1
|
Koyama T, Saeed U, Rewitz K, Halberg KV. The Integrative Physiology of Hormone Signaling: Insights from Insect Models. Physiology (Bethesda) 2025; 40:0. [PMID: 39887191 DOI: 10.1152/physiol.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Hormones orchestrate virtually all physiological processes in animals and enable them to adjust internal responses to meet diverse physiological demands. Studies in both vertebrates and insects have uncovered many novel hormones and dissected the physiological mechanisms they regulate, demonstrating a remarkable conservation in endocrine signaling across the tree of life. In this review, we focus on recent advances in insect research, which have provided a more integrative view of the conserved interorgan communication networks that control physiology. These new insights have been driven by experimental advantages inherent to insects, which over the past decades have aligned with new technologies and sophisticated genetic tools, to transform insect genetic models into a powerful testbed for posing new questions and exploring longstanding issues in endocrine research. Here, we illustrate how insect studies have addressed classic questions in three main areas, hormonal control of growth and development, neuroendocrine regulation of ion and water balance, and hormonal regulation of behavior and metabolism, and how these discoveries have illuminated our fundamental understanding of endocrine signaling in animals. The application of integrative physiology in insect systems to questions in endocrinology and physiology is expanding and is poised to be a crucible of discovery, revealing fundamental mechanisms of hormonal regulation that underlie animal adaptations to their environments.
Collapse
Affiliation(s)
- Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Usama Saeed
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Rajan A, Karpac J. Inter-organ communication in Drosophila: Lipoproteins, adipokines, and immune-metabolic coordination. Curr Opin Cell Biol 2025; 94:102508. [PMID: 40187050 DOI: 10.1016/j.ceb.2025.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Inter-organ communication networks are essential for maintaining systemic homeostasis in multicellular organisms. In Drosophila melanogaster, studies of adipokines and lipoproteins reveal evolutionarily conserved mechanisms coordinating metabolism, immunity, and behavior. This mini-review focuses on two key pathways: the adipokine Unpaired 2 (Upd2) and lipoprotein-mediated signaling. Upd2, a leptin analog, mediates fat-brain communication to regulate insulin secretion, sleep, and feeding behavior. Recent work has uncovered an LC3/Atg8-dependent secretion mechanism for Upd2, linking nutrient sensing to systemic adaptation. Lipoproteins, particularly ApoLpp and LTP, function beyond lipid transport, orchestrating neural maintenance and immune responses. During infection, macrophage-derived signals trigger lipoprotein-mediated lipid redistribution to support host defense. Additionally, muscle tissue emerges as an unexpected mediator of immune-metabolic coordination through inter-organ signaling. These findings highlight the intricate cross-talk between organs required for organismal survival and suggest therapeutic strategies for metabolic disorders.
Collapse
Affiliation(s)
- Akhila Rajan
- Basic Sciences Division, Fred Hutch, Seattle, WA, USA.
| | - Jason Karpac
- Department of Biology, Texas A&M University, College Station, TX, USA; Department of Cell Biology and Genetics, Texas A&M University, College of Medicine, Bryan, TX, USA.
| |
Collapse
|
3
|
Biswas P, Bako JA, Liston JB, Yu H, Wat LW, Miller CJ, Gordon MD, Huan T, Stanley M, Rideout EJ. Insulin/insulin-like growth factor signaling pathway promotes higher fat storage in Drosophila females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.623936. [PMID: 40342968 PMCID: PMC12060994 DOI: 10.1101/2024.11.18.623936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In Drosophila , adult females store more fat than males. While the mechanisms that restrict body fat in males are becoming clearer, less is known about how females achieve higher fat storage. Here, we perform a detailed investigation of the mechanisms that promote higher fat storage in females. We show greater intake of dietary sugar supports higher fat storage due to female-biased remodeling of the fat body lipidome. Dietary sugar stimulates a female-specific increase in Drosophila insulin-like peptide 3 (Dilp3), which acts together with greater peripheral insulin sensitivity to augment insulin/insulin-like growth factor signaling pathway (IIS) activity in adult females. Indeed, Dilp3 overexpression prevented the female-biased decrease in body fat after removal of dietary sugar. Given that adult-specific IIS inhibition caused a female-biased decrease in body fat, our data reveal IIS as a key determinant of female fat storage.
Collapse
|
4
|
Diaz AV, Tekin I, Reis T. Drosophila as a Genetic Model System to Study Organismal Energy Metabolism. Biomolecules 2025; 15:652. [PMID: 40427545 PMCID: PMC12108566 DOI: 10.3390/biom15050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Metabolism is the essential process by which an organism converts nutrients into energy to fuel growth, development, and repair. Metabolism at the level of a multicellular, multi-organ animal is inherently more complex than metabolism at the single-cell level. Indeed, each organ also must maintain its own homeostasis to function. At all three scales, homeostasis is a defining feature: as energy sources and energetic demands wax and wane, the system must be robust. While disruption of organismal energy homeostasis can be manifested in different ways in humans, obesity (defined as excess body fat) is an increasingly common outcome of metabolic imbalance. Here we will discuss the genetic basis of metabolic dysfunction that underlies obesity. We focus on what we are learning from Drosophila melanogaster as a model organism to explore and dissect genetic causes of metabolic dysfunction in the context of a whole organism.
Collapse
Affiliation(s)
| | | | - Tânia Reis
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Geier B, Roy B, Reiter LT. Small molecule ion channel agonist/antagonist screen reveals seizure suppression via glial Irk2 activation in a Drosophila model of Dup15q syndrome. Neurobiol Dis 2025; 208:106882. [PMID: 40122181 PMCID: PMC12117380 DOI: 10.1016/j.nbd.2025.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025] Open
Abstract
The neurogenetic disorder duplication 15q syndrome (Dup15q) is characterized by a high incidence of autism spectrum disorder (ASD) and pharmacoresistant epilepsy. Standard-of-care broad-spectrum anti-seizure medications (ASM) often fail to control seizures in Dup15q, emphasizing the need for the identification of new therapeutic compounds. Previously, we generated a model of Dup15q in Drosophila melanogaster by overexpressing Dube3a in glial cells, instead of neurons. This model recapitulates the spontaneous seizures present in Dup15q patients. Here, we screened a set of FDA-approved compounds for their ability to suppress seizures in repo > Dube3a flies. We used 72 compounds from the Enzo SCREEN-WELL Ion Channel Library for primary screening of seizure suppression. Six compounds were identified that significantly reduced seizure duration. Furthermore, the compounds that passed the primary and secondary screenings were associated with K+ channels. Glial-specific knockdown of the inward rectifying potassium (Irk) 2 channel exacerbated the seizure phenotype in these animals indicating a mechanism of action for drugs that bind irk2, like minoxidil, and can suppress seizures through the rebalancing of K+ extracellularly. This pharmacological and molecular investigation further supports the role of extracellular K+ content in Dup15q seizure activation and provides a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin Geier
- Department of Physiology, Tulane University, New Orleans, LA, USA; Graduate Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | - Bidisha Roy
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
6
|
Hill V, Williams L, Salter A, Brameld J, Parr T. Octopamine alters yellow mealworm body composition. Animal 2025; 19:101490. [PMID: 40222199 DOI: 10.1016/j.animal.2025.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
There is the potential to increase the production yield within the emerging insect industry in order to produce high-quality, sustainable protein. In invertebrates, the monoamine, octopamine (OA), has a similar role to that of noradrenaline in mammals. Beta-2 adrenergic agonists increase protein and decrease fat deposition in mammals, thereby inducing favourable changes in body composition. We hypothesised that OA would have similar effects in insects. Tenebrio molitor larvae, commonly called yellow mealworms, were fed for 35 days on either control wheat bran or wheat bran containing OA at 5 μg OA/g. There were trends for treatment × time interactions for mealworm group weight (P = 0.075) and individual mealworm weight (P = 0.069), with the OA group becoming heavier/bigger after 18 days. In addition, there was a trend for a treatment × time interaction on cumulative pupation (P = 0.099), with OA-treated mealworms having delayed pupation. After 35 days of OA treatment, there were significant effects on mealworm final body proximate nutrient composition on a DM basis, with fat content being significantly decreased (by 8%, P = 0.006), whilst CP was significantly increased (by 6%, P = 0.019) in OA-treated mealworms compared to control. There was little effect of OA on the fatty acid composition of the mealworms, with small reductions in palmitoleic acid (P < 0.001) and oleic acid (P = 0.082). Despite a significant increase in protein content with OA treatment, SDS-PAGE did not reveal any changes in the proteins being expressed. Hence, OA treatment of mealworms resulted in an increase in the proportion of protein and a decrease in fat, demonstrating that mealworm nutrient composition can potentially be manipulated to provide a higher-value feed ingredient.
