechanism for maintaining a healthy skeleton in adults and dysfunction in bone remodeling can lead to bone loss and/or decreased bone quality. Light to moderate alcohol may exert beneficial effects in older individuals by slowing the rate of bone remodeling, but the impact of light to moderate alcohol on bone remodeling in younger individuals is less certain. The specific effects of alcohol on bone remodeling in heavy drinkers are even less certain because the effects are often obscured by unhealthy lifestyle choices, alcohol-associated disease, and altered endocrine signaling. CONCLUSIONS Although there have been advances in understanding the complex actions of alcohol on bone, much remains to be determined. Limited evidence implicates age, skeletal site evaluated, duration, and pattern of drinking as important variables. Few studies systematically evaluating the impact of these factors have been conducted and should be made a priority for future research. In addition, studies performed in skeletally mature animals have potential to reveal mechanistic insights into the precise actions of alcohol and associated comorbidity factors on bone remodeling.
Collapse
Affiliation(s)
- Gino W Gaddini
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon.,Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon.,Center for Healthy Aging Research, Oregon State University, Corvallis, Oregon
| |
Collapse
|
30
|
González-Reimers E, Quintero-Platt G, Rodríguez-Rodríguez E, Martínez-Riera A, Alvisa-Negrín J, Santolaria-Fernández F. Bone changes in alcoholic liver disease. World J Hepatol 2015; 7:1258-1264. [PMID: 26019741 PMCID: PMC4438500 DOI: 10.4254/wjh.v7.i9.1258] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Alcoholism has been associated with growth impairment, osteomalacia, delayed fracture healing, and aseptic necrosis (primarily necrosis of the femoral head), but the main alterations observed in the bones of alcoholic patients are osteoporosis and an increased risk of fractures. Decreased bone mass is a hallmark of osteoporosis, and it may be due either to decreased bone synthesis and/or to increased bone breakdown. Ethanol may affect both mechanisms. It is generally accepted that ethanol decreases bone synthesis, and most authors have reported decreased osteocalcin levels (a “marker” of bone synthesis), but some controversy exists regarding the effect of alcohol on bone breakdown, and, indeed, disparate results have been reported for telopeptide and other biochemical markers of bone resorption. In addition to the direct effect of ethanol, systemic alterations such as malnutrition, malabsorption, liver disease, increased levels of proinflammatory cytokines, alcoholic myopathy and neuropathy, low testosterone levels, and an increased risk of trauma, play contributory roles. The treatment of alcoholic bone disease should be aimed towards increasing bone formation and decreasing bone degradation. In this sense, vitamin D and calcium supplementation, together with biphosphonates are essential, but alcohol abstinence and nutritional improvement are equally important. In this review we study the pathogenesis of bone changes in alcoholic liver disease and discuss potential therapies.
Collapse
|
31
|
Baker AH, Watt J, Huang CK, Gerstenfeld LC, Schlezinger JJ. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chem Res Toxicol 2015; 28:1156-66. [PMID: 25932594 DOI: 10.1021/tx500433r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that TBT activates multiple nuclear receptor pathways in BM-MSCs, activation of RXR is sufficient to suppress osteogenesis, and TBT suppresses osteogenesis largely through its direct interaction with RXR.
Collapse
Affiliation(s)
- Amelia H Baker
- †Department of Medicine and §Department of Orthopaedic Surgery, Boston University School of Medicine, ‡Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, United States
| | - James Watt
- †Department of Medicine and §Department of Orthopaedic Surgery, Boston University School of Medicine, ‡Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, United States
| | - Cassie K Huang
- †Department of Medicine and §Department of Orthopaedic Surgery, Boston University School of Medicine, ‡Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, United States
| | - Louis C Gerstenfeld
- †Department of Medicine and §Department of Orthopaedic Surgery, Boston University School of Medicine, ‡Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, United States
| | - Jennifer J Schlezinger
- †Department of Medicine and §Department of Orthopaedic Surgery, Boston University School of Medicine, ‡Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts 02118, United States
| |
Collapse
|
32
|
Chen JR, Lazarenko OP, Blackburn ML, Mercer KE, Badger TM, Ronis MJJ. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging. J Biol Chem 2015; 290:14692-704. [PMID: 25922068 DOI: 10.1074/jbc.m114.633461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/26/2023] Open
Abstract
Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.
