1
|
Kipp ZA, Badmus OO, Stec DE, Hall B, Hinds TD. Bilirubin bioconversion to urobilin in the gut-liver-kidney axis: A biomarker for insulin resistance in the Cardiovascular-Kidney-Metabolic (CKM) Syndrome. Metabolism 2025; 163:156081. [PMID: 39580049 DOI: 10.1016/j.metabol.2024.156081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The rising rates of obesity worldwide have increased the incidence of cardiovascular disease (CVD), making it the number one cause of death. Higher plasma bilirubin levels have been shown to prevent metabolic dysfunction and CVD. However, reducing levels leads to deleterious outcomes, possibly due to reduced bilirubin half-life that escalates the production of its catabolized product, urobilinogen, produced by gut bacteria and naturally oxidized to urobilin. Recent findings suggest that the involvement of the microbiome catabolism of bilirubin to urobilin and its absorption via the hepatic portal vein contributes to CVD, suggesting a liver-gut axis involvement. We discuss the studies that demonstrate that urobilin is frequently raised in the urine of persons with CVD and its probable role in acquiring the disease. Urobilin is excreted from the kidneys into the urine and may serve as a biomarker for Cardiovascular-Kidney-Metabolic (CKM) Syndrome. We deliberate on the newly discovered bilirubin reductase (BilR) bacterial enzyme that produces urobilin. We discuss the bacterial species expressing BilR, how they impact CVD, and whether suppressing urobilin production and increasing bilirubin may provide new therapeutic strategies for CKM. Possible therapeutic mechanisms for achieving this goal are discussed.
Collapse
Affiliation(s)
- Zachary A Kipp
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Olufunto O Badmus
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Brantley Hall
- Center for Bioinformatics and Computational Biology, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA
| | - Terry D Hinds
- Drug & Disease Discovery D3 Research Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
2
|
Virzì NF, Alvarez-Lorenzo C, Concheiro A, Consoli V, Salerno L, Vanella L, Pittalà V, Diaz-Rodriguez P. Heme oxygenase 1 inhibitor discovery and formulation into nanostructured lipid carriers as potent and selective treatment against triple negative metastatic breast cancer. Int J Pharm 2025; 668:124997. [PMID: 39586511 DOI: 10.1016/j.ijpharm.2024.124997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Heme oxygenase-1 (HO-1) has been identified as a potential new target in anticancer therapy, being overexpressed in different tumors and crucial for cell proliferation. Advances in the development of specific HO-1 inhibitors should support the understanding of controlling HO-1 activity as antitumoral strategies, opening the path for future therapeutic applications. In the present study, small series of new HO-1 inhibitors were synthesized by joining a butylimidazolic pharmacophore together with a hydrophobic moiety spaced by a 2-oxybenzamide central linker. The most active and selective HO-1 inhibitor, VP 21-04, 2-(4-(1H-imidazol-1-yl)butoxy)-N-benzyl-5-iodobenzamide (7b) was identified. This ligand showed strong cytotoxic activity against melanoma and breast cancer cell lines. Encapsulation of VP 21-04 in nanostructured lipid carriers (NLC 21-04) was performed to exploit its therapeutic potential by passive-targeting delivery ameliorating water-solubility and toxicity. Interestingly, NLC 21-04 showed a marked antiproliferative effect in both cancer cell lines, and an improved safety profile with a wider therapeutic window when compared to the free drug. Finally, NLC 21-04 showed a marked tumor growth reduction while being safe in an in ovo tumor model, highlighting the therapeutic potential of the developed nanoparticles against triple negative metastatic breast cancer.
Collapse
Affiliation(s)
- Nicola Filippo Virzì
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Loredana Salerno
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, Catania 95125, Italy; Department of Molecular Medicine, Arabian Gulf University, Manama 329, Bahrain.
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
3
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
4
|
Cui Y, Yang K, Guo C, Xia Z, Jiang B, Xue Y, Song B, Hu W, Zhang M, Wei Y, Zhang C, Zhang S, Fang J. Carbon monoxide as a negative feedback mechanism on HIF-1α in the progression of metabolic-associated fatty liver disease. Nitric Oxide 2024; 153:1-12. [PMID: 39369813 DOI: 10.1016/j.niox.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses various chronic liver conditions, yet lacks approved drugs. Hypoxia-inducible factor-1α (HIF-1α) is pivotal in MAFLD development. Our prior research highlighted the efficacy of the nano-designed carbon monoxide (CO) donor, targeting HIF-1α in a mouse hepatic steatosis model. Given heme oxygenase-1 (HO-1, a major downstream molecule of HIF-1α) as the primary source of intrinsic CO, we hypothesized that upregulation of HO-1/CO, responsive to HIF-1α, forms a negative feedback loop regulating MAFLD progression. In this study, we explored the potential negative feedback mechanism of CO on HIF-1α and its downstream effects on MAFLD advancement. HIF-1α emerges early in hepatic steatosis induced by a high-fat (HF) diet, triggering increased HO-1 and inflammation. SMA/CORM2 effectively suppresses HIF-1α and steatosis progression when administered within the initial week of HF diet initiation but loses impact later. In adipose tissues, concurrent metabolic dysfunction and inflammation with HIF-1α activation suggest adipose tissue expansion initiates HF-induced steatosis, triggering hypoxia and liver inflammation. Notably, in an in vitro study using mouse hepatocytes treated with fatty acids, downregulating HO-1 intensified HIF-1α induction at moderate fatty acid concentrations. However, this effect diminished at high concentrations. These results suggest the HIF-1α-HO-1-CO axis as a feedback loop under physiological and mild pathological conditions. Excessive HIF-1α upregulation in pathological conditions overwhelms the CO feedback loop. Additional CO application effectively suppresses HIF-1α and disease progression, indicating potential application for MAFLD control.
Collapse
Affiliation(s)
- Yingying Cui
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, 750000, China; Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Kai Yang
- Department of Medical Technology, Anhui Medical College, No.632, Furong Road, Hefei, Anhui Province, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Benchun Jiang
- Department of Gastricintestinal Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Mingjie Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China
| | - Shichen Zhang
- Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei, 230022, Anhui, China; Anhui Provincial Center for Maternal and Child Health Genetics, School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, 230601, Anhui, China; Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Kumamoto, 860-0082, Japan.
| |
Collapse
|
5
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
6
|
El-Hamid MIA, Ibrahim D, Abdelfattah-Hassan A, Mohammed OB, Pet I, Khalil SS, El-Badry SM, Metwally AS, Azouz AA, Elnegiry AA, Elnahriry SS, Ahmadi M, Elazab ST. Silver nanoparticles loaded with pomegranate peel extract and hyaluronic acid mediate recovery of cutaneous wounds infected with Candida albicans. Front Cell Infect Microbiol 2024; 14:1469493. [PMID: 39679196 PMCID: PMC11638243 DOI: 10.3389/fcimb.2024.1469493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 12/17/2024] Open
Abstract
Smart innovative nanocomposites based on active ingredients and metallic nanoparticles with effective wound healing and antifungal properties are efficient in overcoming the limitations of traditional therapeutic products. Open wounds provide an ideal niche for colonization by Candida albicans (C. albicans) which poses substantial global health issues owing to delayed wound healing and disordered healing mechanisms. Therefore, proficient innovative therapies that control C. albicans infection and promote wound healing are of imperative importance for the management of wounds and prevention of infection and possible complications. This study aims to design a novel nanocarrier platform based on a hydrogel loaded with silver nanoparticles (AgNPs) and doped with pomegranate peel extract (PPE) and hyaluronic acid (HA), offering an unprecedented opportunity to achieve skin repair and manage C. albicans colonization with an efficient wound healing process. Sprague-Dawley rats (n=100) were assigned to 5 groups and infected with C. albicans and distributed as follows: control positive (untreated) and four cutaneous wound-healing model groups treated topically with commercial cream and PPE-HA-AgNPs at full, 50%, and 25% concentrations for 15 days, respectively. Our findings revealed that the severity of clinical signs, C. albicans burden, and the expression of biofilm-related genes ALS1, HYR1, and PLB1 were diminished following treatment with PPE-HA-AgNPsIII. Notably, the formulated nanocomposite was very effective in extending the release of PPE-HA-AgNPs in infected wounds with retention percentages of 65.4% for PPE-HA-AgNPsIII. Topical administration of PPE-HA-AgNPsIII successfully alleviated the extensive inflammatory response and healed wounded skin via downregulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 and IL-1 beta, and nitric oxide synthase (NOS) levels as shown by enzyme-linked immunosorbent (ELISA) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays. Interestingly, PPE-HA-AgNPsIII modulated angiogenic and wound healing markers as evidenced by the downregulation of MMP-9 and the upregulation of angiopoietin-1 (Ang-1), vascular endothelial growth factor (VEGF) (up to 10 days post-treatment), transforming growth factor-beta 1 (TGF-β1), bFGF, EGF, Ki-67, and collagen I and III with efficient wound closure capability. This was evidenced by the lessening of histopathological severity, which accelerated the healing of the infected skin wounds post-treatment with PPE-HA-AgNPs. Overall, our formulated PPE-HA-AgNPs provide an effective innovative therapeutic strategy for the treatment of cutaneous wounds infected with C. albicans with maximized wound healing efficacy, indicating their potential in clinical practice.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Abdelfattah-Hassan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | - Ioan Pet
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Samah S. Khalil
- Department of Biochemistry & Molecular Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, Zagazig, Egypt
| | - Sara M. El-Badry
- Department of Animal Wealth Development, Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Asmaa A. Azouz
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed A. Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Shimaa S. Elnahriry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mirela Ahmadi
- Department of Biotechnology, Faculty of Bioengineering of Animals Resources, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Sara T. Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Mounika V, P IK, Siluvai S, G K. Carbon Monoxide in Healthcare Monitoring Balancing Potential and Challenges in Public Health Perspective: A Narrative Review. Cureus 2024; 16:e74052. [PMID: 39712838 PMCID: PMC11661877 DOI: 10.7759/cureus.74052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Carbon monoxide (CO) has medicinal potential and harmful qualities. However, excessive exposure to CO can lead to severe organ failure. CO is exogenously and endogenously generated within the human body. Ongoing research aims to uncover the beneficial aspects of CO. It serves as a biomarker for inflammation and other serious illnesses. Preclinical trials exploring CO's application have indicated potential benefits in addressing conditions such as Ischemia, Tendonitis, Neuropathic pain, and even cancer therapy. Cardiovascular disease emerges as a particularly promising target for CO therapy due to its potent vasodilatory effects. While research into CO-based therapeutics has shown promise in experimental and preclinical settings, clinical translation and widespread adoption remain in the early stages. This review will illuminate the advantageous role of CO as a biomarker alongside the obstacles and challenges associated with its implementation.