Collapse
Affiliation(s)
- V Hill
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - L Williams
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - A Salter
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - J Brameld
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Food Systems Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - T Parr
- School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Food Systems Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
7
|
Shira CD, Malakar K, Das B. Unravelling the Role of Insulin-Like Peptide Genes in Bombyx mori: Potential Key Regulators of Insect Metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70054. [PMID: 40235296 DOI: 10.1002/arch.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Understanding gene expression in specific tissues and their modulation under environmental stimuli, such as nutritional deficiency, reveals the key physiological regulatory mechanisms of an organism. This study examined the tissue-specific expression of insulin-like peptide (ILP) genes (BmX and BmZ) in Bombyx mori larvae and their responses to hyperglycaemia, food deprivation and hormonal (20-hydroxyecdysone and bovine insulin) treatments. mRNA expression levels of BmX and BmZ were analyzed in the brain, fat body, midgut and ovary. The results revealed that BmX was highly expressed in the fat body, while both genes were abundant in the ovary. Hyperglycaemia increased BmX mRNA expression level in the midgut (3.07-fold) and brain (7.53-fold), while BmZ mRNA expression level was increased in all tissues except the midgut. Nutrient deficiency upregulated BmX mRNA expression level (1.36-fold) in the fat body while reducing it (-0.53-fold) in the midgut. Food deprivation progressively increased (0.77-fold at 24 h and 2.34-fold at 72 h) BmX mRNA expression level in the fat body, while both BmX and BmZ transcripts declined in the midgut. Insulin suppressed BmX (-0.25-fold) and BmZ (-0.91-fold) mRNA expression levels in food-deprived larvae in the fat body, whereas 20E consistently downregulated BmX, BmZ, and BmInR (insulin receptor) mRNA expression levels in all the conditions. These findings revealed the complex interaction of gene expression, tissue specificity, and environmental factors in B. mori larvae and provided insights into adaptive responses to nutritional stress and hormonal regulation in the insect with potential applications in sericulture and agricultural biotechnology.
Collapse
Affiliation(s)
- Creaminar D Shira
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kanmoni Malakar
- Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
8
|
Hopkins T, Ragsdale C, Seo J. Elevated ambient temperature reduces fat storage through the FoxO-mediated insulin signaling pathway. PLoS One 2025; 20:e0317971. [PMID: 40009607 PMCID: PMC11864546 DOI: 10.1371/journal.pone.0317971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Temperature profoundly impacts all living organisms, influencing development, growth, longevity, and metabolism. Specifically, when adult flies are exposed to high temperatures, there is a notable reduction in their body fat content. We investigate the roles of the insulin signaling pathway in temperature-mediated fat storage. This pathway is not only highly conserved from insects to mammals but also crucial in regulating lipid metabolism, cell proliferation, and tissue growth. The Forkhead box O (FoxO) protein functions as a key downstream signaling molecule in this pathway, mediating the inhibitory effects of insulin signaling. At elevated temperatures, direct targets of FoxO, such as insulin receptor (InR), Thor (Drosophila eukaryotic initiation factor 4E binding protein), and FoxO itself, are significantly upregulated, which indicates an inhibition of insulin signaling. Interestingly, this inhibition seems to occur independently of Drosophila insulin-like peptide (Ilp) stimuli, as not all Ilp transcripts were reduced at elevated temperatures. Furthermore, when S2R + Drosophila cells are incubated at high temperatures, there is a marked decrease in Akt phosphorylation, directly supporting the notion that elevated temperatures can inhibit insulin signaling in a cell-autonomous manner, independent of Ilp levels. Subsequent experiments demonstrated that either constitutively active InR or knockdown of FoxO prevents the reduction of body fat at high temperatures. Together, these findings highlight the critical role of the insulin signaling-FoxO branch in regulating lipid homeostasis under heat stress conditions.
Collapse
Affiliation(s)
- Tucker Hopkins
- Department of Biology, College of Arts and Sciences, Rogers State University, Claremore, Oklahoma, United States of America
| | - Cole Ragsdale
- Department of Biology, College of Arts and Sciences, Rogers State University, Claremore, Oklahoma, United States of America
| | - Jin Seo
- Department of Biology, College of Arts and Sciences, Rogers State University, Claremore, Oklahoma, United States of America
| |
Collapse
|
9
|
Nelson N, Miller V, Broadie K. Neuron-to-glia and glia-to-glia signaling directs critical period experience-dependent synapse pruning. Front Cell Dev Biol 2025; 13:1540052. [PMID: 40040788 PMCID: PMC11876149 DOI: 10.3389/fcell.2025.1540052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Experience-dependent glial synapse pruning plays a pivotal role in sculpting brain circuit connectivity during early-life critical periods of development. Recent advances suggest a layered cascade of intercellular communication between neurons and glial phagocytes orchestrates this precise, targeted synapse elimination. We focus here on studies from the powerful Drosophila forward genetic model, with reference to complementary findings from mouse work. We present both neuron-to-glia and glia-to-glia intercellular signaling pathways directing experience-dependent glial synapse pruning. We discuss a putative hierarchy of secreted long-distance cues and cell surface short-distance cues that act to sequentially orchestrate glia activation, infiltration, target recognition, engulfment, and then phagocytosis for synapse pruning. Ligand-receptor partners mediating these stages in different contexts are discussed from recent Drosophila and mouse studies. Signaling cues include phospholipids, small neurotransmitters, insulin-like peptides, and proteins. Conserved receptors for these ligands are discussed, together with mechanisms where the receptor identity remains unknown. Potential mechanisms are proposed for the tight temporal-restriction of heightened experience-dependent glial synapse elimination during early-life critical periods, as well as potential means to re-open such plasticity at maturity.
Collapse
Affiliation(s)
- Nichalas Nelson
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Vanessa Miller
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University and Medical Center, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Li YX, Shao BY, Hou MY, Dong DJ. Succinylation enables IDE to act as a hub of larval tissue destruction and adult tissue reconstruction during insect metamorphosis. SCIENCE ADVANCES 2025; 11:eads0643. [PMID: 39908369 PMCID: PMC11797550 DOI: 10.1126/sciadv.ads0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025]
Abstract
Metamorphosis is an important way for insects to adapt to the environment. In this process, larval tissue destruction regulated by 20-hydroxyecdysone (20E) and adult tissue reconstruction regulated by insulin-like peptides (ILPs) occur simultaneously, but the detailed mechanism is still unclear. Here, the results of succinylome, subcellular localization, and protein interaction analysis show that non-succinylated insulin-degrading enzyme (IDE) localizes in the cytoplasm, binds to insulin-like growth factor 2 (IGF-2-like), and degrades it. When the metamorphosis is initiated, 20E up-regulated carnitine palmitoyltransferase 1A (Cpt1a) through transcription factor Krüppel-like factor 15 (KLF15), thus increasing the level of IDE succinylation on K179. Succinylated IDE translocated from cytoplasm to nucleus, combined with ecdysone receptor to promote 20E signaling pathway, causing larval tissue destruction, while IGF-2-like was released to promote adult tissue proliferation. That is, succinylation alters subcellular localization of IDE so that it can bind to different target proteins and act as a hub of metamorphosis.
Collapse
Affiliation(s)
| | | | - Ming-Ye Hou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, China
| |
Collapse
|
11
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Nässel DR. A brief history of insect neuropeptide and peptide hormone research. Cell Tissue Res 2025; 399:129-159. [PMID: 39653844 PMCID: PMC11787221 DOI: 10.1007/s00441-024-03936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025]
Abstract
This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic "networks" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
13
|
Karpova EK, Bobrovskikh MA, Burdina EV, Adonyeva NV, Deryuzhenko MA, Zakharenko LP, Petrovskii DV, Gruntenko NE. Larval stress affects adult Drosophila behavior and metabolism. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104709. [PMID: 39299381 DOI: 10.1016/j.jinsphys.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In this study, we raised the following question: "Does metamorphosis, being a "reboot" of all systems of the organism, erase the changes that occurred at earlier stages of insect development?" To answer this question, we investigated several behavioral, metabolic and neuroendocrine parameters in Drosophila melanogaster imago that had undergone heat stress at the 3rd larval instar (32 °C, 48 h). We discovered that larval stress negatively affected feeding and locomotor behavior, as well as total lipid content in adult flies. At the same time, these flies demonstrated a considerable increase in carbohydrate content and expression level of insulin/insulin-like growth factor signaling (IIS) pathway genes, dfoxo, dilp6 and dInR. The data obtained allow us to conclude that metamorphosis does not erase the effect of stress exposure at early developmental stages and causes dramatic changes in carbohydrate and lipid metabolism as well as locomotor activity of adult insects, which is at least in part due to changes in IIS activity.