Collapse
Affiliation(s)
- Jin-Ran Chen
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Oxana P Lazarenko
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Michael L Blackburn
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | | | - Thomas M Badger
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Martin J J Ronis
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| |
Collapse
|
33
|
Schröder K. NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci 2015; 72:25-38. [PMID: 25167924 PMCID: PMC11114015 DOI: 10.1007/s00018-014-1712-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Bone formation and degradation are perfectly coordinated. In case of an imbalance of these processes diseases occur associated with exaggerated formation of new bone or bone loss as in osteoporosis. Most studies investigating osteoporosis either focus on osteoblast or osteoclast function and differentiation. Both processes have been suggested to be affected by reactive oxygen species (ROS). Besides a potentially harmful role of ROS, these small molecules are important second messengers. The family of NADPH oxidases produces ROS in a controlled and targeted manner, to specifically regulate signal transduction. This review will highlight the role of reactive oxygen species in bone cell differentiation and bone-loss associated disease with a special focus on osteoporosis and NADPH oxidases as specialized sources of ROS.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
34
|
Yang JY, Xue X, Tian H, Wang XX, Dong YX, Wang F, Zhao YN, Yao XC, Cui W, Wu CF. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 2014; 144:321-37. [DOI: 10.1016/j.pharmthera.2014.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023]
|
35
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
36
|
González-Reimers E, Santolaria-Fernández F, Martín-González MC, Fernández-Rodríguez CM, Quintero-Platt G. Alcoholism: A systemic proinflammatory condition. World J Gastroenterol 2014; 20:14660-14671. [PMID: 25356029 PMCID: PMC4209532 DOI: 10.3748/wjg.v20.i40.14660] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Excessive ethanol consumption affects virtually any organ, both by indirect and direct mechanisms. Considerable research in the last two decades has widened the knowledge about the paramount importance of proinflammatory cytokines and oxidative damage in the pathogenesis of many of the systemic manifestations of alcoholism. These cytokines derive primarily from activated Kupffer cells exposed to Gram-negative intestinal bacteria, which reach the liver in supra-physiological amounts due to ethanol-mediated increased gut permeability. Reactive oxygen species (ROS) that enhance the inflammatory response are generated both by activation of Kupffer cells and by the direct metabolic effects of ethanol. The effects of this increased cytokine secretion and ROS generation lie far beyond liver damage. In addition to the classic consequences of endotoxemia associated with liver cirrhosis that were described several decades ago, important research in the last ten years has shown that cytokines may also induce damage in remote organs such as brain, bone, muscle, heart, lung, gonads, peripheral nerve, and pancreas. These effects are even seen in alcoholics without significant liver disease. Therefore, alcoholism can be viewed as an inflammatory condition, a concept which opens the possibility of using new therapeutic weapons to treat some of the complications of this devastating and frequent disease. In this review we examine some of the most outstanding consequences of the altered cytokine regulation that occurs in alcoholics in organs other than the liver.
