1
|
Fathima A, Bagang N, Kumar N, Dastidar SG, Shenoy S. Role of SIRT1 in Potentially Toxic Trace Elements (Lead, Fluoride, Aluminum and Cadmium) Associated Neurodevelopmental Toxicity. Biol Trace Elem Res 2024; 202:5395-5412. [PMID: 38416341 PMCID: PMC11502598 DOI: 10.1007/s12011-024-04116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The formation of the central nervous system is a meticulously planned and intricate process. Any modification to this process has the potential to disrupt the structure and operation of the brain, which could result in deficiencies in neurological growth. When neurotoxic substances are present during the early stages of development, they can be exceptionally dangerous. Prenatally, the immature brain is extremely vulnerable and is therefore at high risk in pregnant women associated with occupational exposures. Lead, fluoride, aluminum, and cadmium are examples of possibly toxic trace elements that have been identified as an environmental concern in the aetiology of a number of neurological and neurodegenerative illnesses. SIRT1, a member of the sirtuin family has received most attention for its potential neuroprotective properties. SIRT1 is an intriguing therapeutic target since it demonstrates important functions to increase neurogenesis and cellular lifespan by modulating multiple pathways. It promotes axonal extension, neurite growth, and dendritic branching during the development of neurons. Additionally, it contributes to neurogenesis, synaptic plasticity, memory development, and neuroprotection. This review summarizes the possible role of SIRT1 signalling pathway in potentially toxic trace elements -induced neurodevelopmental toxicity, highlighting some molecular pathways such as mitochondrial biogenesis, CREB/BDNF and PGC-1α/NRF1/TFAM.
Collapse
Affiliation(s)
- Aqsa Fathima
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Newly Bagang
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial area Hajipur, Vaishali, Bihar, 844102, India
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Maiese K. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways. World J Cardiol 2024; 16:632-643. [DOI: 10.4330/wjc.v16.i11.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
As a non-communicable disease, cardiovascular disorders have become the leading cause of death for men and women. Of additional concern is that cardiovascular disease is linked to chronic comorbidity disorders that include nonalcoholic fatty liver disease (NAFLD). NAFLD, also termed metabolic-dysfunction-associated steatotic liver disease, is the greatest cause of liver disease throughout the world, increasing in prevalence concurrently with diabetes mellitus (DM), and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fibrosis. Individuals with metabolic disorders, such as DM, are more than two times likely to experience cardiac disease, stroke, and liver disease that includes NAFLD when compared individuals without metabolic disorders. Interestingly, cardiovascular disorders and NAFLD share a common underlying cellular mechanism for disease pathology, namely the silent mating type information regulation 2 homolog 1 (SIRT1; Saccharomyces cerevisiae). SIRT1, a histone deacetylase, is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues, including trophic factors such as erythropoietin, stem cells, and AMP-activated protein kinase. Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients, but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States
| |
Collapse
|
3
|
Liu F, Liu J, Luo Y, Wu S, Liu X, Chen H, Luo Z, Yuan H, Shen F, Zhu F, Ye J. A Single-Cell Metabolic Profiling Characterizes Human Aging via SlipChip-SERS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406668. [PMID: 39231358 PMCID: PMC11538647 DOI: 10.1002/advs.202406668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Metabolic dysregulation is a key driver of cellular senescence, contributing to the progression of systemic aging. The heterogeneity of senescent cells and their metabolic shifts are complex and unexplored. A microfluidic SlipChip integrated with surface-enhanced Raman spectroscopy (SERS), termed SlipChip-SERS, is developed for single-cell metabolism analysis. This SlipChip-SERS enables compartmentalization of single cells, parallel delivery of saponin and nanoparticles to release intracellular metabolites and to realize SERS detection with simple slipping operations. Analysis of different cancer cell lines using SlipChip-SERS demonstrated its capability for sensitive and multiplexed metabolic profiling of individual cells. When applied to human primary fibroblasts of different ages, it identified 12 differential metabolites, with spermine validated as a potent inducer of cellular senescence. Prolonged exposure to spermine can induce a classic senescence phenotype, such as increased senescence-associated β-glactosidase activity, elevated expression of senescence-related genes and reduced LMNB1 levels. Additionally, the senescence-inducing capacity of spermine in HUVECs and WRL-68 cells is confirmed, and exogenous spermine treatment increased the accumulation and release of H2O2. Overall, a novel SlipChip-SERS system is developed for single-cell metabolic analysis, revealing spermine as a potential inducer of senescence across multiple cell types, which may offer new strategies for addressing ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Fugang Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jiaqing Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yang Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Siyi Wu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xu Liu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haoran Chen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zhewen Luo
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Haitao Yuan
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Shen
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Fangfang Zhu
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jian Ye
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China
- Shanghai Key Laboratory of Gynecologic OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
4
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Latha Laxmi IP, Tamizhselvi R. Epigenetic events influencing the biological clock: Panacea for neurodegeneration. Heliyon 2024; 10:e38836. [PMID: 39430507 PMCID: PMC11489350 DOI: 10.1016/j.heliyon.2024.e38836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The human biological clock is the 24-h internal molecular network of circadian genes in synchronization with other cells in response to external stimuli. The rhythmicity of the clock genes is maintained by positive and negative transcriptional feedback loops coordinating the 24-h oscillation in different tissues. The superchiasmatic nucleus, the central pacemaker of the biological clock diminishes with aging causing alterations in the clock rhythmicity leading to the onset of neurodegenerative diseases mainly Alzheimer's disease, Parkinson's disease, and Huntington's disease. Studies have shown that brain and muscle Arnt -like 1 (Bmal1) and Circadian Locomotor Output Cycles Kaput (Clock) gene expression is altered in the onset of neurodegeneration. One of the major symptoms of neurodegeneration is changes in the sleep/wake cycle. Moreover, variations in circadian clock oscillations can happen due to lifestyle changes, addiction to alcohol, cocaine, drugs, smoking, food habits and most importantly eating and sleep/awake cycle patterns which can significantly impact the expression of circadian genes. Recent studies have focused on the molecular function of clock genes affected due to environmental cues. Epigenetic modifications are influenced by the external environmental factors. This review aims to focus on the principal mechanism of epigenetics influencing circadian rhythm disruption leading to neurodegeneration and as well as targeting the epigenetic modulators could be a novel therapeutic approach to combat neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
7
|
Aggarwal S, Rastogi A, Maiwall R, Sevak JK, Yadav V, Maras J, Thomas SS, Kale PR, Pamecha V, Perumal N, Trehanpati N, Ramakrishna G. Palmitic acid causes hepatocyte inflammation by suppressing the BMAL1-NAD +-SIRT2 axis. J Physiol Biochem 2024:10.1007/s13105-024-01042-x. [PMID: 39289323 DOI: 10.1007/s13105-024-01042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Palmitic acid is the most abundant saturated fatty acid in circulation and causes hepatocyte toxicity and inflammation. As saturated fatty acid can also disrupt the circadian rhythm, the present work evaluated the connection between clock genes and NAD+ dependent Sirtuins in protecting hepatocytes from lipid-induced damage. Hepatocytes (immortal cells PH5CH8, hepatoma cells HepG2) treated with higher doses of palmitic acid (400-600μM) showed typical features of steatosis accompanied with growth inhibition and increased level of inflammatory markers (IL-6 IL-8, IL-1α and IL-1β) together with decline in NAD+ levels. Palmitic acid treated hepatocytes showed significant decline in not only the protein levels of SIRT2 but also its activity as revealed by the acetylation status of its downstream targets (Tubulin and NF-ƙB). Additionally, the circadian expression of both SIRT2 and BMAL1 was inhibited in presence of palmitic acid in only the non-cancerous hepatocytes, PH5CH8 cells. Clinical specimens obtained from subjects with NASH-associated fibrosis, ranging from absent (F0) to cirrhosis (F4), showed a significant decline in levels of SIRT2 and BMAL1, especially in the cirrhotic liver. Ectopic expression of BMAL1 or activating SIRT2 by supplementation with nicotinamide riboside (precursor of NAD+) dampened the palmitic acid induced lipoinflammation and lipotoxicity more effectively in PH5CH8 cells as compared to HepG2 cells. Mechanistically, palmitic acid caused transcriptional suppression of SIRT2 by disrupting the chromatin occupancy of BMAL1 at its promoter site. Overall, the work suggested that SIRT2 is a clock-controlled gene that is transcriptionally regulated by BMAL1. In conclusion the activation of the BMAL1-NAD+-SIRT2 axis shows hepatoprotective effects by preventing lipotoxicity and dampening inflammation.
