1
|
Karaoglan M, Grace AA. A potential candidate for prevention of PTSD: Prazosin prevents learned helplessness behavior in adult male rats. Psychiatry Res 2025; 343:116283. [PMID: 39602854 DOI: 10.1016/j.psychres.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Post-Traumatic Stress Disorder (PTSD) is a debilitating psychiatric disorder that arises following exposure to an extreme stress. PTSD is characterized by five primary trauma-related symptom clusters, including symptoms of negative mood and hyperresponsivity to the traumatic event. Regrettably, the current therapy options are not highly effective. Therefore, prevention of PTSD is crucial and potentially applicable. Prazosin is an anti-adrenergic medication that is used to reduce nightmares in patient with PTSD, and can also mitigate the noradrenergic dysfunction caused by trauma. Here we show that administration of prazosin prior to the trauma prevented learned helplessness behavior in adult male rats. We show that the animals that were exposed to three days of inescapable foot shocks preceded by prazosin injections have fewer prazosin-treated animals showing learned helplessness compared to saline-treated animals. Nevertheless, there was no significant difference in anxiety-related behavior as measured in the elevated plus maze. Furthermore, the results of in vivo electrophysiological recordings of the ventral tegmental area shows that the prazosin group has a trend of increased number of active dopaminergic cells per track; this is significant when limited to central region of the ventral tegmental area. Our results demonstrate that prazosin has a potential for prevention of PTSD.
Collapse
Affiliation(s)
- Mehmet Karaoglan
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Osorio-Forero A, Foustoukos G, Cardis R, Cherrad N, Devenoges C, Fernandez LMJ, Lüthi A. Infraslow noradrenergic locus coeruleus activity fluctuations are gatekeepers of the NREM-REM sleep cycle. Nat Neurosci 2024:10.1038/s41593-024-01822-0. [PMID: 39587312 DOI: 10.1038/s41593-024-01822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal levels during wakefulness, but its role in sleep remains unclear. Here, we show in mice that fluctuating LC neuronal activity partitions non-rapid-eye-movement sleep (NREMS) into two brain-autonomic states that govern the NREMS-REMS cycle over ~50-s periods; high LC activity induces a subcortical-autonomic arousal state that facilitates cortical microarousals, whereas low LC activity is required for NREMS-to-REMS transitions. This functional alternation regulates the duration of the NREMS-REMS cycle by setting permissive windows for REMS entries during undisturbed sleep while limiting these entries to maximally one per ~50-s period during REMS restriction. A stimulus-enriched, stress-promoting wakefulness was associated with longer and shorter levels of high and low LC activity, respectively, during subsequent NREMS, resulting in more microarousal-induced NREMS fragmentation and delayed REMS onset. We conclude that LC activity fluctuations are gatekeepers of the NREMS-REMS cycle and that this role is influenced by adverse wake experiences.
Collapse
Affiliation(s)
- Alejandro Osorio-Forero
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romain Cardis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Najma Cherrad
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Christiane Devenoges
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Gu L, Shao W, Liu L, Xu Q, Wang Y, Gu J, Yang Y, Zhang Z, Wu Y, Shen Y, Yu Q, Lian X, Ma H, Zhang Y, Zhang H. NE contribution to rebooting unconsciousness caused by midazolam. eLife 2024; 13:RP97954. [PMID: 39565190 DOI: 10.7554/elife.97954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.
Collapse
Affiliation(s)
- LeYuan Gu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Qian Yu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - XiTing Lian
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - HaiXiang Ma
- Medical College of Jining Medical University, Shandong, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - HongHai Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
4
|
Kabanova A, Yang M, Logothetis NK, Eschenko O. Partial chemogenetic inhibition of the locus coeruleus due to heterogeneous transduction of noradrenergic neurons preserved auditory salience processing in wild-type rats. Eur J Neurosci 2024; 60:6237-6253. [PMID: 39349382 DOI: 10.1111/ejn.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 μm) to the LC core resulted in partial LC transduction, while proximal (< 50 μm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mingyu Yang
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
- Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
5
|
Crawford JL, Berry AS. Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems. Trends Neurosci 2024; 47:892-903. [PMID: 39368845 PMCID: PMC11563896 DOI: 10.1016/j.tins.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.
Collapse
Affiliation(s)
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
6
|
Brannan S, Garbe L, Richardson BD. Early life stress induced sex-specific changes in behavior is paralleled by altered locus coeruleus physiology in BALB/cJ mice. Neurobiol Stress 2024; 33:100674. [PMID: 39385751 PMCID: PMC11462065 DOI: 10.1016/j.ynstr.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Adverse childhood experiences have been associated with many neurodevelopmental and affective disorders including attention deficit hyperactivity disorder and generalized anxiety disorder, with more exposures increasing negative risk. Sex and genetic background are biological variables involved in adverse psychiatric outcomes due to early life trauma. Females in general have an increased prevalence of stress-related psychopathologies beginning after adolescence, indicative of adolescence being a female-specific sensitive period. To understand the underlying neuronal mechanisms potentially responsible for this relationship between genetic background, sex, stress/trauma, and cognitive/affective behaviors, we assessed behavioral and neuronal changes in a novel animal model of early life stress exposure. Male and female BALB/cJ mice that express elevated basal anxiety-like behaviors and differences in monoamine signaling-associated genes, were exposed to an early life variable stress protocol that combined deprivation in early life with unpredictability in adolescence. Stress exposure produced hyperlocomotion and attention deficits (5-choice serial reaction time task) in male and female mice along with female-specific increased anxiety-like behavior. These behavioral changes were paralleled by reduced excitability of locus coeruleus (LC) neurons, due to resting membrane potential hyperpolarization in males and a female-specific increase in action potential delay time. These data describe a novel interaction between sex, genetic background, and early life stress that results in behavioral changes in clinically relevant domains and potential underlying mechanistic lasting changes in physiological properties of neurons in the LC.
Collapse
Affiliation(s)
- Savannah Brannan
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Lauren Garbe
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Ben D. Richardson
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
7
|
Chen X, Cramer SR, Chan DC, Han X, Zhang N. Sequential Deactivation Across the Hippocampus-Thalamus-mPFC Pathway During Loss of Consciousness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406320. [PMID: 39248326 PMCID: PMC11558098 DOI: 10.1002/advs.202406320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Indexed: 09/10/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) are conducted in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. The results reveal that upon the loss of consciousness (LOC), there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC may be triggered by sequential activities in the hippocampus, thalamus, and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness may be a consequence, rather than a cause of LOC. Taken together, the study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering insight into the systems-level neural mechanisms underpinning LOC.
Collapse
Affiliation(s)
- Xiaoai Chen
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Samuel R. Cramer
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Dennis C.Y. Chan
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xu Han
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Nanyin Zhang
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- The Neuroscience Graduate ProgramThe Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neurotechnology in Mental Health ResearchThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Center for Neural EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
8
|
Polley DB, Chambers AR. Auditory circuits: Watchmen of the sleeping brain. Curr Biol 2024; 34:R924-R926. [PMID: 39437729 DOI: 10.1016/j.cub.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A new study shows that glutamatergic neurons of the pontine central gray (PCG) play a key role in mediating rapid sound-induced awakenings from sleep by relaying short-latency auditory information to multiple arousal centers in the brain.
Collapse
Affiliation(s)
- Daniel B Polley
- Eaton-Peabody Laboratories, Mass Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA.
| | - Anna R Chambers
- Eaton-Peabody Laboratories, Mass Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
9
|
Wei J, Xiao C, Zhang GW, Shen L, Tao HW, Zhang LI. A distributed auditory network mediated by pontine central gray underlies ultra-fast awakening in response to alerting sounds. Curr Biol 2024; 34:4597-4611.e5. [PMID: 39265569 PMCID: PMC11521200 DOI: 10.1016/j.cub.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Sleeping animals can be woken up rapidly by external threat signals, which is an essential defense mechanism for survival. However, neuronal circuits underlying the fast transmission of sensory signals for this process remain unclear. Here, we report in mice that alerting sound can induce rapid awakening within hundreds of milliseconds and that glutamatergic neurons in the pontine central gray (PCG) play an important role in this process. These neurons exhibit higher sensitivity to auditory stimuli in sleep than wakefulness. Suppressing these neurons results in reduced sound-induced awakening and increased sleep in intrinsic sleep/wake cycles, whereas their activation induces ultra-fast awakening from sleep and accelerates awakening from anesthesia. Additionally, the sound-induced awakening can be attributed to the propagation of auditory signals from the PCG to multiple arousal-related regions, including the mediodorsal thalamus, lateral hypothalamus, and ventral tegmental area. Thus, the PCG serves as an essential distribution center to orchestrate a global auditory network to promote rapid awakening.