Collapse
|
37
|
Okamoto T, Taguchi M, Osaki T, Fukumoto S, Fujita T. Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation. J Bone Miner Metab 2014; 32:393-9. [PMID: 24052209 DOI: 10.1007/s00774-013-0516-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/11/2013] [Indexed: 01/02/2023]
Abstract
Phosphate has been shown to work as a signaling molecule in several cells including endothelial cells and chondrocytes. However, it is largely unknown how phosphate affects osteoblastic cells. In the present study, we investigated the effects of phosphate on reactive oxygen species (ROS) production and osteoblastic differentiation in murine osteoblastic MC3T3-E1 cells. Phosphate increased production of ROS in MC3T3-E1 cells and the inhibitors of sodium-phosphate cotransporter and NADPH oxidase suppressed ROS production by phosphate. Silencing Nox1 and Nox4 also inhibited the increase of ROS by phosphate. Phosphate also decreased alkaline phosphatase activity induced by bone morphogenetic protein 2 and this inhibition was abrogated by an inhibitor of NADPH oxidase. Furthermore, phosphate decreased the expression of osteoblastic marker genes in MC3T3-E1 cells. These results indicate that phosphate suppresses osteoblastic differentiation at least in part by enhancing ROS production in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Takaaki Okamoto
- Department of Nephrology and Endocrinology, University of Tokyo, 7-3-1 Hongo, Bunkyoku, Tokyo, 113-8655, Japan,
| | | | | | | | | |
Collapse
|
38
|
Yang CS, Mercer KE, Alund AW, Suva LJ, Badger TM, Ronis MJJ. Genistein supplementation increases bone turnover but does not prevent alcohol-induced bone loss in male mice. Exp Biol Med (Maywood) 2014; 239:1380-9. [PMID: 24872432 DOI: 10.1177/1535370214532759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic alcohol consumption results in bone loss through increased bone resorption and decreased bone formation. These effects can be reversed by estradiol (E2) supplementation. Soy diets are suggested to have protective effects on bone loss in men and women, as a result of the presence of soy protein-associated phytoestrogens such as genistein (GEN). In this study, male mice were pair-fed (PF), a control diet, an ethanol (EtOH) diet, or EtOH diet supplemented with 250 mg/kg of GEN for 8 weeks to test if GEN protects against bone loss associated with chronic drinking. Interestingly, alcohol consumption reduced cortical area and thickness and trabecular bone volume in both EtOH and EtOH/GEN groups when compared to the corresponding PF and PF/GEN controls, P < 0.05. However, in the trabecular bone compartment, we observed a significant increase in overall trabecular bone density in the PF/GEN group compared to the PF controls. Bone loss in the EtOH-treated mice was associated with the inhibition of osteoblastogenesis as indicated by decreased alkaline phosphatase staining in ex vivo bone marrow cultures, P < 0.05. GEN supplementation improved osteoblastogenesis in the EtOH/GEN cultures compared to the EtOH group, P < 0.05. Vertebral expression of bone-formation markers, osteocalcin, and runt-related transcription factor 2 (Runx2) was also significantly up-regulated in the PF/GEN and EtOH/GEN groups compared to the PF and EtOH-treated groups. GEN supplementation also increased the expression of receptor activator of nuclear factor κ-B ligand (RANKL) in the PF/GEN, an increase that persisted in the EtOH/GEN-treated animals (P < 0.05), and increased basal hydrogen peroxide production and RANKL mRNA expression in primary bone marrow cultures in vitro, P < 0.05. These findings suggest that GEN supplementation increases the overall bone remodeling and, in the context of chronic alcohol consumption, does not protect against the oxidative stress-associated EtOH-mediated bone resorption.
Collapse
Affiliation(s)
- Carrie S Yang
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Alexander W Alund
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Larry J Suva
- Orthopaedic Surgery, Center for Orthopedic Research, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Martin J J Ronis
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
39
|
Influence of fat/carbohydrate ratio on progression of fatty liver disease and on development of osteopenia in male rats fed alcohol via total enteral nutrition (TEN). Alcohol 2014; 48:133-44. [PMID: 24581955 DOI: 10.1016/j.alcohol.2013.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
Alcohol abuse is associated with the development of fatty liver disease and also with significant osteopenia in both genders. In this study, we examined ethanol-induced pathology in response to diets with differing fat/carbohydrate ratios. Male Sprague-Dawley rats were fed intragastrically with isocaloric liquid diets. Dietary fat content was either 5% (high carbohydrate, HC) or 45% (high fat, HF), with or without ethanol (12-13 g/kg/day). After 14, 28, or 65 days, livers were harvested and analyzed. In addition, bone morphology was analyzed after 65 days. HC rats gained more weight and had larger fat pads than HF rats with or without ethanol. Steatosis developed in HC + ethanol (HC + EtOH) compared to HF + ethanol (HF + EtOH) rats, accompanied by increased fatty acid (FA) synthesis and increased nuclear carbohydrate response element binding protein (ChREBP) (p < 0.05), but in the absence of effects on hepatic silent mating type information regulation 2 homolog (SIRT-1) or nuclear sterol regulatory binding element protein (SREBP-1c). Ethanol reduced serum leptin (p < 0.05) but not adiponectin. Over time, HC rats developed fatty liver independent of ethanol. FA degradation was significantly elevated by ethanol in both HC and HF groups (p < 0.05). HF + EtOH rats had increased oxidative stress from 28 days, increased necrosis compared to HF controls and higher expression of cytochromes P450, CYP2E1, and CYP4A1 compared to HC + EtOH rats (p < 0.05). In contrast, HC + EtOH rats had no significant increase in oxidative stress until day 65 with no observed increase in necrosis. Unlike liver pathology, no dietary differences were observed on ethanol-induced osteopenia in HC compared to HF groups. These data demonstrate that interactions between diet composition and alcohol are complex, dependent on the length of exposure, and are an important influence in development of fatty liver injury. Importantly, it appears that diet composition does not affect alcohol-associated skeletal toxicity.