Collapse
Affiliation(s)
- Savera Aggarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Archana Rastogi
- Departmentt of Pathology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Jayesh K Sevak
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Vipin Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Jaswinder Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Sherin Sarah Thomas
- Department of Biochemistry, Institute of Liver and Biliary Sciences, Delhi, India
| | - Pratibha R Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, Delhi, India
| | - Viniyendra Pamecha
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Liver and Biliary Sciences, Delhi, India
| | | | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Delhi, India.
| |
Collapse
|
8
|
Kim HD, Wei J, Call T, Ma X, Quintus NT, Summers AJ, Carotenuto S, Johnson R, Nguyen A, Cui Y, Park JG, Qiu S, Ferguson D. SIRT1 Coordinates Transcriptional Regulation of Neural Activity and Modulates Depression-Like Behaviors in the Nucleus Accumbens. Biol Psychiatry 2024; 96:495-505. [PMID: 38575105 PMCID: PMC11338727 DOI: 10.1016/j.biopsych.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Major depression and anxiety disorders are significant causes of disability and socioeconomic burden. Despite the prevalence and considerable impact of these affective disorders, their pathophysiology remains elusive. Thus, there is an urgent need to develop novel therapeutics for these conditions. We evaluated the role of SIRT1 in regulating dysfunctional processes of reward by using chronic social defeat stress to induce depression- and anxiety-like behaviors. Chronic social defeat stress induces physiological and behavioral changes that recapitulate depression-like symptomatology and alters gene expression programs in the nucleus accumbens, but cell type-specific changes in this critical structure remain largely unknown. METHODS We examined transcriptional profiles of D1-expressing medium spiny neurons (MSNs) lacking deacetylase activity of SIRT1 by RNA sequencing in a cell type-specific manner using the RiboTag line of mice. We analyzed differentially expressed genes using gene ontology tools including SynGO and EnrichR and further demonstrated functional changes in D1-MSN-specific SIRT1 knockout (KO) mice using electrophysiological and behavioral measurements. RESULTS RNA sequencing revealed altered transcriptional profiles of D1-MSNs lacking functional SIRT1 and showed specific changes in synaptic genes including glutamatergic and GABAergic (gamma-aminobutyric acidergic) receptors in D1-MSNs. These molecular changes may be associated with decreased excitatory and increased inhibitory neural activity in Sirt1 KO D1-MSNs, accompanied by morphological changes. Moreover, the D1-MSN-specific Sirt1 KO mice exhibited proresilient changes in anxiety- and depression-like behaviors. CONCLUSIONS SIRT1 coordinates excitatory and inhibitory synaptic genes to regulate the GABAergic output tone of D1-MSNs. These findings reveal a novel signaling pathway that has potential for the development of innovative treatments for affective disorders.
Collapse
Affiliation(s)
- Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jing Wei
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Tanessa Call
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Xiaokuang Ma
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Nicole Teru Quintus
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Alexander J Summers
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Samantha Carotenuto
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Ross Johnson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Angel Nguyen
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yuehua Cui
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Jin G Park
- Virginia G. Piper Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shenfeng Qiu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Deveroux Ferguson
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona.
| |
Collapse
|
9
|
Lundt S, Ding S. Potential Therapeutic Interventions Targeting NAD + Metabolism for ALS. Cells 2024; 13:1509. [PMID: 39273079 PMCID: PMC11394323 DOI: 10.3390/cells13171509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. While there have been many potential factors implicated for ALS development, such as oxidative stress and mitochondrial dysfunction, no exact mechanism has been determined at this time. Nicotinamide adenine dinucleotide (NAD+) is one of the most abundant metabolites in mammalian cells and is crucial for a broad range of cellular functions from DNA repair to energy homeostasis. NAD+ can be synthesized from three different intracellular pathways, but it is the NAD+ salvage pathway that generates the largest proportion of NAD+. Impaired NAD+ homeostasis has been connected to aging and neurodegenerative disease-related dysfunctions. In ALS mice, NAD+ homeostasis is potentially disrupted prior to the appearance of physical symptoms and is significantly reduced in the nervous system at the end stage. Treatments targeting NAD+ metabolism, either by administering NAD+ precursor metabolites or small molecules that alter NAD+-dependent enzyme activity, have shown strong beneficial effects in ALS disease models. Here, we review the therapeutic interventions targeting NAD+ metabolism for ALS and their effects on the most prominent pathological aspects of ALS in animal and cell models.
Collapse
Affiliation(s)
- Samuel Lundt
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center (DCRC), Columbia, MO 65203, USA
- Department of Chemical and Biomedical Engineering (ChBME), University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Chen L, Xing X, Zhang P, Chen L, Pei H. Homeostatic regulation of NAD(H) and NADP(H) in cells. Genes Dis 2024; 11:101146. [PMID: 38988322 PMCID: PMC11233901 DOI: 10.1016/j.gendis.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 07/12/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/reduced NADP+ (NADPH) are essential metabolites involved in multiple metabolic pathways and cellular processes. NAD+ and NADH redox couple plays a vital role in catabolic redox reactions, while NADPH is crucial for cellular anabolism and antioxidant responses. Maintaining NAD(H) and NADP(H) homeostasis is crucial for normal physiological activity and is tightly regulated through various mechanisms, such as biosynthesis, consumption, recycling, and conversion between NAD(H) and NADP(H). The conversions between NAD(H) and NADP(H) are controlled by NAD kinases (NADKs) and NADP(H) phosphatases [specifically, metazoan SpoT homolog-1 (MESH1) and nocturnin (NOCT)]. NADKs facilitate the synthesis of NADP+ from NAD+, while MESH1 and NOCT convert NADP(H) into NAD(H). In this review, we summarize the physiological roles of NAD(H) and NADP(H) and discuss the regulatory mechanisms governing NAD(H) and NADP(H) homeostasis in three key aspects: the transcriptional and posttranslational regulation of NADKs, the role of MESH1 and NOCT in maintaining NAD(H) and NADP(H) homeostasis, and the influence of the circadian clock on NAD(H) and NADP(H) homeostasis. In conclusion, NADKs, MESH1, and NOCT are integral to various cellular processes, regulating NAD(H) and NADP(H) homeostasis. Dysregulation of these enzymes results in various human diseases, such as cancers and metabolic disorders. Hence, strategies aiming to restore NAD(H) and NADP(H) homeostasis hold promise as novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
11
|
Chang SJ, Chen WT, Chai CY. Arsenic-induced disruption of circadian rhythms and glutamine anaplerosis in human urothelial carcinoma. J Trace Elem Med Biol 2024; 86:127507. [PMID: 39137608 DOI: 10.1016/j.jtemb.2024.127507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Inorganic arsenic (iAs)-induced urothelial carcinoma (UC) develops into a poor-prognosis malignancy. Arsenic-induced oxidative stress contributes to circadian rhythm disruption altered metabolism. Glutamine anaplerosis is a common metabolic feature of rapidly proliferating malignant cells, in which glutaminase (GLS) is a key enzyme in this process. Therefore, this study intends to determine if arsenic-induced oxidative stress can alter circadian rhythms and promote glutamine anaplerosis. Exonic expression of core circadian molecules (CLOCK, ARNTL, and NR1D1) and GLS in varying grades of UC were assessed using 423 bladder cancer samples from the TCGA Urothelial Bladder Cancer (BLCA) dataset. The levels of circadian proteins and metabolic markers in 44 UC patients from non-black foot disease (BFD) and BFD areas were detected by immunohistochemistry. In vitro and in vivo experiments elucidated the regulatory mechanisms of arsenic-mediated circadian disturbance and metabolic alteration. Public database analysis showed that ARNTL, NR1D1, and GLS exhibited greater expression in more high-grade UC. Strong immunoreactivity for BMAL1, GLS, and low levels of NR1D1 were found in malignant urothelial lesions, especially in arsenic-exposed UC. Arsenic-induced overexpression of BMAL1 and GLS involves activation of NADH: quinone oxidoreductase 1 (NQO1), continuously altering the NADH oscillations to promote glutamate metabolism in SV-HUC-1, T24 and BFTC-905 cells. These phenomenon were also demonstrated in the urothelium of arsenic-exposed animals. The present findings highlight the potential clinical significance of BMAL1 and GLS in UC in the BFD region. Furthermore, these results suggest that arsenic interferes with circadian rhythm and glutamine anaplerosis by NADH oscillatory imbalance in urothelial cells and urothelial cancer cells, predisposing them to malignant development.
