1
|
Zhang Y, Chen R, Tang S, Sun T, Yu Y, Shi R, Wang K, Zeng Z, Liu X, Meng Q, Xia Z. Diurnal variation of postoperative delirium in elderly patients undergoing esketamine anesthesia for elective noncardiac surgery: a randomized clinical trial. Int J Surg 2024; 110:5496-5504. [PMID: 39275772 PMCID: PMC11392167 DOI: 10.1097/js9.0000000000001642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/06/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Postoperative delirium (POD) is a serious and common complication. The aim of present study is to investigate the diurnal variation of POD and the effects of esketamine in elderly patients. METHODS A randomized, double-blind, placebo-controlled clinical trial with factorial design was conducted. Patients (aged 65 to 85 years) with normal Mini-Mental State Examination (MMSE) score were stratified by age (≤70 vs. >70) and American Society of Anesthesiologists physical status classification (Ⅱ vs. Ⅲ), then randomly assigned to either morning (08:00-12:00) or afternoon (14:00-18:00) noncardiac operation under general anesthesia with or without esketamine administration (0.2 mg/kg). The primary outcome was the incidence of POD (3-Minute Diagnostic Interview for Confusion Assessment Method-defined Delirium, 3D-CAM) on postoperative days 1, 3, and 7. The secondary outcomes were the scores of MMSE and Hospital Anxiety and Depression Scale. The intention-to-treat analysis of the outcomes were performed by generalized estimating equation. RESULTS Six patients who did not receive an intervention because of canceled operation were excluded after randomization. The datasets containing 426 cases were analyzed following the intention-to-treat principle after handling missing data via multiple imputation method. The incidence of POD declined from about 55% on postoperative day 1 to 31 and 18% on postoperative days 3 and 7, respectively. Afternoon operation [B=-0.583, OR (95% CI) 0.558 (0.319-0.976); P=0.041], but not esketamine, significantly decreased the incidence of POD. Both esketamine and operation time failed to significantly affect MMSE, HAD, and NRS score. There was no interaction among operation time, esketamine, and follow up time. CONCLUSION Elderly patients undergoing elective noncardiac surgery in the afternoon displayed lower POD incidence than those operated in the morning. A single low-dose of esketamine before general anesthesia induction failed to significantly decrease the risk of POD but decrease the risk of intraoperative hypotension and emergence agitation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shan Tang
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Tao Sun
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanli Yu
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ruoshi Shi
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Kai Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zi Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xinhang Liu
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University
- Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Chen L, Xing X, Zhang P, Chen L, Pei H. Homeostatic regulation of NAD(H) and NADP(H) in cells. Genes Dis 2024; 11:101146. [PMID: 38988322 PMCID: PMC11233901 DOI: 10.1016/j.gendis.2023.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 07/12/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/reduced NADP+ (NADPH) are essential metabolites involved in multiple metabolic pathways and cellular processes. NAD+ and NADH redox couple plays a vital role in catabolic redox reactions, while NADPH is crucial for cellular anabolism and antioxidant responses. Maintaining NAD(H) and NADP(H) homeostasis is crucial for normal physiological activity and is tightly regulated through various mechanisms, such as biosynthesis, consumption, recycling, and conversion between NAD(H) and NADP(H). The conversions between NAD(H) and NADP(H) are controlled by NAD kinases (NADKs) and NADP(H) phosphatases [specifically, metazoan SpoT homolog-1 (MESH1) and nocturnin (NOCT)]. NADKs facilitate the synthesis of NADP+ from NAD+, while MESH1 and NOCT convert NADP(H) into NAD(H). In this review, we summarize the physiological roles of NAD(H) and NADP(H) and discuss the regulatory mechanisms governing NAD(H) and NADP(H) homeostasis in three key aspects: the transcriptional and posttranslational regulation of NADKs, the role of MESH1 and NOCT in maintaining NAD(H) and NADP(H) homeostasis, and the influence of the circadian clock on NAD(H) and NADP(H) homeostasis. In conclusion, NADKs, MESH1, and NOCT are integral to various cellular processes, regulating NAD(H) and NADP(H) homeostasis. Dysregulation of these enzymes results in various human diseases, such as cancers and metabolic disorders. Hence, strategies aiming to restore NAD(H) and NADP(H) homeostasis hold promise as novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
3
|
Stephan M, Papiol S, Zhang M, Song J, Frommeyer SM, Haupt H, Jensen N, Kannaiyan N, Gupta R, Schuler P, Picklmann P, McCarthy M, Schulte E, Landen M, Falkai P, Scheuss V, Schulze T, Zhang W, Rossner MJ. Modulation of Neuronal Excitability and Plasticity by BHLHE41 Conveys Lithium Non-Responsiveness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605130. [PMID: 39372797 PMCID: PMC11451663 DOI: 10.1101/2024.07.25.605130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Many bipolar disorder (BD) patients are non-responsive to lithium. The mechanisms underlying lithium (non-)responsiveness are largely unknown. By using gene-set enrichment analysis methods, we found that core clock gene-sets are significantly associated with lithium response. Among the top hits was BHLHE41, a modulator of the molecular clock and homeostatic sleep. Since BHLHE41 and its paralog BHLHE40 are functionally redundant, we assessed chronic lithium response in double-knockout mutant mice (DKO). We demonstrated that DKOs are non-responsive to lithium's effect in various behavioral tasks. Cellular assays and patch clamp recordings revealed lowered excitability and reduced lithium-response in prefrontal cortical layer 2/3 DKO neurons and on hippocampal long-term potentiation. Single-cell RNA sequencing identified that lithium deregulated mitochondrial respiration, cation channel and postsynapse associated gene-sets specifically in upper layer excitatory neurons. Our findings show that lithium acts in a highly cell-specific way on neuronal metabolism and excitability and modulates synaptic plasticity depending on BHLHE40/41.