Collapse
Affiliation(s)
- Evgenia K Karpova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Elena V Burdina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
15
|
Subhadra M, Mir DA, Ankita K, Sindunathy M, Kishore HD, Ravichandiran V, Balamurugan K. Exploring diabesity pathophysiology through proteomic analysis using Caenorhabditis elegans. Front Endocrinol (Lausanne) 2024; 15:1383520. [PMID: 39539936 PMCID: PMC11557309 DOI: 10.3389/fendo.2024.1383520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diabesity, characterized by obesity-driven Type 2 diabetes mellitus (T2DM), arises from intricate genetic and environmental interplays that induce various metabolic disorders. The systemic lipid and glucose homeostasis is controlled by an intricate cross-talk of internal glucose/insulin and fatty acid molecules to maintain a steady state of internal environment. Methods In this study, Caenorhabditis elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients to delve into the mechanistic foundations of diabesity. Various assays were conducted to measure intracellular triglyceride levels, lifespan, pharyngeal pumping rate, oxidative stress indicators, locomotor behavior, and dopamine signaling. Proteomic analysis was also performed to identify differentially regulated proteins and dysregulated KEGG pathways, and microscopy and immunofluorescence staining were employed to assess collagen production and anatomical integrity. Results Worms raised on diets high in glucose and cholesterol exhibited notably increased intracellular triglyceride levels, a decrease in both mean and maximum lifespan, and reduced pharyngeal pumping. The diabesity condition induced oxidative stress, evident from heightened ROS levels and distinct FT-IR spectroscopy patterns revealing lipid and protein alterations. Furthermore, impaired dopamine signaling and diminished locomotors behavior in diabesity-afflicted worms correlated with reduced motility. Through proteomic analysis, differentially regulated proteins encompassing dysregulated KEGG pathways included insulin signaling, Alzheimer's disease, and nicotinic acetylcholine receptor signaling pathways were observed. Moreover, diabesity led to decreased collagen production, resulting in anatomical disruptions validated through microscopy and immunofluorescence staining. Discussion This underscores the impact of diabesity on cellular components and structural integrity in C. elegans, providing insights into diabesity-associated mechanisms.
Collapse
Affiliation(s)
- Malaimegu Subhadra
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Dilawar Ahmad Mir
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Koley Ankita
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Hambram David Kishore
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | | |
Collapse
|
16
|
Rundell TB, Baranski TJ. Insect Models to Study Human Lipid Metabolism Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39405006 DOI: 10.1007/5584_2024_827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Disorders of lipid metabolism such as obesity have become some of the most significant diseases of the twenty-first century. Despite these metabolic diseases affecting more than a third of the population in highly industrialized nations, the mechanisms underlying disease development remain poorly understood. Insect models, such as Drosophila melanogaster, offer a means of systematically examining conserved lipid metabolism and its pathology. Over the past several decades, Drosophila melanogaster has been used to greatly expand on our knowledge of metabolic disease, often taking advantage of the extensive genetic tools available to researchers. Additionally, Drosophila melanogaster has served and will continue to serve as a powerful tool for validating the results of genome-wide approaches to the study of diseases. This chapter explores the advancements of insect models in the study of lipid metabolism disorders as well as highlight opportunities for future areas of research.
Collapse
Affiliation(s)
- Thomas B Rundell
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
17
|
Han B, Hu J, Yang C, Tang J, Du Y, Guo L, Wu Y, Zhang X, Zhou X. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms. Proc Natl Acad Sci U S A 2024; 121:e2405410121. [PMID: 39186650 PMCID: PMC11388347 DOI: 10.1073/pnas.2405410121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
The gut microbiome plays an important role in honeybee hormonal regulation and growth, but the underlying mechanisms are poorly understood. Here, we showed that the depletion of gut bacteria resulted in reduced expression of insulin-like peptide gene (ilp) in the head, accompanied by metabolic syndromes resembling those of Type 1 diabetes in humans: hyperglycemia, impaired lipid storage, and decreased metabolism. These symptoms were alleviated by gut bacterial inoculation. Gut metabolite profiling revealed that succinate, produced by Lactobacillus Firm-5, played deterministic roles in activating ilp gene expression and in regulating metabolism in honeybees. Notably, we demonstrated that succinate modulates host ilp gene expression through stimulating gut gluconeogenesis, a mechanism resembling that of humans. This study presents evidence for the role of gut metabolite in modulating host metabolism and contributes to the understanding of the interactions between gut microbiome and bee hosts.
Collapse
Affiliation(s)
- Benfeng Han
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing100193, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Jiawei Hu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Chengfeng Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- Sanya Institute of China Agricultural University, Hainan572024, China
| | - Junbo Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing100083, China
| | - Yating Du
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Lizhen Guo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Yashuai Wu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- Sanya Institute of China Agricultural University, Hainan572024, China
| |
Collapse
|
18
|
Ogunsuyi OB, Olagoke OC, Famutimi ME, Olatunde DM, Souza DOG, Oboh G, Barbosa NV, Rocha JBT. Neural acetylcholinesterase and monoamine oxidase deregulation during streptozotocin-induced behavioral, metabolic and redox modification in Nauphoeta cinerea. BMC Neurosci 2024; 25:42. [PMID: 39210265 PMCID: PMC11363635 DOI: 10.1186/s12868-024-00890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic and environmental factors have been linked with neurodegeneration, especially in the elderly. Yet, efforts to impede neurodegenerative processes have at best addressed symptoms instead of underlying pathologies. The gap in the understanding of neuro-behavioral plasticity is consistent from insects to mammals, and cockroaches have been proven to be effective models for studying the toxicity mechanisms of various chemicals. We therefore used head injection of 74 and 740 nmol STZ in Nauphoeta cinerea to elucidate the mechanisms of chemical-induced neurotoxicity, as STZ is known to cross the blood-brain barrier. Neurolocomotor assessment was carried out in a new environment, while head homogenate was used to estimate metabolic, neurotransmitter and redox activities, followed by RT-qPCR validation of relevant cellular signaling. STZ treatment reduced the distance and maximum speed travelled by cockroaches, and increased glucose levels while reducing triglyceride levels in neural tissues. The activity of neurotransmitter regulators - AChE and MAO was exacerbated, with concurrent upregulation of glucose sensing and signaling, and increased mRNA levels of redox regulators and inflammation-related genes. Consequently, STZ neurotoxicity is conserved in insects, with possible implications for using N. cinerea to target the multi-faceted mechanisms of neurodegeneration and test potential anti-neurodegenerative agents.
Collapse
Affiliation(s)
- Opeyemi B Ogunsuyi
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olawande C Olagoke
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Translational Research and Technology Innovation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Physiology, Kampala International University, Ishaka-Bushenyi, Uganda.
| | - Mayokun E Famutimi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Damilola M Olatunde
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Diogo O G Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Ganiyu Oboh
- Drosophila Research Lab, Functional Foods and Nutraceuticals Unit, Federal University of Technology, P.M.B. 704, Akure, Nigeria
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Programa de Pos-graduacao em Bioquimica Toxicologica, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
19
|
O’Hara MK, Saul C, Handa A, Cho B, Zheng X, Sehgal A, Williams JA. The NFκB Dif is required for behavioral and molecular correlates of sleep homeostasis in Drosophila. Sleep 2024; 47:zsae096. [PMID: 38629438 PMCID: PMC11321855 DOI: 10.1093/sleep/zsae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal overexpression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.
Collapse
Affiliation(s)
- Michael K O’Hara
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Bumsik Cho
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Amita Sehgal
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Williams
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wang L, Han Z, Liu X, Li S, Bi H, Feng C. Identification and Functional Analysis of Adipokinetic Hormone Receptor in Ostrinia furnacalis Guenée Larvae Parasitized by Macrocentrus cingulum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 116:e22147. [PMID: 39190556 DOI: 10.1002/arch.22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
As a typical G protein-coupled receptor, the adipokinetic hormone receptor (AKHR) has seven transmembrane domains (TMDs), and its structure and function are similar to the gonadotropin-releasing hormone receptor (GnRHR) in vertebrates. However, there is a dearth of information on other components of the AKHR signaling pathway and how it functions in the interaction between insect hosts and parasitoids. In this study, we cloned and analyzed the multifunctional Ostrinia furnacalis AKHR (OfAKHR) cDNA (GenBank accession number MF797868). OfAKHR has a 2206 bp full-length cDNA, which includes an open reading frame containing 1194 bp. OfAKHR contains the typical seven TMDs, and a "DRY" motif. OfAKHR has the highest relative expression in the fat body and the fifth instar larvae. The results revealed that ApoLpⅢ, PPO2, GS, TPS, Cecropin, and Moricin decreased the transcription levels from 48 to 72 h after the knockdown of OfAKHR expression by dsOfAKHR injection in the fourth instar O. furnacalis larvae. The parasitization of Macrocentrus cingulum selectively upregulated the expression levels of nutrition metabolism and immune-related genes in parasitized O. furnacalis larvae, stimulated lysozyme activity, and obviously raised the concentrations of triglyceride and trehalose in the hemolymph of O. furnacalis larvae. However, they inhibited the activities of PO and trehalase. This study is conducive to a deeper cognition of the roles of OfAKHR in nutrition and immune homeostasis, coevolution, and coexistence between parasitic wasps and hosts. It also sheds light on the potential as the target of pest control reagents.