Collapse
Affiliation(s)
- Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wan-Tzu Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Wang B, Adamo ME, Zhou X, Wang Z, Gerber SA, Kettenbach AN, Dunlap JC. Acetylation of WCC is dispensable for the core circadian clock but differentially regulates acute light responses in Neurospora. J Biol Chem 2024; 300:107508. [PMID: 38944116 PMCID: PMC11325773 DOI: 10.1016/j.jbc.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency (frq) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) have been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is mainly controlled by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| | - Mark E Adamo
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ziyan Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N Kettenbach
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
13
|
Ren C, Zhang S, Chen Y, Deng K, Kuang M, Gong Z, Zhang K, Wang P, Huang P, Zhou Z, Gong A. Exploring nicotinamide adenine dinucleotide precursors across biosynthesis pathways: Unraveling their role in the ovary. FASEB J 2024; 38:e23804. [PMID: 39037422 DOI: 10.1096/fj.202400453r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Natural Nicotinamide Adenine Dinucleotide (NAD+) precursors have attracted much attention due to their positive effects in promoting ovarian health. However, their target tissue, synthesis efficiency, advantages, and disadvantages are still unclear. This review summarizes the distribution of NAD+ at the tissue, cellular and subcellular levels, discusses its biosynthetic pathways and the latest findings in ovary, include: (1) NAD+ plays distinct roles both intracellularly and extracellularly, adapting its distribution in response to requirements. (2) Different precursors differs in target tissues, synthetic efficiency, biological utilization, and adverse effects. Importantly: tryptophan is primarily utilized in the liver and kidneys, posing metabolic risks in excess; nicotinamide (NAM) is indispensable for maintaining NAD+ levels; nicotinic acid (NA) constructs a crucial bridge between intestinal microbiota and the host with diverse functions; nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) increase NAD+ systemically and can be influenced by delivery route, tissue specificity, and transport efficiency. (3) The biosynthetic pathways of NAD+ are intricately intertwined. They provide multiple sources and techniques for NAD+ synthesis, thereby reducing the dependence on a single molecule to maintain cellular NAD+ levels. However, an excess of a specific precursor potentially influencing other pathways. In addition, Protein expression analysis suggest that ovarian tissues may preferentially utilize NAM and NMN. These findings summarize the specific roles and potential of NAD+ precursors in enhancing ovarian health. Future research should delve into the molecular mechanisms and intervention strategies of different precursors, aiming to achieve personalized prevention or treatment of ovarian diseases, and reveal their clinical application value.
Collapse
Affiliation(s)
- Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shuang Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanyan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kaiping Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meiqian Kuang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihao Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ke Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Panqi Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Pan Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhengrong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, China
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
15
|
Liu Y, Cheng C, Gao H, Zhu X, He X, Zhou M, Gao Y, Lu Y, Song X, Xiao X, Wang J, Xu C, Ma Z. Restoring energy metabolism by NAD + supplement prevents alcohol-induced liver injury and boosts liver regeneration. Food Sci Nutr 2024; 12:5100-5110. [PMID: 39055233 PMCID: PMC11266918 DOI: 10.1002/fsn3.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 07/27/2024] Open
Abstract
Our previous clinical metabolomics study illustrated that energy metabolism disorder is an underlying pathogenesis mechanism for the development of alcoholic liver disease (ALD). Supplementation of nicotinamide (NAM), the precursor of nicotinamide adenine dinucleotide (NAD+), may restore the energy metabolism homeostasis of ALD and thus serves as potential therapeutics to treat ALD. In this bedside-to-bench study, the protective effect of NAM against ALD was investigated by using the NIAAA mice model (chronic-plus-binge ethanol), and the liver regeneration boosting capability of NAM was evaluated by the partial hepatectomy mice model. Our results showed that NAM supplements not only protected the liver from alcohol-induced injury and improved alcohol-induced mitochondrial structure and function change, but also boosted liver regeneration in postpartial hepatectomy mice by increasing liver NAD+ content. These findings suggested that NAM, a water-soluble form of vitamin B3, can promote liver regeneration and improves liver function by alleviating alcohol-induced energy metabolism disorder.
Collapse
Affiliation(s)
- Yao Liu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Cheng Cheng
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Department of PharmacyJincheng General HospitalJinchengShanxiChina
| | - Han Gao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xue‐jin Zhu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of PharmacyFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xian He
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Ming‐xi Zhou
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Yuan Gao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Ya‐wen Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xin‐hua Song
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xiao‐he Xiao
- Department of HepatologyFifth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jia‐bo Wang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Chun‐jun Xu
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Zhi‐tao Ma
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Murgo E, Falco G, Serviddio G, Mazzoccoli G, Colangelo T. Circadian patterns of growth factor receptor-dependent signaling and implications for carcinogenesis. Cell Commun Signal 2024; 22:319. [PMID: 38858728 PMCID: PMC11163765 DOI: 10.1186/s12964-024-01676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Several different signaling pathways that regulate cell proliferation and differentiation are initiated by binding of ligands to cell-surface and membrane-bound enzyme-linked receptors, such as receptor tyrosine kinases and serine-threonine kinases. They prompt phosphorylation of tyrosine and serine-threonine residues and initiate downstream signaling pathways and priming of intracellular molecules that convey the signal in the cytoplasm and nucleus, with transcriptional activation of specific genes enriching cell growth and survival-related cascades. These cell processes are rhythmically driven by molecular clockworks endowed in every cell type and when deregulated play a crucial role in cancer onset and progression. Growth factors and their matching receptor-dependent signaling are frequently overexpressed and/or dysregulated in many cancer types. In this review we focus on the interplay between biological clocks and Growth Factor Receptor-dependent signaling in the context of carcinogenesis.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy
| | - Giorgia Falco
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza",, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo, 71013, Italy.