Collapse
Affiliation(s)
- Jinxing Wei
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cuiyu Xiao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Guang-Wei Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Shen
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
10
|
Kelberman MA, Rodberg E, Arabzadeh E, Bair-Marshall CJ, Berridge CW, Berrocoso E, Breton-Provencher V, Chandler DJ, Che A, Davy O, Devilbiss DM, Downs AM, Drummond G, Dvorkin R, Fazlali Z, Froemke RC, Glennon E, Gold JI, Ito H, Jiang X, Johansen JP, Kaye AP, Kim JR, Kuo CC, Liu RJ, Liu Y, Llorca-Torralba M, McCall JG, McElligott ZA, McKinney AM, Miguelez C, Min MY, Nowlan AC, Omrani M, Poe GR, Pickering AE, Ranjbar-Slamloo Y, Razquin J, Rodenkirch C, Sales AC, Satyasambit R, Shea SD, Sur M, Tkaczynski JA, Torres-Sanchez S, Uematsu A, Vazquez CR, Vreven A, Wang Q, Waterhouse BD, Yang HW, Yang JH, Zhao L, Zouridis IS, Weinshenker D, Vazey E, Totah NK. Diversity of ancestral brainstem noradrenergic neurons across species and multiple biological factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618224. [PMID: 39464004 PMCID: PMC11507722 DOI: 10.1101/2024.10.14.618224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The brainstem region, locus coeruleus (LC), has been remarkably conserved across vertebrates. Evolution has woven the LC into wide-ranging neural circuits that influence functions as broad as autonomic systems, the stress response, nociception, sleep, and high-level cognition among others. Given this conservation, there is a strong possibility that LC activity is inherently similar across species, and furthermore that age, sex, and brain state influence LC activity similarly across species. The degree to which LC activity is homogenous across these factors, however, has never been assessed due to the small sample size of individual studies. Here, we pool data from 20 laboratories (1,855 neurons) and show diversity across both intrinsic and extrinsic factors such as species, age, sex and brain state. We use a negative binomial regression model to compare activity from male monkeys, and rats and mice of both sexes that were recorded across brain states from brain slices ex vivo or under different anesthetics or during wakefulness in vivo. LC activity differed due to complex interactions of species, sex, and brain state. The LC became more active during aging, independent of sex. Finally, in contrast to the foundational principle that all species express two distinct LC firing modes ("tonic" or "phasic"), we discovered great diversity within spontaneous LC firing patterns. Different factors were associated with higher incidence of some firing modes. We conclude that the activity of the evolutionarily-ancient LC is not conserved. Inherent differences due to age and species-sex-brain state interactions have implications for understanding the role of LC in species-specific naturalistic behavior, as well as in psychiatric disorders, cardiovascular disease, immunology, and metabolic disorders.
Collapse
Affiliation(s)
- Michael A. Kelberman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Ellen Rodberg
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, AUS
| | - Chloe J. Bair-Marshall
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Oscar Davy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | | - Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roman Dvorkin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zeinab Fazlali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Robert C. Froemke
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Otolaryngology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin Glennon
- Neuroscience Institute, NYU Langone Medical Center, New York University, New York, New York, USA
- Department of Neurology, Weill Cornell Medicine, New York
| | - Joshua I. Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiroki Ito
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | | | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew M. McKinney
- Department of Neuroscience, Baylor College of Medicine Neurological Research Institute at Texas Children’s Hospital, 1250, Houston, TX, USA
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Alexandra C. Nowlan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohsen Omrani
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
| | - Gina R. Poe
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, USA
| | - Anthony Edward Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Yadollah Ranjbar-Slamloo
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anna C. Sales
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rath Satyasambit
- RIKEN Center for Brain Science, Wako-shi Saitama, Japan
- Department of Computer Science, Tokyo Institute of Technology, Midori, Yokohama, Japan
| | | | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, School of Medicine, Biomedical Research and Innovation Institute of Cádiz (INiBICA), University of Cadiz, Cadiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Akira Uematsu
- Human Informatics and Information Research Institute, National Institute of Advanced Industrial Science and Technology, Japan
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amelien Vreven
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Hsiu-Wen Yang
- Department of Biomedical Sciences, Chung-Shan Medical University, Taichung, Taiwan
| | - Jen-Hau Yang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Doctoral Program of Clinical and Experimental Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Ioannis S. Zouridis
- Graduate Training Centre of Neuroscience, International Max Planck Research School (IMPRS), University of Tübingen, Tübingen, Germany
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | | | - Elena Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nelson K. Totah
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
11
|
Petersen N, McCann KE, Stavarache MA, Kim LY, Weinshenker D, Winder DG. Adenosine 2A Receptors Link Astrocytic Alpha-1 Adrenergic Signaling to Wake-Promoting Dopamine Neurons. Biol Psychiatry 2024:S0006-3223(24)01663-9. [PMID: 39419462 DOI: 10.1016/j.biopsych.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Sleep and arousal disorders are common, but the underlying physiology of wakefulness is not fully understood. The locus coeruleus promotes arousal via alpha-1 adrenergic receptor (α1AR) driven recruitment of wake-promoting dopamine (DA) neurons in the ventral periaqueductal gray (vPAGDA neurons). α1AR expression is enriched on vPAG astrocytes, and chemogenetic activation of astrocytic Gq signaling promotes wakefulness. Astrocytes can release extracellular "gliotransmitters," such as ATP and adenosine, but the mechanism underlying how vPAG astrocytic α1ARs influence sleep/wake behavior and vPAGDA neuron physiology is unknown. METHODS In this study, we utilized genetic manipulations with ex vivo calcium imaging in vPAGDA neurons and astrocytes, patch-clamp electrophysiology, and behavioral experiments in mice to probe our hypothesis that astrocytic α1ARs mediate noradrenergic modulation of wake-promoting vPAGDA neurons via adenosine signaling. RESULTS Activation of α1ARs with phenylephrine increased calcium transients in vPAGDA neurons and vPAG astrocytes, and increased vPAGDA neuron excitability ex vivo. Chemogenetic Gq-DREADD activation of vPAG astrocytes similarly increased vPAGDA neuron calcium activity and intrinsic excitability. Conversely, shRNA knockdown of vPAG astrocytic α1ARs reduced the excitatory effect of phenylephrine on vPAGDA neurons and blunted arousal during the wake phase. Pharmacological blockade of adenosine 2A (A2A) receptors precludes the α1AR-induced increase in vPAGDA calcium activity and excitability in brain slices, as well as the wake-promoting effects of vPAG α1AR activation in vivo. CONCLUSIONS We have identified a crucial role for vPAG astrocytic α1AR receptors in sustaining arousal through heightened excitability and activity of vPAGDA neurons mediated by local A2A receptors.