Collapse
Affiliation(s)
- V Mounika
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Indumathi K P
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Sibyl Siluvai
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Krishnaprakash G
- Department of Public Health Dentistry, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
8
|
Colciago A, Mohamed T, Colleoni D, Melfi V, Magnaghi V. Electromagnetic field-induced adaptive response in Schwann cells through DNA methylation, histone deacetylation, and oxidative stress. J Cell Physiol 2024; 239:e31365. [PMID: 38946084 DOI: 10.1002/jcp.31365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Schwannomas are benign tumors of the peripheral nervous system arising from the transformation of Schwann cells (SCs). On the whole, these tumors are related to alterations of the neurofibromin type 2 gene, coding for the oncosuppressor merlin, a cytoskeleton-associated protein belonging to the ezrin-radixin-moesin family. However, the underlying mechanisms of schwannoma onset and progression are not fully elucidated, whereas one of the challenges might be the environment. In this light, the exposure to electromagnetic field (EMF), generated by the use of common electrical devices, has been defiantly suggested as the cause of SCs transformation even if the evidence was mostly epidemiologic. Indeed, insubstantial mechanisms have been so far identified to explain SCs oncotransformation. Recently, some in vitro evidence pointed out alterations in proliferation and migration abilities in SCs exposed to EMF (0.1 T, 50 Hz, 10 min). Here, we used the same experimental paradigma to discuss the involvement of putative epigenetic mechanisms in SCs adaptation to EMF and to explain the occurrence of hypoxic alterations after the exposure. Our findings indicate a set of environmental-induced changes in SCs, toward a less-physiological state, which may be pathologically relevant for the SCs differentiation and the schwannoma development.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Tasnim Mohamed
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Deborah Colleoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Melfi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Liu W, Liu Z, Sun XD, Liu ZQ, Dong YY, Qiu S. Investigating the causal association between heme oxygenase-1 and asthma: A bidirectional two-sample Mendelian randomization analysis in a European population. World Allergy Organ J 2024; 17:100987. [PMID: 39512673 PMCID: PMC11541772 DOI: 10.1016/j.waojou.2024.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/29/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Background The association between heme oxygenase-1 (HO-1) and asthma has been a subject of debate in both observational and experimental studies. We aimed to evaluate the potential causal relationship between HO-1 and asthma. Materials and methods A bidirectional two-sample Mendelian randomization (TSMR) study was conducted to examine the causal relationship between HO-1 and asthma. In the forward Mendelian randomization (MR) analyses, HO-1 was considered as the exposure, while asthma as the outcome. Conversely, in the reverse MR analyses, asthma was regarded as the exposure, and HO-1 as the outcome. Data for HO-1 and asthma were obtained from publicly accessible genome-wide association studies (GWAS). These causal relationships were identified through 5 MR methods, namely MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode. Additionally, sensitivity tests were conducted to assess the robustness of MR study. Finally, additional asthma datasets and childhood asthma were selected to validate the findings. Results In the forward MR analyses, according to the IVW method, genetically predicted HO-1 displays a negative correlation with the risk of asthma (OR 0.947, 95% CI 0.905-0.990). It was not found any SNP overly sensitive or disproportionately responsible for the outcome. No evidence of heterogeneity and pleiotropy between SNPs was observed. Genetically predicted asthma was not associated with HO-1 in reverse MR analyses using the IVW method. The same results were validated in additional asthma datasets and in childhood asthma. Conclusion The results of MR analysis revealed heme oxygenase-1 as a protective factor for asthma.
Collapse
Affiliation(s)
- Wen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zhen Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Xiao-di Sun
- Department of Cadre Health Care, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Zeng-qiang Liu
- Department of Cadre Health Care, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yuan-yuan Dong
- Department of Cadre Health Care, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Shi Qiu
- Department of Cardiac Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
10
|
Lei JJ, Li S, Dong BX, Yang J, Ren Y. Acute intermittent porphyria: a disease with low penetrance and high heterogeneity. Front Genet 2024; 15:1374965. [PMID: 39188285 PMCID: PMC11345236 DOI: 10.3389/fgene.2024.1374965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Acute intermittent porphyria (AIP) is caused by mutations in the gene encoding hydroxymethylbilane synthase (HMBS), a key enzyme in the heme biosynthesis pathway. AIP is an autosomal dominant disorder characterized by low penetrance and a highly heterogenous clinical presentation. The estimated prevalence of AIP is 5-10 cases per 100,000 persons, with acute attacks manifesting in less than 1% of the at-risk population. This low frequency of attacks suggests significant roles for oligogenic inheritance and environmental factors in the pathogenesis of the disease. In recent years, identification of several modifier genes has advanced our understanding of the factors influencing AIP penetrance and disease severity. This review summarizes these factors including the impact of specific HMBS mutations, oligogenic inheritance, mitochondrial DNA copy number, age, sex, the influence of sex hormones, and the role of environmental factors. Further studies into the etiology of AIP disease penetrance should inform pathogenesis, potentially allowing for the development of more precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Jia Lei
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Shuang Li
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Bai-Xue Dong
- Department of First Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Jing Yang
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Ren
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Yang W, Arora M, Han HW, Jiang W, Kim DM, Ai W, Pan Q, Kumar MNVR, Brashear WA, Sun Y, Guo S. ZnPP-laden nanoparticles improve glucose homeostasis and chronic inflammation during obesity. Br J Pharmacol 2024; 181:2886-2904. [PMID: 38679457 DOI: 10.1111/bph.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammation plays a pivotal role in the development of Type 2 diabetes mellitus (T2DM). Previous studies have shown that haem oxygenase-1 (HO-1) plays a proinflammatory role during metabolic stress, suggesting that HO-1 inhibition could be an effective strategy to treat T2DM. However, the application of HO-1 inhibitors is restricted due to solubility-limited bioavailability. In this study, we encapsulated the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP), within nanoparticles and investigated their role in regulating glucose homeostasis and chronic inflammation during obesity. EXPERIMENTAL APPROACH We delivered DMSO-dissolved ZnPP (DMSO-ZnPP) and ZnPP-laden nanoparticles (Nano-ZnPP) to diet-induced obese male mice for 6 weeks. Glucose and insulin tolerance tests were carried out, liver and adipose tissue gene expression profiles analysed, and systemic inflammation analysed using flow cytometry. KEY RESULTS Nanoparticles significantly increased the delivery efficiency of ZnPP in both cells and mice. In mice with diet-induced obesity, inhibition of HO-1 by Nano-ZnPP significantly decreased adiposity, increased insulin sensitivity, and improved glucose tolerance. Moreover, Nano-ZnPP treatment attenuated both local and systemic inflammatory levels during obesity. Mechanistically, Nano-ZnPP significantly attenuated glucagon, TNF, and fatty acid synthesis signalling pathways in the liver. In white adipose tissue, the oxidative phosphorylation signalling pathway was enhanced and the inflammation signalling pathway diminished by Nano-ZnPP. Our results show that Nano-ZnPP has better effects on the improvement of glucose homeostasis and attenuation of chronic inflammation, than those of DMSO-dissolved ZnPP. CONCLUSIONS AND IMPLICATIONS These findings indicate that ZnPP-laden nanoparticles are potential therapeutic agents for treating T2DM.