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
- Cancer Cell Signaling Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), San Giovanni Rotondo, Italy.
| |
Collapse
|
17
|
Sulaimani N, Houghton MJ, Bonham MP, Williamson G. Effects of (Poly)phenols on Circadian Clock Gene-Mediated Metabolic Homeostasis in Cultured Mammalian Cells: A Scoping Review. Adv Nutr 2024; 15:100232. [PMID: 38648895 PMCID: PMC11107464 DOI: 10.1016/j.advnut.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Circadian clocks regulate metabolic homeostasis. Disruption to our circadian clocks, by lifestyle behaviors such as timing of eating and sleeping, has been linked to increased rates of metabolic disorders. There is now considerable evidence that selected dietary (poly)phenols, including flavonoids, phenolic acids and tannins, may modulate metabolic and circadian processes. This review evaluates the effects of (poly)phenols on circadian clock genes and linked metabolic homeostasis in vitro, and potential mechanisms of action, by critically evaluating the literature on mammalian cells. A systematic search was conducted to ensure full coverage of the literature and identified 43 relevant studies addressing the effects of (poly)phenols on cellular circadian processes. Nobiletin and tangeretin, found in citrus, (-)-epigallocatechin-3-gallate from green tea, urolithin A, a gut microbial metabolite from ellagitannins in fruit, curcumin, bavachalcone, cinnamic acid, and resveratrol at low micromolar concentrations all affect circadian molecular processes in multiple types of synchronized cells. Nobiletin emerges as a putative retinoic acid-related orphan receptor (RORα/γ) agonist, leading to induction of the circadian regulator brain and muscle ARNT-like 1 (BMAL1), and increased period circadian regulator 2 (PER2) amplitude and period. These effects are clear despite substantial variations in the protocols employed, and this review suggests a methodological framework to help future study design in this emerging area of research.
Collapse
Affiliation(s)
- Noha Sulaimani
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; Department of Food and Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.
| |
Collapse
|
18
|
González-Suárez M, Aguilar-Arnal L. Histone methylation: at the crossroad between circadian rhythms in transcription and metabolism. Front Genet 2024; 15:1343030. [PMID: 38818037 PMCID: PMC11137191 DOI: 10.3389/fgene.2024.1343030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Circadian rhythms, essential 24-hour cycles guiding biological functions, synchronize organisms with daily environmental changes. These rhythms, which are evolutionarily conserved, govern key processes like feeding, sleep, metabolism, body temperature, and endocrine secretion. The central clock, located in the suprachiasmatic nucleus (SCN), orchestrates a hierarchical network, synchronizing subsidiary peripheral clocks. At the cellular level, circadian expression involves transcription factors and epigenetic remodelers, with environmental signals contributing flexibility. Circadian disruption links to diverse diseases, emphasizing the urgency to comprehend the underlying mechanisms. This review explores the communication between the environment and chromatin, focusing on histone post-translational modifications. Special attention is given to the significance of histone methylation in circadian rhythms and metabolic control, highlighting its potential role as a crucial link between metabolism and circadian rhythms. Understanding these molecular intricacies holds promise for preventing and treating complex diseases associated with circadian disruption.
Collapse
Affiliation(s)
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
19
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Frielitz-Wagner IV, Mattutat J, Frielitz FS, Scheuermann K, Gesing J, Marheineke D, Löffler D, Kiess W, Körner A. Diurnal rythm of Nampt is gender and weight dependent. Obes Res Clin Pract 2024; 18:181-188. [PMID: 38960771 DOI: 10.1016/j.orcp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
RESEARCH AIM Nicotinamide phosphoribosyltransferase (Nampt) is an adipocytokine that is elevated in obesity, type 2 diabetes and increased levels are associated with inflammatory processes. Nampt serum concentrations have been suggested to follow a diurnal rhythm peaking in the afternoon in lean males. However, no data exists regarding the effects of gender and body weight. MATERIAL AND METHODS We measured Nampt serum levels over 24 h in a cohort of healthy individuals living with either normal weight or obesity. Furthermore, effects of meals, oral glucose tolerance test and physical exercise on Nampt concentrations were evaluated. Correlation analyses to other hormonal- and lab parameters and anthropometric measurements were performed. RESULTS Nampt showed a diurnal rhythm with increased levels at daytime and a peak in the early afternoon. This diurnal rhythm was significant for all groups but obese males. The Nampt amplitude, measured both relatively and absolutely, was significantly higher in females than in males. Meals did not influence Nampt serum levels, whereas physical exercise and an OGTT did significantly influence Nampt serum levels. CONCLUSION In conclusion, we found gender specific differences in Nampt amplitude and coefficient variation with both being higher in females. The circadian rhythm of Nampt was independent of gender in healthy lean individuals, whereas it was disturbed in men with obesity.
Collapse
Affiliation(s)
- I V Frielitz-Wagner
- Department of Paediatrics, Medical Faculty, UKSH, University of Lübeck, Lübeck, Germany; University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - J Mattutat
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - F S Frielitz
- Institute of Social Medicine and Epidemiology, University of Lübeck, Lübeck, Germany
| | - K Scheuermann
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - J Gesing
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - D Marheineke
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - D Löffler
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - W Kiess
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany
| | - A Körner
- University of Leipzig, Medical Faculty, Leipzig University Medical Center, Department of Women´s and Child Health, Hospital for Children and Adolescents, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
21
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
22
|
Bass J. Interorgan rhythmicity as a feature of healthful metabolism. Cell Metab 2024; 36:655-669. [PMID: 38335957 PMCID: PMC10990795 DOI: 10.1016/j.cmet.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The finding that animals with circadian gene mutations exhibit diet-induced obesity and metabolic syndrome with hypoinsulinemia revealed a distinct role for the clock in the brain and peripheral tissues. Obesogenic diets disrupt rhythmic sleep/wake patterns, feeding behavior, and transcriptional networks, showing that metabolic signals reciprocally control the clock. Providing access to high-fat diet only during the sleep phase (light period) in mice accelerates weight gain, whereas isocaloric time-restricted feeding during the active period enhances energy expenditure due to circadian induction of adipose thermogenesis. This perspective focuses on advances and unanswered questions in understanding the interorgan circadian control of healthful metabolism.
Collapse
Affiliation(s)
- Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
El-Hennamy RE, Elmasry HA. Alterations in Per2, Bcl2 gene expression, and oxidative status in aged rats liver after light pulse at night. Sleep Biol Rhythms 2024; 22:181-190. [PMID: 38524161 PMCID: PMC10959914 DOI: 10.1007/s41105-023-00495-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/06/2023] [Indexed: 03/26/2024]
Abstract
The aging process is characterized by circadian rhythm disruption, in physiology and behavior, which could result from weak entrainment. Light is the most potent cue that entrains the central circadian clock, which in turn synchronizes peripheral clocks in animal tissues. Period 2 (Per2) is one of the clock genes that respond to light. Moreover, oxidative stress could entrain the clock. Therefore, the present work aimed to investigate the role of light when applied late at night on the Per2, B cell lymphoma 2 (Bcl2) gene expression, and oxidative status in aged rats. Aged rats were divided into a control group and a group exposed to a 30-min light pulse applied daily during the subjective night at 5 am (ZT 22) for 4 weeks. Per2 and Bcl2 gene expression were quantified in liver tissue. To evaluate oxidative status, Glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) were estimated. The light pulse reduced the expression levels of Per2 and Bcl2 mRNA. Although it diminished the levels of malondialdehyde (MDA), nitric oxide (NO) levels were elevated and the glutathione (GSH) levels were declined. In conclusion, the light pulse late at night abolished Per2 mRNA circadian rhythm and reduced its expression in the liver of the aged rat. Similarly, it diminished the anti-apoptotic gene expression, Bcl2. Moreover, it might attenuate oxidative stress through the reduction in MDA levels.