Collapse
Affiliation(s)
- Nicholas Petersen
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Katharine E McCann
- Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - Lisa Y Kim
- School for Science and Math at Vanderbilt, Nashville, TN, 37232, USA
| | - David Weinshenker
- Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Danny G Winder
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
12
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
13
|
Pardo-Valencia J, Moreno-Gomez M, Mercado N, Pro B, Ammann C, Humanes-Valera D, Foffani G. Local wakefulness-like activity of layer 5 cortex under general anaesthesia. J Physiol 2024; 602:5289-5307. [PMID: 39316039 DOI: 10.1113/jp286417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Consciousness, defined as being aware of and responsive to one's surroundings, is characteristic of normal waking life and typically is lost during sleep and general anaesthesia. The traditional view of consciousness as a global brain state has evolved toward a more sophisticated interplay between global and local states, with the presence of local sleep in the awake brain and local wakefulness in the sleeping brain. However, this interplay is not clear for general anaesthesia, where loss of consciousness was recently suggested to be associated with a global state of brain-wide synchrony that selectively involves layer 5 cortical pyramidal neurons across sensory, motor and associative areas. According to this global view, local wakefulness of layer 5 cortex should be incompatible with deep anaesthesia, a hypothesis that deserves to be scrutinised with causal manipulations. Here, we show that unilateral chemogenetic activation of layer 5 pyramidal neurons in the sensorimotor cortex of isoflurane-anaesthetised mice induces a local state transition from slow-wave activity to tonic firing in the transfected hemisphere. This wakefulness-like activity dramatically disrupts layer 5 interhemispheric synchrony with mirror-image locations in the contralateral hemisphere, but does not reduce the level of unconsciousness under deep anaesthesia, nor in the transitions to/from anaesthesia. Global layer 5 synchrony may thus be a sufficient condition for anaesthesia-induced unconsciousness, but is not a necessary one, at least under isoflurane anaesthesia. Local wakefulness-like activity of layer 5 cortex can be induced and maintained under deep anaesthesia, encouraging further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness. KEY POINTS: The neural correlates of consciousness have evolved from global brain states to a nuanced interplay between global and local states, evident in terms of local sleep in awake brains and local wakefulness in sleeping brains. The concept of local wakefulness remains unclear for general anaesthesia, where the loss of consciousness has been recently suggested to involve brain-wide synchrony of layer 5 cortical neurons. We found that local wakefulness-like activity of layer 5 cortical can be chemogenetically induced in anaesthetised mice without affecting the depth of anaesthesia or the transitions to and from unconsciousness. Global layer 5 synchrony may thus be a sufficient but not necessary feature for the unconsciousness induced by general anaesthesia. Local wakefulness-like activity of layer 5 neurons is compatible with general anaesthesia, thus promoting further investigation into the local vs. global aspects of anaesthesia-induced unconsciousness.
Collapse
Affiliation(s)
- Jesús Pardo-Valencia
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Miryam Moreno-Gomez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- PhD Program in Neuroscience, Universidad Autonoma de Madrid-Cajal Institute, Madrid, Spain
| | - Noelia Mercado
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Beatriz Pro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Claudia Ammann
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Desire Humanes-Valera
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
| | - Guglielmo Foffani
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Spain
- Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Wang X, Li Z, Wang X, Chen J, Guo Z, Qiao B, Qin L. Effects of Phasic Activation of Locus Ceruleus on Cortical Neural Activity and Auditory Discrimination Behavior. J Neurosci 2024; 44:e1296232024. [PMID: 39134421 PMCID: PMC11391501 DOI: 10.1523/jneurosci.1296-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Although the locus ceruleus (LC) is recognized as a crucial modulator for attention and perception by releasing norepinephrine into various cortical regions, the impact of LC-noradrenergic (LC-NE) modulation on auditory discrimination behavior remains elusive. In this study, we firstly recorded local field potential and single-unit activity in multiple cortical regions associated with auditory-motor processing, including the auditory cortex, posterior parietal cortex, secondary motor cortex, anterior cingulate cortex, prefrontal cortex, and orbitofrontal cortex (OFC), in response to optogenetic activation (40 Hz and 0.5 s) of the LC-NE neurons in awake mice (male). We found that phasic LC stimulation induced a persistent high gamma oscillation (50-80 Hz) in the OFC. Phasic activation of LC-NE neurons also resulted in a corresponding increase in norepinephrine levels in the OFC, accompanied by a pupillary dilation response. Furthermore, when mice were performing a go/no-go auditory discrimination task, we optogeneticaly activated the neural projections from LC to OFC and revealed a shortened latency in behavioral responses to sound stimuli and an increased false alarm rate. These impulsive behavioral responses may be associated with the gamma neural activity in the OFC. These findings have broadened our understanding of the neural mechanisms involved in the role of LC in auditory-motor processing.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Xueru Wang
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Jingyu Chen
- Department of Physiology, China Medical University, Shenyang 110122, China
| | - Ziyu Guo
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Bingqing Qiao
- School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Vora I, Gochyyev P, Engineer N, Wolf SL, Kimberley TJ. Distal Versus Proximal Arm Improvement After Paired Vagus Nerve Stimulation Therapy After Chronic Stroke. Arch Phys Med Rehabil 2024; 105:1709-1717. [PMID: 38815953 PMCID: PMC11374485 DOI: 10.1016/j.apmr.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To evaluate differences in upper-extremity (UE) segment-specific (proximal or distal segment) recovery after vagus nerve stimulation (VNS) paired with UE rehabilitation (Paired-VNS) compared with rehabilitation with sham-VNS (Control). We also assessed whether gains in specific UE segments predicted clinically meaningful improvement. DESIGN This study reports on a secondary analysis of Vagus nerve stimulation paired with rehabilitation for UE motor function after chronic ischemic stroke (VNS-REHAB), a randomized, triple-blinded, sham-controlled pivotal trial. A Rasch latent regression was used to determine differences between Paired-VNS and Controls for distal and proximal UE changes after in-clinic therapy and 3 months later. Subsequently, we ran a random forest model to assess candidate predictors of meaningful improvement. Each item of the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Wolf Motor Function Test (WMFT) was evaluated as a predictor of response to treatment. SETTING Nineteen stroke rehabilitation centers in the USA and UK. PARTICIPANTS Dataset included 108 participants (N=108) with chronic ischemic stroke and moderate-to-severe UE impairments. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES FMA-UE and WMFT. RESULTS Distal UE improvement was significantly greater in the Paired-VNS group than in Controls immediately after therapy (95% confidence interval, 0.27-0.73; P≤.001) and after 3 months (95% confidence interval, 0.16-0.75; P=.003). Both groups showed similar improvement in proximal UE at both time points. A subset of both distal and proximal items from the FMA-UE and WMFT were predictors of meaningful improvement. CONCLUSIONS Paired-VNS improved distal UE impairment in chronic stroke to a greater degree than intensive rehabilitation alone. Proximal improvements were equally responsive to either treatment. Given that meaningful UE recovery is predicted by improvements across both proximal and distal segments, Paired-VNS may facilitate improvement that is otherwise elusive.
Collapse
Affiliation(s)
- Isha Vora
- Department of Rehabilitation Science, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA
| | - Perman Gochyyev
- Department of Rehabilitation Science, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA; Berkeley Evaluation and Assessment Research Center, University of California, Berkeley, Berkeley, CA
| | | | - Steven L Wolf
- Division of Physical Therapy, Center for Physical Therapy and Movement Science, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA
| | - Teresa J Kimberley
- Department of Rehabilitation Science, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA; Department of Physical Therapy, School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA.
| |
Collapse
|
16
|
Norris MR, Kuo CC, Dunn SS, Kim JR, Becker LJ, Borges G, Thang LV, Parker KE, McCall JG. Mu opioid receptors gate the locus coeruleus pain generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.562785. [PMID: 37961541 PMCID: PMC10634678 DOI: 10.1101/2023.10.20.562785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Loc V. Thang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
17
|
Ben Barak-Dror O, Hadad B, Barhum H, Haggiag D, Tepper M, Gannot I, Nir Y. Touchless short-wave infrared imaging for dynamic rapid pupillometry and gaze estimation in closed eyes. COMMUNICATIONS MEDICINE 2024; 4:157. [PMID: 39107497 PMCID: PMC11303404 DOI: 10.1038/s43856-024-00572-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Assessments of gaze direction (eye movements), pupil size, and the pupillary light reflex (PLR) are critical for neurological examination and neuroscience research and constitute a powerful tool in diverse clinical settings ranging from critical care through endocrinology and drug addiction to cardiology and psychiatry. However, current bedside pupillometry is typically intermittent, qualitative, manual, and limited to open-eye cases, restricting its use in sleep medicine, anesthesia, and intensive care. METHODS We combined short-wave infrared (SWIR, ~0.9-1.7μm) imaging with image processing algorithms to perform rapid (~30 ms) pupillometry and eye tracking behind closed eyelids. Forty-three healthy volunteers participated in two experiments with PLR evoked by visible light stimuli or directing eye movements towards screen targets. Imaging was performed simultaneously on one eye closed, and the other open eye serving as ground truth. Data analysis was performed with a custom approach quantifying changes in brightness around the pupil area or with a deep learning U-NET-based procedure. RESULTS Here we show that analysis of SWIR imaging data can successfully measure stimulus-evoked PLR in closed-eye conditions, revealing PLR events in single trials and significant PLRs in nearly all individual subjects, as well as estimating gaze direction. The neural net-based analysis could successfully use closed-eye SWIR data to recreate estimates of open-eye images and assess pupil size. CONCLUSIONS Continuous touchless monitoring of rapid dynamics in pupil size and gaze direction through closed eyes paves the way for developing devices with wide-ranging applications, fulfilling long-standing goals in clinical and research fields.