Collapse
|
40
|
Laurent D, Edwards JG. Alcoholic Cardiomyopathy: Multigenic Changes Underlie Cardiovascular Dysfunction. JOURNAL OF CARDIOLOGY & CLINICAL RESEARCH 2014; 2:1022. [PMID: 26478905 PMCID: PMC4607291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alcoholism is the third leading cause of preventable death in the United States. Aside from promoting cardiomyopathies, chronic alcohol consumption is associated with an increased risk of dementia, the development of liver or pancreas failure, and cancers of the oral cavity and pharynx. Although a J-shaped curve for all cause mortality has been identified for average alcohol consumption, irregular heavy drinking also carries significantly greater risks for cardiovascular disease. Alcohol induced cardiovascular disease has a complex multigenic etiology. There is significant variation in the initial presentation of alcoholic cardiomyopathy with diastolic dysfunction possibly being the first indication. Ethanol exposure generates toxic metabolites, primarily acetaldehyde and ROS, which activate several cell signaling systems to alter cell function across many levels. Sudden cardiac death is a known occurrence of alcoholism that may be linked to an arrhythmogenic effect of alcohol. Microscopic and molecular examination of diseased hearts has demonstrated abnormal alterations to various cellular components, including the mitochondria and myofibrils. These studies have shown not only the direct impact on myocardial contractility but also disrupted metabolism that determines the long-term survival of the myocardium. Significant variations in the response to chronic alcohol consumption may be related to unique genotypes that modify the metabolic response to ethanol. Future studies to further characterize the role of different genotypes will help indentify those genotypes are more susceptible to chronic alcohol consumption.
Collapse
Affiliation(s)
| | - John G. Edwards
- Corresponding author, J.G. Edwards, Department of Physiology, New York, Medical College, 15 Dana Road, Valhalla, New York, USA,
| |
Collapse
|
41
|
Hyeon S, Lee H, Yang Y, Jeong W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic Biol Med 2013; 65:789-799. [PMID: 23954472 DOI: 10.1016/j.freeradbiomed.2013.08.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that regulates the expression of a variety of antioxidant and detoxification genes through an antioxidant-response element. Nrf2 has been shown to protect several types of cells against the acute and chronic injury that accompanies oxidative stress, but its role in osteoclasts remains unclear. In this study, we investigated the role of Nrf2 in osteoclast (OC) differentiation, a process in which reactive oxygen species (ROS) are generated and then participate, using Nrf2-knockout mice. Receptor activator of nuclear factor κB ligand (RANKL)-induced OC differentiation, actin ring formation, and osteoclastic bone resorption were substantially promoted in Nrf2-deficient OC precursor cells compared to wild-type cells. Under both unstimulated and RANKL-stimulated conditions, Nrf2 loss led to an increase in the intracellular ROS level and the oxidized-to-reduced glutathione ratio and a defect in the production of numerous antioxidant enzymes and glutathione. Moreover, pretreatment with N-acetylcysteine or diphenyleneiodonium significantly reduced the OC differentiation and decreased the intracellular ROS level in both Nrf2-deficient and wild-type cells. Pretreatment with sulforaphane and curcumin also inhibited the OC differentiation by activating Nrf2 in part. Nrf2 deficiency promoted the RANKL-induced activation of mitogen-activated protein kinases, including c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38; the induction of c-Fos; and the consequent induction of nuclear factor of activated T cells, cytoplasmic 1, a pivotal determinant of OC differentiation. Our results suggest that Nrf2 probably inhibits RANKL-induced OC differentiation by regulating the cellular redox status by controlling the expression of oxidative response genes, findings that might form the basis of a new strategy for treating inflammatory bone diseases.
