1
|
Zhang C, Kúkeľová D, Sigrist H, Hengerer B, Kratzer RF, Mracek P, Omrani A, von Heimendahl M, Pryce CR. Orphan receptor-GPR52 inverse agonist efficacy in ameliorating chronic stress-related deficits in reward motivation and phasic accumbal dopamine activity in mice. Transl Psychiatry 2024; 14:363. [PMID: 39242529 PMCID: PMC11379876 DOI: 10.1038/s41398-024-03081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Reward processing dysfunctions e.g., anhedonia, apathy, are common in stress-related neuropsychiatric disorders including depression and schizophrenia, and there are currently no established therapies. One potential therapeutic approach is restoration of reward anticipation during appetitive behavior, deficits in which co-occur with attenuated nucleus accumbens (NAc) activity, possibly due to NAc inhibition of mesolimbic dopamine (DA) signaling. Targeting NAc regulation of ventral tegmental area (VTA) DA neuron responsiveness to reward cues could involve either the direct or indirect-via ventral pallidium (VP)-pathways. One candidate is the orphan G protein-coupled receptor GPR52, expressed by DA receptor 2 NAc neurons that project to VP. In mouse brain-slice preparations, GPR52 inverse agonist (GPR52-IA) attenuated evoked inhibitory postsynaptic currents at NAc-VP neurons, which could disinhibit VTA DA neurons. A mouse model in which chronic social stress leads to reduced reward learning and effortful motivation was applied to investigate GPR52-IA behavioral effects. Control and chronically stressed mice underwent a discriminative learning test of tone-appetitive behavior-sucrose reinforcement: stress reduced appetitive responding and discriminative learning, and these anticipatory behaviors were dose-dependently reinstated by GPR52-IA. The same mice then underwent an effortful motivation test of operant behavior-tone-sucrose reinforcement: stress reduced effortful motivation and GPR52-IA dose-dependently restored it. In a new cohort, GRABDA-sensor fibre photometry was used to measure NAc DA activity during the motivation test: in stressed mice, reduced motivation co-occurred with attenuated NAc DA activity specifically to the tone that signaled reinforcement of effortful behavior, and GPR52-IA ameliorated both deficits. These findings: (1) Demonstrate preclinical efficacy of GPR52 inverse agonism for stress-related deficits in reward anticipation during appetitive behavior. (2) Suggest that GPR52-dependent disinhibition of the NAc-VP-VTA-NAc circuit, leading to increased phasic NAc DA signaling of earned incentive stimuli, could account for these clinically relevant effects.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ramona F Kratzer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Philipp Mracek
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Azar Omrani
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland.
| |
Collapse
|
2
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
3
|
Mu R, Hou X, Liu Q, Wang W, Qin C, Li H. Up-regulation of GPR139 in the medial septum ameliorates cognitive impairment in two mouse models of Alzheimer's disease. Int Immunopharmacol 2024; 130:111786. [PMID: 38447415 DOI: 10.1016/j.intimp.2024.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aβ1-42). RNA-sequencing data analysis showed that Aβ1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aβ1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aβ1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China; Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoying Hou
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Liu
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wan Wang
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chi Qin
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixian Li
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Turska-Kozłowska M, Pedraz-Petrozzi B, Paluszkiewicz P, Parada-Turska J. Different Kynurenine Pathway Dysregulation in Systemic Sclerosis in Men and Women. Int J Mol Sci 2024; 25:3842. [PMID: 38612652 PMCID: PMC11011858 DOI: 10.3390/ijms25073842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Systemic sclerosis (SSc), a predominantly female-affected systemic autoimmune disease, requires tailored treatment strategies contingent on organ involvement and symptom severity. Given SSc's inflammatory nature, the involvement of the kynurenine pathway (KP) in its pathophysiology is underexplored. Our study aimed to investigate sex-related differences in KP activation among SSc patients and assess the impact of angiotensin-converting enzyme (ACE) inhibitors and estimated glomerular filtration rate (eGFR) on KP metabolite concentrations. We enrolled 48 SSc patients and 53 healthy controls, quantifying KP metabolites (tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA)) in serum via high-performance liquid chromatography. Separate multivariate analyses of covariance (MANCOVAs) for women and men were performed to ascertain mean differences between patients and healthy controls while correcting for age. For our secondary objective, we conducted a MANCOVA to explore disparities in ACE inhibitor users and non-users among patients, with BMI correction. Our findings revealed decreased TRP concentrations but increased KYNA/TRP ratio and KYN/TRP ratio in both male and female SSc patients compared to their respective controls. Unlike women, SSc males exhibited higher KYN concentrations and decreased KYNA/KYN ratio relative to their controls. Additionally, SSc patients using ACE inhibitors had higher serum KYNA levels than non-users. Notably, we established a significant correlation between eGFR and KYNA in SSc patients. These results indicate differential KP activation in male and female SSc patients, with males demonstrating heightened KP activation. While ACE inhibitors may influence the KP in SSc patients, further research is necessary to comprehensively understand their impact on symptoms and prognosis in the context of these KP alterations.
Collapse
Affiliation(s)
- Monika Turska-Kozłowska
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynow 1H, 20-708 Lublin, Poland
| | - Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany;
| | - Piotr Paluszkiewicz
- Department of General, Oncological and Metabolic Surgery, Institute of Hematology and Transfusion Medicine, Indiry Gandhi 14, 02-778 Warsaw, Poland;
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| |
Collapse
|
5
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
6
|
Kalinovic R, Pascariu A, Vlad G, Nitusca D, Sălcudean A, Sirbu IO, Marian C, Enatescu VR. Involvement of the Expression of G Protein-Coupled Receptors in Schizophrenia. Pharmaceuticals (Basel) 2024; 17:85. [PMID: 38256919 PMCID: PMC10818502 DOI: 10.3390/ph17010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The expression of GPCRs has been associated with schizophrenia, and their expression may induce morphological changes in brain regions responsible for schizophrenia and disease-specific behavioral changes. The articles included in this review were selected using keywords and databases of scientific research websites. The expressions of GPRs have different involvements in schizophrenia, some increase the risk while others provide protection, and they may also be potential targets for new treatments. Proper evaluation of these factors is essential to have a better therapeutic response with a lower rate of chronicity and thus improve the long-term prognosis.
Collapse
Affiliation(s)
- Raluka Kalinovic
- Doctoral School, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Andrei Pascariu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Gabriela Vlad
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
| | - Diana Nitusca
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Andreea Sălcudean
- Discipline of Sociobiology, Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540136 Targu Mures, Romania;
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (I.O.S.); (C.M.)
- Center for Complex Networks Science, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Virgil Radu Enatescu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania; (A.P.); (G.V.); (V.R.E.)
- Discipline of Psychiatry, Department of Neurosciences, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
7
|
Zhang R, Chen J. Research progress on the role of orphan receptor GPR139 in neuropsychiatric behaviours. Eur J Pharmacol 2023; 960:176150. [PMID: 38059447 DOI: 10.1016/j.ejphar.2023.176150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
8
|
Mao J, Cui Y, Wang H, Duan W, Liu ZJ, Hua T, Zhou N, Cheng J. Design and Synthesis of Novel GPR139 Agonists with Therapeutic Effects in Mouse Models of Social Interaction and Cognitive Impairment. J Med Chem 2023; 66:14011-14028. [PMID: 37830160 DOI: 10.1021/acs.jmedchem.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The GPR139 receptor is an orphan G-protein-coupled receptor (GPCR) mainly found in the central nervous system and is a potential therapeutic target for the treatment of schizophrenia and drug addiction. Guided by the reported structure of GPR139, we conducted medicinal chemistry optimizations of TAK-041, the GPR139 agonist in clinical trials. New compounds with three different core structures were designed and synthesized, and their activity at GPR139 was evaluated. Among them, compounds 15a (EC50 = 31.4 nM) and 20a (EC50 = 24.7 nM) showed potent agonist activity at GPR139 and good pharmacokinetic properties. In murine schizophrenia models, both compounds rescued the social interaction deficits observed in BALB/c mice. Compound 20a also alleviated cognitive deficits in mice with a pharmacologically induced model of schizophrenia. These findings further demonstrated the potential of GPR139 agonists in alleviating the negative symptoms and cognitive deficits of schizophrenia. Compound 20a is worth further evaluation as an antischizophrenia drug candidate.