Collapse
Affiliation(s)
- Omer Ben Barak-Dror
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Barak Hadad
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hani Barhum
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Triangle Regional Research and Development Center, Kfar Qara, 3007500, Israel
| | - David Haggiag
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Tepper
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Israel Gannot
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
18
|
Kabanova A, Fedorov L, Eschenko O. The Projection-Specific Noradrenergic Modulation of Perseverative Spatial Behavior in Adult Male Rats. eNeuro 2024; 11:ENEURO.0063-24.2024. [PMID: 39160074 PMCID: PMC11334950 DOI: 10.1523/eneuro.0063-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 08/21/2024] Open
Abstract
Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.
Collapse
Affiliation(s)
- Anna Kabanova
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Leonid Fedorov
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Sima J, Zhang Y, Farriday D, Ahn AYE, Lopez ER, Jin C, Harrell J, Darmohray D, Silverman D, Dan Y. Restoration of locus coeruleus noradrenergic transmission during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601820. [PMID: 39005471 PMCID: PMC11244971 DOI: 10.1101/2024.07.03.601820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sleep is indispensable for health and wellbeing, but its basic function remains elusive. The locus coeruleus (LC) powerfully promotes arousal by releasing noradrenaline. We found that noradrenaline transmission is reduced by prolonged wakefulness and restored during sleep. Fiber-photometry imaging of noradrenaline using its biosensor showed that its release evoked by optogenetic LC neuron activation was strongly attenuated by three hours of sleep deprivation and restored during subsequent sleep. This is accompanied by the reduction and recovery of the wake-promoting effect of the LC neurons. The reduction of both LC evoked noradrenaline release and wake-inducing potency is activity dependent, and the rate of noradrenaline transmission recovery depends on mammalian target of rapamycin (mTOR) signaling. The decline and recovery of noradrenaline transmission also occur in spontaneous sleep-wake cycles on a timescale of minutes. Together, these results reveal an essential role of sleep in restoring transmission of a key arousal-promoting neuromodulator.
Collapse
Affiliation(s)
- Jiao Sima
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yuchen Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Declan Farriday
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Andy Young-Eon Ahn
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Eduardo Ramirez Lopez
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Chennan Jin
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jade Harrell
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Gowrishankar R, Gat A, Malan D, Brown BJ, Dine J, Imambocus BN, Levy R, Sauter K, Litvin A, Regev N, Subramaniam S, Abrera K, Summarli D, Goren EM, Mizrachi G, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Bruchas MR, Soba P, Oren-Suissa M, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits. Nat Methods 2024; 21:1275-1287. [PMID: 38811857 PMCID: PMC11239505 DOI: 10.1038/s41592-024-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniela Malan
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Bobbie J Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | | | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Khalid Abrera
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Dustin Summarli
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Eva Madeline Goren
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- University of Michigan, Ann Arbor, MI, USA
| | - Gili Mizrachi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Soba
- LIMES-Institute, University of Bonn, Bonn, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
22
|
Mao R, Cavelli ML, Findlay G, Driessen K, Peterson MJ, Marshall W, Tononi G, Cirelli C. Behavioral and cortical arousal from sleep, muscimol-induced coma, and anesthesia by direct optogenetic stimulation of cortical neurons. iScience 2024; 27:109919. [PMID: 38812551 PMCID: PMC11134913 DOI: 10.1016/j.isci.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The cerebral cortex is widely considered part of the neural substrate of consciousness, but direct causal evidence is missing. Here, we tested in mice whether optogenetic activation of cortical neurons in posterior parietal cortex (PtA) or medial prefrontal cortex (mPFC) is sufficient for arousal from three behavioral states characterized by progressively deeper unresponsiveness: sleep, a coma-like state induced by muscimol injection in the midbrain, and deep sevoflurane-dexmedetomidine anesthesia. We find that cortical stimulation always awakens the mice from both NREM sleep and REM sleep, with PtA requiring weaker/shorter light pulses than mPFC. Moreover, in most cases light pulses produce both cortical activation (decrease in low frequencies) and behavioral arousal (recovery of the righting reflex) from brainstem coma, as well as cortical activation from anesthesia. These findings provide evidence that direct activation of cortical neurons is sufficient for behavioral and/or cortical arousal from sleep, brainstem coma, and anesthesia.
Collapse
Affiliation(s)
- Rong Mao
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Matias Lorenzo Cavelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Departamento de Fisiología de Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Graham Findlay
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Kort Driessen
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Michael J. Peterson
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - William Marshall
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| |
Collapse
|
23
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
24
|
Piccin A, Plat H, Wolff M, Coutureau E. Adaptive Responding to Stimulus-Outcome Associations Requires Noradrenergic Transmission in the Medial Prefrontal Cortex. J Neurosci 2024; 44:e0078242024. [PMID: 38684363 PMCID: PMC11140671 DOI: 10.1523/jneurosci.0078-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
A dynamic environment, such as the one we inhabit, requires organisms to continuously update their knowledge of the setting. While the prefrontal cortex is recognized for its pivotal role in regulating such adaptive behavior, the specific contribution of each prefrontal area remains elusive. In the current work, we investigated the direct involvement of two major prefrontal subregions, the medial prefrontal cortex (mPFC, A32D + A32V) and the orbitofrontal cortex (OFC, VO + LO), in updating pavlovian stimulus-outcome (S-O) associations following contingency degradation in male rats. Specifically, animals had to learn that a particular cue, previously fully predicting the delivery of a specific reward, was no longer a reliable predictor. First, we found that chemogenetic inhibition of mPFC, but not of OFC, neurons altered the rats' ability to adaptively respond to degraded and non-degraded cues. Next, given the growing evidence pointing at noradrenaline (NA) as a main neuromodulator of adaptive behavior, we decided to investigate the possible involvement of NA projections to the two subregions in this higher-order cognitive process. Employing a pair of novel retrograde vectors, we traced NA projections from the locus ceruleus (LC) to both structures and observed an equivalent yet relatively segregated amount of inputs. Then, we showed that chemogenetic inhibition of NA projections to the mPFC, but not to the OFC, also impaired the rats' ability to adaptively respond to the degradation procedure. Altogether, our findings provide important evidence of functional parcellation within the prefrontal cortex and point at mPFC NA as key for updating pavlovian S-O associations.
Collapse
Affiliation(s)
| | - Hadrien Plat
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Mathieu Wolff
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux F-33000, France
| | | |
Collapse
|
25
|
Chen X, Cramer SR, Chan DCY, Han X, Zhang N. Sequential deactivation across the thalamus-hippocampus-mPFC pathway during loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594986. [PMID: 38826282 PMCID: PMC11142108 DOI: 10.1101/2024.05.20.594986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
How consciousness is lost in states such as sleep or anesthesia remains a mystery. To gain insight into this phenomenon, we conducted concurrent recordings of electrophysiology signals in the anterior cingulate cortex and whole-brain functional magnetic resonance imaging (fMRI) in rats exposed to graded propofol, undergoing the transition from consciousness to unconsciousness. Our results reveal that upon the loss of consciousness (LOC), as indicated by the loss of righting reflex, there is a sharp increase in low-frequency power of the electrophysiological signal. Additionally, simultaneously measured fMRI signals exhibit a cascade of deactivation across a pathway including the hippocampus, thalamus, and medial prefrontal cortex (mPFC) surrounding the moment of LOC, followed by a broader increase in brain activity across the cortex during sustained unconsciousness. Furthermore, sliding window analysis demonstrates a temporary increase in synchrony of fMRI signals across the hippocampus-thalamus-mPFC pathway preceding LOC. These data suggest that LOC might be triggered by sequential activities in the hippocampus, thalamus and mPFC, while wide-spread activity increases in other cortical regions commonly observed during anesthesia-induced unconsciousness might be a consequence, rather than a cause of LOC. Taken together, our study identifies a cascade of neural events unfolding as the brain transitions into unconsciousness, offering critical insight into the systems-level neural mechanisms underpinning LOC.