Collapse
Affiliation(s)
- Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Meenakshi Arora
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
| | - Hye Won Han
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - M N V Ravi Kumar
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama, USA
| | - Wesley A Brashear
- High Performance Research Computing, Texas A&M University, College Station, Texas, USA
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Xu M, Zhang D, Yan J. Targeting ferroptosis using Chinese herbal compounds to treat respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155738. [PMID: 38824825 DOI: 10.1016/j.phymed.2024.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Respiratory diseases pose a grave threat to human life. Therefore, understanding their pathogenesis and therapeutic strategy is important. Ferroptosis is a novel type of iron-dependent programmed cell death, distinct from apoptosis, necroptosis, and autophagy, characterised by iron, reactive oxygen species, and lipid peroxide accumulation, as well as glutathione (GSH) depletion and GSH peroxidase 4 (GPX4) inactivation. A close association between ferroptosis and the onset and progression of respiratory diseases, including chronic obstructive pulmonary disease, acute lung injury, bronchial asthma, pulmonary fibrosis, and lung cancer, has been reported. Recent studies have shown that traditional Chinese medicine (TCM) compounds exhibit unique advantages in the treatment of respiratory diseases owing to their natural properties and potential efficacy. These compounds can effectively regulate ferroptosis by modulating several key signalling pathways such as system Xc- -GSH-GPX4, NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1, thus playing a positive role in improving respiratory diseases. PURPOSE This comprehensive review systematically outlines the regulatory role of ferroptosis in the onset and progression of respiratory diseases and provides evidence for treating respiratory diseases by targeting ferroptosis with TCM compounds. These insights aim to offer potential remedies for the clinical prevention and treatment of respiratory diseases. STUDY DESIGN AND METHODS We searched scientific databases PubMed, Web of Science, Scopus, and CNKI using keywords such as "ferroptosis","respiratory diseases","chronic obstructive pulmonary disease","bronchial asthma","acute lung injury","pulmonary fibrosis","lung cancer","traditional Chinese medicine","traditional Chinese medicine compound","monomer", and "natural product" to retrieve studies on the therapeutic potential of TCM compounds in ameliorating respiratory diseases by targeting ferroptosis. The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS TCM compounds possess unique advantages in treating respiratory diseases, stemming from their natural origins and proven clinical effectiveness. TCM compounds can exert therapeutic effects on respiratory diseases by regulating ferroptosis, which mainly involves modulation of pathways such as system Xc- -GSH-GPX4,NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1. CONCLUSION TCM compounds have demonstrated promising potential in improving respiratory diseases through the regulation of ferroptosis. The identification of specific TCM-related inducers and inhibitors of ferroptosis holds great significance in developing more effective strategies. However, current research remains confined to animal and cellular studies, emphasizing the imperative for further verifications through high-quality clinical data.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
13
|
Martínez-Martel I, Bai X, Kordikowski R, Leite-Panissi CRA, Pol O. The Combination of Molecular Hydrogen and Heme Oxygenase 1 Effectively Inhibits Neuropathy Caused by Paclitaxel in Mice. Antioxidants (Basel) 2024; 13:856. [PMID: 39061924 PMCID: PMC11274132 DOI: 10.3390/antiox13070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Rebecca Kordikowski
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R. A. Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
14
|
Yadav AK, Murthy TPK, Divyashri G, Prasad N D, Prakash S, Vaishnavi V V, Shukla R, Singh TR. Computational screening of pathogenic missense nsSNPs in heme oxygenase 1 (HMOX1) gene and their structural and functional consequences. J Biomol Struct Dyn 2024; 42:5072-5091. [PMID: 37434323 DOI: 10.1080/07391102.2023.2231553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Heme Oxygenase 1 (HMOX1) is a cytoprotective enzyme, exhibiting the highest activity in the spleen, catalyzing the heme ring breakdown into products of biological significance- biliverdin, CO, and Fe2+. In vascular cells, HMOX1 possesses strong anti-apoptotic, antioxidant, anti-proliferative, anti-inflammatory, and immunomodulatory actions. The majority of these activities are crucial for the prevention of atherogenesis. Single amino acid substitutions in proteins generated by missense non-synonymous single nucleotide polymorphism (nsSNPs) in the protein-encoding regions of genes are potent enough to cause significant medical challenges due to the alteration of protein structure and function. The current study aimed at characterizing and analyzing high-risk nsSNPs associated with the human HMOX1 gene. Preliminary screening of the total available 288 missense SNPs was performed through the lens of deleteriousness and stability prediction tools. Finally, a total of seven nsSNPs (Y58D, A131T, Y134H, F166S, F167S, R183S and M186V) were found to be most deleterious by all tools that are present at highly conserved positions. Molecular dynamics simulations (MDS) analysis explained the mutational effects on the dynamic action of the wild-type and mutant proteins. In a nutshell, R183S (rs749644285) was identified as a highly detrimental mutation that could significantly render the enzymatic activity of HMOX1. The finding of this computational analysis might help subject the experimental confirmatory analysis to characterize the role of nsSNPs in HMOX1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - T P Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Gangaraju Divyashri
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Durga Prasad N
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Sriraksha Prakash
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Vijaya Vaishnavi V
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
15
|
Aloss K, Hamar P. Augmentation of the EPR effect by mild hyperthermia to improve nanoparticle delivery to the tumor. Biochim Biophys Acta Rev Cancer 2024; 1879:189109. [PMID: 38750699 DOI: 10.1016/j.bbcan.2024.189109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of the nanoparticle (NP)-based anticancer therapies is still unsatisfactory due to the heterogeneity of the enhanced permeability and retention (EPR) effect. Despite the promising preclinical outcome of the pharmacological EPR enhancers, their systemic toxicity can limit their clinical application. Hyperthermia (HT) presents an efficient tool to augment the EPR by improving tumor blood flow (TBF) and vascular permeability, lowering interstitial fluid pressure (IFP), and disrupting the structure of the extracellular matrix (ECM). Furthermore, the HT-triggered intravascular release approach can overcome the EPR effect. In contrast to pharmacological approaches, HT is safe and can be focused to cancer tissues. Moreover, HT conveys direct anti-cancer effects, which improve the efficacy of the anti-cancer agents encapsulated in NPs. However, the clinical application of HT is challenging due to the heterogeneous distribution of temperature within the tumor, the length of the treatment and the complexity of monitoring.
Collapse
Affiliation(s)
- Kenan Aloss
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine - Semmelweis University - 1094, Tűzoltó utca, 37-49, Budapest, Hungary.
| |
Collapse
|
16
|
Gu Q, Sha W, Huang Q, Wang J, Zhu Y, Xu T, Xu Z, Zhu Q, Ge J, Tian S, Lin X. Fibroblast growth factor 21 inhibits ferroptosis following spinal cord injury by regulating heme oxygenase-1. Neural Regen Res 2024; 19:1568-1574. [PMID: 38051901 PMCID: PMC10883498 DOI: 10.4103/1673-5374.387979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/22/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00037/figure1/v/2023-11-20T171125Z/r/image-tiff
Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury. Fibroblast growth factor 21 can inhibit ferroptosis and promote neurofunctional recovery, while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis. The relationship between heme oxygenase-1 and ferroptosis remains controversial. In this study, we used a spinal cord injury rat model to show that the levels of fibroblast growth factor 21 in spinal cord tissue decreased after spinal cord injury. In addition, there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury. Further, heme oxygenase-1 aggravated ferroptosis after spinal cord injury, while fibroblast growth factor 21 inhibited ferroptosis by downregulating heme oxygenase-1. Thus, the activation of fibroblast growth factor 21 may provide a potential treatment for spinal cord injury. These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Jin Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Tianli Xu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Zhenhua Xu
- Department of Anesthesiology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Qiancheng Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Jianfei Ge
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Orthopedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Padda I, Sethi Y, Das M, Fabian D, Ralhan T, Aziz D, Sexton J, Johal G. Heme Oxygenase-1, Cardiac Senescence, and Myocardial Infarction: A Critical Review of the Triptych. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07590-0. [PMID: 38940935 DOI: 10.1007/s10557-024-07590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Heme oxygenase-1 (HO-1) is a crucial enzyme in heme metabolism, facilitating the breakdown of heme into biliverdin, carbon monoxide, and free iron. Renowned for its potent cytoprotective properties, HO-1 showcases notable antioxidant, anti-inflammatory, and anti-apoptotic effects. In this review, the authors aim to explore the profound impact of HO-1 on cardiac senescence and its potential implications in myocardial infarction (MI). RESULTS Recent research has unveiled the intricate role of HO-1 in cellular senescence, characterized by irreversible growth arrest and functional decline. Notably, cardiac senescence has emerged as a pivotal factor in the development of various cardiovascular conditions, including MI. Notably, cardiac senescence has emerged as an important factor in the development of various cardiovascular conditions, including myocardial infarction (MI). The accumulation of senescent cells, spanning vascular endothelial cells, vascular smooth muscle cells, cardiomyocytes, and progenitor cells, poses a significant risk for cardiovascular diseases such as vascular aging, atherosclerosis, myocardial infarction, and ventricular remodeling. Inhibition of cardiomyocyte senescence not only reduces senescence-associated inflammation but also impacts other myocardial lineages, hinting at a broader mechanism of propagation in pathological remodeling. HO-1 has been shown to improve heart function and mitigate cardiomyocyte senescence induced by ischemic injury and aging. Furthermore, HO-1 induction has been found to alleviate H2O2-induced cardiomyocyte senescence. As we grow in our understanding of antiproliferative, antiangiogenic, anti-aging, and vascular effects of HO-1, we see the potential to exploit potential links between individual susceptibility to cardiac senescence and myocardial infarction. CONCLUSIONS This review investigates strategies for upregulating HO-1, including gene targeting and pharmacological agents, as potential therapeutic approaches. By synthesizing compelling evidence from diverse experimental models and clinical investigations, this study elucidates the therapeutic potential of targeting HO-1 as an innovative strategy to mitigate cardiac senescence and improve outcomes in myocardial infarction, emphasizing the need for further research in this field.