Collapse
Affiliation(s)
- Jianhang Mao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
9
|
Rachdi L, Zhou Z, Berthault C, Lourenço C, Fouque A, Domet T, Armanet M, You S, Peakman M, Mallone R, Scharfmann R. Tryptophan metabolism promotes immune evasion in human pancreatic β cells. EBioMedicine 2023; 95:104740. [PMID: 37536063 PMCID: PMC10412781 DOI: 10.1016/j.ebiom.2023.104740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND To resist the autoimmune attack characteristic of type 1 diabetes, insulin producing pancreatic β cells need to evade T-cell recognition. Such escape mechanisms may be conferred by low HLA class I (HLA-I) expression and upregulation of immune inhibitory molecules such as Programmed cell Death Ligand 1 (PD-L1). METHODS The expression of PD-L1, HLA-I and CXCL10 was evaluated in the human β cell line, ECN90, and in primary human and mouse pancreatic islets. Most genes were determined by real-time RT-PCR, flow cytometry and Western blot. Activator and inhibitor of the AKT signaling were used to modulate PD-L1 induction. Key results were validated by monitoring activity of CD8+ Jurkat T cells presenting β cell specific T-cell receptor and transduced with reporter genes in contact culture with the human β cell line, ECN90. FINDINGS In this study, we identify tryptophan (TRP) as an agonist of PD-L1 induction through the AKT signaling pathway. TRP also synergistically enhanced PD-L1 expression on β cells exposed to interferon-γ. Conversely, interferon-γ-mediated induction of HLA-I and CXCL10 genes was down-regulated upon TRP treatment. Finally, TRP and its derivatives inhibited the activation of islet-reactive CD8+ T cells by β cells. INTERPRETATION Collectively, our findings indicate that TRP could induce immune tolerance to β cells by promoting their immune evasion through HLA-I downregulation and PD-L1 upregulation. FUNDING Dutch Diabetes Research Foundation, DON Foundation, the Laboratoire d'Excellence consortium Revive (ANR-10-LABX-0073), Agence Nationale de la Recherche (ANR-19-CE15-0014-01), Fondation pour la Recherche Médicale (EQ U201903007793-EQU20193007831), Innovative Medicines InitiativeINNODIA and INNODIA HARVEST, Aides aux Jeunes Diabetiques (AJD) and Juvenile Diabetes Research Foundation Ltd (JDRF).
Collapse
Affiliation(s)
- Latif Rachdi
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France.
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| | - Claire Berthault
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| | - Chloe Lourenço
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| | - Alexis Fouque
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| | - Thomas Domet
- Assistance Publique Hôpitaux de Paris, Cell Therapy Unit, Saint Louis Hospital, Paris 75010, France
| | - Mathieu Armanet
- Assistance Publique Hôpitaux de Paris, Cell Therapy Unit, Saint Louis Hospital, Paris 75010, France
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| | - Mark Peakman
- Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France; Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris 75014, France
| | - Raphael Scharfmann
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris 75014, France
| |
Collapse
|
10
|
Pedraz-Petrozzi B, Marszalek-Grabska M, Kozub A, Szalaj K, Trzpil A, Stachniuk A, Lamadé EK, Gilles M, Deuschle M, Turski WA, Fornal E. LC-MS/MS-based quantification of tryptophan, kynurenine, and kynurenic acid in human placental, fetal membranes, and umbilical cord samples. Sci Rep 2023; 13:12554. [PMID: 37532780 PMCID: PMC10397233 DOI: 10.1038/s41598-023-39774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Tryptophan breakdown metabolites formed along the kynurenine pathway play a significant role in pregnancy and fetal development. To understand their involvement, it is crucial to quantify the levels of tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA) in relevant biological samples such as the placenta, fetal membranes, and umbilical cord. This study used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine TRP, KYN, and KYNA levels. The LC-MS/MS method was optimized for high sensitivity and specificity, demonstrating good reproducibility with a precision of < 10% CV and an accuracy of 85-115%. The lower limit of quantification for both TRP and KYN was 0.5 µg/ml, while for KYNA, it was 0.5 ng/mL. The method exhibited linearity within the examined range of concentrations in the homogenate, ranging from 0.5 to 30 µg/ml for TRP and KYN and from 0.5 to 25 ng/ml for KYNA. Using this method, we found significant differences in the concentrations of these substances in investigated maternal-fetal compartments. Placenta samples exhibited higher KYN and lower KYNA concentrations than the umbilical cord and fetal membrane, indicating a potentially important role for kynurenines in late pregnancy. Collectively, this finding may facilitate further research and provide inside into the involvement of the kynurenine pathway of TRP metabolism in fetal development.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Kozub
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Klaudia Szalaj
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
11
|
Pallareti L, Rath TF, Trapkov B, Tsonkov T, Nielsen AT, Harpsøe K, Gentry PR, Bräuner-Osborne H, Gloriam DE, Foster SR. Pharmacological characterization of novel small molecule agonists and antagonists for the orphan receptor GPR139. Eur J Pharmacol 2023; 943:175553. [PMID: 36736525 DOI: 10.1016/j.ejphar.2023.175553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
The orphan G protein-coupled receptor GPR139 is predominantly expressed in the central nervous system and has attracted considerable interest as a therapeutic target. However, the biological role of this receptor remains somewhat elusive, in part due to the lack of quality pharmacological tools to investigate GPR139 function. In an effort to understand GPR139 signaling and to identify improved compounds, in this study we performed virtual screening and analog searches, in combination with multiple pharmacological assays. We characterized GPR139-dependent signaling using previously published reference agonists in Ca2+ mobilization and inositol monophosphate accumulation assays, as well as a novel real-time GPR139 internalization assay. For the four reference agonists tested, the rank order of potency was conserved across signaling and internalization assays: JNJ-63533054 > Compound 1a » Takeda > AC4 > DL43, consistent with previously reported values. We noted an increased efficacy of JNJ-63533054-mediated inositol monophosphate signaling and internalization, relative to Compound 1a. We then performed virtual screening for GPR139 agonist and antagonist compounds that were screened and validated in GPR139 functional assays. We identified four GPR139 agonists that were active in all assays, with similar or reduced potency relative to known compounds. Likewise, compound analogs selected based on GPR139 agonist and antagonist substructure searches behaved similarly to their parent compounds. Thus, we have characterized GPR139 signaling for multiple new ligands using G protein-dependent assays and a new real-time internalization assay. These data add to the GPR139 tool compound repertoire, which could be optimized in future medical chemistry campaigns.