Collapse
Affiliation(s)
- Marius Stephan
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Mingyue Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Samuel M Frommeyer
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Helen Haupt
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Niels Jensen
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | | | - Rajinder Gupta
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Philipp Schuler
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Pia Picklmann
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Michael McCarthy
- VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, Center for Circadian Biology, University of California San Diego, San Diego, CA, USA
| | - Eva Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
- Department of Psychiatry, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Mikael Landen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
| | - Volker Scheuss
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- MSH Medical School, Hamburg, Germany
| | - Thomas Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Germany
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health & Human Services, Bethesda, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Weiqi Zhang
- Laboratory of Molecular Psychiatry, Department of Psychiatry, University of Muenster, Germany
| | - Moritz J Rossner
- Department of Psychiatry and Psychotherapy, Molecular and Behavioral Neurobiology, LMU University Hospital, LMU Munich, Germany
- Systasy Bioscience GmbH, Munich, Germany
| |
Collapse
|
4
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
5
|
Wang G, Li L, Liao X, Wang S, Mitchell J, Rabel C, Luo S, Shi J, Sorrells JE, Iyer RR, Aksamitiene E, Renteria CA, Chaney EJ, Milner DJ, Wheeler MB, Gillette MU, Schwing A, Chen J, Tu H. Supercontinuum intrinsic fluorescence imaging heralds free view of living systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577383. [PMID: 38328159 PMCID: PMC10849662 DOI: 10.1101/2024.01.26.577383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.
Collapse
|
6
|
Santos EW, Khatoon S, Di Mise A, Zheng YM, Wang YX. Mitochondrial Dynamics in Pulmonary Hypertension. Biomedicines 2023; 12:53. [PMID: 38255160 PMCID: PMC10813473 DOI: 10.3390/biomedicines12010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock. Hypoxia and nicotine exposure can cause dysfunctions in mitochondrial dynamics, increases in mitochondrial reactive oxygen species generation and calcium concentration, and decreases in ATP production. These mitochondrial changes contribute significantly to pulmonary vascular oxidative stress, inflammatory responses, contractile dysfunction, pathologic remodeling, and eventually pulmonary hypertension. In this review article, therefore, we primarily summarize recent advances in basic, translational, and clinical studies of circadian roles in mitochondrial metabolism in the pulmonary vasculature. This knowledge may not only be crucial to fully understanding the development of pulmonary hypertension, but also greatly help to create new therapeutic strategies for treating this devastating disease and other related pulmonary disorders.
Collapse
Affiliation(s)
- Ed Wilson Santos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Subika Khatoon
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (E.W.S.); (S.K.); (A.D.M.)
| |
Collapse
|
7
|
de Lima Cavalcanti TYV, Lima MC, Bargi-Souza P, Franca RFO, Peliciari-Garcia RA. Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. Cell Mol Neurobiol 2023; 44:10. [PMID: 38141078 DOI: 10.1007/s10571-023-01445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.