Collapse
Affiliation(s)
- Inderbir Padda
- Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
- PearResearch, Dehradun, India
| | - Yashendra Sethi
- PearResearch, Dehradun, India.
- Government Doon Medical College, Dehradun, Uttarakhand, India.
| | - Maumita Das
- School of Medicine, St. George's University, True Blue, Grenada
| | - Daniel Fabian
- Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Tushar Ralhan
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Daniel Aziz
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Jaime Sexton
- Department of Internal Medicine, Robert Wood Johnson Medical School, RutgersNew Brunswick, NJ, USA
| | - Gurpreet Johal
- Valley Medical Center, University of Washington, Seattle, USA
| |
Collapse
|
18
|
Chen J, Li J, Wang X, Fu X, Ke J, Li J, Wen J, Cheng K, Li S, Shi Z. Heme Oxygenase-1 Gene (GT)n Polymorphism Linked to Deep White Matter Hyperintensities, Not Periventricular Hyperintensities. J Am Heart Assoc 2024; 13:e033981. [PMID: 38818928 PMCID: PMC11255616 DOI: 10.1161/jaha.123.033981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Oxidative stress plays a principal role in the pathogenesis of white matter hyperintensities (WMHs). The induction of heme oxygenase-1 (HO-1) gene in the brain represents 1 of the pivotal mechanisms to counteract the noxious effects of reactive oxygen species, and the transcriptional modulation of HO-1 induction depends on the length of a GT-repeat (GT)n in the promoter region. We investigated whether the HO-1 gene (GT)n polymorphism is associated with the risk of WMHs. METHODS AND RESULTS A total of 849 subjects from the memory clinic were consecutively enrolled, and the HO-1 (GT)n genotype was determined. WMHs were assessed with the Fazekas scale and further divided into periventricular WMHs and deep WMHs (DWMHs). Allelic HO-1 (GT)n polymorphisms were classified as short (≤24 (GT)n), median (25≤[GT]n<31), or long (31≤[GT]n). Multivariate logistic regression analysis was used to evaluate the effect of the HO-1 (GT)n variants on WMHs. The number of repetitions of the HO-1 gene (GT)n ranged from 15 to 39 with a bimodal distribution at lengths 23 and 30. The proportion of S/S genotypes was higher for moderate/severe DWMHs than none/mild DWMHs (22.22% versus 12.44%; P=0.001), but the association for periventricular WMHs was not statistically significant. Logistic regression suggested that the S/S genotype was significantly associated with moderate/severe DWMHs (S/S versus non-S/S: odds ratio, 2.001 [95% CI, 1.323-3.027]; P<0.001). The HO-1 gene (GT)n S/S genotype and aging synergistically contributed to the progression of DWMHs (relative excess risk attributable to interaction, 6.032 [95% CI, 0.149-11.915]). CONCLUSIONS Short (GT)n variants in the HO-1 gene may confer susceptibility to rather than protection from DWMHs, but not periventricular WMHs. REGISTRATION URL: https://www.chictr.org.cn; Unique identifier: ChiCTR2100045869.
Collapse
Affiliation(s)
- Junting Chen
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Jinrui Li
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Xiaomian Wang
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Xiaoli Fu
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
| | - Jianxia Ke
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Jintao Li
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| | - Jia Wen
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Kailin Cheng
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Shuen Li
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
| | - Zhu Shi
- Department of Neurology and Memory CenterThe 10th Affiliate Hospital, Southern Medical UniversityDongguanChina
- Postgraduate SchoolGuangdong Medical UniversityZhanjiangGuangdongChina
- The 1st Clinical Medical SchoolSouthern Medical UniversityDongguanChina
| |
Collapse
|
19
|
Zhu R, Kang Y, Li Q, Peng K, Shi X, Yin Z, Xuan Y. Alpha-tocopherol inhibits ferroptosis and promotes neural function recovery in rats with spinal cord injury via downregulating Alox15. Biomed Pharmacother 2024; 175:116734. [PMID: 38754264 DOI: 10.1016/j.biopha.2024.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Spinal cord injury (SCI) is a type of central nervous system (CNS) injury in which ferroptosis is becoming a promising target for treatment. Alpha-tocopherol (Vitamin E, Vit E) is a compound with anti-ferroptosis activity. The mechanism of alpha-tocopherol in regulating ferroptosis after SCI has not been deeply studied. In this study, rats with SCI were treated by Alpha-tocopherol based on bioinformatic analysis and molecular docking prediction. Behavioral tests and histological findings showed that Alpha-tocopherol promoted neural function recovery and tissue repairment in rats with SCI. Subsequently, regulatory effects of Alpha-tocopherol on Alox15 and ferroptosis were detected and then localized by immunofluorescence. In vitro, alpha-tocopherol improved the ROS accumulation, iron overload, lipid peroxidation and mitochondrial dysfunction. The effects of Alpha-tocopherol on the expression of Alox15, Ptgs2 and 4Hne were validated in vitro. Finally, the inhibitory effects of Alpha-tocopherol on Alox15 and ferroptosis were weakened by the mutation of 87th residue of Alox15. In summary, alpha-tocopherol could alleviate SCI-induced ferroptosis by downregulating Alox15 to promote neural function recovery in rats with SCI. Findings in this study could help further our understanding on SCI-induced ferroptosis and provide a novel insight for treating SCI.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; Department of Orthopedics, Hefei Orthopedics Hospital, 58 Chaohu Northern Road, Hefei 238001, China
| | - Yu Kang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Qiangwei Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Kai Peng
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xuanming Shi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China.
| | - Yong Xuan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, 218 Jixi Road, Hefei 230022, China; Department of Orthopedics, The Second People's Hospital of Hefei, 246 Heping Road, Hefei 230011, China.
| |
Collapse
|
20
|
Yan Q, Wang Q, Nan J, Chen T, Wang J, Zhang Y, Yuan L. Heme oxygenase 1 (HO1) regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway of yak Sertoli cells. Theriogenology 2024; 220:96-107. [PMID: 38503100 DOI: 10.1016/j.theriogenology.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
Successful male reproduction depends on healthy testes. Autophagy has been confirmed to be active during many cellular events associated with the testes. It is not only crucial for testicular spermatogenesis but is also an essential regulatory mechanism for Sertoli cell (SCs) ectoplasmic specialization integrity and normal function of the blood-testis-barrier. Hypoxic stress induces oxidative damage, apoptosis, and autophagy, negatively affecting the male reproductive system. Cryptorchidism is a common condition associated with infertility. Recent studies have demonstrated that hypoxia-induced miRNAs and their transcription factors are highly expressed in the testicular tissue of infertile patients. Heme oxygenase 1 (HO1) is a heat-shock protein family member associated with cellular antioxidant defense and anti-apoptotic functions. The present study found that the HO1 mRNA and protein are up-regulated in yak cryptorchidism compared to normal testes. Next, we investigated the expression of HO1 in the SCs exposed to hypoxic stress and characterized the expression of key molecules involved in autophagy and apoptosis. The results showed that hypoxic stress induced the upregulation of autophagy of SCs. The down-regulation of HO1 using siRNA increases autophagy and decreases apoptosis, while the over-expression of HO1 attenuates autophagy and increases apoptosis. Furthermore, HO1 regulates autophagy and apoptosis via the PI3K/AKT/mTOR signaling pathway. These results will be helpful for further understanding the regulatory mechanisms of HO1 in yak cryptorchidism.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China.
| | - Jinghong Nan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Tingting Chen
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Juntao Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China; College of Life Science and Technology, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
21
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
22
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: A Systematic Review. Biomedicines 2024; 12:898. [PMID: 38672251 PMCID: PMC11048114 DOI: 10.3390/biomedicines12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hemin is clinically used in acute attacks of porphyria; however, recent evidence has also highlighted its capability to stimulate the heme oxygenase enzyme, being associated with cytoprotective, antioxidant, and anti-inflammatory effects. Indeed, current preclinical evidence emphasizes the potential anti-inflammatory role of hemin through its use in animal models of disease. Nevertheless, there is no consensus about the underlying mechanism(s) and the most optimal therapeutic regimens. Therefore, this review aims to summarize, analyze, and discuss the current preclinical evidence concerning the pharmacological effect of hemin. METHODS Following the application of the search expression and the retrieval of the articles, only nonclinical studies in vivo written in English were considered, where the potential anti-inflammatory effect of hemin was evaluated. RESULTS Forty-nine articles were included according to the eligibility criteria established. The results obtained show the preference of using 30 to 50 mg/kg of hemin, administered intraperitoneally, in both acute and chronic contexts. This drug demonstrates significant anti-inflammatory and antioxidant activities considering its capacity for reducing the expression of proinflammatory and oxidative markers. CONCLUSIONS This review highlighted the significant anti-inflammatory and antioxidant effects of hemin, providing a clearer vision for the medical community about the use of this drug in several human diseases.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Gonçalo Caldeira
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Inês Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
23
|
Mohammadi N, Guo Y, Wang K, Granato D. Macroporous resin purification of phenolics from Irish apple pomace: Chemical characterization, and cellular antioxidant and anti-inflammatory activities. Food Chem 2024; 437:137815. [PMID: 37918156 DOI: 10.1016/j.foodchem.2023.137815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Apple pomace (AP) is a highly prevalent waste product worldwide in the fruit processing sector. This study compared the chemical profile, antioxidant, and anti-inflammatory activities of crude (CE) and an extract purified using XAD-7 resin (PE). The purification process increased the total phenolic content, flavonoids, and tannins by 3.35, 40.31, and 8.87-fold, respectively. The main phenolic compounds identified in PE were phlorizin (20.54 mg/g), chlorogenic acid (10.01 mg/g), and hyperoside (2.77 mg/g). No difference was found between CE and PE in protecting human plasma against oxidation. In human erythrocytes, both CE and PE decreased the reactive oxygen species (ROS) generation and decreased lipoperoxidation. However, PE had stronger anti-inflammatory effects than CE by promoting HO-1 gene expression, suppressing NO production, and inhibiting IL-1β, IL-6, and IL-10 mRNA expression in lipopolysaccharide-challenged RAW.264.7 macrophages. Therefore, purifying apple pomace crude extract is a promising approach to boosting valuable antioxidants and anti-inflammatory phenolics.