Collapse
Affiliation(s)
- Libao Wang
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Oceanology & Marine Fisheries, Nantong, Jiangsu, China
| | - Zhaoyang Han
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xu Liu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuzhong Li
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Honglun Bi
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Congjing Feng
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Qiu X, Huang W, Yue W, Li D, Zhi J. Response of the serine/threonine kinase AKT and phosphoinositide-dependent kinase PDK in Frankliniella occidentalis (Thysanoptera: Thripidae) to three kinds of foods and their regulation of reproductive function. INSECT MOLECULAR BIOLOGY 2024; 33:372-386. [PMID: 38450915 DOI: 10.1111/imb.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Frankliniella occidentalis (Pergande) is a typical omnivorous insect that feeds on host plants, pollens and mite eggs, and poses a threat to crops worldwide. The insulin signalling pathway (ISP) is a typical nutrient-sensitive pathway that participates in the regulation of various functions in insects. Serine/threonine kinases (AKTs) and phosphoinositide-dependent kinases (PDKs) are key components of the ISP. In this study, the FoAKT and FoPDK genes in F. occidentalis were cloned, and the effects of three foods on their expression were determined. The expression of FoAKT and FoPDK in the thrips fed on kidney bean leaves supplemented with pine pollen or mite eggs was higher than in those primarily fed on leaves alone. Meanwhile, the fecundity of thrips fed on leaves supplemented with pine pollen was highest. In addition, RNA interference-mediated knockdown of FoAKT and FoPDK decreased vitellogenin (Vg) content and Vg expression in females, shortened ovariole length, delayed egg development and reduced fecundity and offspring hatching rates. Furthermore, the synthesis of juvenile hormone (JH) was reduced, and the contents of glucose, trehalose, glycogen and trehalase were affected. These results suggest that FoAKT and FoPDK regulate the reproduction of F. occidentalis by regulating Vg and JH production as well as carbohydrate metabolism.
Collapse
Affiliation(s)
- Xinyue Qiu
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Wanqing Huang
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Tobacco Company, Tongren Branch, Tongren, China
| | - Wenbo Yue
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Dingyin Li
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Junrui Zhi
- The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
22
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
23
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
24
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
25
|
Li Y, Xu Y, Zhang B, Wang Z, Ma L, Sun L, Wang X, Lin Y, Li JA, Wu C. Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. extract relieves insulin resistance via PI3K/Akt signalling in diabetic Drosophila. J Tradit Complement Med 2024; 14:424-434. [PMID: 39035690 PMCID: PMC11259714 DOI: 10.1016/j.jtcme.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 07/23/2024] Open
Abstract
Background and aim Type-2 diabetes mellitus (T2DM) is mainly characterized by insulin resistance (IR) induced by hyperglycaemia and insufficient insulin secretion. We employed a diabetic fly model to examine the effect and molecular mechanism of Atractylodes macrocephala Koidz. and Cuscuta chinensis Lam. (AMK-CCL) extract as traditional Chinese medicine in treating IR and T2DM. Experimental procedure The contents of the active ingredients (rhamnose, xylose, mannose, and hyperoside) in AMK-CCL extract were determined by high-performance liquid chromatography. Wild-type (Cg-GAL4/+) or diabetic (Cg > InRK1409A) Drosophila flies were divided into the control group or metformin group and AMK-CCL (0.0125, 0.025, 0.05, 0.1 g/ml) groups. Food intake, haemolymph glucose and trehalose, protein, weight, triglycerides (TAG), and glycogen were measured to assess glycolipid metabolism. Phosphatidylinositol-3-kinase (PI3K)/Akt signalling was detected using fluorescent reporters [tGPH, Drosophila forkhead box O (dFoxO)-green fluorescent protein (GFP), Glut1-GFP, 2-NBDG] in vivo. Glut1/3 mRNA levels and Akt phosphorylation levels were detected by quantitative polymerase chain reaction and western blotting, respectively, in vitro. Results AMK-CCL extract contained 0.038 % rhamnose, 0.017 % xylose, 0.69 % mannose, and 0.039 % hyperoside. AMK-CCL at 0.0125 g/mL significantly suppressed the increase in circulating glucose, and the decrease in body weight, TAG, and glycogen contents of diabetic flies. AMK-CCL improved PI3K activity, Akt phosphorylation, Glut1/3 expression, and glucose uptake in diabetic flies, and also rescued diabetes-induced dFoxO nuclear localisation. Conclusions These findings indicate that AMK-CCL extract ameliorates IR-induced diabetes via the PI3K/Akt signalling pathway, providing an experimental basis for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Biwei Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhigang Wang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Leilei Ma
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Longyu Sun
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiuping Wang
- Institute of Coastal Agriculture Hebei Academy of Agriculture and Forestry Sciences, Tangshan, 063299, China
| | - Yimin Lin
- First Hospital of Qinhuangdao, 258 Wenhua Road, Qinguangdao, 066000, China
| | - Ji-an Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
- School of Public Health, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| |
Collapse
|
26
|
Mead EB, Lee M, Trammell CE, Goodman AG. Drosophila melanogaster Limostatin and Its Human Ortholog Promote West Nile Virus Infection. INSECTS 2024; 15:446. [PMID: 38921161 PMCID: PMC11203814 DOI: 10.3390/insects15060446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
The arbovirus West Nile virus (WNV) is a danger to global health. Spread primarily by mosquitoes, WNV causes about 2000 cases per year in the United States. The natural mosquito immune response controls viral replication so that the host survives but can still transmit the virus. Using the genetically malleable Drosophila melanogaster model, we previously dissected innate immune pathways used to control WNV infection. Specifically, we showed that insulin/IGF-1 signaling (IIS) activates a JAK/STAT-mediated immune response that reduces WNV. However, how factors that regulate IIS in insects control infection has not been identified. D. melanogaster Limostatin (Lst) encodes a peptide hormone that suppresses insulin secretion. Its mammalian ortholog, Neuromedin U (NMU), is a peptide that regulates the production and secretion of insulin from pancreatic beta cells. In this study, we used D. melanogaster and human cell culture models to investigate the roles of these insulin regulators in immune signaling. We found that D. melanogaster Lst mutants, which have elevated insulin-like peptide expression, are less susceptible to WNV infection. Increased levels of insulin-like peptides in these flies result in upregulated JAK/STAT activity, leading to protection from infection. Treatment of human cells with the insulin regulator NMU results in increased WNV replication. Further investigation of methods to target Lst in mosquitoes or NMU in mammals can improve vector control methods and may lead to improved therapeutics for human and animal infection.
Collapse
Affiliation(s)
- Ezra B. Mead
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miyoung Lee
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
27
|
Liu A, O’Connell J, Wall F, Carthew RW. Scaling between cell cycle duration and wing growth is regulated by Fat-Dachsous signaling in Drosophila. eLife 2024; 12:RP91572. [PMID: 38842917 PMCID: PMC11156469 DOI: 10.7554/elife.91572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.
Collapse
Affiliation(s)
- Andrew Liu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- NSF-Simons National Institute for Theory and Mathematics in BiologyChicagoUnited States
| | - Jessica O’Connell
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Farley Wall
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- NSF-Simons National Institute for Theory and Mathematics in BiologyChicagoUnited States
| |
Collapse
|
28
|
Singh A, Abhilasha KV, Acharya KR, Liu H, Nirala NK, Parthibane V, Kunduri G, Abimannan T, Tantalla J, Zhu LJ, Acharya JK, Acharya UR. A nutrient responsive lipase mediates gut-brain communication to regulate insulin secretion in Drosophila. Nat Commun 2024; 15:4410. [PMID: 38782979 PMCID: PMC11116528 DOI: 10.1038/s41467-024-48851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic β cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.
Collapse
Affiliation(s)
- Alka Singh
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Kathya R Acharya
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
- University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Velayoudame Parthibane
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Thiruvaimozhi Abimannan
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jacob Tantalla
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Usha R Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet controls axon guidance in early brain development through glutamatergic signaling. iScience 2024; 27:109634. [PMID: 38655199 PMCID: PMC11035372 DOI: 10.1016/j.isci.2024.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in ten-eleven translocation (TET) proteins are associated with human neurodevelopmental disorders. We find a function of Tet in regulating Drosophila early brain development. The Tet DNA-binding domain (TetAXXC) is required for axon guidance in the mushroom body (MB). Glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly down-regulated in the TetAXXC brains. Loss of Gs2 recapitulates the TetAXXC phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in IPCs rescues the defects of TetAXXC. Feeding TetAXXC with metabotropic glutamate receptor antagonist MPEP rescues the phenotype while glutamate enhances it. Mutants in Tet and Drosophila Fmr1, the homolog of human FMR1, have similar defects, and overexpression of Gs2 in IPCs also rescues the Fmr1 phenotype. We provide the first evidence that Tet controls the guidance of developing brain axons by modulating glutamatergic signaling.
Collapse
Affiliation(s)
- Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Le Le
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Badri Nath Singh
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
30
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
31
|
Liu A, O’Connell J, Wall F, Carthew RW. Scaling between cell cycle duration and wing growth is regulated by Fat-Dachsous signaling in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551465. [PMID: 38645118 PMCID: PMC11030236 DOI: 10.1101/2023.08.01.551465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The atypical cadherins Fat and Dachsous (Ds) signal through the Hippo pathway to regulate growth of numerous organs, including the Drosophila wing. Here, we find that Ds-Fat signaling tunes a unique feature of cell proliferation found to control the rate of wing growth during the third instar larval phase. The duration of the cell cycle increases in direct proportion to the size of the wing, leading to linear-like growth during the third instar. Ds-Fat signaling enhances the rate at which the cell cycle lengthens with wing size, thus diminishing the rate of wing growth. We show that this results in a complex but stereotyped relative scaling of wing growth with body growth in Drosophila. Finally, we examine the dynamics of Fat and Ds protein distribution in the wing, observing graded distributions that change during growth. However, the significance of these dynamics is unclear since perturbations in expression have negligible impact on wing growth.