Collapse
Affiliation(s)
- Lisa Pallareti
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tine F Rath
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Trapkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tsonko Tsonkov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders Thorup Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrick R Gentry
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Monash Biomedicine Discovery Institute, Cardiovascular Disease Program, Department of Pharmacology, Monash University, Clayton, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Harrington AW, Liu C, Phillips N, Nepomuceno D, Kuei C, Chang J, Chen W, Sutton SW, O'Malley D, Pham L, Yao X, Sun S, Bonaventure P. Identification and characterization of select oxysterols as ligands for GPR17. Br J Pharmacol 2023; 180:401-421. [PMID: 36214386 DOI: 10.1111/bph.15969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE G-protein coupled receptor 17 (GPR17) is an orphan receptor involved in the process of myelination, due to its ability to inhibit the maturation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Despite multiple claims that the biological ligand has been identified, it remains an orphan receptor. EXPERIMENTAL APPROACH Seventy-seven oxysterols were screened in a cell-free [35 S]GTPγS binding assay using membranes from cells expressing GPR17. The positive hits were characterized using adenosine 3',5' cyclic monophosphate (cAMP), inositol monophosphate (IP1) and calcium mobilization assays, with results confirmed in rat primary oligodendrocytes. Rat and pig brain extracts were separated by high-performance liquid chromatography (HPLC) and endogenous activator(s) were identified in receptor activation assays. Gene expression studies of GPR17, and CYP46A1 (cytochrome P450 family 46 subfamily A member 1) enzymes responsible for the conversion of cholesterol into specific oxysterols, were performed using quantitative real-time PCR. KEY RESULTS Five oxysterols were able to stimulate GPR17 activity, including the brain cholesterol, 24(S)-hydroxycholesterol (24S-HC). A specific brain fraction from rat and pig extracts containing 24S-HC activates GPR17 in vitro. Expression of Gpr17 during mouse brain development correlates with the expression of Cyp46a1 and the levels of 24S-HC itself. Other active oxysterols have low brain concentrations below effective ranges. CONCLUSIONS AND IMPLICATIONS Oxysterols, including but not limited to 24S-HC, could be physiological activators for GPR17 and thus potentially regulate OPC differentiation and myelination through activation of the receptor.
Collapse
Affiliation(s)
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Naomi Phillips
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Joseph Chang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Weixuan Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven W Sutton
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Daniel O'Malley
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Ly Pham
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Xiang Yao
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
13
|
Chen S, Sun X, Zhang Y, Mu Y, Su D. Habenula bibliometrics: Thematic development and research fronts of a resurgent field. Front Integr Neurosci 2022; 16:949162. [PMID: 35990593 PMCID: PMC9382245 DOI: 10.3389/fnint.2022.949162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The habenula (Hb) is a small structure of the posterior diencephalon that is highly conserved across vertebrates but nonetheless has attracted relatively little research attention until the past two decades. The resurgent interest is motivated by neurobehavioral studies demonstrating critical functions in a broad spectrum of motivational and cognitive processes, including functions relevant to psychiatric diseases. The Hb is widely conceived as an "anti-reward" center that acts by regulating brain monoaminergic systems. However, there is still no general conceptual framework for habenula research, and no study has focused on uncovering potentially significant but overlooked topics that may advance our understanding of physiological functions or suggest potential clinical applications of Hb-targeted interventions. Using science mapping tools, we quantitatively and qualitatively analyzed the relevant publications retrieved from the Web of Science Core Collection (WoSCC) database from 2002 to 2021. Herein we present an overview of habenula-related publications, reveal primary research trends, and prioritize some key research fronts by complementary bibliometric analysis. High-priority research fronts include Ventral Pallidum, Nucleus Accumbens, Nicotine and MHb, GLT-1, Zebrafish, and GCaMP, Ketamine, Deep Brain Stimulation, and GPR139. The high intrinsic heterogeneity of the Hb, extensive connectivity with both hindbrain and forebrain structures, and emerging associations with all three dimensions of mental disorders (internalizing, externalizing, and psychosis) suggest that the Hb may be the neuronal substrate for a common psychopathology factor shared by all mental illnesses termed the p factor. A future challenge is to explore the therapeutic potential of habenular modulation at circuit, cellular, and molecular levels.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Sun
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Mu
- State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Rabiner EA, Uz T, Mansur A, Brown T, Chen G, Wu J, Atienza J, Schwarz AJ, Yin W, Lewis Y, Searle GE, Dennison JMTJ, Passchier J, Gunn RN, Tauscher J. Endogenous dopamine release in the human brain as a pharmacodynamic biomarker: evaluation of the new GPR139 agonist TAK-041 with [ 11C]PHNO PET. Neuropsychopharmacology 2022; 47:1405-1412. [PMID: 34675381 PMCID: PMC9117280 DOI: 10.1038/s41386-021-01204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
The use of positron emission tomography (PET) in early-phase development of novel drugs targeting the central nervous system, is well established for the evaluation of brain penetration and target engagement. However, when novel targets are involved a suitable PET ligand is not always available. We demonstrate an alternative approach that evaluates the attenuation of amphetamine-induced synaptic dopamine release by a novel agonist of the orphan G-protein-coupled receptor GPR139 (TAK-041). GPR139 agonism is a novel candidate mechanism for the treatment of schizophrenia and other disorders associated with social and cognitive dysfunction. Ten healthy volunteers underwent [11C]PHNO PET at baseline, and twice after receiving an oral dose of d-amphetamine (0.5 mg/kg). One of the post-d-amphetamine scans for each subject was preceded by a single oral dose of TAK-041 (20 mg in five; 40 mg in the other five participants). D-amphetamine induced a significant decrease in [11C]PHNO binding potential relative to the non-displaceable component (BPND) in all regions examined (16-28%), consistent with increased synaptic dopamine release. Pre-treatment with TAK-041 significantly attenuated the d-amphetamine-induced reduction in BPND in the a priori defined regions (putamen and ventral striatum: 26% and 18%, respectively). The reduction in BPND was generally higher after the 40 mg than the 20 mg TAK-041 dose, with the difference between doses reaching statistical significance in the putamen. Our findings suggest that TAK-041 enters the human brain and interacts with GPR139 to affect endogenous dopamine release. [11C]PHNO PET is a practical method to detect the effects of novel drugs on the brain dopaminergic system in healthy volunteers, in the early stages of drug development.
Collapse
Affiliation(s)
- Eugenii A. Rabiner
- grid.498414.40000 0004 0548 3187Invicro, London, UK ,grid.13097.3c0000 0001 2322 6764Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tolga Uz
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Ayla Mansur
- grid.498414.40000 0004 0548 3187Invicro, London, UK
| | - Terry Brown
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Grace Chen
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Jingtao Wu
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Joy Atienza
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Adam J. Schwarz
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Wei Yin
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Yvonne Lewis
- grid.498414.40000 0004 0548 3187Invicro, London, UK
| | | | | | | | | | - Johannes Tauscher
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| |
Collapse
|
16
|
Münster A, Sommer S, Kúkeľová D, Sigrist H, Koros E, Deiana S, Klinder K, Baader-Pagler T, Mayer-Wrangowski S, Ferger B, Bretschneider T, Pryce CR, Hauber W, von Heimendahl M. Effects of GPR139 agonism on effort expenditure for food reward in rodent models: Evidence for pro-motivational actions. Neuropharmacology 2022; 213:109078. [PMID: 35561791 DOI: 10.1016/j.neuropharm.2022.109078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.
Collapse
Affiliation(s)
- Alexandra Münster
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Susanne Sommer
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | | | | | | | - Tamara Baader-Pagler
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Boris Ferger
- CNS Diseases Research, Germany; Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Wolfgang Hauber
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
17
|
Yin W, Han D, Khudyakov P, Behrje R, Posener J, Laurenza A, Arkilo D. A phase 1 study to evaluate the safety, tolerability and pharmacokinetics of TAK‐041 in healthy participants and patients with stable schizophrenia. Br J Clin Pharmacol 2022; 88:3872-3882. [PMID: 35277995 PMCID: PMC9544063 DOI: 10.1111/bcp.15305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Wei Yin
- Takeda Pharmaceutical Company Ltd Cambridge MA USA
| | | | | | - Rhett Behrje
- Takeda Pharmaceutical Company Ltd Cambridge MA USA
| | - Joel Posener
- Takeda Pharmaceutical Company Ltd Cambridge MA USA
| | | | | |
Collapse
|
18
|
The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 2022; 47:902-913. [PMID: 33479510 PMCID: PMC8882194 DOI: 10.1038/s41386-021-00962-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of μ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.