Collapse
Affiliation(s)
- Nima Mohammadi
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Yuyang Guo
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland; Bernal Institute. University of Limerick, V94 T9PX Limerick, Ireland.
| |
Collapse
|
24
|
Yeudall S, Upchurch CM, Leitinger N. The clinical relevance of heme detoxification by the macrophage heme oxygenase system. Front Immunol 2024; 15:1379967. [PMID: 38585264 PMCID: PMC10995405 DOI: 10.3389/fimmu.2024.1379967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.
Collapse
Affiliation(s)
- Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Clint M. Upchurch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
25
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
26
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
27
|
Lu YY, Tsai HP, Tsai TH, Miao HC, Zhang ZH, Wu CH. RTA-408 Regulates p-NF-κB/TSLP/STAT5 Signaling to Ameliorate Nociceptive Hypersensitivity in Chronic Constriction Injury Rats. Mol Neurobiol 2024; 61:1714-1725. [PMID: 37773082 DOI: 10.1007/s12035-023-03660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Collapse
Affiliation(s)
- Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Post-Baccalaureate Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Chien Miao
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Hao Zhang
- Department of Neurosurgery, Xinle City Hospital, Xinle, Hebei, 050700, People's Republic of China
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Wang H, Cui T, Chen Y, Chen M, Zhang S, Leng X, Wang D. Serum heme oxygenase-1 level predicts clinical outcome after acute ischemic stroke. CNS Neurosci Ther 2024; 30:e14701. [PMID: 38544366 PMCID: PMC10973699 DOI: 10.1111/cns.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 05/14/2024] Open
Abstract
AIMS The relationship between heme oxygenase-1 (HO-1) and human ischemic stroke outcome remains unclear, which was investigated in this study. METHODS Acute ischemic stroke patients admitted within 24 h were enrolled. Serum HO-1 levels at baseline were measured via ELISA. Poor 3-month functional outcome was defined as modified Rankin Scale (mRS) score 3-6. Multivariable-adjusted binary logistic regression and restricted cubic spline models were employed to examine association between serum HO-1 and functional outcome. HO-1's additive prognostic utility was assessed by net reclassification index (NRI) and integrated discrimination improvement (IDI). RESULTS Of 194 eligible patients, 79 (40.7%) developed poor functional outcomes at 3-month follow-up. The highest quartile of serum HO-1 was independently associated with a lower risk of poor functional outcome (adjusted OR 0.13, 95% CI 0.04-0.45; p = 0.001) compared with the lowest HO-1 category. The relationship between higher HO-1 levels and reduced risk of poor functional outcome was linear and dose responsive (p = 0.002 for linearity). Incorporating HO-1 into the analysis with conventional factors significantly improved reclassification for poor functional outcomes (NRI = 41.2%, p = 0.004; IDI = 5.0%, p = 0.004). CONCLUSIONS Elevated serum HO-1 levels at baseline were independently associated with improved 3-month functional outcomes post-ischemic stroke. Serum HO-1 measurement may enhance outcome prediction beyond conventional clinical factors.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Ting Cui
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Yaqi Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Mingxi Chen
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Shihong Zhang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| | - Xinyi Leng
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
| | - Deren Wang
- Department of Neurology, West China HospitalSichuan UniversityChengduChina
- Center of Cerebrovascular Diseases, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
29
|
Phan UTT, Nguyen HD, Nguyen TKO, Tran TH, Le TH, Tran TTP. Anti-inflammatory effect of Piper longum L. fruit methanolic extract on lipopolysaccharide-treated RAW 264.7 murine macrophages. Heliyon 2024; 10:e26174. [PMID: 38404825 PMCID: PMC10884859 DOI: 10.1016/j.heliyon.2024.e26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Context The Piper species was studied several potential properties such as anti-tumor, anti-inflammatory and antioxidant activity. However, the specific anti-inflammatory activity of the extract from the fruits of P. longum L. has not been investigated. Objectives Our study want to examine the anti-inflammatory effects of P. longum L. fruit methanolic extracts (PLE) on lipopolysachharide (LPS)-stimulated RAW 264.7 murine macrophages to understand the mechanism of this effect. Method This study examined the chemical profiling of PLE by LC-HRMS analysis and measured the presence of nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in the supernatant using the Griess reagent assay and enzyme-linked immunosorbent assay (ELISA), respectively. The mRNA expression of IL-6, TNF-α, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, the protein expression of COX-2, iNOS and the phosphorylation of MAPK family, c-Jun N-terminal kinase (JNK), p38 in protein level were observed by western blotting. Result PLE have detected 66 compounds which belong to different classes such as alkaloids, flavonoids, terpenoids, phenolics, lactones, and organic acids inhibited nitric oxide products with the IC50 = 28.5 ± 0.91 μg/mL. Moreover, PLE at 10-100 μg/mL up-regulate HO-1 protein expression from 3 to 10 folds at 3 h. It also downregulated the mRNA and protein expression of iNOS, COX-2, decreased IL-6 and TNF-α secretion by modulating the mitogen-activated protein kinase (MAPK) signaling pathway, specifically by decreasing the phosphorylation of p38 and JNK. Conclusion These results shown chemical profiling of PLE and demonstrated that PLE exhibits anti-inflammatory effects by regulating the MAPK family and could be a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Uyen Thi Tu Phan
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Hai Dang Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Kieu Oanh Nguyen
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Viet Nam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academic Science and Technology (VAST), 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Viet Nam
| |
Collapse
|
30
|
Dayarathne LA, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Kim CH, Kim KW, Lee DS, Je JY. Brown Algae Dictyopteris divaricata Attenuates Adipogenesis by Modulating Adipocyte Differentiation and Promoting Lipolysis through Heme Oxygenase-1 Activation in 3T3-L1 Cells. Mar Drugs 2024; 22:91. [PMID: 38393062 PMCID: PMC10890497 DOI: 10.3390/md22020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The present study aims to explore the probable anti-adipogenesis effect of Dictyopteris divaricata (D. divaricata) in 3T3-L1 preadipocytes by regulating heme oxygenase-1 (HO-1). The extract of D. divaricata retarded lipid accretion and decreased triglyceride (TG) content in 3T3-L1 adipocytes but increased free glycerol levels. Treatment with the extract inhibited lipogenesis by inhibiting protein expressions of fatty acid synthase (FAS) and lipoprotein lipase (LPL), whereas lipolysis increased by activating phosphorylation of hormone-sensitive lipase (p-HSL) and AMP-activated protein kinase (p-AMPK). The extract inhibited adipocyte differentiation of 3T3-L1 preadipocytes through down-regulating adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1). This is attributed to the triggering of Wnt/β-catenin signaling. In addition, this study found that treatment with the extract activated HO-1 expression. Pharmacological approaches revealed that treatment with Zinc Protoporphyrin (ZnPP), an HO-1 inhibitor, resulted in an increase in lipid accumulation and a decrease in free glycerol levels. Finally, three adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP1, restored their expression in the presence of ZnPP. Analysis of chemical constituents revealed that the extract of D. divaricata is rich in 1,4-benzenediol, 7-tetradecenal, fucosterol, and n-hexadecanoic acid, which are known to have multiple pharmacological properties.
Collapse
Affiliation(s)
- Lakshi A. Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Chul Hwan Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (S.-C.K.); (M.-J.Y.); (J.M.L.); (J.-Y.K.); (G.-W.O.); (C.H.K.); (K.W.K.); (D.-S.L.)
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
31
|
Lv J, Zhou Y, Wang J, Wu Y, Yu Q, Zhang M, Su W, Tang Z, Wu Q, Wu M, Xia Z. Heme oxygenase-1 alleviates allergic airway inflammation by suppressing NF-κB-mediated pyroptosis of bronchial epithelial cells. FASEB J 2024; 38:e23472. [PMID: 38329323 DOI: 10.1096/fj.202300883rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/26/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Allergic asthma development and pathogenesis are influenced by airway epithelial cells in response to allergens. Heme oxygenase-1 (HO-1), an inducible enzyme responsible for the breakdown of heme, has been considered an appealing target for the treatment of chronic inflammatory diseases. Herein, we report that alleviation of allergic airway inflammation by HO-1-mediated suppression of pyroptosis in airway epithelial cells (AECs). Using house dust mite (HDM)-induced asthma models of mice, we found increased gasdermin D (GSDMD) in the airway epithelium. In vivo administration of disulfiram, a specific inhibitor of pore formation by GSDMD, decreased thymic stromal lymphopoietin (TSLP) release, T helper type 2 immune response, alleviated airway inflammation, and reduced airway hyperresponsiveness (AHR). HO-1 induction by hemin administration reversed these phenotypes. In vitro studies revealed that HO-1 restrained GSDMD-mediated pyroptosis and cytokine TSLP release in AECs by binding Nuclear Factor-Kappa B (NF-κB) p65 RHD domain and thus controlling NF-κB-dependent pyroptosis. These data provide new therapeutic indications for purposing HO-1 to counteract inflammation, which contributes to allergic inflammation control.