Collapse
Affiliation(s)
- Seungha Hyeon
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Hyojung Lee
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Yoohee Yang
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea
| | - Woojin Jeong
- Department of Life Science and Research Center for Cellular Homeostasis, Ewha Woman's University, Seoul 120-750, Korea.
| |
Collapse
|
42
|
Mercer KE, Sims CR, Yang CS, Wynne RA, Moutos C, Hogue WR, Lumpkin CK, Suva LJ, Chen JR, Badger TM, Ronis MJJ. Loss of functional NADPH oxidase 2 protects against alcohol-induced bone resorption in female p47phox-/- mice. Alcohol Clin Exp Res 2013; 38:672-82. [PMID: 24256560 DOI: 10.1111/acer.12305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND In bone, NADPH oxidase (NOX)-derived reactive oxygen species (ROS) superoxide and/or hydrogen peroxide are an important stimulus for osteoclast differentiation and activity. Previously, we have demonstrated that chronic ethanol (EtOH) consumption generates excess NOX-dependent ROS in osteoblasts, which functions to stimulate nuclear factor kappa-β receptor ligand (RANKL)-RANK signaling, thus increasing osteoclastogenesis and activity. This activity can be blocked by co-administration of EtOH with the pan-NOX inhibitor diphenylene idonium (DPI). METHODS To test whether EtOH-induced bone loss is dependent on a functional NOX2 enzyme, 6-week-old female C57BL/6J-Ncf1/p47phox(-/-) (p47phox KO) and wild-type (WT) mice were pair-fed EtOH diets for 40 days. Bone loss was assessed by 3-point bending, micro-computed tomography and static histomorphometric analysis. Additionally, ST2 cultured cells were co-treated with EtOH and NOX inhibitors, DPI, gliotoxin, and plumbagin, after which changes in ROS production, and in RANKL and NOX mRNA expression were analyzed. RESULTS In WT mice, EtOH treatment significantly reduced bone density and mechanical strength, and increased total osteoclast number and activity. In EtOH-treated p47phox KO mice, bone density and mechanical strength were completely preserved. EtOH p47phox KO mice had no changes in osteoclast numbers or activity, and no elevations in serum CTX or RANKL gene expression (p < 0.05). In both WT and p47phox KO mice, EtOH feeding reduced biochemical markers of bone formation (p < 0.05). In vitro EtOH exposure of ST2 cells increased ROS, which was blocked by pretreating with DPI or the NOX2 inhibitor gliotoxin. EtOH-induced RANKL and NOX2 gene expression were inhibited by the NOX4-specific inhibitor plumbagin. CONCLUSIONS These data suggest that NOX2-derived ROS is necessary for EtOH-induced bone resorption. In osteoblasts, NOX2 and NOX4 appear to work in tandem to increase RANKL expression, whereas EtOH-mediated inhibition of bone formation occurs via a NOX2-independent mechanism.
Collapse
Affiliation(s)
- Kelly E Mercer
- Department of Pediatrics, Center for Orthopaedic Research at the University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Miousse IR, Gomez-Acevedo H, Sharma N, Vantrease J, Hennings L, Shankar K, Cleves MA, Badger TM, Ronis MJ. Mammary gland morphology and gene expression signature of weanling male and female rats following exposure to exogenous estradiol. Exp Biol Med (Maywood) 2013; 238:1033-46. [PMID: 23925648 DOI: 10.1177/1535370213497322] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In order to characterize the actions of xenoestrogens, it is essential to possess a solid portrait of the physiological effects of exogenous estradiol. We assessed effects of three doses of exogenous estradiol (E2) (0.1, 1.0 and 10 µg/kg/day) given between postnatal days 21 and 33 on the mammary gland morphology and gene expression profiles of male and female rats compared to vehicle-treated controls. The male mammary gland was more responsive to E2 treatment than in females, with 509 genes regulated >2-fold in a dose-dependent manner in males and only 174 in females. In males, E2 treatment significantly (P < 0.01) increased the number of terminal end buds (TEBs) and the expression of proliferating cell nuclear antigen (PCNA) protein (P < 0.05), both of which are indicators of proliferation. This change was linked to a significant increase (P < 0.05) in the expression of the gene encoding amphiregulin, which is known to induce TEB formation. There was also a dose-dependent increase (P < 0.001) in the estrogen-regulated gene encoding the progesterone receptor. In intact females, despite lack of changes in mammary morphology, we observed a dose-dependent increase (P < 0.05) in the expression of genes encoding three milk proteins: whey acidic protein, casein beta and casein kappa. There was a significant (P < 0.05) downregulation of both estrogen receptors in response to E2 treatment. These results suggest that mammary glands of male rats are very sensitive to exogenous E2 during development post-weaning. The dose-dependent increase observed in amphiregulin and progesterone receptor gene expression was linked to morphological changes and represents a reliable and sensitive tool to evaluate estrogenicity. In contrast, intact weanling female rats were less responsive.