Collapse
|
19
|
Ogawa S, Parhar IS. Role of Habenula in Social and Reproductive Behaviors in Fish: Comparison With Mammals. Front Behav Neurosci 2022; 15:818782. [PMID: 35221943 PMCID: PMC8867168 DOI: 10.3389/fnbeh.2021.818782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
Collapse
|
20
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
21
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
22
|
Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Mol Psychiatry 2021; 26:3737-3750. [PMID: 32989244 DOI: 10.1038/s41380-020-00893-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023]
Abstract
Guanine nucleotide binding protein (G protein) gamma 8 (Gng8) is a subunit of G proteins and expressed in the medial habenula (MHb) and interpeduncular nucleus (IPN). Recent studies have demonstrated that Gng8 is involved in brain development; however, the roles of Gng8 on cognitive function have not yet been addressed. In the present study, we investigated the expression of Gng8 in the brain and found that Gng8 was predominantly expressed in the MHb-IPN circuit of the mouse brain. We generated Gng8 knockout (KO) mice by CRISPR/Cas9 system in order to assess the role of Gng8 on cognitive function. Gng8 KO mice exhibited deficiency in learning and memory in passive avoidance and Morris water maze tests. In addition, Gng8 KO mice significantly reduced long-term potentiation (LTP) in the hippocampus compared to that of wild-type (WT) mice. Furthermore, we observed that levels of acetylcholine (ACh) and choline acetyltransferase (ChAT) in the MHb and IPN of Gng8 KO mice were significantly decreased, compared to WT mice. The administration of nAChR α4β2 agonist A85380 rescued memory impairment in the Gng8 KO mice, suggesting that Gng8 regulates cognitive function via modulation of cholinergic activity. Taken together, Gng8 is a potential therapeutic target for memory-related diseases and/or neurodevelopmental diseases.
Collapse
|
23
|
Reichard HA, Schiffer HH, Monenschein H, Atienza JM, Corbett G, Skaggs AW, Collia DR, Ray WJ, Serrats J, Bliesath J, Kaushal N, Lam BP, Amador-Arjona A, Rahbaek L, McConn DJ, Mulligan VJ, Brice N, Gaskin PLR, Cilia J, Hitchcock S. Discovery of TAK-041: a Potent and Selective GPR139 Agonist Explored for the Treatment of Negative Symptoms Associated with Schizophrenia. J Med Chem 2021; 64:11527-11542. [PMID: 34260228 DOI: 10.1021/acs.jmedchem.1c00820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orphan G-protein-coupled receptor GPR139 is highly expressed in the habenula, a small brain nucleus that has been linked to depression, schizophrenia (SCZ), and substance-use disorder. High-throughput screening and a medicinal chemistry structure-activity relationship strategy identified a novel series of potent and selective benzotriazinone-based GPR139 agonists. Herein, we describe the chemistry optimization that led to the discovery and validation of multiple potent and selective in vivo GPR139 agonist tool compounds, including our clinical candidate TAK-041, also known as NBI-1065846 (compound 56). The pharmacological characterization of these GPR139 agonists in vivo demonstrated GPR139-agonist-dependent modulation of habenula cell activity and revealed consistent in vivo efficacy to rescue social interaction deficits in the BALB/c mouse strain. The clinical GPR139 agonist TAK-041 is being explored as a novel drug to treat negative symptoms in SCZ.
Collapse
Affiliation(s)
- Holly A Reichard
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Hans H Schiffer
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Holger Monenschein
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Josephine M Atienza
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Gerard Corbett
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Alton W Skaggs
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Deanna R Collia
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - William J Ray
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jordi Serrats
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Joshua Bliesath
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Nidhi Kaushal
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Betty P Lam
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Alejandro Amador-Arjona
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Lisa Rahbaek
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Donavon J McConn
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Victoria J Mulligan
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Nicola Brice
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Philip L R Gaskin
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Jackie Cilia
- Takeda Cambridge Ltd., 418 Cambridge Science Park, Cambridge, Cambridgeshire CB4 0PZ, U.K
| | - Stephen Hitchcock
- Takeda California, Inc., 9625 Towne Centre Drive, San Diego, California 92121, United States
| |
Collapse
|
24
|
Lee YA, Goto Y. The Habenula in the Link Between ADHD and Mood Disorder. Front Behav Neurosci 2021; 15:699691. [PMID: 34248519 PMCID: PMC8264146 DOI: 10.3389/fnbeh.2021.699691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset, neurodevelopmental disorder, whereas major depressive disorder (MDD) is a mood disorder that typically emerges in adulthood. Accumulating evidence suggests that these seemingly unrelated psychiatric disorders, whose symptoms even appear antithetical [e.g., psychomotor retardation in depression vs. hyperactivity (psychomotor acceleration) in ADHD], are in fact associated with each other. Thus, individuals with ADHD exhibit high comorbidity with MDD later in life. Moreover, genetic studies have shown substantial overlaps of susceptibility genes between ADHD and MDD. Here, we propose a novel and testable hypothesis that the habenula, the epithalamic brain region important for the regulation of monoamine transmission, may be involved in both ADHD and MDD. The hypothesis suggests that an initially hypoactive habenula during childhood in individuals with ADHD may undergo compensatory changes during development, priming the habenula to be hyperactive in response to stress exposure and thereby increasing vulnerability to MDD in adulthood. Moreover, we propose a new perspective on habenular deficits in psychiatric disorders that consider the habenula a neural substrate that could explain multiple psychiatric disorders.
Collapse
Affiliation(s)
- Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
25
|
Habenula GPR139 is associated with fear learning in the zebrafish. Sci Rep 2021; 11:5549. [PMID: 33692406 PMCID: PMC7946892 DOI: 10.1038/s41598-021-85002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/23/2021] [Indexed: 01/09/2023] Open
Abstract
G-protein coupled receptor 139 (GPR139) is an evolutionarily conserved orphan receptor, predominantly expressing in the habenula of vertebrate species. The habenula has recently been implicated in aversive response and its associated learning. Here, we tested the hypothesis that GPR139 signalling in the habenula may play a role in fear learning in the zebrafish. We examined the effect of intraperitoneal injections of a human GPR139-selective agonist (JNJ-63533054) on alarm substance-induced fear learning using conditioned place avoidance paradigm, where an aversive stimulus is paired with one compartment, while its absence is associated with the other compartment of the apparatus. The results indicate that fish treated with 1 µg/g body weight of GPR139 agonist displayed no difference in locomotor activity and alarm substance-induced fear response. However, avoidance to fear-conditioned compartment was diminished, which suggests that the agonist blocks the consolidation of contextual fear memory. On the other hand, fish treated with 0.1 µg/g body weight of GPR139 agonist spent a significantly longer time in the unconditioned neutral compartment as compared to the conditioned (punished and unpunished) compartments. These results suggest that activation of GPR139 signalling in the habenula may be involved in fear learning and the decision-making process in the zebrafish.
Collapse
|
26
|
Wang L, Dugovic C, Yun S, White A, Lord B, Dvorak C, Liu C, Lovenberg T, Bonaventure P. Putative role of GPR139 on sleep modulation using pharmacological and genetic rodent models. Eur J Pharmacol 2020; 882:173256. [PMID: 32531213 DOI: 10.1016/j.ejphar.2020.173256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
GPR139 is a G-protein coupled receptor expressed in circumventricular regions of the habenula and septum. Amino acids L-tryptophan and L-phenylalanine have been shown to activate GPR139 at physiologically relevant concentrations. The aim of the present study was to investigate the role of GPR139 on sleep modulation using pharmacological and genetic (GPR139 knockout mice, KO) rodent models. To evaluate the effects of GPR139 pharmacological activation on sleep, rats were orally dosed with the selective GPR139 agonist JNJ-63533054 (3-30 mg/kg). When acutely administered at the beginning of the light phase, the GPR139 agonist dose-dependently reduced non-rapid eye movement (NREM) latency and increased NREM sleep duration without altering rapid eye movement (REM) sleep. This effect progressively dissipated upon 7-day repeated dosing, suggesting functional desensitization. Under baseline conditions, GPR139 KO mice spent less time in REM sleep compared to their wild type littermates during the dark phase, whereas NREM sleep was not altered. Under conditions of pharmacologically enhanced monoamine endogenous tone, GPR139 KO mice showed a blunted response to citalopram or fluoxetine induced REM sleep suppression and an attenuated response to the wake promoting effect of amphetamine. These findings indicate an emerging role of GPR139 in the modulation of sleep states.