Collapse
Affiliation(s)
- Jiajia Lv
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhou
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianying Yu
- Department of Pulmonary, Children's Hospital of Soochow University, Suzhou, China
| | - Meng Zhang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Su
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Tang
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Lenski M, Zarcone G, Maallem S, Garçon G, Lo-Guidice JM, Allorge D, Anthérieu S. Metabolomics Provides Novel Insights into the Potential Toxicity Associated with Heated Tobacco Products, Electronic Cigarettes, and Tobacco Cigarettes on Human Bronchial Epithelial BEAS-2B Cells. TOXICS 2024; 12:128. [PMID: 38393223 PMCID: PMC10893046 DOI: 10.3390/toxics12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Smoking is an established risk factor for various pathologies including lung cancer. Electronic cigarettes (e-cigs) and heated tobacco products (HTPs) have appeared on the market in recent years, but their safety or, conversely, their toxicity has not yet been demonstrated. This study aimed to compare the metabolome of human lung epithelial cells exposed to emissions of e-cigs, HTPs, or 3R4F cigarettes in order to highlight potential early markers of toxicity. BEAS-2B cells were cultured at the air-liquid interface and exposed to short-term emissions from e-cigs set up at low or medium power, HTPs, or 3R4F cigarettes. Untargeted metabolomic analyses were performed using liquid chromatography coupled with mass spectrometry. Compared to unexposed cells, both 3R4F cigarette and HTP emissions affected the profiles of exogenous compounds, one of which is carcinogenic, as well as those of endogenous metabolites from various pathways including oxidative stress, energy metabolism, and lipid metabolism. However, these effects were observed at lower doses for cigarettes (2 and 4 puffs) than for HTPs (60 and 120 puffs). No difference was observed after e-cig exposure, regardless of the power conditions. These results suggest a lower acute toxicity of e-cig emissions compared to cigarettes and HTPs in BEAS-2B cells. The pathways deregulated by HTP emissions are also described to be altered in respiratory diseases, emphasizing that the toxicity of HTPs should not be underestimated.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Saïd Maallem
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Jean-Marc Lo-Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| | - Delphine Allorge
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
- CHU Lille, Unité Fonctionnelle de Toxicologie, F-59037 Lille, France
| | - Sébastien Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, F-59000 Lille, France; (M.L.); (G.Z.); (S.M.); (G.G.); (J.-M.L.-G.); (D.A.)
| |
Collapse
|
33
|
Takeda T, Azumi J, Masaki M, Nagasawa T, Shimada Y, Aso H, Nakamura T. Organogermanium, Ge-132, promotes the clearance of senescent red blood cells via macrophage-mediated phagocyte activation. Heliyon 2024; 10:e23296. [PMID: 38163191 PMCID: PMC10754881 DOI: 10.1016/j.heliyon.2023.e23296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Red blood cells (RBCs) are renewed in a cyclic manner. Aging RBCs are captured and degraded by phagocytic cells, and heme metabolic pigments are subsequently excreted in feces. We evaluated the effect of an organogermanium compound on RBC metabolism and found that the phagocytosis of RAW264.7 macrophage-like cells was increased by treatment with 3-(trihydroxygermyl)propanoic acid (THGP). Additionally, consumption of Ge-132 (a dehydrate polymer of THGP) changed the fecal color to bright yellow and increased the erythrocyte metabolic pigment levels and antioxidant activity in feces. These data suggest that Ge-132 may activate macrophages in the body and promote the degradation of aged RBCs. Furthermore, Ge-132 intake promoted not only increases in RBC degradation but also the induction of erythroblast differentiation in bone marrow cells. The normal hematocrit levels were maintained due to the maintenance of homeostasis, even though Ge-132 ingestion increased erythrocyte degradation. Therefore, Ge-132 enhances the degradation of senescent RBCs by macrophages. In turn, RBC production is increased to compensate for the amount of degradation, and RBC metabolism is increased.
Collapse
Affiliation(s)
- Tomoya Takeda
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Junya Azumi
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Mika Masaki
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Takae Nagasawa
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Yasuhiro Shimada
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| | - Hisashi Aso
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki aza, Aoba, Sendai, Miyagi, 980-8578, Japan
| | - Takashi Nakamura
- Asai Germanium Research Institute Co., Ltd., 3-131, Suzuranoka, Hakodate, Hokkaido, 042-0958, Japan
| |
Collapse
|
34
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
35
|
Shahlaee A, Yang D, Chen J, Lamy R, Stewart JM. Vitreous Biomarkers for Proliferative Vitreoretinopathy Prognostication in Patients Undergoing Primary Retinal Detachment Repair. Transl Vis Sci Technol 2024; 13:3. [PMID: 38180775 PMCID: PMC10774689 DOI: 10.1167/tvst.13.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Purpose To compare baseline levels of exploratory biomarkers in the vitreous fluid of patients with primary retinal detachment who subsequently develop proliferative vitreoretinopathy (PVR) versus those who do not. Methods In this exploratory case-control study, we evaluated the baseline protein biomarker levels from a biobank containing the vitreous fluid of patients who had undergone primary pars plana vitrectomy (PPV) for rhegmatogenous retinal detachment. Undiluted samples were collected at the time of PPV and stored at -80°C. Samples from 13 patients who developed PVR within 6 months (PVR group) and 13 age- and gender-matched controls who did not develop PVR (control group) were included. Protein abundance levels were evaluated using a proximity extension assay, and a confirmatory enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration of vimentin. Results Baseline vimentin (Normalized Protein eXpression [NPX], 8.6 vs. 6.4, P < 0.0001) and heme oxygenase 1 (NPX 8.9 vs. 7.0, P < 0.001) levels were found to be elevated in vitreous fluid of patients who subsequently developed PVR compared to those who did not. Confirmatory analysis using ELISA demonstrated mean vimentin concentrations of 7254 vs. 2727 ng/mL in the PVR versus control groups (P = 0.0152). The odds ratio for developing PVR was 14 (confidence interval, 1.4-168; P = 0.03), assuming a baseline vimentin threshold of 7500 ng/mL. Conclusions Vimentin is an intermediate filament protein expressed by retinal glial cells, and our data combined with prior evidence suggest that it may serve as an early vitreous biomarker for subsequent PVR formation and reactive gliosis. Furthermore, we found, for the first time, elevated baseline levels of heme oxygenase 1, a measurable indicator of oxidative stress. Translational Relevance Our positive findings could impact clinical care for retinal detachment patients by facilitating risk stratification for targeted interventions or closer monitoring in those at the highest risk of developing PVR.
Collapse
Affiliation(s)
- Abtin Shahlaee
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Daphne Yang
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Jamie Chen
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Ricardo Lamy
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| | - Jay M. Stewart
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Ophthalmology, San Francisco, CA, USA
| |
Collapse
|
36
|
Levine AJ, Thadani C, Soontornniyomkij V, Lopez-Aranda MF, Mesa YG, Kitchen S, Rezek V, Silva A, Kolson DL. Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice. RESEARCH SQUARE 2023:rs.3.rs-3678629. [PMID: 38168407 PMCID: PMC10760308 DOI: 10.21203/rs.3.rs-3678629/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Kitchen
- UCLA Humanized Mouse Core Laboratory, University of California
| | - Valerie Rezek
- UCLA Humanized Mouse Core Laboratory, University of California
| | | | | |
Collapse
|
37
|
Bekyarova GY, Vankova DG, Madjova VH, Bekyarov NA, Salim AS, Ivanova DG, Stoeva SM, Gerova DI, Kiselova-Kaneva YD. Association between Nfr2, HO-1, NF-kB Expression, Plasma ADMA, and Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:17067. [PMID: 38069389 PMCID: PMC10707226 DOI: 10.3390/ijms242317067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Endothelial dysfunction is one of the major factors in the pathogenesis of metabolic syndrome (MetS), and its molecular mechanisms are not completely understood. The present study aimed to examine the connection between nuclear factor2-related factor2 (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), heme oxygenase 1 (HO-1), and plasma asymmetric dimethylarginine (ADMA) and malondialdehyde (MDA) in people with MetS. Participants in the study were as follows: with MetS (n = 30) and without MetS (Control) (n = 14). Expression of Nrf2, NF-kB, and HO-1 was measured in peripheral blood mononuclear cells (PBMCs). Plasma ADMA was determined using the ELISA technique and MDA via the thiobarbituric acid method. Our study showed that mRNA of NF-kB, Nrf2, and HO-1 levels in PBMCs in the MetS group were significantly higher than in the controls by 53%, 130%, and 185% (p < 0.05), respectively. Similarly, elevated levels of MDA (by 78%, p < 0.001) and ADMA (by 18.7%, p < 0.001) were established in the MetS group. Our findings show the importance of transcription factor Nrf2, playing an integral role in the protection of the endothelium, and of NF-κB, a transcription factor mediating the inflammatory response in MetS. Knowledge of complex cellular-molecular mechanisms would allow the use of biomarkers such as Nrf2, NF-kB, HO-1, and ADMA for the assessment of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Ganka Y. Bekyarova
- Department of Physiology and Pathophysiology, Medical University of Varna, 9002 Varna, Bulgaria
| | - Deyana G. Vankova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Valentina H. Madjova
- Department of General Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (V.H.M.)