Collapse
Affiliation(s)
- Andrew Liu
- Department of Molecular Biosciences, Northwestern University, Evanston IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston IL
| | - Jessica O’Connell
- Department of Molecular Biosciences, Northwestern University, Evanston IL
| | - Farley Wall
- Department of Molecular Biosciences, Northwestern University, Evanston IL
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston IL
| |
Collapse
|
32
|
Li Y, Wu F, Zhang J, Xu Y, Chang H, Yu Y, Jiang C, Gao X, Liu H, Chen Z, Wu C, Li JA. Mechanisms of Action of Potentilla discolor Bunge in Type 2 Diabetes Mellitus Based on Network Pharmacology and Experimental Verification in Drosophila. Drug Des Devel Ther 2024; 18:747-766. [PMID: 38495630 PMCID: PMC10941989 DOI: 10.2147/dddt.s439876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose Type 2 diabetes mellitus (T2DM) is associated with reduced insulin uptake and glucose metabolic capacity. Potentilla discolor Bunge (PDB) has been used to treat T2DM; however, the fundamental biological mechanisms remain unclear. This study aimed to understand the active ingredients, potential targets, and underlying mechanisms through which PDB treats T2DM. Methods Components and action targets were predicted using network pharmacology and molecular docking analyses. PDB extracts were prepared and validated through pharmacological intervention in a Cg>InRK1409A diabetes Drosophila model. Network pharmacology and molecular docking analyses were used to identify the key components and core targets of PDB in the treatment of T2DM, which were subsequently verified in animal experiments. Results Network pharmacology analysis revealed five effective compounds made up of 107 T2DM-related therapeutic targets and seven protein-protein interaction network core molecules. Molecular docking results showed that quercetin has a strong preference for interleukin-1 beta (IL1B), IL6, RAC-alpha serine/threonine-protein kinase 1 (AKT1), and cellular tumor antigen p53; kaempferol exhibited superior binding to tumor necrosis factor and AKT1; β-sitosterol demonstrated pronounced binding to Caspase-3 (CASP3). High-performance liquid chromatography data quantified quercetin, kaempferol, and β-sitosterol at proportions of 0.030%, 0.025%, and 0.076%, respectively. The animal experiments revealed that PDB had no effect on the development, viability, or fertility of Drosophila and it ameliorated glycolipid metabolism disorders in the diabetes Cg>InRK1409A fly. Furthermore, PDB improved the body size and weight of Drosophila, suggesting its potential to alleviate insulin resistance. Moreover, PDB improved Akt phosphorylation and suppressed CASP3 activity to improve insulin resistance in Drosophila with T2DM. Conclusion Our findings suggest that PDB ameliorates diabetes metabolism disorders in the fly model by enhancing Akt activity and suppressing CASP3 expression. This will facilitate the development of key drug targets and a potential therapeutic strategy for the clinical treatment of T2DM and related metabolic diseases.
Collapse
Affiliation(s)
- Yinghong Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Fanwu Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Jianbo Zhang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Ye Xu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Hong Chang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Yueyue Yu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Chunhua Jiang
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Xiujuan Gao
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Huijuan Liu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Zhen Chen
- Oriental Herbs KFT, Budapest, Hungary
| | - Chenxi Wu
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
| | - Ji-An Li
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China
- School of Public Health, North China University of Science and Technology, Tangshan, People’s Republic of China
| |
Collapse
|
33
|
Yan Y, Qin DD, Yang H, Xu KK, Li C, Yang WJ. MicroR-9c-5p and novel-mir50 co-target Akt to regulate Lasioderma serricorne reproduction. INSECT SCIENCE 2024; 31:106-118. [PMID: 37350038 DOI: 10.1111/1744-7917.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/09/2023] [Accepted: 05/09/2023] [Indexed: 06/24/2023]
Abstract
High fecundity is a common characteristic of insect pests which increases the difficulty of population control. Serine/threonine kinase Akt is an indispensable component of the insulin signaling pathway. Silencing of LsAkt severely hinders reproduction in Lasioderma serricorne, a stored product insect pest. However, the post-transcriptional pathway of LsAkt in L. serricorne remains unknown. This study identified 2 binding sites of miR-9c-5p and novel-mir50 in the coding sequences of LsAkt. The expression profiles of 2 microRNAs (miRNAs) and LsAkt displayed an opposite pattern during the adult stages. Luciferase reporter assay showed that novel-mir50 and miR-9c-5p could downregulate the expression of LsAkt. Overexpression of miR-9c-5p and novel-mir50 by injection of mimics inhibited the expression of LsAkt and reduced oviposition, decreased egg hatchability, and blocked ovarian development. It also decreased the expression of genes involved in ovarian development (LsVg and LsVgR) and the nutritional signaling pathway (LsTOR, LsS6K, and Ls4EBP), and reduced the phosphorylation of Akt. Conversely, injection of miR-9c-5p and novel-mir50 inhibitors induced the expressions of LsAkt, LsVg, LsVgR, LsTOR, LsS6K, and Ls4EBP, enhanced Akt phosphorylation level, and accelerated ovarian development. Injection of bovine insulin downregulated the expression of miR-9c-5p and novel-mir50 and upregulated the LsAkt expression. It also rescued the reproductive development defects associated with miR-9c-5p/novel-mir50 overexpression, forming a positive regulatory loop of insulin signaling. These results indicate that miR-9c-5p/novel-mir50 regulates the female reproduction of L. serricorne by targeting Akt in response to insulin signaling. The data also demonstrate the effects of the insulin/miRNA/Akt regulatory axis in insect reproduction.
Collapse
Affiliation(s)
- Yi Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Dong-Dong Qin
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Wen-Jia Yang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
34
|
Saedi H, Waro G, Giacchetta L, Tsunoda S. miR-137 regulates PTP61F, affecting insulin signaling, metabolic homeostasis, and starvation resistance in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2319475121. [PMID: 38252824 PMCID: PMC10835047 DOI: 10.1073/pnas.2319475121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
miR-137 is a highly conserved brain-enriched microRNA (miRNA) that has been associated with neuronal function and proliferation. Here, we show that Drosophila miR-137 null mutants display increased body weight with enhanced triglyceride content and decreased locomotor activity. In addition, when challenged by nutrient deprivation, miR-137 mutants exhibit reduced motivation to feed and prolonged survival. We show through genetic epistasis and rescue experiments that this starvation resistance is due to a disruption in insulin signaling. Our studies further show that miR-137 null mutants exhibit a drastic reduction in levels of the phosphorylated/activated insulin receptor, InR (InR-P). We investigated if this is due to the predicted miR-137 target, Protein Tyrosine Phosphatase 61F (PTP61F), ortholog of mammalian TC-PTP/PTP1B, which are known to dephosphorylate InR-P. Indeed, levels of an endogenously tagged GFP-PTP61F are significantly elevated in miR-137 null mutants, and we show that overexpression of PTP61F alone is sufficient to mimic many of the metabolic phenotypes of miR-137 mutants. Finally, we knocked-down elevated levels of PTP61F in the miR-137 null mutant background and show that this rescues levels of InR-P, restores normal body weight and triglyceride content, starvation sensitivity, as well as attenuates locomotor and starvation-induced feeding defects. Our study supports a model in which miR-137 is critical for dampening levels of PTP61F, thereby maintaining normal insulin signaling and energy homeostasis.
Collapse
Affiliation(s)
- Hana Saedi
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Girma Waro
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Lea Giacchetta
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| | - Susan Tsunoda
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
35
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
36
|
Fernandes VM, Auld V, Klämbt C. Glia as Functional Barriers and Signaling Intermediaries. Cold Spring Harb Perspect Biol 2024; 16:a041423. [PMID: 38167424 PMCID: PMC10759988 DOI: 10.1101/cshperspect.a041423] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood-brain barrier, and nerve barrier, as well as the significance of glia-extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system development, function, and response to injury.
Collapse
Affiliation(s)
- Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London UC1E 6DE, United Kingdom
| | - Vanessa Auld
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Münster 48149, Germany
| |
Collapse
|
37
|
Sharma K, Puranik N, Yadav D. Neural Stem Cell-based Regenerative Therapy: A New Approach to Diabetes Treatment. Endocr Metab Immune Disord Drug Targets 2024; 24:531-540. [PMID: 37183465 DOI: 10.2174/1871530323666230512121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023]
Abstract
Diabetes mellitus (DM) is the most common metabolic disorder that occurs due to the loss, or impaired function of insulin-secreting pancreatic beta cells, which are of two types - type 1 (T1D) and type 2 (T2D). To cure DM, the replacement of the destroyed pancreatic beta cells of islet of Langerhans is the most widely practiced treatment. For this, isolating neuronal stem cells and cultivating them as a source of renewable beta cells is a significant breakthrough in medicine. The functions, growth, and gene expression of insulin-producing pancreatic beta cells and neurons are very similar in many ways. A diabetic patient's neural stem cells (obtained from the hippocampus and olfactory bulb) can be used as a replacement source of beta cells for regenerative therapy to treat diabetes. The same protocol used to create functional neurons from progenitor cells can be used to create beta cells. Recent research suggests that replacing lost pancreatic beta cells with autologous transplantation of insulin-producing neural progenitor cells may be a perfect therapeutic strategy for diabetes, allowing for a safe and normal restoration of function and a reduction in potential risks and a long-term cure.