Collapse
|
26
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
27
|
Wu E, Qi D, Nizamutdinov D, Huang JH. Astrocytic calcium waves: unveiling their roles in sleep and arousal modulation. Neural Regen Res 2024; 19:984-987. [PMID: 37862199 PMCID: PMC10749589 DOI: 10.4103/1673-5374.385287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Neuron-astrocyte interactions are vital for the brain's connectome. Understanding astrocyte activities is crucial for comprehending the complex neural network, particularly the population-level functions of neurons in different cortical states and associated behaviors in mammals. Studies on animal sleep and wakefulness have revealed distinct cortical synchrony patterns between neurons. Astrocytes, outnumbering neurons by nearly fivefold, support and regulate neuronal and synaptic function. Recent research on astrocyte activation during cortical state transitions has emphasized the influence of norepinephrine as a neurotransmitter and calcium waves as key components of ion channel signaling. This summary focuses on a few recent studies investigating astrocyte-neuron interactions in mouse models during sleep, wakefulness, and arousal levels, exploring the involvement of noradrenaline signaling, ion channels, and glutamatergic signaling in different cortical states. These findings highlight the significant impact of astrocytes on large-scale neuronal networks, influencing brain activity and responsiveness. Targeting astrocytic signaling pathways shows promise for treating sleep disorders and arousal dysregulation. More research is needed to understand astrocytic calcium signaling in different brain regions and its implications for dysregulated brain states, requiring future human studies to comprehensively investigate neuron-astrocyte interactions and pave the way for therapeutic interventions in sleep- and arousal-related disorders.
Collapse
Affiliation(s)
- Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
- Texas A&M University School of Pharmacy, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
| |
Collapse
|
28
|
Lemercier CE, Krieger P, Manahan-Vaughan D. Dynamic modulation of mouse thalamocortical visual activity by salient sounds. iScience 2024; 27:109364. [PMID: 38523779 PMCID: PMC10959669 DOI: 10.1016/j.isci.2024.109364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Visual responses of the primary visual cortex (V1) are altered by sound. Sound-driven behavioral arousal suggests that, in addition to direct inputs from the primary auditory cortex (A1), multiple other sources may shape V1 responses to sound. Here, we show in anesthetized mice that sound (white noise, ≥70dB) drives a biphasic modulation of V1 visually driven gamma-band activity, comprising fast-transient inhibitory and slow, prolonged excitatory (A1-independent) arousal-driven components. An analogous yet quicker modulation of the visual response also occurred earlier in the visual pathway, at the level of the dorsolateral geniculate nucleus (dLGN), where sound transiently inhibited the early phasic visual response and subsequently induced a prolonged increase in tonic spiking activity and gamma rhythmicity. Our results demonstrate that sound-driven modulations of visual activity are not exclusive to V1 and suggest that thalamocortical inputs from the dLGN to V1 contribute to shaping V1 visual response to sound.
Collapse
Affiliation(s)
- Clément E. Lemercier
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Patrik Krieger
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
29
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
30
|
Meissner SN, Bächinger M, Kikkert S, Imhof J, Missura S, Carro Dominguez M, Wenderoth N. Self-regulating arousal via pupil-based biofeedback. Nat Hum Behav 2024; 8:43-62. [PMID: 37904022 PMCID: PMC10810759 DOI: 10.1038/s41562-023-01729-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023]
Abstract
The brain's arousal state is controlled by several neuromodulatory nuclei known to substantially influence cognition and mental well-being. Here we investigate whether human participants can gain volitional control of their arousal state using a pupil-based biofeedback approach. Our approach inverts a mechanism suggested by previous literature that links activity of the locus coeruleus, one of the key regulators of central arousal and pupil dynamics. We show that pupil-based biofeedback enables participants to acquire volitional control of pupil size. Applying pupil self-regulation systematically modulates activity of the locus coeruleus and other brainstem structures involved in arousal control. Furthermore, it modulates cardiovascular measures such as heart rate, and behavioural and psychophysiological responses during an oddball task. We provide evidence that pupil-based biofeedback makes the brain's arousal system accessible to volitional control, a finding that has tremendous potential for translation to behavioural and clinical applications across various domains, including stress-related and anxiety disorders.
Collapse
Affiliation(s)
- Sarah Nadine Meissner
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Marc Bächinger
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jenny Imhof
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Silvia Missura
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Manuel Carro Dominguez
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore.
| |
Collapse
|
31
|
Liu S, Zhou C, Fang Y, Zhu B, Wu H, Wu C, Guo T, Wu J, Wen J, Qin J, Chen J, Duanmu X, Tan S, Guan X, Xu X, Zhang M, Zhang B, Zhao G, Yan Y. Assessing the Role of Locus Coeruleus Degeneration in Essential Tremor and Parkinson's Disease with Sleep Disorders. JOURNAL OF PARKINSON'S DISEASE 2024; 14:833-842. [PMID: 38728202 PMCID: PMC11191536 DOI: 10.3233/jpd-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/12/2024]
Abstract
Background Previous studies have demonstrated the importance of the locus coeruleus (LC) in sleep-wake regulation. Both essential tremor (ET) and Parkinson's disease (PD) share common sleep disorders, such as poor quality of sleep (QoS). LC pathology is a feature of both diseases. A question arises regarding the contribution of LC degeneration to the occurrence of poor QoS. Objective To evaluate the association between LC impairment and sleep disorders in ET and PD patients. Methods A total of 83 patients with ET, 124 with PD, and 83 healthy individuals were recruited and divided into ET/PD with/without poor QoS (Sle/NorET and Sle/NorPD) subgroups according to individual Pittsburgh Sleep Quality Index (PSQI) score. Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and free-water imaging derived from diffusion MRI were performed. Subsequently, we evaluated the association between contrast-to-noise ratio of LC (CNRLC) and free-water value of LC (FWLC) with PSQI scores in ET and PD groups. Results CNRLC was significantly lower in ET (p = 0.047) and PD (p = 0.018) than in healthy individuals, whereas no significant difference was found in FWLC among the groups. No significant differences were observed in CNR/FWLC between patients with/without sleep disorders after multiple comparison correction. No correlation was identified between CNR/FWLC and PSQI in ET and PD patients. Conclusions LC degeneration was observed in both ET and PD patients, implicating its involvement in the pathophysiology of both diseases. Additionally, no significant association was observed between LC integrity and PSQI, suggesting that LC impairment might not directly relate to overall QoS.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuelin Fang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Bingting Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojie Duanmu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sijia Tan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guohua Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Huang Z. Evidence that Alzheimer's Disease Is a Disease of Competitive Synaptic Plasticity Gone Awry. J Alzheimers Dis 2024; 99:447-470. [PMID: 38669548 PMCID: PMC11119021 DOI: 10.3233/jad-240042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Mounting evidence indicates that a physiological function of amyloid-β (Aβ) is to mediate neural activity-dependent homeostatic and competitive synaptic plasticity in the brain. I have previously summarized the lines of evidence supporting this hypothesis and highlighted the similarities between Aβ and anti-microbial peptides in mediating cell/synapse competition. In cell competition, anti-microbial peptides deploy a multitude of mechanisms to ensure both self-protection and competitor elimination. Here I review recent studies showing that similar mechanisms are at play in Aβ-mediated synapse competition and perturbations in these mechanisms underpin Alzheimer's disease (AD). Specifically, I discuss evidence that Aβ and ApoE, two crucial players in AD, co-operate in the regulation of synapse competition. Glial ApoE promotes self-protection by increasing the production of trophic monomeric Aβ and inhibiting its assembly into toxic oligomers. Conversely, Aβ oligomers, once assembled, promote the elimination of competitor synapses via direct toxic activity and amplification of "eat-me" signals promoting the elimination of weak synapses. I further summarize evidence that neuronal ApoE may be part of a gene regulatory network that normally promotes competitive plasticity, explaining the selective vulnerability of ApoE expressing neurons in AD brains. Lastly, I discuss evidence that sleep may be key to Aβ-orchestrated plasticity, in which sleep is not only induced by Aβ but is also required for Aβ-mediated plasticity, underlining the link between sleep and AD. Together, these results strongly argue that AD is a disease of competitive synaptic plasticity gone awry, a novel perspective that may promote AD research.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
33
|
Suwabe K, Kuwamizu R, Hyodo K, Yoshikawa T, Otsuki T, Zempo-Miyaki A, Yassa MA, Soya H. Improvement of mnemonic discrimination with acute light exercise is mediated by pupil-linked arousal in healthy older adults. Neurobiol Aging 2024; 133:107-114. [PMID: 37939430 PMCID: PMC10843052 DOI: 10.1016/j.neurobiolaging.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 11/10/2023]
Abstract
Physical exercise has positive impacts on hippocampal memory decline with aging. One of the postulated neurobiological mechanisms of the decline is reduced catecholaminergic projections from the locus coeruleus to the hippocampus. Recent human studies revealed that very light exercise rapidly enhances memory and pupil diameter, which suggests that light exercise may improve memory via neural circuits involved in the ascending arousal system, including the locus coeruleus, even in older adults. Thus, we aimed to clarify the effects of a single bout of light-intensity exercise (60% ventilatory threshold) on mnemonic discrimination performance, an index of hippocampal memory function, in healthy older adults using a randomized crossover design. Pupil diameter was measured during exercise as a physiological marker of the ascending arousal system. Discrimination of highly similar stimuli to the targets improved after exercise when compared to the resting control performance. Importantly, causal mediation analysis showed that pupil dilation during exercise mediated the memory improvement. These results suggest that brief light exercise rapidly enhances memory, possibly by upregulating the ascending arousal system.