Collapse
|
44
|
McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses 2013; 80:456-62. [PMID: 23380360 DOI: 10.1016/j.mehy.2012.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
45
|
Excessive ethanol consumption under exposure to lead intensifies disorders in bone metabolism: a study in a rat model. Chem Biol Interact 2013; 203:486-501. [PMID: 23376407 DOI: 10.1016/j.cbi.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/13/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
Abstract
It was investigated whether ethanol (Et) modifies the damaging impact of lead (Pb) on bone metabolism in a rat model reflecting excessive alcohol consumption by humans exposed to relatively high levels of this metal. For this purpose, markers of bone formation (osteocalcin, procollagen I, osteoprotegerin, alkaline phosphatase) and resorption (telopeptides of collagen I, soluble receptor activator of nuclear factor-κB ligand), calciotropic hormones (parathormone, calcitonin, 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D) in the serum, and the femur content of mineral (including calcium - Ca and inorganic phosphorus - P(i)) and organic components were estimated in the rats exposed to 500 mg Pb/l (in drinking water) or/and Et (5 g/kg b.wt./24 h, by oral gavage) for 12 weeks. Moreover, Ca and P(i) in the serum and urine, alkaline phosphatase in the bone tissue and Pb in the blood and femur were determined. The exposure to Pb or/and Et decreased bone formation and increased its resorption resulting in the bone demineralization. These effects were accompanied by destroying the hormonal regulation of mineral metabolism, and Ca and P(i) imbalance. The co-exposure to Pb and Et-induced disorders in bone metabolism were more advanced than those caused by Pb alone. Et co-administration increased Pb concentration in the blood and decreased its accumulation in the bone. This paper is the first report providing evidence that consumption of Et under exposure to Pb intensifies disorders in bone metabolism and that destroying of the receptor activator nuclear factor-κB (RANK)/RANK ligand/osteoprotegerin system is involved in the mechanisms of interactive action of these xenobiotics on the skeleton. The modifying impact of Et may be an effect of its independent osteotropic action and interaction with Pb. Based on the results it can be concluded that alcohol abuse by subjects excessively exposed to Pb considerably increases the risk of bone damage.
Collapse
|
46
|
Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, Lei W, Zhang ZY. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013; 34:2234-43. [PMID: 23294547 DOI: 10.1016/j.biomaterials.2012.12.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Clinical evidence indicates diabetes as a majorrisk factor for titaniumimplant treatment with high failure rates and poor osteointegration, but the underlying mechanism involved remains elusive.We hypothesize that reactive oxygen species (ROS) overproduction may contribute to the impaired osteogenesis of porous titanium implants (pTi) under diabetic conditions. To test this hypothesis, we culturedprimary rabbit osteoblasts onto pTi and studied the cellular performance when subjected to normal serum (NS), diabetic serum (DS), DS + NAC (a potent ROS inhibitor) and NS + H(2)O(2)(an oxidant).In-vivo performance of pTi was investigated by transplanting them intofemoral condyledefects of diabetic rabbits, which received vehicle or NAC treatment respectively.Results showed that diabetic conditions induced significant cellular apoptosis, depressedosteoblast function evidenced by impairedcell attachment and morphology, decreased cell proliferation anddifferentiation, andcompromised in-vivo osteogenesis ofpTi, while cellular ROSgeneration was increased derived from mitochondrial dysfunction. Scavenging ROS with NAC markedly attenuated cell apoptosis and osteoblast dysfunction, and improved bone ingrowth within pTi. Furthermore, treatment withH(2)O(2) exerted similar adverse effect on cellular behavior as diabetes. This study furthers our knowledge on the potential role of ROS overproduction in the diabetes-induced impaired osteogenesis of titanium implants, and indicates anti-oxidative treatment as a promising strategy to promote the treatment efficacy of pTi in diabetic patients.