Collapse
Affiliation(s)
- Rehab E. El-Hennamy
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Heba A. Elmasry
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
24
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
25
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Labes S, Froy O, Tabach Y, Shamir R, Shouval DS, Weintraub Y. Mucosal Genes Encoding Clock, Inflammation and Their Mutual Regulators Are Disrupted in Pediatric Patients with Active Ulcerative Colitis. Int J Mol Sci 2024; 25:1488. [PMID: 38338765 PMCID: PMC10855499 DOI: 10.3390/ijms25031488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Patients with active ulcerative colitis (UC) display a misalignment of the circadian clock, which plays a vital role in various immune functions. Our aim was to characterize the expression of clock and inflammation genes, and their mutual regulatory genes in treatment-naïve pediatric patients with UC. Using the Inflammatory Bowel Disease Transcriptome and Metatranscriptome Meta-Analysis (IBD TaMMA) platform and R algorithms, we analyzed rectal biopsy transcriptomic data from two cohorts (206 patients with UC vs. 20 healthy controls from the GSE-109142 study, and 43 patients with UC vs. 55 healthy controls from the GSE-117993 study). We compared gene expression levels and correlation of clock genes (BMAL1, CLOCK, PER1, PER2, CRY1, CRY2), inflammatory genes (IκB, IL10, NFκB1, NFκB2, IL6, TNFα) and their mutual regulatory genes (RORα, RORγ, REV-ERBα, PGC1α, PPARα, PPARγ, AMPK, SIRT1) in patients with active UC and healthy controls. The clock genes BMAL1, CLOCK, PER1 and CRY1 and the inflammatory genes IκB, IL10, NFκB1, NFκB2, IL6 and TNFα were significantly upregulated in patients with active UC. The genes encoding the mutual regulators RORα, RORγ, PGC1α, PPARα and PPARγ were significantly downregulated in patients with UC. A uniform pattern of gene expression was found in healthy controls compared to the highly variable expression pattern in patients with UC. Among the healthy controls, inflammatory genes were positively correlated with clock genes and they all showed reduced expression. The difference in gene expression levels was associated with disease severity and endoscopic score but not with histological score. In patients with active UC, clock gene disruption is associated with abnormal mucosal immune response. Disrupted expression of genes encoding clock, inflammation and their mutual regulators together may play a role in active UC.
Collapse
Affiliation(s)
- Sapir Labes
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.L.); (Y.T.)
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 91905, Israel; (S.L.); (Y.T.)
| | - Raanan Shamir
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror S. Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Weintraub
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (R.S.); (D.S.S.); (Y.W.)
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Chen YC, Wang WS, Lewis SJG, Wu SL. Fighting Against the Clock: Circadian Disruption and Parkinson's Disease. J Mov Disord 2024; 17:1-14. [PMID: 37989149 PMCID: PMC10846969 DOI: 10.14802/jmd.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Circadian disruption is being increasingly recognized as a critical factor in the development and progression of Parkinson's disease (PD). This review aims to provide an in-depth overview of the relationship between circadian disruption and PD by exploring the molecular, cellular, and behavioral aspects of this interaction. This review will include a comprehensive understanding of how the clock gene system and transcription-translation feedback loops function and how they are diminished in PD. The article also discusses the role of clock genes in the regulation of circadian rhythms, as well as the impact of clock gene dysregulation on mitochondrial function, oxidative stress, and neuroinflammation, including the microbiota-gut-brain axis, which have all been proposed as being crucial mechanisms in the pathophysiology of PD. Finally, this review highlights potential therapeutic strategies targeting the clock gene system and circadian rhythm for the treatment of PD.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Shey-Lin Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Electrical Engineering, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
28
|
Salmina AB, Alexandrova OP, Averchuk AS, Korsakova SA, Saridis MR, Illarioshkin SN, Yurchenko SO. Current progress and challenges in the development of brain tissue models: How to grow up the changeable brain in vitro? J Tissue Eng 2024; 15:20417314241235527. [PMID: 38516227 PMCID: PMC10956167 DOI: 10.1177/20417314241235527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
In vitro modeling of brain tissue is a promising but not yet resolved problem in modern neurobiology and neuropharmacology. Complexity of the brain structure and diversity of cell-to-cell communication in (patho)physiological conditions make this task almost unachievable. However, establishment of novel in vitro brain models would ultimately lead to better understanding of development-associated or experience-driven brain plasticity, designing efficient approaches to restore aberrant brain functioning. The main goal of this review is to summarize the available data on methodological approaches that are currently in use, and to identify the most prospective trends in development of neurovascular unit, blood-brain barrier, blood-cerebrospinal fluid barrier, and neurogenic niche in vitro models. The manuscript focuses on the regulation of adult neurogenesis, cerebral microcirculation and fluids dynamics that should be reproduced in the in vitro 4D models to mimic brain development and its alterations in brain pathology. We discuss approaches that are critical for studying brain plasticity, deciphering the individual person-specific trajectory of brain development and aging, and testing new drug candidates in the in vitro models.
Collapse
Affiliation(s)
- Alla B Salmina
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Olga P Alexandrova
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Anton S Averchuk
- Brain Science Institute, Research Center of Neurology, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | | | | | | | | |
Collapse
|
29
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
30
|
Rabinovich-Nikitin I, Kirshenbaum LA. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2024; 34:1-7. [PMID: 36150629 DOI: 10.1016/j.tcm.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Circadian mechanisms have been associated with the pathogenesis of a variety of cardiovascular diseases, including myocardial ischemia-reperfusion injury (I-R). Myocardial ischemia resulting from impaired oxygen delivery to cardiac muscle sets into motion a cascade of cellular events that paradoxically triggers greater cardiac dysfunction upon reinstitution of coronary blood supply, a phenomenon known as I-R. I-R injury has been attributed to a number of cellular defects including increased reactive oxygen species (ROS), increased intracellular calcium and impaired mitochondrial bioenergetics that ultimately lead to cardiac cell death, ventricular remodeling and heart failure. Emerging evidence has identified a strong correlation between cellular defects that underlie I-R and the disrupted circadian. In fact, recent studies have shown that circadian dysfunction exacerbates cardiac injury following MI from impaired cellular quality control mechanisms such as autophagy, which are vital in the clearance of damaged cellular proteins and organelles such as mitochondria from the cell. The accumulation of cellular debris is posited as the central underlying cause of excessive cardiac cell death and ventricular dysfunction following MI. The complexities that govern the interplay between circadian biology and I-R injury following MI is at its infancy and understanding how circadian misalignment, such as in shift workers impacts I-R injury is of great scientific and clinical importance toward development of new therapeutic strategies using chronotherapy and circadian regulation to mitigate cardiac injury and improve cardiac outcomes after injury. In this review, we highlight recent advances in circadian biology and adaptive cellular quality control mechanisms that influence cardiac injury in response to MI injury with a specific focus on how circadian biology can be utilized to further cardiovascular medicine and patient care.