Collapse
Affiliation(s)
- Lien Wang
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Christine Dugovic
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Sujin Yun
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Allison White
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Brian Lord
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Curt Dvorak
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Changlu Liu
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Timothy Lovenberg
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA
| | - Pascal Bonaventure
- Department of Neuroscience, Janssen Research & Development, L.L.C, San Diego, CA, USA.
| |
Collapse
|
27
|
Stoveken HM, Zucca S, Masuho I, Grill B, Martemyanov KA. The orphan receptor GPR139 signals via G q/11 to oppose opioid effects. J Biol Chem 2020; 295:10822-10830. [PMID: 32576659 DOI: 10.1074/jbc.ac120.014770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
The interplay between G protein-coupled receptors (GPCRs) is critical for controlling neuronal activity that shapes neuromodulatory outcomes. Recent evidence indicates that the orphan receptor GPR139 influences opioid modulation of key brain circuits by opposing the actions of the µ-opioid receptor (MOR). However, the function of GPR139 and its signaling mechanisms are poorly understood. In this study, we report that GPR139 activates multiple heterotrimeric G proteins, including members of the Gq/11 and Gi/o families. Using a panel of reporter assays in reconstituted HEK293T/17 cells, we found that GPR139 functions via the Gq/11 pathway and thereby distinctly regulates cellular effector systems, including stimulation of cAMP production and inhibition of G protein inward rectifying potassium (GIRK) channels. Electrophysiological recordings from medial habenular neurons revealed that GPR139 signaling via Gq/11 is necessary and sufficient for counteracting MOR-mediated inhibition of neuronal firing. These results uncover a mechanistic interplay between GPCRs involved in controlling opioidergic neuromodulation in the brain.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
28
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
29
|
Liu B, Lee G, Wu J, Deming J, Kuei C, Harrington A, Wang L, Towne J, Lovenberg T, Liu C, Sun S. The PAR2 signal peptide prevents premature receptor cleavage and activation. PLoS One 2020; 15:e0222685. [PMID: 32078628 PMCID: PMC7032737 DOI: 10.1371/journal.pone.0222685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/03/2020] [Indexed: 11/19/2022] Open
Abstract
Unlike closely related GPCRs, protease-activated receptors (PAR1, PAR2, PAR3, and PAR4) have a predicted signal peptide at their N-terminus, which is encoded by a separate exon, suggesting that the signal peptides of PARs may serve an important and unique function, specific for PARs. In this report, we show that the PAR2 signal peptide, when fused to the N-terminus of IgG-Fc, effectively induced IgG-Fc secretion into culture medium, thus behaving like a classical signal peptide. The presence of PAR2 signal peptide has a strong effect on PAR2 cell surface expression, as deletion of the signal peptide (PAR2ΔSP) led to dramatic reduction of the cell surface expression and decreased responses to trypsin or the synthetic peptide ligand (SLIGKV). However, further deletion of the tethered ligand region (SLIGKV) at the N-terminus rescued the cell surface receptor expression and the response to the synthetic peptide ligand, suggesting that the signal peptide of PAR2 may be involved in preventing PAR2 from intracellular protease activation before reaching the cell surface. Supporting this hypothesis, an Arg36Ala mutation on PAR2ΔSP, which disabled the trypsin activation site, increased the receptor cell surface expression and the response to ligand stimulation. Similar effects were observed when PAR2ΔSP expressing cells were treated with protease inhibitors. Our findings indicated that there is a role of the PAR2 signal peptide in preventing the premature activation of PAR2 from intracellular protease cleavage before reaching the cells surface. The same mechanism may also apply to PAR1, PAR3, and PAR4.
Collapse
Affiliation(s)
- Belinda Liu
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Grace Lee
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Jiejun Wu
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Janise Deming
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Chester Kuei
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Anthony Harrington
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Lien Wang
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Jennifer Towne
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Timothy Lovenberg
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, California, United States of America
| | - Siquan Sun
- Janssen Research & Development, LLC, San Diego, California, United States of America
| |
Collapse
|
30
|
Edwards S, Vendruscolo LF, Gilpin NW, Wojnar M, Witkiewitz K. Alcohol and Pain: A Translational Review of Preclinical and Clinical Findings to Inform Future Treatment Strategies. Alcohol Clin Exp Res 2020; 44:368-383. [PMID: 31840821 PMCID: PMC11004915 DOI: 10.1111/acer.14260] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review was to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.
Collapse
Affiliation(s)
- Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Leandro F. Vendruscolo
- National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224
| | - Nicholas W. Gilpin
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque NM 87131
| |
Collapse
|
31
|
Wang D, Stoveken HM, Zucca S, Dao M, Orlandi C, Song C, Masuho I, Johnston C, Opperman KJ, Giles AC, Gill MS, Lundquist EA, Grill B, Martemyanov KA. Genetic behavioral screen identifies an orphan anti-opioid system. Science 2019; 365:1267-1273. [PMID: 31416932 DOI: 10.1126/science.aau2078] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/22/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Caitlin Johnston
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthew S Gill
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
32
|
Vedel L, Nøhr AC, Gloriam DE, Bräuner-Osborne H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:35-46. [PMID: 31132229 PMCID: PMC7318219 DOI: 10.1111/bcpt.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of receptors and membrane proteins in the human genome with ~800 members of which half are olfactory. GPCRs are activated by a very broad range of endogenous signalling molecules and are involved in a plethora of physiological functions. All GPCRs contain a transmembrane domain, consisting of a bundle of seven α-helices spanning the cell membrane, and forming the majority of the known ortho- or allosteric ligand binding sites. Due to their many physiological functions and the accessible and druggable transmembrane pocket, GPCRs constitute the largest family of drug targets mediating the actions of 34% of currently marketed drugs. GPCRs activate one or more of the four G protein families (Gq/11 , Gi/o , Gs and G12/13 ) and/or ß-arrestin. About a third of the non-olfactory GPCRs are referred to as orphan receptors which means that their endogenous agonist(s) have not yet been found or firmly established. In this MiniReview, we focus on the orphan GPR139 receptor, for which the aromatic amino acids L-Trp and L-Phe as well as ACTH/α-MSH-related peptides have been proposed as endogenous agonists. GPR139 has been reported to activate several G protein pathways of which Gq/11 is the primary one. The receptor shows the highest expression in the striatum, thalamus, hypothalamus, pituitary and habenula of the human, rat and mouse CNS. We review the surrogate agonists and antagonists that have been published as well as the agonist pharmacophore and binding site. Finally, the putative physiological functions and therapeutic potential are outlined.