Collapse
Affiliation(s)
- Kajal Sharma
- School of Sciences in Biotechnology, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | - Nidhi Puranik
- Department of Bio-logical Sciences, Bharathiar University, Tamil Nadu, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
38
|
Qiao S, Bernasek S, Gallagher KD, O'Connell J, Yamada S, Bagheri N, Amaral LAN, Carthew RW. Energy metabolism modulates the regulatory impact of activators on gene expression. Development 2024; 151:dev201986. [PMID: 38063847 PMCID: PMC10820824 DOI: 10.1242/dev.201986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Gene expression is a regulated process fueled by ATP consumption. Therefore, regulation must be coupled to constraints imposed by the level of energy metabolism. Here, we explore this relationship both theoretically and experimentally. A stylized mathematical model predicts that activators of gene expression have variable impact depending on metabolic rate. Activators become less essential when metabolic rate is reduced and more essential when metabolic rate is enhanced. We find that, in the Drosophila eye, expression dynamics of the yan gene are less affected by loss of EGFR-mediated activation when metabolism is reduced, and the opposite effect is seen when metabolism is enhanced. The effects are also seen at the level of pattern regularity in the adult eye, where loss of EGFR-mediated activation is mitigated by lower metabolism. We propose that gene activation is tuned by energy metabolism to allow for faithful expression dynamics in the face of variable metabolic conditions.
Collapse
Affiliation(s)
- Sha Qiao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sebastian Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kevin D. Gallagher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Jessica O'Connell
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Shigehiro Yamada
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
39
|
Ryvkin J, Omesi L, Kim YK, Levi M, Pozeilov H, Barak-Buchris L, Agranovich B, Abramovich I, Gottlieb E, Jacob A, Nässel DR, Heberlein U, Shohat-Ophir G. Failure to mate enhances investment in behaviors that may promote mating reward and impairs the ability to cope with stressors via a subpopulation of Neuropeptide F receptor neurons. PLoS Genet 2024; 20:e1011054. [PMID: 38236837 PMCID: PMC10795991 DOI: 10.1371/journal.pgen.1011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024] Open
Abstract
Living in dynamic environments such as the social domain, where interaction with others determines the reproductive success of individuals, requires the ability to recognize opportunities to obtain natural rewards and cope with challenges that are associated with achieving them. As such, actions that promote survival and reproduction are reinforced by the brain reward system, whereas coping with the challenges associated with obtaining these rewards is mediated by stress-response pathways, the activation of which can impair health and shorten lifespan. While much research has been devoted to understanding mechanisms underlying the way by which natural rewards are processed by the reward system, less attention has been given to the consequences of failure to obtain a desirable reward. As a model system to study the impact of failure to obtain a natural reward, we used the well-established courtship suppression paradigm in Drosophila melanogaster as means to induce repeated failures to obtain sexual reward in male flies. We discovered that beyond the known reduction in courtship actions caused by interaction with non-receptive females, repeated failures to mate induce a stress response characterized by persistent motivation to obtain the sexual reward, reduced male-male social interaction, and enhanced aggression. This frustrative-like state caused by the conflict between high motivation to obtain sexual reward and the inability to fulfill their mating drive impairs the capacity of rejected males to tolerate stressors such as starvation and oxidative stress. We further show that sensitivity to starvation and enhanced social arousal is mediated by the disinhibition of a small population of neurons that express receptors for the fly homologue of neuropeptide Y. Our findings demonstrate for the first time the existence of social stress in flies and offers a framework to study mechanisms underlying the crosstalk between reward, stress, and reproduction in a simple nervous system that is highly amenable to genetic manipulation.
Collapse
Affiliation(s)
- Julia Ryvkin
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Liora Omesi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Yong-Kyu Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Lital Barak-Buchris
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Bella Agranovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Avi Jacob
- The Kanbar scientific equipment center. The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, The Leslie and Susan Gonda Multidisciplinary Brain Research Center and the Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
40
|
Gumeni S, Lamprou M, Evangelakou Z, Manola MS, Trougakos IP. Sustained Nrf2 Overexpression-Induced Metabolic Deregulation Can Be Attenuated by Modulating Insulin/Insulin-like Growth Factor Signaling. Cells 2023; 12:2650. [PMID: 37998385 PMCID: PMC10670064 DOI: 10.3390/cells12222650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
The modulation of insulin/insulin-like growth factor signaling (IIS) is associated with altered nutritional and metabolic states. The Drosophila genome encodes eight insulin-like peptides, whose activity is regulated by a group of secreted factors, including Ecdysone-inducible gene L2 (ImpL2), which acts as a potent IIS inhibitor. We recently reported that cncC (cncC/Nrf2), the fly ortholog of Nrf2, is a positive transcriptional regulator of ImpL2, as part of a negative feedback loop aiming to suppress cncC/Nrf2 activity. This finding correlated with our observation that sustained cncC/Nrf2 overexpression/activation (cncCOE; a condition that signals organismal stress) deregulates IIS, causing hyperglycemia, the exhaustion of energy stores in flies' tissues, and accelerated aging. Here, we extend these studies in Drosophila by assaying the functional implication of ImpL2 in cncCOE-mediated metabolic deregulation. We found that ImpL2 knockdown (KD) in cncCOE flies partially reactivated IIS, attenuated hyperglycemia and restored tissue energetics. Moreover, ImpL2 KD largely suppressed cncCOE-mediated premature aging. In support, pharmacological treatment of cncCOE flies with Metformin, a first-line medication for type 2 diabetes, restored (dose-dependently) IIS functionality and extended cncCOE flies' longevity. These findings exemplify the effect of chronic stress in predisposition to diabetic phenotypes, indicating the potential prophylactic role of maintaining normal IIS functionality.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece; (S.G.); (M.L.); (Z.E.); (M.S.M.)
| |
Collapse
|
41
|
Li Y, Pan L, Li P, Gao F, Wang L, Chen J, Li Z, Gao Y, Gong Y, Jin F. Isolation of Enterococcus faecium and determination of its mechanism for promoting the growth and development of Drosophila. Sci Rep 2023; 13:18726. [PMID: 37907538 PMCID: PMC10618532 DOI: 10.1038/s41598-023-43727-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
Intestinal symbiotic microorganisms have a strong capacity to regulate the physiological functions of their host, and Drosophila serves as a useful model. Enterococcus faecium (E. faecium) is a member of the normal intestinal flora of animals. Lactic acid bacteria (LAB) such as E. faecium can promote the growth and development of Drosophila, but the mechanism of regulation of Drosophila is poorly understood. In this study, we found that E. faecium used a carbon source to produce probiotic acids. E. faecium is a symbiotic bacterium for Drosophila, and adult flies passed on parental flora to offspring. E. faecium promoted the growth and development of Drosophila, especially under poor nutritional conditions. E. faecium shortened the developmental process for Drosophila and accelerated the transformation from larva to pupa. Finally, E. faecium promoted the growth and development of Drosophila through TOR and insulin signalling pathways.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Lei Pan
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Pengcheng Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Fuguo Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jian Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Zhichao Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Yumei Gong
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
42
|
Colombo M, Grauso L, Lanzotti V, Incerti G, Adamo A, Storlazzi A, Gigliotti S, Mazzoleni S. Self-DNA Inhibition in Drosophila melanogaster Development: Metabolomic Evidence of the Molecular Determinants. BIOLOGY 2023; 12:1378. [PMID: 37997977 PMCID: PMC10669329 DOI: 10.3390/biology12111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
We investigated the effects of dietary delivered self-DNA in the model insect Drosophila melanogaster. Self-DNA administration resulted in low but significant lethality in Drosophila larvae and considerably extended the fly developmental time. This was characterized by the abnormal persistence of the larvae in the L2 and L3 stages, which largely accounted for the average 72 h delay observed in pupariation, as compared to controls. In addition, self-DNA exposure affected adult reproduction by markedly reducing both female fecundity and fertility, further demonstrating its impact on Drosophila developmental processes. The effects on the metabolites of D. melanogaster larvae after exposure to self-DNA were studied by NMR, LC-MS, and molecular networking. The results showed that self-DNA feeding reduces the amounts of all metabolites, particularly amino acids and N-acyl amino acids, which are known to act as lipid signal mediators. An increasing amount of phloroglucinol was found after self-DNA exposure and correlated to developmental delay and egg-laying suppression. Pidolate, a known intermediate in the γ-glutamyl cycle, also increased after exposure to self-DNA and correlated to the block of insect oogenesis.
Collapse
Affiliation(s)
- Michele Colombo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences (DI4A), University of Udine, 33100 Udine, Italy;
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Aurora Storlazzi
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Silvia Gigliotti
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131 Napoli, Italy; (M.C.); (A.A.); (A.S.)