Collapse
Affiliation(s)
- Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, CEP 09913-030, Brazil.
| |
Collapse
|
8
|
Cuenoud B, Huang Z, Hartweg M, Widmaier M, Lim S, Wenz D, Xin L. Effect of circadian rhythm on NAD and other metabolites in human brain. Front Physiol 2023; 14:1285776. [PMID: 38028810 PMCID: PMC10665902 DOI: 10.3389/fphys.2023.1285776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Nicotinamide Adenine Dinucleotide (NAD) plays a central role in the master circadian clock of the brain (the suprachiasmatic nuclei, SCN) as demonstrated in many model organisms. NAD acts as an enzyme co-factor and substrate and its modulation was found to be tightly regulated to the periodicity of the cycles. However, in human brain, the effect of the circadian rhythm (CR) on the metabolism of the SCN and other brain regions is poorly understood. We conducted a magnetic resonance spectroscopy (MRS) study at a high magnetic field, measuring the occipital brain NAD levels and other metabolites in two different morning and afternoon diurnal states in 25 healthy participants. Salivary cortisol levels were determined to confirm that the experiment was done in two chronologically different physiological conditions, and a behavioral test of risk-taking propensity was administered. Overall, we found that the CR did not significantly affect NAD levels in the occipital brain region. The other brain metabolites measured, including lactate, were not significantly affected by the CR either, except for taurine. The CR did impact risk-taking behavior and salivary cortisol level, confirming that the participants were in two circadian different behavioral and physiological states in the morning and in the afternoon. Measurement of the CR effect on NAD and taurine levels in other brain regions might provide stronger effects.
Collapse
Affiliation(s)
- Bernard Cuenoud
- Research and Clinical Development, Nestlé Health Science, Epalinges, Switzerland
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Zhiwei Huang
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mickael Hartweg
- Clinical Research Unit, Nestlé Research and Development, Lausanne, Switzerland
| | - Mark Widmaier
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - SongI. Lim
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Xu W, Li X. Special Issue: Circadian Rhythms and Age Related Disorder: How Does Aging Impact Mammalian Circadian Organization? Adv Biol (Weinh) 2023; 7:e2200219. [PMID: 36449746 DOI: 10.1002/adbi.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Aging significantly impacts circadian timing in mammals. The amplitude and precision of behavioral, endocrine, and metabolic rhythms decline with age. This is accompanied with an age-related decline in the amplitude of central pacemaker output, although the molecular clock in the suprachiasmatic nucleus exhibit robust oscillation. Peripheral clocks also exhibit robust oscillation during aging, when extensive reprogramming of other genes' expression rhythms occurs in peripheral tissues. The age-related dissociation between the molecular clock and downstream rhythms in both central and peripheral tissues indicates that mechanisms other than the molecular clock are involved in mediating the impact the aging on circadian organization. In this article, findings are reviewed on the impact of aging on circadian timing functions, and the potential role of increased inflammatory response in age-related changes in circadian organization is highlighted.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| | - Xiaodong Li
- College of Life Sciences, Wuhan University, Hubei Province, 430072, P. R. China
| |
Collapse
|
10
|
Clark AD, Cumpstey AF, Santolini J, Jackson AA, Feelisch M. Uncoupled redox stress: how a temporal misalignment of redox-regulated processes and circadian rhythmicity exacerbates the stressed state. Open Biol 2023; 13:230151. [PMID: 37669692 PMCID: PMC10480010 DOI: 10.1098/rsob.230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Diurnal and seasonal rhythmicity, entrained by environmental and nutritional cues, is a vital part of all life on Earth operating at every level of organization; from individual cells, to multicellular organisms, whole ecosystems and societies. Redox processes are intrinsic to physiological function and circadian regulation, but how they are integrated with other regulatory processes at the whole-body level is poorly understood. Circadian misalignment triggered by a major stressor (e.g. viral infection with SARS-CoV-2) or recurring stressors of lesser magnitude such as shift work elicit a complex stress response that leads to desynchronization of metabolic processes. This in turn challenges the system's ability to achieve redox balance due to alterations in metabolic fluxes (redox rewiring). We infer that the emerging 'alternative redox states' do not always revert readily to their evolved natural states; 'Long COVID' and other complex disorders of unknown aetiology are the clinical manifestations of such rearrangements. To better support and successfully manage bodily resilience to major stress and other redox challenges needs a clear perspective on the pattern of the hysteretic response for the interaction between the redox system and the circadian clock. Characterization of this system requires repeated (ideally continuous) recording of relevant clinical measures of the stress responses and whole-body redox state (temporal redox phenotyping). The human/animal body is a complex 'system of systems' with multi-level buffering capabilities, and it requires consideration of the wider dynamic context to identify a limited number of stress-markers suitable for routine clinical decision making. Systematically mapping the patterns and dynamics of redox biomarkers along the stressor/disease trajectory will provide an operational model of whole-body redox regulation/balance that can serve as basis for the identification of effective interventions which promote health by enhancing resilience.