Collapse
Affiliation(s)
- Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Kaushik AC, Gautam D, Nangraj AS, Wei DQ, Sahi S. Protection of Primary Dopaminergic Midbrain Neurons Through Impact of Small Molecules Using Virtual Screening of GPR139 Supported by Molecular Dynamic Simulation and Systems Biology. Interdiscip Sci 2019; 11:247-257. [DOI: 10.1007/s12539-019-00334-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
|
34
|
Wang L, Lee G, Kuei C, Yao X, Harrington A, Bonaventure P, Lovenberg TW, Liu C. GPR139 and Dopamine D2 Receptor Co-express in the Same Cells of the Brain and May Functionally Interact. Front Neurosci 2019; 13:281. [PMID: 30971885 PMCID: PMC6443882 DOI: 10.3389/fnins.2019.00281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
GPR139, a Gq-coupled receptor that is activated by the essential amino acids L-tryptophan and L-phenylalanine, is predominantly expressed in the brain and pituitary. The physiological function of GPR139 remains elusive despite the availability of pharmacological tool agonist compounds and knock-out mice. Whole tissue RNA sequencing data from human, mouse and rat tissues revealed that GPR139 and the dopamine D2 receptor (DRD2) exhibited some similarities in their distribution patterns in the brain and pituitary gland. To determine if there was true co-expression of these two receptors, we applied double in situ hybridization in mouse tissues using the RNAscope® technique. GPR139 and DRD2 mRNA co-expressed in a majority of same cells within part of the dopaminergic mesolimbic pathways (ventral tegmental area and olfactory tubercle), the nigrostriatal pathway (compact part of substantia nigra and caudate putamen), and also the tuberoinfundibular pathway (arcuate hypothalamic nucleus and anterior lobe of pituitary). Both receptors mRNA also co-express in the same cells of the brain regions involved in responses to negative stimulus and stress, such as lateral habenula, lateral septum, interpeduncular nucleus, and medial raphe nuclei. GPR139 mRNA expression was detected in the dentate gyrus and the pyramidal cell layer of the hippocampus as well as the paraventricular hypothalamic nucleus. The functional interaction between GPR139 and DRD2 was studied in vitro using a calcium mobilization assay in cells co-transfected with both receptors from several species (human, rat, and mouse). The dopamine DRD2 agonist did not stimulate calcium response in cells expressing DRD2 alone consistent with the Gi signaling transduction pathway of this receptor. In cells co-transfected with DRD2 and GPR139 the DRD2 agonist was able to stimulate calcium response and its effect was blocked by either a DRD2 or a GPR139 antagonist supporting an in vitro interaction between GPR139 and DRD2. Taken together, these data showed that GPR139 and DRD2 are in position to functionally interact in native tissue.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Grace Lee
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Xiang Yao
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | | | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
35
|
Shoblock JR, Welty N, Fraser I, Wyatt R, Lord B, Lovenberg T, Liu C, Bonaventure P. In vivo Characterization of a Selective, Orally Available, and Brain Penetrant Small Molecule GPR139 Agonist. Front Pharmacol 2019; 10:273. [PMID: 30949055 PMCID: PMC6437111 DOI: 10.3389/fphar.2019.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Recently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons. Thus, GPR139 appears expressed in an interconnected circuit involved in mood, motivation, and anxiety. The aim of this study was to characterize a selective and brain penetrant GPR139 agonist (JNJ-63533054) in relevant in vivo models. JNJ-63533054 was tested for its effect on c-fos activation in the habenula and dorsal striatum. In vivo microdialysis experiments were performed in freely moving rats to measure basal levels of serotonin or dopamine (DA) in prefrontal cortex (mPFC) and nucleus accumbens (NAc). Finally, the compound was profiled in behavioral models of anxiety, despair, and anhedonia. The agonist (10–30 mg/kg, p.o.) did not alter c-fos expression in medial habenula or dorsal striatum nor neurotransmitter levels in mPFC or NAc. JNJ-63533054 (10 mg/kg p.o.) produced an anhedonic-like effect on urine sniffing, but had no significant effect in tail suspension, with no interaction with imipramine, no effect on naloxone place aversion, and no effect on learned helplessness. In the marble burying test, the agonist (10 mg/kg p.o.) produced a small anxiolytic-like effect, with no interaction with fluoxetine, and no effect in elevated plus maze (EPM). Despite GPR139 high expression in medial habenula, an area with connections to limbic and catecholaminergic/serotoninergic areas, the GPR139 agonist had no effect on c-fos in medial habenula. It did not alter catecholamine/serotonin levels and had a mostly silent signal in in vivo models commonly associated with these pathways. The physiological function of GPR139 remains elusive.
Collapse
Affiliation(s)
- James R Shoblock
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Natalie Welty
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ian Fraser
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ryan Wyatt
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
36
|
Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Sci Rep 2019; 9:3802. [PMID: 30846711 PMCID: PMC6405842 DOI: 10.1038/s41598-019-40085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is primarily expressed in the brain in regions known to regulate motor control and metabolism. Here, we screened a diverse 4,000 compound library in order to identify GPR139 agonists. We identified 11 initial hits in a calcium mobilization screen, including one compound, AC4, which contains a different chemical scaffold to what has previously been described for GPR139 agonists. Our mutagenesis data shows that AC4 interacts with the same hotspots in the binding site of GPR139 as those reported to interact with the reference agonists 1a and 7c. We additionally tested and validated 160 analogs in a calcium mobilization assay and found 5 compounds with improved potency compared to AC4. In total, we identified 36 GPR139 agonists with potencies in the nanomolar range (90–990 nM). The most potent compounds were confirmed as GPR139 agonists using an orthogonal ERK phosphorylation assay where they displayed a similar rank order of potency. Accordingly, we herein introduce multiple novel GPR139 agonists, including one with a novel chemical scaffold, which can be used as tools for future pharmacological and medicinal chemistry exploration of GPR139.
Collapse
|
37
|
Wang L, Lee G, Shih A, Kuei C, Nepomuceno D, Wennerholm M, Fan F, Wu J, Bonaventure P, Lovenberg TW, Liu C. Mutagenesis of GPR139 reveals ways to create gain or loss of function receptors. Pharmacol Res Perspect 2019; 7:e00466. [PMID: 30774960 PMCID: PMC6367278 DOI: 10.1002/prp2.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/21/2023] Open
Abstract
GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands. This approach resulted in GPR139 clones with gain-of-function, reduction-of-function or loss-of-function mutations. The agonist pharmacology of these mutant receptors was characterized and compared to wild-type receptor using calcium mobilization, radioligand binding, and protein expression assays. The structure-activity data were incorporated into a homology model which highlights that many of the gain-of-function mutations are either in or immediately adjacent to the purported orthosteric ligand binding site, whereas the loss-of-function mutations were largely in the intracellular G-protein binding area or were disrupters of the helix integrity. There were also some reduction-of-function mutations in the orthosteric ligand binding site. These findings may not only facilitate the rational design of novel agonists and antagonists of GPR139, but also may guide the design of transgenic animal models to study the physiological function of GPR139.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Grace Lee
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Amy Shih
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Chester Kuei
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Frances Fan
- Janssen Research & Development, LLCSan DiegoCalifornia
- Present address:
UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoCalifornia
| | - Jiejun Wu
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Changlu Liu
- Janssen Research & Development, LLCSan DiegoCalifornia
| |
Collapse
|
38
|
Le Foll B, French L. Transcriptomic Characterization of the Human Habenula Highlights Drug Metabolism and the Neuroimmune System. Front Neurosci 2018; 12:742. [PMID: 30429765 PMCID: PMC6220030 DOI: 10.3389/fnins.2018.00742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
Due to size and accessibility, most information about the habenula is derived from rodent studies. To better understand the molecular signature of the habenula we characterized the genes that have high expression in the habenula. We compared anatomical expression profiles of three normal adult human brains and four fetal brains. We used gene set enrichment analyses to determine if genes annotated to specific molecular functions, cellular components, and biological processes are enriched in the habenula. We also tested gene sets related to depression and addiction to determine if they uniquely involve the habenula. As expected, we observed high habenular expression of GPR151, nicotinic cholinergic receptors, and cilia-associated genes (medial division). Genes identified in genetic studies of smoking and associated with nicotine response were enriched in the habenula. Genes associated with major depressive disorder did not have enriched expression in the habenula but genes negatively correlated with hedonic well-being were, providing a link to anhedonia. We observed enrichment of genes associated with diseases that are comorbid with addictions (hematopoiesis, thrombosis, liver cirrhosis, pneumonia, and pulmonary fibrosis) and depression (rheumatoid arthritis, multiple sclerosis, and kidney disease). These inflammatory diseases mark a neuroimmune signature that is supported by genes associated with mast cells, acute inflammatory response, and leukocyte migration. We also found enrichment of cytochrome p450 genes suggesting the habenula is uniquely sensitive to endogenous and xenobiotic compounds. Our results suggest the habenula receives negative reward signals from immune and drug processing molecules. This is consistent with the habenular role in the "anti-reward" system and suggests it may be a key bridge between autoimmune disorders, drug use, and psychiatric diseases.