| | - Nicolai A. Bekyarov
- Department of General Medicine, Medical University of Varna, 9002 Varna, Bulgaria; (V.H.M.)
| | - Ayshe S. Salim
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Diana G. Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Stefka M. Stoeva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| | - Daniela I. Gerova
- Department of Clinical Laboratory, Medical University Varna, 9002 Varna, Bulgaria
| | - Yoana D. Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9002 Varna, Bulgaria (A.S.S.); (D.G.I.); (S.M.S.)
| |
Collapse
|
38
|
Wang L, Lou W, Zhang Y, Chen Z, Huang Y, Jin H. HO-1-Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 38051262 DOI: 10.1167/iovs.64.15.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated β-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
39
|
Shalaby ES, Aboutaleb S, Ismail SA, Yassen NN, Sedik AA. Chitosan tamarind-based nanoparticles as a promising approach for topical application of curcumin intended for burn healing: in vitro and in vivo study. J Drug Target 2023; 31:1081-1097. [PMID: 37886815 DOI: 10.1080/1061186x.2023.2276662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
One of the most prevalent worldwide problems that affect all ages and genders is skin burn. The goal of our study was to assess the ability of curcumin nanoparticles to cure a rat burn model. Three formulations were selected after several tests were performed including investigation of encapsulation efficiency, particle size and zeta potential measurements. In vitro release was achieved on the three selected formulations. The effectiveness of the chosen formulation for healing was evaluated. The induced burn wound was smeared, starting just after excision, once daily with curcumin nanoparticles for 18 days. Our findings revealed that curcumin nanoparticles improved the burn healing potential by augmenting the skin regeneration indices as evidenced by enhancing the new production of hyaluronic acid and collagen type I. Additionally, curcumin nanoparticles could increase levels of vascular endothelial growth factor and alpha smooth muscle activity while drastically reducing the skin's tumour necrosis factor content, revealing a significant potential for burn healing process that is also reflected in the histopathological and immunohistochemical studies. Finally, our results demonstrated that curcumin nanoparticles revealed a significant potential for burn healing than curcumin alone due to its potent antimicrobial, antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Eman S Shalaby
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Sally Aboutaleb
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
40
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: Protocol for a Systematic Review. JMIR Res Protoc 2023; 12:e48368. [PMID: 37971806 PMCID: PMC10690530 DOI: 10.2196/48368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Hemin is a commonly used drug in the treatment of acute attacks of porphyria, due to its capability of restoring normal levels of hemoproteins and respiratory pigments. In addition, this drug has demonstrated the capacity to induce the heme oxygenase (HO) enzyme. At the moment, there are 3 known HO isoenzymes in mammals: HO-1, HO-2, and HO-3. The first of these shows cytoprotective, antioxidant, and anti-inflammatory effects. Currently, medicines used in inflammatory disorders have increased toxicity, especially over longer time frames, which highlights the need to investigate new, safer options. Indeed, the current nonclinical evidence demonstrates the potential that hemin has a significant anti-inflammatory effect in several animal models of inflammation-related diseases, such as experimental colitis, without significant side effects. However, the underlying mechanism(s) are still not fully understood. In addition, past nonclinical studies have applied different therapeutic regimens, making it relatively difficult to understand which is optimal. According to the literature, there is a lack of review articles discussing this topic, highlighting the need for a summary and analysis of the available preclinical evidence to elucidate the abovementioned issues. Therefore, a qualitative synthesis of the current evidence is essential for the research and medical communities. OBJECTIVE This systematic review aims to summarize and analyze currently available nonclinical data to ascertain the potential anti-inflammatory effect of hemin in animal models. METHODS Throughout the development of this protocol, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. The comprehensive search strategy will be carried out in MEDLINE (PubMed), Web of Science, and Scopus without any filters associated with publication date. Only in vivo, nonclinical studies that evaluated the potential anti-inflammatory effect of hemin will be included. The evaluated outcomes will be the observed clinical signs, inflammatory and other biochemical markers, and macroscopic and microscopic evaluations. To analyze the potential risk of bias, we will use the risk of bias tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). RESULTS Currently, it is not possible to disclose any results since the project is still in initial steps. More specifically, we are currently engaged in the identification of eligible articles through the application of the inclusion and exclusion criteria. The work was initiated in April 2023, and it is expected to be finished at the end of 2023. CONCLUSIONS Concerning the major gap in the literature regarding the underlying mechanism(s) and treatment-related properties, this systematic review will be essential to clearly summarize and critically analyze the nonclinical data available, promoting a clearer vision of the potential anti-inflammatory effect of hemin. TRIAL REGISTRATION PROSPERO CRD42023406160; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=406160. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/48368.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC-Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Gonçalo Caldeira
- H&TRC-Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Inês Silva
- H&TRC-Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Priscila Mendes
- H&TRC-Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Vanessa Mateus
- H&TRC-Health and Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Gao Q, Gao Z, Su M, Huang Y, Zhang C, Li C, Zhan H, Liu B, Zhou X. Umbilical Cord Mesenchymal Stem Cells Overexpressing Heme Oxygenase-1 Promotes Symptoms Recovery in Cystitis Rats by Alleviating Neuroinflammation. Stem Cells Int 2023; 2023:8887091. [PMID: 38020203 PMCID: PMC10663085 DOI: 10.1155/2023/8887091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) seriously reduces the patient's quality of life, yet current therapies only provide partial relief. In the spinal dorsal horn (SDH), neuroinflammation plays a pivotal role in the development of IC. Injection of human umbilical cord mesenchymal stem cells (hUMSCs) to reduce inflammation is an effective strategy, and heme oxygenase-1 (HO-1) exhibits anti-nociceptive effect in neuroinflammatory pain. This study aimed to test the therapeutic effects of hUMSCs overexpressing HO-1 on cyclophosphamide-induced cystitis rat model. Cystitis rats were transplanted with altered cells and then assessed for 3 weeks. A series of behavioral measurements would be trial including suprapubic mechanical allodynia, depressive-like behaviors, micturition frequency, and short-term memory function. Additionally, western blot, immunofluorescence staining, and ELISA kit test for anti-inflammation effect. HUMSCs were capable of being transduced to overexpress HO-1. Injection of hUMSCs overexpressing HO-1 was more effective than hUMSCs alone in alleviating behavioral symptoms in rats. Furthermore, hUMSCs overexpressing HO-1 inhibited the activation of glial and TLR4/p65/NLRP3 pathway, decreased the levels of pro-inflammatory cytokines in the SDH region. Surprisingly, it markedly increased anti-inflammatory cytokine IL-10, reduced MDA content, and protected GSH concentrations in local environment. Our results suggest that injecting hUMSCs overexpressing HO-1 intrathecally can significantly promote functional outcomes in cystitis rats by reducing neuroinflammation, at least, partly through downregulating TLR4/p65/NLRP3 signaling pathway in the SDH region. This cell therapy affords a new strategy for IC/BPS treatment.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Zhentao Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Yong Huang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Cuiping Li
- Department of Biotherapy Center, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| |
Collapse
|
42
|
Li S, He Y, Zhong S, Li Y, Di Y, Wang Q, Ren D, Liu S, Li D, Cao F. Antioxidant and Anti-Aging Properties of Polyphenol-Polysaccharide Complex Extract from Hizikia fusiforme. Foods 2023; 12:3725. [PMID: 37893618 PMCID: PMC10606324 DOI: 10.3390/foods12203725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol-polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol-polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs' anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the Bacteroidota-Firmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol-polysaccharide complex has potential in the development of natural anti-aging drugs.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Di
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Fangjie Cao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
43
|
Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, He X, Liang S, Wei Y, Zhang C, Wang H, Xu D, Zhang S, Fang J. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α. Acta Biomater 2023; 169:500-516. [PMID: 37574157 DOI: 10.1016/j.actbio.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-β fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Peking University First Hispital Ningxia Women and Children's Hosptical (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan 750000, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shimin Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
44
|
Marasinghe CK, Jung WK, Je JY. Phloroglucinol possesses anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 signaling pathway in LPS-stimulated RAW264.7 murine macrophages. Immunopharmacol Immunotoxicol 2023; 45:571-580. [PMID: 36988555 DOI: 10.1080/08923973.2023.2196602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND Inflammation is closely related to the pathogenesis of chronic illnesses. Secondary metabolites of marine seaweeds are recognized as reliable sources of bioactive compounds due to their health benefits besides their nutritional value. The objective of this study was to determine the potential anti-inflammatory effect of phloroglucinol (Phl) in RAW264.7 murine macrophages after lipopolysaccharides (LPS) stimulation. METHODS MTT, nitric oxide (NO), and DCFH-DA assays were conducted to determine cell viability, NO production, and reactive oxygen species (ROS) generation respectively. Pro-inflammatory cytokines and prostaglandin E2 (PGE2) levels were measured using ELISA assay kits. Protein expression levels were determined by western blot analysis. RESULTS Phl treatment showed a promising anti-inflammatory effect by reducing NO production, secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), PGE2 production, protein expression levels of inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and ROS generation in LPS-stimulated RAW264.7 murine macrophages. Phl treatment upregulated heme oxygenase-1 (HO-1) expression by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and activating AMPK. However, Zinc protoporphyrin (ZnPP), an inhibitor of HO-1, partially reversed these effects, including NO production, pro-inflammatory cytokine secretion, iNOS, COX-2 and HO-1 expression, and ROS generation. CONCLUSION Phl has potential anti-inflammatory activities by regulating AMPK/Nrf2/HO-1 pathway in LPS-stimulated RAW264.7 murine macrophages.