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.G.); (V.L.)
| |
Collapse
|
43
|
Qiao S, Bernasek S, Gallagher KD, Yamada S, Bagheri N, Amaral LA, Carthew RW. Energy metabolism modulates the regulatory impact of activators on gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563842. [PMID: 37961620 PMCID: PMC10634812 DOI: 10.1101/2023.10.24.563842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gene expression is a regulated process fueled by ATP consumption. Therefore, regulation must be coupled to constraints imposed by the level of energy metabolism. Here, we explore this relationship both theoretically and experimentally. A stylized mathematical model predicts that activators of gene expression have variable impact depending on metabolic rate. Activators become less essential when metabolic rate is reduced and more essential when metabolic rate is enhanced. We find that in the Drosophila eye, expression dynamics of the yan gene are less affected by loss of EGFR-mediated activation when metabolism is reduced, and the opposite effect is seen when metabolism is enhanced. The effects are also seen at the level of pattern regularity in the adult eye, where loss of EGFR-mediated activation is mitigated by lower metabolism. We propose that gene activation is tuned by energy metabolism to allow for faithful expression dynamics in the face of variable metabolic conditions.
Collapse
Affiliation(s)
- Sha Qiao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Sebastian Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Kevin D. Gallagher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL
| | - Shigehiro Yamada
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
| | - Luis A.N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL
- Department of Physics and Astronomy, Northwestern University, Evanston, IL
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL
- Lead Contact
| |
Collapse
|
44
|
Chiang MH, Lin YC, Chen SF, Lee PS, Fu TF, Wu T, Wu CL. Independent insulin signaling modulators govern hot avoidance under different feeding states. PLoS Biol 2023; 21:e3002332. [PMID: 37847673 PMCID: PMC10581474 DOI: 10.1371/journal.pbio.3002332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Thermosensation is critical for the survival of animals. However, mechanisms through which nutritional status modulates thermosensation remain unclear. Herein, we showed that hungry Drosophila exhibit a strong hot avoidance behavior (HAB) compared to food-sated flies. We identified that hot stimulus increases the activity of α'β' mushroom body neurons (MBns), with weak activity in the sated state and strong activity in the hungry state. Furthermore, we showed that α'β' MBn receives the same level of hot input from the mALT projection neurons via cholinergic transmission in sated and hungry states. Differences in α'β' MBn activity between food-sated and hungry flies following heat stimuli are regulated by distinct Drosophila insulin-like peptides (Dilps). Dilp2 is secreted by insulin-producing cells (IPCs) and regulates HAB during satiety, whereas Dilp6 is secreted by the fat body and regulates HAB during the hungry state. We observed that Dilp2 induces PI3K/AKT signaling, whereas Dilp6 induces Ras/ERK signaling in α'β' MBn to regulate HAB in different feeding conditions. Finally, we showed that the 2 α'β'-related MB output neurons (MBONs), MBON-α'3 and MBON-β'1, are necessary for the output of integrated hot avoidance information from α'β' MBn. Our results demonstrate the presence of dual insulin modulation pathways in α'β' MBn, which are important for suitable behavioral responses in Drosophila during thermoregulation under different feeding states.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Fu Chen
- NHRI Institute of Biomedical Engineering & Nanomedicine, Miaoli, Taiwan
| | - Peng-Shiuan Lee
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
| | - Chia-Lin Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
45
|
Sanz FJ, Martínez-Carrión G, Solana-Manrique C, Paricio N. Evaluation of type 1 diabetes mellitus as a risk factor of Parkinson's disease in a Drosophila model. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:697-705. [PMID: 37381093 DOI: 10.1002/jez.2726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels, resulting from insulin dysregulation. Parkinson's disease (PD) is the most common neurodegenerative motor disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta. DM and PD are both age-associated diseases that are turning into epidemics worldwide. Previous studies have indicated that type 2 DM might be a risk factor of developing PD. However, scarce information about the link between type 1 DM (T1DM) and PD does exist. In this work, we have generated a Drosophila model of T1DM based on insulin deficiency to evaluate if T1DM could be a risk factor to trigger PD onset. As expected, model flies exhibited T1DM-related phenotypes such as insulin deficiency, increased content of carbohydrates and glycogen, and reduced activity of insulin signaling. Interestingly, our results also demonstrated that T1DM model flies presented locomotor defects as well as reduced levels of tyrosine hydroxylase (a marker of DA neurons) in brains, which are typical PD-related phenotypes. In addition, T1DM model flies showed elevated oxidative stress levels, which could be causative of DA neurodegeneration. Therefore, our results indicate that T1DM might be a risk factor of developing PD, and encourage further studies to shed light into the exact link between both diseases.
Collapse
Affiliation(s)
- Francisco José Sanz
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Guillermo Martínez-Carrión
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| | - Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Valencia, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Burjassot, Spain
| |
Collapse
|
46
|
Juarez-Carreño S, Geissmann F. The macrophage genetic cassette inr/dtor/pvf2 is a nutritional status checkpoint for developmental timing. SCIENCE ADVANCES 2023; 9:eadh0589. [PMID: 37729406 PMCID: PMC10511196 DOI: 10.1126/sciadv.adh0589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
A small number of signaling molecules, used reiteratively, control differentiation programs, but the mechanisms that adapt developmental timing to environmental cues are less understood. We report here that a macrophage inr/dtor/pvf2 genetic cassette is a developmental timing checkpoint in Drosophila, which either licenses or delays biosynthesis of the steroid hormone in the endocrine gland and metamorphosis according to the larval nutritional status. Insulin receptor/dTor signaling in macrophages is required and sufficient for production of the PDGF/VEGF family growth factor Pvf2, which turns on transcription of the sterol biosynthesis Halloween genes in the prothoracic gland via its receptor Pvr. In response to a starvation event or genetic manipulation, low Pvf2 signal delays steroid biosynthesis until it becomes Pvr-independent, thereby prolonging larval growth before pupariation. The significance of this developmental timing checkpoint for host fitness is illustrated by the observation that it regulates the size of the pupae and adult flies.
Collapse
|
47
|
Pandey A, Galeone A, Han SY, Story BA, Consonni G, Mueller WF, Steinmetz LM, Vaccari T, Jafar-Nejad H. Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila. Nat Commun 2023; 14:5667. [PMID: 37704604 PMCID: PMC10499810 DOI: 10.1038/s41467-023-40910-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
| | - Antonio Galeone
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Seung Yeop Han
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA
| | - Benjamin A Story
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gaia Consonni
- Department of Biosciences, University of Milan, Milan, Italy
| | - William F Mueller
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Hamed Jafar-Nejad
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Genetics & Genomic Graduate Program, Baylor College of Medicine, Houston, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
48
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
49
|
Wilinski D, Dus M. N 6-adenosine methylation controls the translation of insulin mRNA. Nat Struct Mol Biol 2023; 30:1260-1264. [PMID: 37488356 PMCID: PMC11756593 DOI: 10.1038/s41594-023-01048-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Control of insulin mRNA translation is crucial for energy homeostasis, but the mechanisms remain largely unknown. We discovered that insulin mRNAs across invertebrates, vertebrates and mammals feature the modified base N6-methyladenosine (m6A). In flies, this RNA modification enhances insulin mRNA translation by promoting the association of the transcript with polysomes. Depleting m6A in Drosophila melanogaster insulin 2 mRNA (dilp2) directly through specific 3' untranslated region (UTR) mutations, or indirectly by mutating the m6A writer Mettl3, decreases dilp2 protein production, leading to aberrant energy homeostasis and diabetic-like phenotypes. Together, our findings reveal adenosine mRNA methylation as a key regulator of insulin protein synthesis with notable implications for energy balance and metabolic disease.