Collapse
Affiliation(s)
- Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Leon French
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
39
|
Systemic and Intra-Habenular Activation of the Orphan G Protein-Coupled Receptor GPR139 Decreases Compulsive-Like Alcohol Drinking and Hyperalgesia in Alcohol-Dependent Rats. eNeuro 2018; 5:eN-NWR-0153-18. [PMID: 29971251 PMCID: PMC6027959 DOI: 10.1523/eneuro.0153-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is expressed mainly in the brain, with the highest expression in the medial habenula. The modulation of GPR139 receptor function has been hypothesized to be beneficial in the treatment of some mental disorders, but behavioral studies have not yet provided causal evidence of the role of GPR139 in brain dysfunction. Because of the high expression of GPR139 in the habenula, a critical brain region in addiction, we hypothesized that GPR139 may play role in alcohol dependence. Thus, we tested the effect of GPR139 receptor activation using the selective, brain-penetrant receptor agonist JNJ-63533054 on addiction-like behaviors in alcohol-dependent male rats. Systemic administration of JNJ-63533054 (30 mg/kg but not 10 mg/kg, p.o.) reversed the escalation of alcohol self-administration in alcohol-dependent rats, without affecting water or saccharin intake in dependent rats or alcohol intake in nondependent rats. Moreover, systemic JNJ-63533054 administration decreased withdrawal-induced hyperalgesia, without affecting somatic signs of alcohol withdrawal. Further analysis demonstrated that JNJ-63533054 was effective only in a subgroup of dependent rats that exhibited compulsive-like alcohol drinking. Finally, site-specific microinjection of JNJ-63533054 in the habenula but not interpeduncular nucleus (IPN) reduced both alcohol self-administration and withdrawal-induced hyperalgesia in dependent rats. These results provide robust preclinical evidence that GPR139 receptor activation reverses key addiction-like behaviors in dependent animals, suggest that GPR139 may be a novel target for the treatment of alcohol use disorder, and demonstrate that GPR139 is functionally relevant in regulating mammalian behavior.
Collapse
|
40
|
Nepomuceno D, Kuei C, Dvorak C, Lovenberg T, Liu C, Bonaventure P. Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 in Vitro. Front Pharmacol 2018; 9:157. [PMID: 29599718 PMCID: PMC5863515 DOI: 10.3389/fphar.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via Gαq-coupling. The in vitro affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH1-9/α-MSH1-10 can also activate GPR139 in vitro. We tested this hypothesis using guanosine 5′-O-(3-[35S]thio)-triphosphate binding (GTPγS), calcium mobilization and [3H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH1-9/α-MSH1-10, and β-MSH had no effect on [35S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [35S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [3H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH1-9/α-MSH1-10 did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH1-9/α-MSH1-10 only weakly stimulated calcium mobilization at 30 μM (<50% of EC100). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the Gs signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including Gq transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an in vitro interaction between GPR139 and the MCRs.
Collapse
Affiliation(s)
- Diane Nepomuceno
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Curt Dvorak
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
41
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
42
|
Alavi MS, Shamsizadeh A, Azhdari-Zarmehri H, Roohbakhsh A. Orphan G protein-coupled receptors: The role in CNS disorders. Biomed Pharmacother 2017; 98:222-232. [PMID: 29268243 DOI: 10.1016/j.biopha.2017.12.056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
There are various types of receptors in the central nervous system (CNS). G protein-coupled receptors (GPCRs) have the highest expression with a wide range of physiological functions. A newer sub group of these receptors namely orphan GPCRs have been discovered. GPR3, GPR6, GPR17, GPR26, GPR37, GPR39, GPR40, GPR50, GPR52, GPR54, GPR55, GPR85, GPR88, GPR103, and GPR139 are the selected orphan GPCRs for this article. Their roles in the central nervous system have not been understood well so far. However, recent studies show that they may have very important functions in the CNS. Hence, in the present study, we reviewed most recent findings regarding the physiological roles of the selected orphan GPCRs in the CNS. After a brief presentation of each receptor, considering the results from genetic and pharmacological manipulation of the receptors, their roles in the pathophysiology of different diseases and disorders including anxiety, depression, schizophrenia, epilepsy, Alzheimer's disease, Parkinson's disease, and substance abuse will be discussed. At present, our knowledge regarding the role of GPCRs in the brain is very limited. However, previous limited studies show that orphan GPCRs have an important place in psychopharmacology and these receptors are potential new targets for the treatment of major CNS diseases.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Basic Medical Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Nøhr AC, Jespers W, Shehata MA, Floryan L, Isberg V, Andersen KB, Åqvist J, Gutiérrez-de-Terán H, Bräuner-Osborne H, Gloriam DE. The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Sci Rep 2017; 7:1128. [PMID: 28442765 PMCID: PMC5430874 DOI: 10.1038/s41598-017-01049-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
GPR139 is an orphan G protein-coupled receptor expressed in the brain, in particular in the habenula, hypothalamus and striatum. It has therefore been suggested that GPR139 is a possible target for metabolic disorders and Parkinson's disease. Several surrogate agonist series have been published for GPR139. Two series published by Shi et al. and Dvorak et al. included agonists 1a and 7c respectively, with potencies in the ten-nanomolar range. Furthermore, Isberg et al. and Liu et al. have previously shown that tryptophan (Trp) and phenylalanine (Phe) can activate GPR139 in the hundred-micromolar range. In this study, we produced a mutagenesis-guided model of the GPR139 binding site to form a foundation for future structure-based ligand optimization. Receptor mutants studied in a Ca2+ assay demonstrated that residues F1093×33, H1875×43, W2416×48 and N2717×38, but not E1083×32, are highly important for the activation of GPR139 as predicted by the receptor model. The initial ligand-receptor complex was optimized through free energy perturbation simulations, generating a refined GPR139 model in agreement with experimental data. In summary, the GPR139 reference surrogate agonists 1a and 7c, and the endogenous amino acids L-Trp and L-Phe share a common binding site, as demonstrated by mutagenesis, ligand docking and free energy calculations.
Collapse
Affiliation(s)
- Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Mohamed A Shehata
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Leonard Floryan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kirsten Bayer Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
44
|
Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat Chem Biol 2016; 13:235-242. [PMID: 27992882 DOI: 10.1038/nchembio.2266] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.
Collapse
|
45
|
Nøhr AC, Shehata MA, Hauser AS, Isberg V, Mokrosinski J, Andersen KB, Farooqi IS, Pedersen DS, Gloriam DE, Bräuner-Osborne H. The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW. Neurochem Int 2016; 102:105-113. [PMID: 27916541 PMCID: PMC5218887 DOI: 10.1016/j.neuint.2016.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 01/14/2023]
Abstract
GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC50 values of 220 μM and 320 μM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle “similar targets bind similar ligands”, we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca2+-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH1-9 was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, β-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH1-9. Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides. Using GPCRdb we found that the binding cavity of GPR139 is 49% similar to MC4R. ACTH, α-MSH and β-MSH activate GPR139 in the low μM-range. We predicted a novel possible cleavage site in POMC leading to the peptide α-MSH1-9. α-MSH1-9 activates GPR139 in the high nM range.
Collapse
Affiliation(s)
- Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mohamed A Shehata
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jacek Mokrosinski
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Kirsten B Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
46
|
Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139. Sci Rep 2016; 6:36681. [PMID: 27830715 PMCID: PMC5103216 DOI: 10.1038/srep36681] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
GPR139 is an orphan class A G protein-coupled receptor found mainly in the central nervous system. It has its highest expression levels in the hypothalamus and striatum, regions regulating metabolism and locomotion, respectively, and has therefore been suggested as a potential target for obesity and Parkinson’s disease. The two aromatic amino acids L-Trp and L-Phe have been proposed as putative endogenous agonists, and three structurally related benzohydrazide, glycine benzamide, and benzotriazine surrogate agonist series have been published. Herein, we assayed 158 new analogues selected from a pharmacophore model, and identified 12 new GPR139 agonists, containing previously untested bioisosteres. Furthermore, we present the first combined structure-activity relationships, and a refined pharmacophore model to serve as a rationale for future ligand identification and optimization.