Collapse
Affiliation(s)
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
- Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
45
|
Sedik AA, Salama M, Fathy K, Salama A. Cold plasma approach fortifies the topical application of thymoquinone intended for wound healing via up-regulating the levels of TGF-ß, VEGF, and α-SMA in rats. Int Immunopharmacol 2023; 122:110634. [PMID: 37451012 DOI: 10.1016/j.intimp.2023.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wound healing is a series of coordinated events that involve tissue repair and regeneration. Cold atmospheric plasma approach sheds the light on the mechanism that initiates the inflammatory responses throughout the healing cascade. The present study was planned to assess the effect of thymoquinone treated with cold plasma (TQcp) on the rat wound model compared to thymoquinone (TQ). To assess the wound healing potential of TQcp, a full-thickness wound model was used. The induced wound was smeared, starting just after excision, twice daily with TQcp and TQ for 7 days. Our findings revealed that TQcp improved the skin healing potential by augmenting the skin regeneration indices as evidenced by enhancing the new production of hyaluronic acid and collagen type I. TQcp significantly reduced the skin content of tumor necrosis factor- α and inhibited the hypertrophic scarring by up-regulating the skin content of transforming growth factor-beta. Furthermore, TQcp enhanced the levels of interleukin-10, alpha smooth muscle actin and vascular endothelial growth factor, demonstrating a great potential for wound healing that also reflected in the histopathological and ultra-structural picture of the skin. Finally, our results demonstrated that TQcp revealed a significant potential for wound healing than TQ alone.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt.
| | - Mohamed Salama
- Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, 12622, Egypt
| | - Khaled Fathy
- Electron Microscopy Unit, Mansoura University, El Mansoura, 35516, Egypt
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
46
|
Grigorov I, Pejić S, Todorović A, Drakulić D, Veljković F, Vukajlović JM, Bobić K, Soldatović I, Đurašević S, Jasnić N, Stanković S, Glumac S, Mihailović-Vučinić V, Milenković B. Serum High-Mobility Group Box 1 and Heme Oxygenase-1 as Biomarkers in COVID-19 Patients at Hospital Admission. Int J Mol Sci 2023; 24:13164. [PMID: 37685970 PMCID: PMC10488018 DOI: 10.3390/ijms241713164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The careful monitoring of patients with mild/moderate COVID-19 is of particular importance because of the rapid progression of complications associated with COVID-19. For prognostic reasons and for the economic management of health care resources, additional biomarkers need to be identified, and their monitoring can conceivably be performed in the early stages of the disease. In this retrospective cross-sectional study, we found that serum concentrations of high-mobility group box 1 (HMGB1) and heme oxygenase-1 (HO-1), at the time of hospital admission, could be useful biomarkers for COVID-19 management. The study included 160 randomly selected recovered patients with mild to moderate COVID-19 on admission. Compared with healthy controls, serum HMGB1 and HO-1 levels increased by 487.6 pg/mL versus 43.1 pg/mL and 1497.7 pg/mL versus 756.1 pg/mL, respectively. Serum HO-1 correlated significantly with serum HMGB1, oxidative stress parameters (malondialdehyde (MDA), the phosphatidylcholine/lysophosphatidylcholine ratio (PC/LPC), the ratio of reduced and oxidative glutathione (GSH/GSSG)), and anti-inflammatory acute phase proteins (ferritin, haptoglobin). Increased heme catabolism/hemolysis were not detected. We hypothesize that the increase in HO-1 in the early phase of COVID-19 disease is likely to have a survival benefit by providing protection against oxidative stress and inflammation, whereas the level of HMGB1 increase reflects the activity of the innate immune system and represents levels within which the disease can be kept under control.
Collapse
Affiliation(s)
- Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Snežana Pejić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Ana Todorović
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Dunja Drakulić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Filip Veljković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Jadranka Miletić Vukajlović
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Katarina Bobić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (A.T.); (D.D.); (F.V.); (J.M.V.); (K.B.)
| | - Ivan Soldatović
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.)
| | - Sanja Stanković
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Sofija Glumac
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
| | - Violeta Mihailović-Vučinić
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Branislava Milenković
- Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.G.); (V.M.-V.); (B.M.)
- Clinic for Pulmonary Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
47
|
Li B, Lv X, Xu Z, He J, Liu S, Zhang X, Tong X, Li J, Zhang Y. Helicobacter pylori infection induces autophagy via ILK regulation of NOXs-ROS-Nrf2/HO-1-ROS loop. World J Microbiol Biotechnol 2023; 39:284. [PMID: 37599292 DOI: 10.1007/s11274-023-03710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Reactive oxygen species (ROS) can regulate the occurrence of autophagy, and effective control of the balance between ROS and autophagy may be an important strategy for Helicobacter pylori induced gastric-related diseases. In this study, infection with H. pylori led to a lower level of ILK phosphorylation and increased ROS generation. Knockdown of ILK enhanced total ROS generation, and upregulated NADPH oxidase (NOX) subunit p22-phox levels. Inhibition of NOXs affected total ROS generation. The inhibition of NOX and ROS generation reduced Nrf2 and HO-1 levels, and knockdown of ILK significantly enhanced Nrf2 levels in H. pylori-infected GES-1 cells. Activation of Nrf2 by DMF decreased ROS levels. Therefore, NOX-dependent ROS production regulated by ILK was essential for activation of Nrf2/HO-1 signaling pathways in H. pylori-infected GES-1 cells. Beclin1, ATG5 and LC3B-II levels were higher both in H. pylori-infected and ILK-knockdown GES-1 cells. In NAC-pretreated GES-1 cells infected with H. pylori, the LC3B-II level was decreased compared to that in cells after H. pylori infection alone. Stable low expression of ILK with further knockdown of Beclin1 or ATG5 significantly reduced LC3B-II levels in GES-1 cells, while with the addition of the autophagy inhibitor chloroquine (CQ), LC3B-II and p62 protein levels were both remarkably upregulated. H. pylori accelerated the accumulation of ROS and further led to the induction of ROS-mediated autophagy by inhibiting ILK levels. Together, these results indicate that H. pylori infection manipulates the NOX-ROS-Nrf2/HO-1-ROS loop to control intracellular oxygen stress and further induced ROS-mediated autophagy by inhibiting ILK levels.
Collapse
Affiliation(s)
- Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xin Lv
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Zheng Xu
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing He
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - SiSi Liu
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaolin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China.
| |
Collapse
|
48
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit "Rita Moretti", Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy
| |
Collapse
|
49
|
Bahou WF, Marchenko N, Nesbitt NM. Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate. Antioxidants (Basel) 2023; 12:antiox12051058. [PMID: 37237924 DOI: 10.3390/antiox12051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natasha M Nesbitt
- Blood Cell Technologies, 25 Health Sciences Drive, Stony Brook, NY 11790, USA
| |
Collapse
|
50
|
Llauger M, Arnau J, Albano-Gaglio M, Bover-Cid S, Martín B, Bou R. Utilization of Porcine Livers through the Formation of Zn-Protoporphyrin Pigment Optimized by a Response Surface Methodology. Foods 2023; 12:foods12091903. [PMID: 37174439 PMCID: PMC10178239 DOI: 10.3390/foods12091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
There is a growing demand for clean-label products. This study aimed to obtain a food-grade coloring ingredient for meat products based on the formation of Zn-protoporphyrin from porcine livers, thus contributing to the development of nitrite-free products. First, the effects of sodium disulfite and acetic, ascorbic, and lactic acids on the formation of Zn-protoporphyrin and the total microbial count were studied. The combination of ascorbic and acetic acids resulted in a higher Zn-protoporphyrin content than acetic acid alone, and microbial levels were maintained (ca. 3 log CFU/mL). Second, a response surface methodology was used to maximize Zn-protoporphyrin while maintaining microbiological food standards. To that end, the effects of pH (4.2-5.4), incubation time (3-30 h), and temperature (25-50 °C) were studied. The selected conditions for Zn-protoporphyrin formation involved anaerobic incubation at pH 4.8 and 45 °C for 24 h. The safety was validated through challenge testing for relevant pathogens (Listeria monocytogenes, Salmonella spp., and Clostridium perfringens). A significant reduction (>6 log units) was observed in the selected conditions for L. monocytogenes and Salmonella, whereas C. perfringens spores remained at the inoculated levels. The optimized procedure is proven to be microbiologically safe, and may improve the color of nitrite-free meat products.
Collapse
Affiliation(s)
- Mar Llauger
- Food Safety and Functionality Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Jacint Arnau
- Food Quality and Technology Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Michela Albano-Gaglio
- Food Quality and Technology Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Sara Bover-Cid
- Food Safety and Functionality Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Belén Martín
- Food Safety and Functionality Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Ricard Bou
- Food Quality and Technology Program, Institute of Agrifood Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| |
Collapse
|