Collapse
Affiliation(s)
- Kazuya Suwabe
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ibaraki, Japan; Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan.
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan; Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Kazuki Hyodo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Toru Yoshikawa
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ibaraki, Japan
| | - Takeshi Otsuki
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ibaraki, Japan
| | - Asako Zempo-Miyaki
- Faculty of Health and Sport Sciences, Ryutsu Keizai University, Ibaraki, Japan
| | - Michael A Yassa
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Hideaki Soya
- Sports Neuroscience Division, Department of Mind, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan; Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Li B, Ma C, Huang YA, Ding X, Silverman D, Chen C, Darmohray D, Lu L, Liu S, Montaldo G, Urban A, Dan Y. Circuit mechanism for suppression of frontal cortical ignition during NREM sleep. Cell 2023; 186:5739-5750.e17. [PMID: 38070510 DOI: 10.1016/j.cell.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.
Collapse
Affiliation(s)
- Bing Li
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yun-An Huang
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Changwan Chen
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lihui Lu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siqi Liu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
35
|
Bussu G, Portugal AM, Wilsson L, Kleberg JL, Falck-Ytter T. Manipulation of phasic arousal by auditory cues is associated with subsequent changes in visual orienting to faces in infancy. Sci Rep 2023; 13:22072. [PMID: 38086954 PMCID: PMC10716513 DOI: 10.1038/s41598-023-49373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
This eye-tracking study investigated the effect of sound-induced arousal on social orienting under different auditory cue conditions in 5-month-old (n = 25; n = 13 males) and 10-month-old infants (n = 21; n = 14 males) participating in a spontaneous visual search task. Results showed: (1) larger pupil dilation discriminating between high and low volume (b = 0.02, p = 0.007), but not between social and non-social sounds (b = 0.004, p = 0.64); (2) faster visual orienting (b = - 0.09, p < 0.001) and better social orienting at older age (b = 0.94, p < 0.001); (3) a fast habituation effect on social orienting after high-volume sounds (χ2(2) = 7.39, p = 0.025); (4) a quadratic association between baseline pupil size and target selection (b = - 1.0, SE = 0.5, χ2(1) = 4.04, p = 0.045); (5) a positive linear association between pupil dilation and social orienting (b = 0.09, p = 0.039). Findings support adaptive gain theories of arousal, extending the link between phasic pupil dilation and task performance to spontaneous social orienting in infancy.
Collapse
Affiliation(s)
- Giorgia Bussu
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden.
| | - Ana Maria Portugal
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden
| | - Lowe Wilsson
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Johan Lundin Kleberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Terje Falck-Ytter
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Von Kraemers Alle 1C, 754 32, Uppsala, Sweden
- Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
36
|
Feige B, Benz F, Dressle RJ, Riemann D. Insomnia and REM sleep instability. J Sleep Res 2023; 32:e14032. [PMID: 37679882 DOI: 10.1111/jsr.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
In this narrative review, we give an overview of the concept of rapid eye movement sleep instability and its reported implications in the context of insomnia. The term rapid eye movement sleep instability was coined to describe the observation of a modified rapid eye movement quality in insomnia, characterized by an increased tendency of perceiving rapid eye movement sleep as wake, a small but consistent rapid eye movement sleep reduction and an increased rapid eye movement sleep arousal index. Current research highlights relationships that are transdiagnostic in nature, corresponding to the known interaction of insomnia with many psychiatric disorders, and showing relationships to chronic stress and anxiety disorders.
Collapse
Affiliation(s)
- Bernd Feige
- Department of Psychiatry and Psychotherapy, Section of Clinical Psychology and Psychophysiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fee Benz
- Department of Psychiatry and Psychotherapy, Section of Clinical Psychology and Psychophysiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphael J Dressle
- Department of Psychiatry and Psychotherapy, Section of Clinical Psychology and Psychophysiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Section of Clinical Psychology and Psychophysiology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Yang Y, Chen Z, Yan G, Kong L, Yang L, Sun H, Han Y, Zhang J, Wang X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the metabolic mechanism of Naoling Pian for insomnia. J Pharm Biomed Anal 2023; 236:115756. [PMID: 37776625 DOI: 10.1016/j.jpba.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Insomnia is an accompanying symptom of many diseases and is closely associated with neurodegenerative diseases. Naoling Pian (NLP) is a patented Chinese medicine mainly used to treat insomnia. To evaluate the sedative and hypnotic effects of NLP and its modulatory effects on biological metabolites and metabolic pathways, rats with p-chlorophenylalanine (PCPA)-induced insomnia were given different doses of NLP by oral gavage for seven days. Diazepam (DZP) served as a positive control. Behavior was measured using the open field test, and neurotransmitter levels in the brain tissue related to sleep were measured using ELISA. The metabolic profiles and biomarkers of PCPA-induced insomnia in rats before and after NLP administration were analyzed using UPLC-Q/TOF-MS combined with multivariate data analysis. The results showed that the levels of 5-hydroxytryptamine, gamma-aminobutyric acid, norepinephrine, and dopamine in the brain tissue were significantly recovered in the NLP treatment groups, demonstrating similar or even superior therapeutic effects compared to the DZP group. The behavior of the PCPA-model rats partially recovered to normal levels after seven days of treatment. Metabolomics identified 30 metabolites in the urine as potential biomarkers of insomnia, and NLP significantly altered 25 of these, involving 21 metabolic pathways. NLP has a remarkable effect on insomnia, the therapeutic effects of which may be largely due to the rectification of metabolic disturbances. This is the first study of the sedative and hypnotic effects of NLP from a metabolomic perspective.
Collapse
Affiliation(s)
- Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China.
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Jie Zhang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
38
|
Sitnikova E. Adrenergic mechanisms of absence status epilepticus. Front Neurol 2023; 14:1298310. [PMID: 38073616 PMCID: PMC10703303 DOI: 10.3389/fneur.2023.1298310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/27/2023] [Indexed: 10/16/2024] Open
Abstract
Absence status epilepticus is a prolonged, generalized absence seizure that lasts more than half an hour. The mechanisms underlying the absence of status epilepticus are still not entirely understood. In this study, the study concentrates on alpha2-adrenergic mechanisms of absence status using the WAG/Rij rat model. In this model, a prolonged spike-wave activity was associated with a specific behavioral state in transition between sedation («alpha2-wakefulness»)-resembled absence status in human patients. Pharmacological activation of alpha2-adrenoreceptors may target the locus coeruleus (presynaptic alpha2-adrenoreceptors) and the thalamic part of the seizure-generating thalamocortical system (postsynaptic alpha2B-adrenoreceptors). The duration of EEG-behavioral correlates of absence status was not dose-dependent and was predetermined by the intensity of absence seizures at baseline. This model could help scientists better understand the underlying causes of absence status and develop more effective and personalized treatments for each individual.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Mueller B. Episodic Migraine and POTS. Curr Pain Headache Rep 2023; 27:757-763. [PMID: 37804458 DOI: 10.1007/s11916-023-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
PURPOSE OF REVIEW Migraine is prevalent in patients with postural orthostatic tachycardia syndrome (POTS). The purpose of this review is to summarize and interpret studies that examine stress response systems in patients with migraine, focusing on their relevance to the pathologies associated with POTS. Important structural and functional components of the stress response network are also reviewed. RECENT FINDINGS In patients with migraine, studies examining the autonomic nervous system have demonstrated interictal sympathetic hypofunction and ictal sympathetic hyperfunction, while those focusing on the hypothalamic-pituitary-adrenal axis have demonstrated elevated responsivity. There is evidence that activation of these stress response systems during a migraine episode may exacerbate vascular dysfunction and play a role in the development of central sensitization. Activation of the stress response systems during an episode of migraine has the potential to exacerbate the pathology of POTS. Treatment approaches for the patient with comorbid episodic migraine and POTS should consider the etiology of POTS.