Collapse
|
47
|
Murakoshi M, Kuwabara H, Nagasaki M, Xiong YM, Reagan JD, Maeda H, Nara F. Discovery and pharmacological effects of a novel GPR142 antagonist. J Recept Signal Transduct Res 2016; 37:290-296. [PMID: 27807998 DOI: 10.1080/10799893.2016.1247861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
GPR142 is a G-protein-coupled receptor (GPCR), whose most potent and efficacious ligand has been reported as being the natural amino acid l-tryptophan. GPR142 is highly expressed in pancreatic β-cells and immune cells, suggesting the receptor may play a role in the pathogenesis and development of diabetes or inflammatory diseases. In a previous report, we developed GPR142 agonists as insulin secretagogues. In this report, we show the discovery of a selective, potent small-molecule GPR142 antagonist, CLP-3094, and its pharmacological characteristics. These data support targeting this receptor for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Michiko Murakoshi
- a Biological Research Department , Daiichi Sankyo RD Novare Co. Ltd. , Tokyo , Japan
| | - Harumi Kuwabara
- b Pain & Neuroscience Laboratories, Research Function, R&D Division , Daiichi Sankyo Co. Ltd. , Tokyo , Japan
| | - Miyuki Nagasaki
- c Biologics & Immuno-Oncology Laboratories Research Function , R&D Division , Daiichi Sankyo Co. Ltd. , Tokyo , Japan
| | - Yu Mei Xiong
- d Department of Cardio-Metabolic Disorders , Amgen, Inc. , South San Francisco , CA , USA
| | - Jeff D Reagan
- d Department of Cardio-Metabolic Disorders , Amgen, Inc. , South San Francisco , CA , USA
| | - Hiroaki Maeda
- e Immunology & Inflammatory Disease Field , Asubio Pharma Co. Ltd. , Kobe , Japan
| | - Futoshi Nara
- c Biologics & Immuno-Oncology Laboratories Research Function , R&D Division , Daiichi Sankyo Co. Ltd. , Tokyo , Japan
| |
Collapse
|
48
|
Bayer Andersen K, Leander Johansen J, Hentzer M, Smith GP, Dietz GPH. Protection of Primary Dopaminergic Midbrain Neurons by GPR139 Agonists Supports Different Mechanisms of MPP(+) and Rotenone Toxicity. Front Cell Neurosci 2016; 10:164. [PMID: 27445691 PMCID: PMC4923153 DOI: 10.3389/fncel.2016.00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022] Open
Abstract
The G-protein coupled receptor 139 (GPR139) is expressed specifically in the brain in areas of relevance for motor control. GPR139 function and signal transduction pathways are elusive, and results in the literature are even contradictory. Here, we examined the potential neuroprotective effect of GPR139 agonism in primary culture models of dopaminergic (DA) neuronal degeneration. We find that in vitro GPR139 agonists protected primary mesencephalic DA neurons against 1-methyl-4-phenylpyridinium (MPP(+))-mediated degeneration. Protection was concentration-dependent and could be blocked by a GPR139 antagonist. However, the protection of DA neurons was not found against rotenone or 6-hydroxydopamine (6-OHDA) mediated degeneration. Our results support differential mechanisms of toxicity for those substances commonly used in Parkinson's disease (PD) models and potential for GPR139 agonists in neuroprotection.
Collapse
Affiliation(s)
| | | | - Morten Hentzer
- Department of Molecular Screening, H. Lundbeck A/S Valby, Denmark
| | | | | |
Collapse
|
49
|
Dunn EC, Wiste A, Radmanesh F, Almli LM, Gogarten SM, Sofer T, Faul JD, Kardia SL, Smith JA, Weir DR, Zhao W, Soare TW, Mirza SS, Hek K, Tiemeier HW, Goveas JS, Sarto GE, Snively BM, Cornelis M, Koenen KC, Kraft P, Purcell S, Ressler KJ, Rosand J, Wassertheil-Smoller S, Smoller JW. GENOME-WIDE ASSOCIATION STUDY (GWAS) AND GENOME-WIDE BY ENVIRONMENT INTERACTION STUDY (GWEIS) OF DEPRESSIVE SYMPTOMS IN AFRICAN AMERICAN AND HISPANIC/LATINA WOMEN. Depress Anxiety 2016; 33:265-80. [PMID: 27038408 PMCID: PMC4826276 DOI: 10.1002/da.22484] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have made little progress in identifying variants linked to depression. We hypothesized that examining depressive symptoms and considering gene-environment interaction (GxE) might improve efficiency for gene discovery. We therefore conducted a GWAS and genome-wide by environment interaction study (GWEIS) of depressive symptoms. METHODS Using data from the SHARe cohort of the Women's Health Initiative, comprising African Americans (n = 7,179) and Hispanics/Latinas (n = 3,138), we examined genetic main effects and GxE with stressful life events and social support. We also conducted a heritability analysis using genome-wide complex trait analysis (GCTA). Replication was attempted in four independent cohorts. RESULTS No SNPs achieved genome-wide significance for main effects in either discovery sample. The top signals in African Americans were rs73531535 (located 20 kb from GPR139, P = 5.75 × 10(-8) ) and rs75407252 (intronic to CACNA2D3, P = 6.99 × 10(-7) ). In Hispanics/Latinas, the top signals were rs2532087 (located 27 kb from CD38, P = 2.44 × 10(-7) ) and rs4542757 (intronic to DCC, P = 7.31 × 10(-7) ). In the GEWIS with stressful life events, one interaction signal was genome-wide significant in African Americans (rs4652467; P = 4.10 × 10(-10) ; located 14 kb from CEP350). This interaction was not observed in a smaller replication cohort. Although heritability estimates for depressive symptoms and stressful life events were each less than 10%, they were strongly genetically correlated (rG = 0.95), suggesting that common variation underlying self-reported depressive symptoms and stressful life event exposure, though modest on their own, were highly overlapping in this sample. CONCLUSIONS Our results underscore the need for larger samples, more GEWIS, and greater investigation into genetic and environmental determinants of depressive symptoms in minorities.
Collapse
Affiliation(s)
- Erin C. Dunn
- Center for Human Genetic Research, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT
| | - Anna Wiste
- Center for Experimental Drugs and Diagnostics, Department of Psychiatry, Massachusetts General Hospital
| | - Farid Radmanesh
- Center for Human Genetic Research, Massachusetts General Hospital
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT
| | - Lynn M. Almli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | | | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Jessica D. Faul
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | | | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - David R. Weir
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
| | - Thomas W. Soare
- Center for Human Genetic Research, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT
| | - Saira S. Mirza
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Karin Hek
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning W. Tiemeier
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joseph S. Goveas
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gloria E. Sarto
- Center for Women's Health and Health Disparities Research, Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beverly M. Snively
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Marilyn Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Karestan C. Koenen
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health
| | - Shaun Purcell
- Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kerry J. Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jonathan Rosand
- Center for Human Genetic Research, Massachusetts General Hospital
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital
- Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, New York
| | - Jordan W. Smoller
- Center for Human Genetic Research, Massachusetts General Hospital
- Department of Psychiatry, Harvard Medical School
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT
| |
Collapse
|
50
|
Kuhne S, Nøhr AC, Marek A, Elbert T, Klein AB, Bräuner-Osborne H, Wellendorph P, Pedersen DS. Radiosynthesis and characterisation of a potent and selective GPR139 agonist radioligand. RSC Adv 2016. [DOI: 10.1039/c5ra21326f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound 1 is a selective and potent agonist of the G protein-coupled receptor GPR139 (EC50 = 39 nM).
Collapse
Affiliation(s)
- Sebastiaan Kuhne
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS)
| | - Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Tomáš Elbert
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- Prague 6
- Czech Republic
| | - Anders Bue Klein
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
| | - Daniel Sejer Pedersen
- Department of Drug Design and Pharmacology
- Faculty of Health and Medical Sciences
- University of Copenhagen
- Denmark
| |
Collapse
|