Collapse
Affiliation(s)
- Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Canada; Department of Pharmacology and Therapeutics Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2H6, Canada.
| |
Collapse
|
31
|
Erickson ML, Dobias D, Keleher MR, Dabelea D, Bergman BC, Broussard JL, Boyle KE. In Vitro Circadian Clock Gene Expression Assessments in Mesenchymal Stem Cells from Human Infants: A Pilot Study. Nutrients 2023; 16:52. [PMID: 38201882 PMCID: PMC10780581 DOI: 10.3390/nu16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Exposure to intrauterine obesity can disrupt clock gene rhythmicity in animal models. The aim of this pilot study was to determine if maternal obesity alters rhythmic expression of core clock in mesenchymal stem cells (MSCs) from umbilical cords of human infants born to mothers with obesity (Ob-MSC) vs. normal weight (NW-MSC). METHODS We compared in vitro rhythmic expression patterns of core clock (BMAL1, CLOCK, PER2) and clock-output (NR1D1), components in undifferentiated Ob-MSCs (n = 3) vs. NW-MSCs (n = 3). MSCs were harvested every 2 h, following a dexamethasone shock, for 30 h. Adipogenesis or myogenesis was induced in vitro and markers of adipogenesis and fat storage were assessed, respectively. RESULTS We detected significant rhythmicity in expression patterns of BMAL1, PER2, and NR1D1 at the group level in Ob- and NW-MSCs (p < 0.05). PER2 oscillatory amplitude was 3-fold higher in Ob-MSCs vs. NW-MSCs (p < 0.006). During adipogenesis, Ob-MSCs had higher PPARγ protein content (p = 0.04) vs. NW-MSC. During myogenesis, Ob-MSCs had higher saturated triacylglycerols (p = 0.04) vs. NW-MSC. CONCLUSION Rhythmic expressions of BMAL1, PER2, and NR1D1 are detectable in undifferentiated MSCs. Higher PER2 oscillatory amplitude was paralleled by higher markers of fat storage during differentiation in Ob-MSCs vs. NW-MSCs, and supports that the core clock and cellular metabolism may be linked in infant MSCs.
Collapse
Affiliation(s)
| | - Devin Dobias
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
| | - Madeline Rose Keleher
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA;
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.C.B.); (J.L.B.)
| | - Josiane L. Broussard
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (B.C.B.); (J.L.B.)
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80011, USA
| | - Kristen E. Boyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.)
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA;
| |
Collapse
|
32
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
33
|
Bushana PN, Schmidt MA, Rempe MJ, Sorg BA, Wisor JP. Chronic dietary supplementation with nicotinamide riboside reduces sleep need in the laboratory mouse. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad044. [PMID: 38152423 PMCID: PMC10752388 DOI: 10.1093/sleepadvances/zpad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/13/2023] [Indexed: 12/29/2023]
Abstract
Non-rapid eye movement sleep (NREMS) is accompanied by a reduction in cerebral glucose utilization. Enabling this metabolic change may be a central function of sleep. Since the reduction in glucose metabolism is inevitably accompanied by deceleration of downstream oxidation/reduction reactions involving nicotinamide adenine dinucleotide (NAD), we hypothesized a role for NAD in regulating the homeostatic dynamics of sleep at the biochemical level. We applied dietary nicotinamide riboside (NR), a NAD precursor, in a protocol known to improve neurological outcome measures in mice. Long-term (6-10 weeks) dietary supplementation with NR reduced the time that mice spent in NREMS by 17 percent and accelerated the rate of discharge of sleep need according to a mathematical model of sleep homeostasis (Process S). These findings suggest that increasing redox capacity by increasing nicotinamide availability reduces sleep need and increases the cortical capacity for energetically demanding high-frequency oscillations. In turn, this work demonstrates the impact of redox substrates on cortical circuit properties related to fatigue and sleep drive, implicating redox reactions in the homeostatic dynamics of cortical network events across sleep-wake cycles.
Collapse
Affiliation(s)
- Priyanka N Bushana
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Michelle A Schmidt
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Michael J Rempe
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Barbara A Sorg
- R.S. Dow Neuroscience Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Jonathan P Wisor
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
34
|
Fernández-Martínez J, Ramírez-Casas Y, Yang Y, Aranda-Martínez P, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. From Chronodisruption to Sarcopenia: The Therapeutic Potential of Melatonin. Biomolecules 2023; 13:1779. [PMID: 38136651 PMCID: PMC10741491 DOI: 10.3390/biom13121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Sarcopenia is an age-related condition that involves a progressive decline in muscle mass and function, leading to increased risk of falls, frailty, and mortality. Although the exact mechanisms are not fully understood, aging-related processes like inflammation, oxidative stress, reduced mitochondrial capacity, and cell apoptosis contribute to this decline. Disruption of the circadian system with age may initiate these pathways in skeletal muscle, preceding the onset of sarcopenia. At present, there is no pharmacological treatment for sarcopenia, only resistance exercise and proper nutrition may delay its onset. Melatonin, derived from tryptophan, emerges as an exceptional candidate for treating sarcopenia due to its chronobiotic, antioxidant, and anti-inflammatory properties. Its impact on mitochondria and organelle, where it is synthesized and crucial in aging skeletal muscle, further highlights its potential. In this review, we discuss the influence of clock genes in muscular aging, with special reference to peripheral clock genes in the skeletal muscle, as well as their relationship with melatonin, which is proposed as a potential therapy against sarcopenia.
Collapse
Affiliation(s)
- José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China;
| | - Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (J.F.-M.); (Y.R.-C.); (P.A.-M.); (L.M.-R.); (G.E.)
- Instituto de Investigación Biosanitaria (Ibs.Granada), Hospital Universitario San Cecilio, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
35
|
Miura K, Morishige JI, Abe J, Xu P, Shi Y, Jing Z, Nagata N, Miyazaki R, Sakane N, Mieda M, Ono M, Maida Y, Fujiwara T, Fujiwara H, Ando H. Imeglimin profoundly affects the circadian clock in mouse embryonic fibroblasts. J Pharmacol Sci 2023; 153:215-220. [PMID: 37973219 DOI: 10.1016/j.jphs.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Imeglimin is a novel antidiabetic drug structurally related to metformin. Metformin has been shown to modulate the circadian clock in rat fibroblasts. Accordingly, in the present study, we aimed to determine whether imeglimin can impact the circadian oscillator in mouse embryonic fibroblasts (MEFs). METHODS MEFs carrying a Bmal1-Emerald luciferase (Bmal1-ELuc) reporter were exposed to imeglimin (0.1 or 1 mM), metformin (0.1 or 1 mM), a nicotinamide phosphoribosyltransferase inhibitor FK866, and/or vehicle. Subsequently, Bmal1-ELuc expression and clock gene mRNA expression levels were measured at 10-min intervals for 55 h and 4-h intervals for 32 h, respectively. RESULTS Imeglimin significantly prolonged the period (from 26.3 to 30.0 h at 0.1 mM) and dose-dependently increased the amplitude (9.6-fold at 1 mM) of the Bmal1-ELuc expression rhythm; however, metformin exhibited minimal effects on these parameters. Moreover, imeglimin notably impacted the rhythmic mRNA expression of clock genes (Bmal1, Per1, and Cry1). The concurrent addition of FK866 partly inhibited the effects of imeglimin on both Bmal1-ELuc expression and clock gene mRNA expression. CONCLUSION Collectively, these results reveal that imeglimin profoundly affects the circadian clock in MEFs. Further studies are needed to evaluate whether imeglimin treatment could exert similar effects in vivo.