Collapse
Affiliation(s)
- Ya-Fei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mercer KE, Wynne RA, Lazarenko OP, Lumpkin CK, Hogue WR, Suva LJ, Chen JR, Mason AZ, Badger TM, Ronis MJJ. Vitamin D supplementation protects against bone loss associated with chronic alcohol administration in female mice. J Pharmacol Exp Ther 2012; 343:401-12. [PMID: 22892342 PMCID: PMC3477212 DOI: 10.1124/jpet.112.197038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/13/2012] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol abuse results in decreased bone mineral density (BMD), which can lead to increased fracture risk. In contrast, low levels of alcohol have been associated with increased BMD in epidemiological studies. Alcohol's toxic skeletal effects have been suggested to involve impaired vitamin D/calcium homeostasis. Therefore, dietary vitamin D supplementation may be beneficial in reducing bone loss associated with chronic alcohol consumption. Six-week-old female C57BL/6J mice were pair-fed ethanol (EtOH)-containing liquid diets (10 or 36% total calories) for 78 days. EtOH exposure at 10% calories had no effects on any measured bone or serum parameter. EtOH consumption at 36% of calories reduced BMD and bone strength (P<0.05), decreased osteoblastogenesis, increased osteoclastogenesis, suppressed 1,25-hydroxyvitamin D3 [1,25(OH)2D3] serum concentrations (P<0.05), and increased apoptosis in bone cells compared with pair-fed controls. In a second study, female mice were pair-fed 30% EtOH diets with or without dietary supplementation with vitamin D3 (cholecalciferol; VitD) for 40 days. VitD supplementation in the EtOH diet protected against cortical bone loss, normalized alcohol-induced hypocalcaemia, and suppressed EtOH-induced expression of receptor of nuclear factor-κB ligand mRNA in bone. In vitro, pretreatment of 1,25(OH)2D3 in osteoblastic cells inhibited EtOH-induced apoptosis. In EtOH/VitD mice circulating 1,25(OH)2D3 was lower compared with mice receiving EtOH alone (P<0.05), suggesting increased sensitivity to feedback control of VitD metabolism in the kidney. These findings suggest dietary VitD supplementation may prevent skeletal toxicity in chronic drinkers by normalizing calcium homeostasis, preventing apoptosis, and suppressing EtOH-induced increases in bone resorption.
Collapse
Affiliation(s)
- Kelly E Mercer
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Diego RP, Lera AL, Cerdán AF. High frequency in the delay in primary tooth loss in X-linked chronic granulomatous disease. Clin Immunol 2012; 145:59-60. [DOI: 10.1016/j.clim.2012.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
49
|
Zhang C, Tian X, Luo Y, Meng X. Ginkgolide B attenuates ethanol-induced neurotoxicity through regulating NADPH oxidases. Toxicology 2011; 287:124-30. [DOI: 10.1016/j.tox.2011.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/29/2011] [Accepted: 06/09/2011] [Indexed: 01/05/2023]
|
50
|
Abstract
It is well established that excessive consumption of high-fat diets results in obesity. However, the consequences of obesity on skeletal development, maturation, and remodeling have been the subject of controversy. New studies suggest that the response of the growing skeleton to mechanical loading is impaired and trabecular bone mass is decreased in obesity and after high-fat feeding. At least in part, this occurs as a direct result of inhibited Wnt signaling and activation of peroxisome proliferator-activated receptor-γ (PPAR-γ) pathways in mesenchymal stem cells by fatty acids. Similar effects on Wnt and PPAR-γ signaling occur after chronic alcohol consumption as the result of oxidative stress and result in inhibited bone formation accompanied by increased bone marrow adiposity. Alcohol-induced oxidative stress as the result of increased NADPH-oxidase activity in bone cells also results in enhanced RANKL-RANK signaling to increase osteoclastogenesis. In contrast, consumption of fruits and legumes such as blueberries and soy increase bone formation. New data suggest that Wnt and bone morphogenetic protein signaling pathways are the molecular targets for bone anabolic factors derived from the diet.
Collapse
Affiliation(s)
- Martin J J Ronis
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|