Collapse
Affiliation(s)
- Bridget Mueller
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5 East 98th Street, Box 1139, New York, NY, 10029, USA.
| |
Collapse
|
40
|
Munn BR, Müller EJ, Medel V, Naismith SL, Lizier JT, Sanders RD, Shine JM. Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states. Nat Commun 2023; 14:6846. [PMID: 37891167 PMCID: PMC10611774 DOI: 10.1038/s41467-023-42465-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain displays a rich repertoire of states that emerge from the microscopic interactions of cortical and subcortical neurons. Difficulties inherent within large-scale simultaneous neuronal recording limit our ability to link biophysical processes at the microscale to emergent macroscopic brain states. Here we introduce a microscale biophysical network model of layer-5 pyramidal neurons that display graded coarse-sampled dynamics matching those observed in macroscale electrophysiological recordings from macaques and humans. We invert our model to identify the neuronal spike and burst dynamics that differentiate unconscious, dreaming, and awake arousal states and provide insights into their functional signatures. We further show that neuromodulatory arousal can mediate different modes of neuronal dynamics around a low-dimensional energy landscape, which in turn changes the response of the model to external stimuli. Our results highlight the promise of multiscale modelling to bridge theories of consciousness across spatiotemporal scales.
Collapse
Affiliation(s)
- Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia.
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| | - Eli J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Vicente Medel
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Sharon L Naismith
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Psychology, Faculty of Science & Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Robert D Sanders
- Department of Anaesthetics & Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, Australia
- Central Clinical School & NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Wang Y, You L, Tan K, Li M, Zou J, Zhao Z, Hu W, Li T, Xie F, Li C, Yuan R, Ding K, Cao L, Xin F, Shang C, Liu M, Gao Y, Wei L, You Z, Gao X, Xiong W, Cao P, Luo M, Chen F, Li K, Wu J, Hong B, Yuan K. A common thalamic hub for general and defensive arousal control. Neuron 2023; 111:3270-3287.e8. [PMID: 37557180 DOI: 10.1016/j.neuron.2023.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
The expression of defensive responses to alerting sensory cues requires both general arousal and a specific arousal state associated with defensive emotions. However, it remains unclear whether these two forms of arousal can be regulated by common brain regions. We discovered that the medial sector of the auditory thalamus (ATm) in mice is a thalamic hub controlling both general and defensive arousal. The spontaneous activity of VGluT2-expressing ATm (ATmVGluT2+) neurons was correlated with and causally contributed to wakefulness. In sleeping mice, sustained ATmVGluT2+ population responses were predictive of sensory-induced arousal, the likelihood of which was markedly decreased by inhibiting ATmVGluT2+ neurons or multiple downstream pathways. In awake mice, ATmVGluT2+ activation led to heightened arousal accompanied by excessive anxiety and avoidance behavior. Notably, blocking their neurotransmission abolished alerting stimuli-induced defensive behaviors. These findings may shed light on the comorbidity of sleep disturbances and abnormal sensory sensitivity in specific brain disorders.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - KaMun Tan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Meijie Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Jingshan Zou
- Hospital of Chengdu University of Traditional Chinese Medicine, Traditional Chinese Medicine Hospital of Sichuan Province, Chengdu 610036, China
| | - Zhifeng Zhao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenxin Hu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Tianyu Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Caiqin Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Ruizhi Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kai Ding
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lingwei Cao
- Zhili College, Tsinghua University, Beijing 100084, China
| | - Fengyuan Xin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China
| | - Congping Shang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Laboratory Animal Resources Center, Tsinghua University, Beijing 100084, China
| | - Yixiao Gao
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Liqiang Wei
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Zhiwei You
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Feng Chen
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Li
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Jiamin Wu
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research at Tsinghua, Beijing 100084, China; Tsinghua Laboratory of Brain and Intelligence (THBI), Beijing 100084, China.
| |
Collapse
|
42
|
Tanguay E, Bouchard SJ, Lévesque M, De Koninck P, Breton-Provencher V. Shining light on the noradrenergic system. NEUROPHOTONICS 2023; 10:044406. [PMID: 37766924 PMCID: PMC10519836 DOI: 10.1117/1.nph.10.4.044406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Despite decades of research on the noradrenergic system, our understanding of its impact on brain function and behavior remains incomplete. Traditional recording techniques are challenging to implement for investigating in vivo noradrenergic activity, due to the relatively small size and the position in the brain of the locus coeruleus (LC), the primary location for noradrenergic neurons. However, recent advances in optical and fluorescent methods have enabled researchers to study the LC more effectively. Use of genetically encoded calcium indicators to image the activity of noradrenergic neurons and biosensors that monitor noradrenaline release with fluorescence can be an indispensable tool for studying noradrenergic activity. In this review, we examine how these methods are being applied to record the noradrenergic system in the rodent brain during behavior.
Collapse
Affiliation(s)
| | | | - Martin Lévesque
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Quebec, Quebec, Canada
| | - Vincent Breton-Provencher
- CERVO Brain Research Centre, Quebec, Quebec, Canada
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec, Quebec, Canada
| |
Collapse
|
43
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
44
|
Monari S, Guillot de Suduiraut I, Grosse J, Zanoletti O, Walker SE, Mesquita M, Wood TC, Cash D, Astori S, Sandi C. Blunted Glucocorticoid Responsiveness to Stress Causes Behavioral and Biological Alterations That Lead to Posttraumatic Stress Disorder Vulnerability. Biol Psychiatry 2023:S0006-3223(23)01590-1. [PMID: 37743003 DOI: 10.1016/j.biopsych.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Understanding why only a subset of trauma-exposed individuals develop posttraumatic stress disorder is critical for advancing clinical strategies. A few behavioral (deficits in fear extinction) and biological (blunted glucocorticoid levels, small hippocampal size, and rapid-eye-movement sleep [REMS] disturbances) traits have been identified as potential vulnerability factors. However, whether and to what extent these traits are interrelated and whether one of them could causally engender the others are not known. METHODS In a genetically selected rat model of reduced corticosterone responsiveness to stress, we explored posttraumatic stress disorder-related biobehavioral traits using ex vivo magnetic resonance imaging, cued fear conditioning, and polysomnographic recordings combined with in vivo photometric measurements. RESULTS We showed that genetic selection for blunted glucocorticoid responsiveness led to a correlated multitrait response, including impaired fear extinction (observed in males but not in females), small hippocampal volume, and REMS disturbances, supporting their interrelatedness. Fear extinction deficits and concomitant disruptions in REMS could be normalized through postextinction corticosterone administration, causally implicating glucocorticoid deficiency in two core posttraumatic stress disorder-related risk factors and manifestations. Furthermore, reduced REMS was accompanied by higher norepinephrine levels in the hippocampal dentate gyrus that were also reversed by postextinction corticosterone treatment. CONCLUSIONS Our results indicate a predominant role for glucocorticoid deficiency over the contribution of reduced hippocampal volume in engendering both REMS alterations and associated deficits in fear extinction consolidation, and they causally implicate blunted glucocorticoids in sustaining neurophysiological disturbances that lead to fear extinction deficits.
Collapse
Affiliation(s)
- Silvia Monari
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Isabelle Guillot de Suduiraut
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sophie E Walker
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michel Mesquita
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Tobias C Wood
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Simone Astori
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
45
|
Zou L, Herold F, Ludyga S, Kamijo K, Müller NG, Pontifex MB, Heath M, Kuwamizu R, Soya H, Hillman CH, Ando S, Alderman BL, Cheval B, Kramer AF. Look into my eyes: What can eye-based measures tell us about the relationship between physical activity and cognitive performance? JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:568-591. [PMID: 37148971 PMCID: PMC10466196 DOI: 10.1016/j.jshs.2023.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.