Collapse
Affiliation(s)
- Kotomi Miura
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jun-Ichi Morishige
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Jotaro Abe
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Pingping Xu
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yifan Shi
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zheng Jing
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoto Nagata
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryo Miyazaki
- Faculty of Human Sciences, Shimane University, Matsue, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiko Maida
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tomoko Fujiwara
- Department of Human Life Environments, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
36
|
Wang B, Edamo ME, Zhou X, Wang Z, Gerber SA, Kettenbach AN, Dunlap JC. Acetylation of WCC is dispensable for the core circadian clock but differentially regulates acute light responses in Neurospora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569266. [PMID: 38076981 PMCID: PMC10705461 DOI: 10.1101/2023.11.29.569266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency ( frq ) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) has been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is controlled mainly by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.
Collapse
|
37
|
Cuenoud B, Huang Z, Hartweg M, Widmaier M, Lim S, Wenz D, Xin L. Effect of circadian rhythm on NAD and other metabolites in human brain. Front Physiol 2023; 14:1285776. [PMID: 38028810 PMCID: PMC10665902 DOI: 10.3389/fphys.2023.1285776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) plays a central role in the master circadian clock of the brain (the suprachiasmatic nuclei, SCN) as demonstrated in many model organisms. NAD acts as an enzyme co-factor and substrate and its modulation was found to be tightly regulated to the periodicity of the cycles. However, in human brain, the effect of the circadian rhythm (CR) on the metabolism of the SCN and other brain regions is poorly understood. We conducted a magnetic resonance spectroscopy (MRS) study at a high magnetic field, measuring the occipital brain NAD levels and other metabolites in two different morning and afternoon diurnal states in 25 healthy participants. Salivary cortisol levels were determined to confirm that the experiment was done in two chronologically different physiological conditions, and a behavioral test of risk-taking propensity was administered. Overall, we found that the CR did not significantly affect NAD levels in the occipital brain region. The other brain metabolites measured, including lactate, were not significantly affected by the CR either, except for taurine. The CR did impact risk-taking behavior and salivary cortisol level, confirming that the participants were in two circadian different behavioral and physiological states in the morning and in the afternoon. Measurement of the CR effect on NAD and taurine levels in other brain regions might provide stronger effects.
Collapse
Affiliation(s)
- Bernard Cuenoud
- Research and Clinical Development, Nestlé Health Science, Epalinges, Switzerland
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mickael Hartweg
- Clinical Research Unit, Nestlé Research and Development, Lausanne, Switzerland
| | - Mark Widmaier
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - SongI. Lim
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Xia Y, Yao B, Fu Z, Li L, Jin S, Qu B, Huang Y, Ding H. Clock genes regulate skeletal muscle energy metabolism through NAMPT/NAD +/SIRT1 following heavy-load exercise. Am J Physiol Regul Integr Comp Physiol 2023; 325:R490-R503. [PMID: 37545421 PMCID: PMC11178296 DOI: 10.1152/ajpregu.00261.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Yu Xia
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Binyu Yao
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zeting Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Lunyu Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Songlin Jin
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Bo Qu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ying Huang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Haili Ding
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| |
Collapse
|
40
|
Kara N, Iweka CA, Blacher E. Chrono-Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Adv Biol (Weinh) 2023; 7:e2300048. [PMID: 37409422 DOI: 10.1002/adbi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a significant public health concern for elderly individuals. However, the majority of pre-clinical studies utilize young and healthy rodents, which may result in failure of candidate therapies in clinical trials. In this brief review/perspective, the complex link between circadian rhythms, aging, innate immunity, and the gut microbiome to ischemic injury onset, progression, and recovery is discussed. Short-chain fatty acids and nicotinamide adenine dinucleotide+ (NAD+ ) production by the gut microbiome are highlighted as key mechanisms with profound rhythmic behavior, and it is suggested to boost them as prophylactic/therapeutic approaches. Integrating aging, its associated comorbidities, and circadian regulation of physiological processes into stroke research may increase the translational value of pre-clinical studies and help to schedule the optimal time window for existing practices to improve stroke outcome and recovery.
Collapse
Affiliation(s)
- Nirit Kara
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| | - Chinyere Agbaegbu Iweka
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Eran Blacher
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
41
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Schellekens H, Torres-Fuentes C, Arola L, Bravo FI, Muguerza B. Sweet treats before sleep disrupt the clock system and increase metabolic risk markers in healthy rats. Acta Physiol (Oxf) 2023; 239:e14005. [PMID: 37243893 DOI: 10.1111/apha.14005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
AIM Biological rhythms are endogenously generated natural cycles that act as pacemakers of different physiological mechanisms and homeostasis in the organism, and whose disruption increases metabolic risk. The circadian rhythm is not only reset by light but it is also regulated by behavioral cues such as timing of food intake. This study investigates whether the chronic consumption of a sweet treat before sleeping can disrupt diurnal rhythmicity and metabolism in healthy rats. METHODS For this, 32 Fischer rats were administered daily a low dose of sugar (160 mg/kg, equivalent to 2.5 g in humans) as a sweet treat at 8:00 a.m. or 8:00 p.m. (ZT0 and ZT12, respectively) for 4 weeks. To elucidate diurnal rhythmicity of clock gene expression and metabolic parameters, animals were sacrificed at different times, including 1, 7, 13, and 19 h after the last sugar dose (ZT1, ZT7, ZT13, and ZT19). RESULTS Increased body weight gain and higher cardiometabolic risk were observed when sweet treat was administered at the beginning of the resting period. Moreover, central clock and food intake signaling genes varied depending on snack time. Specifically, the hypothalamic expression of Nampt, Bmal1, Rev-erbα, and Cart showed prominent changes in their diurnal expression pattern, highlighting that sweet treat before bedtime disrupts hypothalamic control of energy homeostasis. CONCLUSIONS These results show that central clock genes and metabolic effects following a low dose of sugar are strongly time-dependent, causing higher circadian metabolic disruption when it is consumed at the beginning of the resting period, that is, with the late-night snack.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Raúl López-Fernández-Sobrino
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Torres-Fuentes
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Lluis Arola
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Francisca Isabel Bravo
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Begoña Muguerza
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
42
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr 2023; 14:1416-1435. [PMID: 37619764 PMCID: PMC10721522 DOI: 10.1016/j.advnut.2023.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The importance of nicotinamide adenine dinucleotide (NAD+) in human physiology is well recognized. As the NAD+ concentration in human skin, blood, liver, muscle, and brain are thought to decrease with age, finding ways to increase NAD+ status could possibly influence the aging process and associated metabolic sequelae. Nicotinamide mononucleotide (NMN) is a precursor for NAD+ biosynthesis, and in vitro/in vivo studies have demonstrated that NMN supplementation increases NAD+ concentration and could mitigate aging-related disorders such as oxidative stress, DNA damage, neurodegeneration, and inflammatory responses. The promotion of NMN as an antiaging health supplement has gained popularity due to such findings; however, since most studies evaluating the effects of NMN have been conducted in cell or animal models, a concern remains regarding the safety and physiological effects of NMN supplementation in the human population. Nonetheless, a dozen human clinical trials with NMN supplementation are currently underway. This review summarizes the current progress of these trials and NMN/NAD+ biology to clarify the potential effects of NMN supplementation and to shed light on future study directions.
Collapse
Affiliation(s)
- Qin Song
- Department of Occupational and Environmental Health, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiotherapy, The 2(nd) Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Xu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Sishi Liu
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Xinqiang Zhu
- Core Facility, The 4(th) Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
| | - Jun Yang
- Department of Nutritional and Toxicological Science, Hangzhou Normal University School of Public Health, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, The Affiliated Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
44
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
45
|
Murgo E, Colangelo T, Bellet MM, Malatesta F, Mazzoccoli G. Role of the Circadian Gas-Responsive Hemeprotein NPAS2 in Physiology and Pathology. BIOLOGY 2023; 12:1354. [PMID: 37887064 PMCID: PMC10603908 DOI: 10.3390/biology12101354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
Neuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing. We reviewed the scientific literature addressing the various facets of NPAS2 and framing this gene/protein in several and very different research and clinical fields.