Collapse
Affiliation(s)
- Daniel Wilinski
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Kim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, et alKim ES, Rajan A, Chang K, Govindarajan S, Gulick C, English E, Rodriguez B, Bloomfield O, Nakada S, Beard C, O’Connor S, Mastroianni S, Downey E, Feigenbaum M, Tolentino C, Pace A, Khan M, Moon S, DiPrima J, Syed A, Lin F, Abukhadra Y, Bacon I, Beckerle J, Cho S, Donkor NE, Garberg L, Harrington A, Hoang M, Lawani N, Noori A, Park E, Parsons E, Oravitan P, Chen M, Molina C, Richmond C, Reddi A, Huang J, Shugrue C, Coviello R, Unver S, Indelicarto M, Islamovic E, McIlroy R, Yang A, Hamad M, Griffin E, Ahmed Z, Alla A, Fitzgerald P, Choi A, Das T, Cheng Y, Yu J, Roderiques T, Lee E, Liu L, Harper J, Wang J, Suhr C, Tan M, Luque J, Tam AR, Chen E, Triff M, Zimmermann L, Zhang E, Wood J, Clark K, Kpodonu N, Dey A, Ecker A, Chuang M, López RKS, Sun H, Wei Z, Stone H, Chi CYJ, Silvestri A, Orloff P, Nedumaran N, Zou A, Ünver L, Page O, Kim M, Chan TYT, Tulloch A, Hernandez A, Pillai A, Chen C, Chowdhury N, Huang L, Mudide A, Paik G, Wingate A, Quinn L, Conybere C, Baumgardt LL, Buckley R, Kolberg Z, Pattison R, Shazli AA, Ganske P, Sfragara L, Strub A, Collier B, Tamana H, Ravindran D, Howden J, Stewart M, Shimizu S, Braniff J, Fong M, Gutman L, Irvine D, Malholtra S, Medina J, Park J, Yin A, Abromavage H, Barrett B, Chen J, Cho R, Dilatush M, Gaw G, Gu C, Huang J, Kilby H, Markel E, McClure K, Phillips W, Polaski B, Roselli A, Saint-Cyr S, Shin E, Tatum K, Tumpunyawat T, Wetherill L, Ptaszynska S, Zeleznik M, Pesendorfer A, Nolan A, Tao J, Sammeta D, Nicholson L, Dinh GV, Foltz M, Vo A, Ross M, Tokarski A, Hariharan S, Wang E, Baziuk M, Tay A, Wong YHM, Floyd J, Cui A, Pierre K, Coppisetti N, Kutam M, Khurjekar D, Gadzi A, Gubbay B, Pedretti S, Belovich S, Yeung T, Fey M, Shaffer L, Li A, Beritela G, Huyghue K, Foster G, Durso-Finley G, Thierfelder Q, Kiernan H, Lenkowsky A, Thomas T, Cheng N, Chao O, L’Etoile-Goga P, King A, McKinley P, Read N, Milberg D, Lin L, Wong M, Gilman I, Brown S, Chen L, Kosai J, Verbinsky M, Belshaw-Hood A, Lee H, Zhou C, Lobo M, Tse A, Tran K, Lewis K, Sonawane P, Ngo J, Zuzga S, Chow L, Huynh V, Yang W, Lim S, Stites B, Chang S, Cruz-Balleza R, Pelta M, Kujawski S, Yuan C, Standen-Bloom E, Witt O, Anders K, Duane A, Huynh N, Lester B, Fung-Lee S, Fung M, Situ M, Canigiula P, Dijkgraaf M, Romero W, Baula SK, Wong K, Xu I, Martinez B, Nuygen R, Norris L, Nijensohn N, Altman N, Maajid E, Burkhardt O, Chanda J, Doscher C, Gopal A, Good A, Good J, Herrera N, Lanting L, Liem S, Marks A, McLaughlin E, Lee A, Mohr C, Patton E, Pyarali N, Oczon C, Richards D, Good N, Goss S, Khan A, Madonia R, Mitchell V, Sun N, Vranka T, Garcia D, Arroyo F, Morales E, Camey S, Cano G, Bernabe A, Arroyo J, Lopez Y, Gonzalez E, Zumba B, Garcia J, Vargas E, Trinidad A, Candelaria N, Valdez V, Campuzano F, Pereznegron E, Medrano J, Gutierrez J, Gutierrez E, Abrego ET, Gutierrez D, Ortiz C, Barnes A, Arms E, Mitchell L, Balanzá C, Bradford J, Detroy H, Ferguson D, Guillermo E, Manapragada A, Nanula D, Serna B, Singh K, Sramaty E, Wells B, Wiggins M, Dowling M, Schmadeke G, Cafferky S, Good S, Reese M, Fleig M, Gannett A, Cain C, Lee M, Oberto P, Rinehart J, Pan E, Mathis SA, Joiner J, Barr L, Evans CJ, Baena-Lopez A, Beatty A, Collette J, Smullen R, Suttie J, Chisholm T, Rotondo C, Lewis G, Turner V, Stark L, Fox E, Amirapu A, Park S, Lantz N, Rankin AE, Kim SK, Kockel L. Generation of LexA enhancer-trap lines in Drosophila by an international scholastic network. G3 (BETHESDA, MD.) 2023; 13:jkad124. [PMID: 37279923 PMCID: PMC10468311 DOI: 10.1093/g3journal/jkad124] [Show More Authors] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.
Collapse
Affiliation(s)
- Ella S Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Arjun Rajan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | - Eva English
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | - Sarah O’Connor
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Emma Downey
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | - Abigail Pace
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Marina Khan
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Soyoun Moon
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jordan DiPrima
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Amber Syed
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Flora Lin
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | - Sophia Cho
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Mai Hoang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Nosa Lawani
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Ayush Noori
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Euwie Park
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Adith Reddi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jason Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Selma Unver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Alana Yang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Mahdi Hamad
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Zara Ahmed
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Asha Alla
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Audrey Choi
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Tanya Das
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Joshua Yu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Ethan Lee
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Jason Wang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Chris Suhr
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Tan
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | - Emma Chen
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Max Triff
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Eric Zhang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Jackie Wood
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | - Nat Kpodonu
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Antar Dey
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Harry Sun
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Zijing Wei
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Henry Stone
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | - Leyla Ünver
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Oscair Page
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Minseo Kim
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | | | | | | | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | | | | | | | - Lily Quinn
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | - Pia Ganske
- Haileybury School, Hertford SG13 7NU, UK
| | | | | | | | | | | | | | | | | | - Julia Braniff
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Melanie Fong
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucy Gutman
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Danny Irvine
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sahil Malholtra
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jillian Medina
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - John Park
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Alicia Yin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Breanna Barrett
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jacqueline Chen
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Rachelle Cho
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mac Dilatush
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Gabriel Gaw
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Caitlin Gu
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jupiter Huang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Houston Kilby
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ethan Markel
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Katie McClure
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - William Phillips
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Benjamin Polaski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Amelia Roselli
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Soleil Saint-Cyr
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ellie Shin
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kylan Tatum
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tai Tumpunyawat
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Lucia Wetherill
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sara Ptaszynska
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maddie Zeleznik
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Anna Nolan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Jeffrey Tao
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Divya Sammeta
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Laney Nicholson
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Giao Vu Dinh
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Merrin Foltz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - An Vo
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Maggie Ross
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Tokarski
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Samika Hariharan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Elaine Wang
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Martha Baziuk
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ashley Tay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Jax Floyd
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Aileen Cui
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Kieran Pierre
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nikita Coppisetti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Matthew Kutam
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Dhruv Khurjekar
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anthony Gadzi
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Ben Gubbay
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sophia Pedretti
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Sofiya Belovich
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tiffany Yeung
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Mercy Fey
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Layla Shaffer
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Arthur Li
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Kyle Huyghue
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Greg Foster
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Quinn Thierfelder
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Holly Kiernan
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Andrew Lenkowsky
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Tesia Thomas
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Nicole Cheng
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Olivia Chao
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pia L’Etoile-Goga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Alexa King
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paris McKinley
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nicole Read
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - David Milberg
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Leila Lin
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melinda Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Io Gilman
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Brown
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lila Chen
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jordyn Kosai
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mark Verbinsky
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Honon Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Cathy Zhou
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Maya Lobo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Asia Tse
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kyle Tran
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Kira Lewis
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Pratmesh Sonawane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Jonathan Ngo
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sophia Zuzga
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Lillian Chow
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Vianne Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wenyi Yang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Lim
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Brandon Stites
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Shannon Chang
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Michaela Pelta
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Stella Kujawski
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Christopher Yuan
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Oliver Witt
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Karina Anders
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Audrey Duane
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Nancy Huynh
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Benjamin Lester
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Samantha Fung-Lee
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Melanie Fung
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Mandy Situ
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Paolo Canigiula
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Matijs Dijkgraaf
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Wilbert Romero
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Kimberly Wong
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Ivana Xu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | | | - Reena Nuygen
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Lucy Norris
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Noah Nijensohn
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Naomi Altman
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | - Elise Maajid
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | - Alex Gopal
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Aaron Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Jonah Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Sophia Liem
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Anila Marks
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Audrey Lee
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Collin Mohr
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | - Emma Patton
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | - Nathan Good
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | - Adeeb Khan
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | - Natasha Sun
- Albuquerque Academy, Albuquerque, NM 87109, USA
| | | | | | | | | | | | | | | | | | | | | | - Bryan Zumba
- Pritzker College Prep, Chicago, IL 60639, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jake Bradford
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | | | | | | | | | | | - Khushi Singh
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Emily Sramaty
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Brian Wells
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Melissa Dowling
- Latin School of Chicago, 59 W North Blvd, Chicago, IL 60610, USA
| | | | | | | | | | | | | | - Cory Cain
- Pritzker College Prep, Chicago, IL 60639, USA
| | - Melody Lee
- Harvard-Westlake School, Los Angeles, CA 90077, USA
| | | | | | | | | | | | - Leslie Barr
- Westtown School, West Chester, PA 19382, USA
| | - Cory J Evans
- Loyola Marymount University, Los Angeles, CA 90045, USA
| | | | - Andrea Beatty
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | - Robert Smullen
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | - Jeanne Suttie
- Commack High School, 1 Scholar Ln, Commack, NY 11725, USA
| | | | | | | | | | | | - Elizabeth Fox
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | - Anjana Amirapu
- Lowell High School, 1101 Eucalyptus Dr, San Francisco, CA 94132, USA
| | - Sangbin Park
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicole Lantz
- The Lawrenceville School, 2500 Main St, Lawrenceville, NJ 08648, USA
| | | | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lutz Kockel
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|