Collapse
Affiliation(s)
- Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany.
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise, and Health, University of Basel, Basel 4052, Switzerland
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya 466-8666, Japan
| | - Notger G Müller
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam 14476, Germany
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London ON, N6A 3K7, Canada; Graduate Program in Neuroscience, University of Western Ontario, London ON, N6A 3K7, Canada
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Department of Psychology, Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers University-New Brunswick, New Brunswick, NJ 08854, USA
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva 1205, Switzerland; Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva 1205, Switzerland
| | - Arthur F Kramer
- Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA 02115, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
46
|
Miguel-Quesada C, Zaforas M, Herrera-Pérez S, Lines J, Fernández-López E, Alonso-Calviño E, Ardaya M, Soria FN, Araque A, Aguilar J, Rosa JM. Astrocytes adjust the dynamic range of cortical network activity to control modality-specific sensory information processing. Cell Rep 2023; 42:112950. [PMID: 37543946 DOI: 10.1016/j.celrep.2023.112950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
Cortical neuron-astrocyte communication in response to peripheral sensory stimulation occurs in a topographic-, frequency-, and intensity-dependent manner. However, the contribution of this functional interaction to the processing of sensory inputs and consequent behavior remains unclear. We investigate the role of astrocytes in sensory information processing at circuit and behavioral levels by monitoring and manipulating astrocytic activity in vivo. We show that astrocytes control the dynamic range of the cortical network activity, optimizing its responsiveness to incoming sensory inputs. The astrocytic modulation of sensory processing contributes to setting the detection threshold for tactile and thermal behavior responses. The mechanism of such astrocytic control is mediated through modulation of inhibitory transmission to adjust the gain and sensitivity of responding networks. These results uncover a role for astrocytes in maintaining the cortical network activity in an optimal range to control behavior associated with specific sensory modalities.
Collapse
Affiliation(s)
- Claudia Miguel-Quesada
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain; Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Marta Zaforas
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Salvador Herrera-Pérez
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Justin Lines
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena Fernández-López
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Alonso-Calviño
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Maria Ardaya
- Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain; Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain.
| | - Juliana M Rosa
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain.
| |
Collapse
|
47
|
Matt RA, Westhorpe FG, Romuar RF, Rana P, Gever JR, Ford AP. Fingerprinting heterocellular β-adrenoceptor functional expression in the brain using agonist activity profiles. Front Mol Biosci 2023; 10:1214102. [PMID: 37664183 PMCID: PMC10471193 DOI: 10.3389/fmolb.2023.1214102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Noradrenergic projections from the brainstem locus coeruleus drive arousal, attentiveness, mood, and memory, but specific adrenoceptor (AR) function across the varied brain cell types has not been extensively characterized, especially with agonists. This study reports a pharmacological analysis of brain AR function, offering insights for innovative therapeutic interventions that might serve to compensate for locus coeruleus decline, known to develop in the earliest phases of neurodegenerative diseases. First, β-AR agonist activities were measured in recombinant cell systems and compared with those of isoprenaline to generate Δlog(Emax/EC50) values, system-independent metrics of agonist activity, that, in turn, provide receptor subtype fingerprints. These fingerprints were then used to assess receptor subtype expression across human brain cell systems and compared with Δlog(Emax/EC50) values arising from β-arrestin activation or measurements of cAMP response desensitization to assess the possibility of ligand bias among β-AR agonists. Agonist activity profiles were confirmed to be system-independent and, in particular, revealed β2-AR functional expression across several human brain cell types. Broad β2-AR function observed is consistent with noradrenergic tone arising from the locus coeruleus exerting heterocellular neuroexcitatory and homeostatic influence. Notably, Δlog(Emax/EC50) measurements suggest that tested β-AR agonists do not show ligand bias as it pertains to homologous receptor desensitization in the system examined. Δlog(Emax/EC50) agonist fingerprinting is a powerful means of assessing receptor subtype expression regardless of receptor expression levels or assay readout, and the method may be applicable to future use for novel ligands and tissues expressing any receptor with available reference agonists.
Collapse
|
48
|
Gheres KW, Ünsal HS, Han X, Zhang Q, Turner KL, Zhang N, Drew PJ. Arousal state transitions occlude sensory-evoked neurovascular coupling in neonatal mice. Commun Biol 2023; 6:738. [PMID: 37460780 PMCID: PMC10352318 DOI: 10.1038/s42003-023-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
In the adult sensory cortex, increases in neural activity elicited by sensory stimulation usually drive vasodilation mediated by neurovascular coupling. However, whether neurovascular coupling is the same in neonatal animals as adults is controversial, as both canonical and inverted responses have been observed. We investigated the nature of neurovascular coupling in unanesthetized neonatal mice using optical imaging, electrophysiology, and BOLD fMRI. We find in neonatal (postnatal day 15, P15) mice, sensory stimulation induces a small increase in blood volume/BOLD signal, often followed by a large decrease in blood volume. An examination of arousal state of the mice revealed that neonatal mice were asleep a substantial fraction of the time, and that stimulation caused the animal to awaken. As cortical blood volume is much higher during REM and NREM sleep than the awake state, awakening occludes any sensory-evoked neurovascular coupling. When neonatal mice are stimulated during an awake period, they showed relatively normal (but slowed) neurovascular coupling, showing that that the typically observed constriction is due to arousal state changes. These result show that sleep-related vascular changes dominate over any sensory-evoked changes, and hemodynamic measures need to be considered in the context of arousal state changes.
Collapse
Affiliation(s)
- Kyle W Gheres
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hayreddin S Ünsal
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Electrical and Electronics Engineering, Abdullah Gul University, Kayseri, Türkiye
| | - Xu Han
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Patrick J Drew
- Molecular Cellular and Integrative Bioscience program, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State University, University Park, PA, 16802, USA.
- Departments of Neurosurgery and Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
49
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Malan D, Brown BJ, Dine J, Levy R, Litvin A, Regev N, Subramaniam S, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Soba P, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory OptoGPCR for multiplexed optogenetic control of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547328. [PMID: 37425961 PMCID: PMC10327178 DOI: 10.1101/2023.07.01.547328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Malan
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Bobbie J. Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Present address: Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, Universität Bonn, Bonn, Germany
| | - Benjamin R. Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter Soba
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- LIMES-Institute, University of Bonn, Bonn, Germany
| | - Yuval Nir
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J. Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- Present address: MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
50
|
Linkovski O, Naftalovich H, David M, Seror Y, Kalanthroff E. The Effect of Symptom-Provocation on Inhibitory Control in Obsessive-Compulsive Disorder Patients Is Contingent upon Chronotype and Time of Day. J Clin Med 2023; 12:4075. [PMID: 37373768 DOI: 10.3390/jcm12124075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Studies have shown that alertness can affect inhibitory control, the mechanism responsible for stopping behaviors, thoughts, or emotions. Inhibitory control is particularly important for helping individuals with Obsessive-Compulsive Disorder (OCD) resisting their symptoms. Chronotype is the mechanism governing an individual's fluctuation of alertness throughout the day. Previous studies have shown that individuals with a 'morning' chronotype have worse OCD symptoms in the evening and vice versa. We administered a novel 'symptom-provocation stop signal task' (SP-SST), in which individually tailored OCD triggers were presented and inhibitory control was measured. Twenty-five treatment-seeking OCD patients completed the SP-SST three times per day for seven consecutive days. Stop signal reaction time (SSRT), which measures inhibitory control, was calculated separately for symptom-provocation trials and for neutral trials. Results yielded that: (a) stopping was significantly harder in the symptom-provocation compared to neutral trials, and (b) the chronotype by time-of-day interaction predicts inhibition for both symptom-provocation and neutral trials, indicating better inhibition in the optimal time of day. Furthermore, we concluded that individually tailored OCD triggers have a detrimental effect on inhibitory control. Most importantly, higher alertness levels, which can be predicted by the interaction of chronotype and time of day, affect inhibitory control, both in general and for OCD triggers specifically.
Collapse
Affiliation(s)
- Omer Linkovski
- Department of Psychology, Bar-Ilan University, Ramat-Gan 52900, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hadar Naftalovich
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Mor David
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Yuval Seror
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Eyal Kalanthroff
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|