Collapse
Affiliation(s)
- Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Tommaso Colangelo
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy;
- Cancer Cell Signaling Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Maria Marina Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, 06132 Perugia, Italy;
| | - Francesco Malatesta
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| |
Collapse
|
46
|
Hao S, Huang H, Ma RY, Zeng X, Duan CY. Multifaceted functions of Drp1 in hypoxia/ischemia-induced mitochondrial quality imbalance: from regulatory mechanism to targeted therapeutic strategy. Mil Med Res 2023; 10:46. [PMID: 37833768 PMCID: PMC10571487 DOI: 10.1186/s40779-023-00482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings. Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia. Dynamin-related protein 1 (Drp1) regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications, which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury. However, there is active controversy and gaps in knowledge regarding the modification, protein interaction, and functions of Drp1, which both hinder and promote development of Drp1 as a novel therapeutic target. Here, we summarize recent findings on the oligomeric changes, modification types, and protein interactions of Drp1 in various hypoxic-ischemic diseases, as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia. Additionally, potential clinical translation prospects for targeting Drp1 are discussed. This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
Collapse
Affiliation(s)
- Shuai Hao
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002 China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| | - Rui-Yan Ma
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400010 China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 China
| |
Collapse
|
47
|
Sun W, Ren J, Jia Z, Liang P, Li S, Song M, Cao Y, Chen H, Luo Q, Yang L, Wang J, Wang C, Wang L. Untargeted Metabolomics Reveals Alterations of Rhythmic Pulmonary Metabolism in IPF. Metabolites 2023; 13:1069. [PMID: 37887394 PMCID: PMC10608701 DOI: 10.3390/metabo13101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive condition characterized by the impairment of alveolar epithelial cells. Despite continued research efforts, the effective therapeutic medication is still absent due to an incomplete understanding of the underlying etiology. It has been shown that rhythmic alterations are of significant importance in the pathophysiology of IPF. However, a comprehensive understanding of how metabolite level changes with circadian rhythms in individuals with IPF is lacking. Here, we constructed an extensive metabolite database by utilizing an unbiased reference system culturing with 13C or 15N labeled nutrients. Using LC-MS analysis via ESI and APCI ion sources, 1300 potential water-soluble metabolites were characterized and applied to evaluate the metabolic changes with rhythm in the lung from both wild-type mice and mice with IPF. The metabolites, such as glycerophospholipids and amino acids, in WT mice exhibited notable rhythmic oscillations. The concentrations of phospholipids reached the highest during the fast state, while those of amino acids reached their peak during fed state. Similar diurnal variations in the metabolite rhythm of amino acids and phospholipids were also observed in IPF mice. Although the rhythmic oscillation of metabolites in the urea cycle remained unchanged, there was a significant up-regulation in their levels in the lungs of IPF mice. 15N-ammonia in vivo isotope tracing further showed an increase in urea cycle activity in the lungs of mice with IPF, which may compensate for the reduced efficiency of the hepatic urea cycle. In sum, our metabolomics database and method provide evidence of the periodic changes in lung metabolites, thereby offering valuable insights to advance our understanding of metabolic reprogramming in the context of IPF.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Jiuqiang Ren
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Zixian Jia
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Puyang Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Meiyue Song
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
| | - Yinghao Cao
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Haoran Chen
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| | - Qiang Luo
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Wang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chen Wang
- Department of Respiratory and Critical Care, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130012, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China (J.W.)
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China (H.C.)
| |
Collapse
|
48
|
Ruszkiewicz J, Papatheodorou Y, Jäck N, Melzig J, Eble F, Pirker A, Thomann M, Haberer A, Rothmiller S, Bürkle A, Mangerich A. NAD + Acts as a Protective Factor in Cellular Stress Response to DNA Alkylating Agents. Cells 2023; 12:2396. [PMID: 37830610 PMCID: PMC10572126 DOI: 10.3390/cells12192396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Sulfur mustard (SM) and its derivatives are potent genotoxic agents, which have been shown to trigger the activation of poly (ADP-ribose) polymerases (PARPs) and the depletion of their substrate, nicotinamide adenine dinucleotide (NAD+). NAD+ is an essential molecule involved in numerous cellular pathways, including genome integrity and DNA repair, and thus, NAD+ supplementation might be beneficial for mitigating mustard-induced (geno)toxicity. In this study, the role of NAD+ depletion and elevation in the genotoxic stress response to SM derivatives, i.e., the monofunctional agent 2-chloroethyl-ethyl sulfide (CEES) and the crosslinking agent mechlorethamine (HN2), was investigated with the use of NAD+ booster nicotinamide riboside (NR) and NAD+ synthesis inhibitor FK866. The effects were analyzed in immortalized human keratinocytes (HaCaT) or monocyte-like cell line THP-1. In HaCaT cells, NR supplementation, increased NAD+ levels, and elevated PAR response, however, did not affect ATP levels or DNA damage repair, nor did it attenuate long- and short-term cytotoxicities. On the other hand, the depletion of cellular NAD+ via FK866 sensitized HaCaT cells to genotoxic stress, particularly CEES exposure, whereas NR supplementation, by increasing cellular NAD+ levels, rescued the sensitizing FK866 effect. Intriguingly, in THP-1 cells, the NR-induced elevation of cellular NAD+ levels did attenuate toxicity of the mustard compounds, especially upon CEES exposure. Together, our results reveal that NAD+ is an important molecule in the pathomechanism of SM derivatives, exhibiting compound-specificity. Moreover, the cell line-dependent protective effects of NR are indicative of system-specificity of the application of this NAD+ booster.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ylea Papatheodorou
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Jäck
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jasmin Melzig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Franziska Eble
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Pirker
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marius Thomann
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Haberer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Nutritional Toxicology, Institute Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
49
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
Jiang H, Wang X, Ma J, Xu G. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194958. [PMID: 37453648 DOI: 10.1016/j.bbagrm.2023.194958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Circadian rhythm is a roughly 24-h wake and sleep cycle that almost all of the organisms on the earth follow when they execute their biological functions and physiological activities. The circadian clock is mainly regulated by the transcription-translation feedback loop (TTFL), consisting of the core clock proteins, including BMAL1, CLOCK, PERs, CRYs, and a series of accessory factors. The circadian clock and the downstream gene expression are not only controlled at the transcriptional and translational levels but also precisely regulated at the post-translational modification level. Recently, it has been discovered that CLOCK exhibits lysine acetyltransferase activities and could acetylate protein substrates. Core clock proteins are also acetylated, thereby altering their biological functions in the regulation of the expression of downstream genes. Studies have revealed that many protein acetylation events exhibit oscillation behavior. However, the biological function of acetylation on circadian rhythm has only begun to explore. This review will briefly introduce the acetylation and deacetylation of the core clock proteins and summarize the proteins whose acetylation is regulated by CLOCK and circadian rhythm. Then, we will also discuss the crosstalk between lysine acetylation and the circadian clock or other post-translational modifications. Finally, we will briefly describe the possible future perspectives in the field.
Collapse
Affiliation(s)
- Honglv Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Ma
- Department of Pharmacy, Medical Center of Soochow University, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215123, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|