Collapse
Affiliation(s)
- Anna D. Clark
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Andrew F. Cumpstey
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Alan A. Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- Perioperative and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
11
|
Xue Q, Wang R, Zhu-Ge R, Guo L. Research progresses on the effects of heavy metals on the circadian clock system. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 0:reveh-2022-0104. [PMID: 37572029 DOI: 10.1515/reveh-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/12/2023] [Indexed: 08/14/2023]
Abstract
Environmental pollution with heavy metals is widespread, thus increasing attention has been paid to their toxic effects. Recent studies have suggested that heavy metals may influence the expression of circadian clock genes. Almost all organs and tissues exhibit circadian rhythms. The normal circadian rhythm of an organism is maintained by the central and peripheral circadian clock. Thus, circadian rhythm disorders perturb normal physiological processes. Here, we review the effects of heavy metals, including manganese, copper, cadmium, and lead, on four core circadian clock genes, i.e., ARNTL, CLOCK, PER, and CRY genes.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ruijian Zhu-Ge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Grosjean E, Simonneaux V, Challet E. Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. BIOLOGY 2023; 12:biology12040539. [PMID: 37106739 PMCID: PMC10136292 DOI: 10.3390/biology12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Like other biological functions, food intake and energy metabolism display daily rhythms controlled by the circadian timing system that comprises a main circadian clock and numerous secondary clocks in the brain and peripheral tissues. Each secondary circadian clock delivers local temporal cues based on intracellular transcriptional and translational feedback loops that are tightly interconnected to intracellular nutrient-sensing pathways. Genetic impairment of molecular clocks and alteration in the rhythmic synchronizing cues, such as ambient light at night or mistimed meals, lead to circadian disruption that, in turn, negatively impacts metabolic health. Not all circadian clocks are sensitive to the same synchronizing signals. The master clock in the suprachiasmatic nuclei of the hypothalamus is mostly synchronized by ambient light and, to a lesser extent, by behavioral cues coupled to arousal and exercise. Secondary clocks are generally phase-shifted by timed metabolic cues associated with feeding, exercise, and changes in temperature. Furthermore, both the master and secondary clocks are modulated by calorie restriction and high-fat feeding. Taking into account the regularity of daily meals, the duration of eating periods, chronotype, and sex, chrononutritional strategies may be useful for improving the robustness of daily rhythmicity and maintaining or even restoring the appropriate energy balance.
Collapse
Affiliation(s)
- Emma Grosjean
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
13
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
14
|
Stangherlin A. Ion dynamics and the regulation of circadian cellular physiology. Am J Physiol Cell Physiol 2023; 324:C632-C643. [PMID: 36689675 DOI: 10.1152/ajpcell.00378.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Circadian rhythms in physiology and behavior allow organisms to anticipate the daily environmental changes imposed by the rotation of our planet around its axis. Although these rhythms eventually manifest at the organismal level, a cellular basis for circadian rhythms has been demonstrated. Significant contributors to these cell-autonomous rhythms are daily cycles in gene expression and protein translation. However, recent data revealed cellular rhythms in other biological processes, including ionic currents, ion transport, and cytosolic ion abundance. Circadian rhythms in ion currents sustain circadian variation in action potential firing rate, which coordinates neuronal behavior and activity. Circadian regulation of metal ions abundance and dynamics is implicated in distinct cellular processes, from protein translation to membrane activity and osmotic homeostasis. In turn, studies showed that manipulating ion abundance affects the expression of core clock genes and proteins, suggestive of a close interplay. However, the relationship between gene expression cycles, ion dynamics, and cellular function is still poorly characterized. In this review, I will discuss the mechanisms that generate ion rhythms, the cellular functions they govern, and how they feed back to regulate the core clock machinery.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Verma AK, Singh S, Rizvi SI. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp Gerontol 2023; 172:112076. [PMID: 36574855 DOI: 10.1016/j.exger.2022.112076] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
The circadian system is an intricate molecular network of coordinating circadian clocks that organize the internal synchrony of the organism in response to the environment. These rhythms are maintained by genetically programmed positive and negative auto-regulated transcriptional and translational feedback loops that sustain 24-hour oscillations in mRNA and protein components of the endogenous circadian clock. Since inter and intracellular activity of the central pacemaker appears to reduce with aging, the interaction between the circadian clock and aging continues to elude our understanding. In this review article, we discuss circadian clock components at the molecular level and how aging adversely affects circadian clock functioning in rodents and humans. The natural decline in melatonin levels with aging strongly contributes to circadian dysregulation resulting in the development of neurological anomalies. Additionally, inappropriate environmental conditions such as Artificial Light at Night (ALAN) can cause circadian disruption or chronodisruption (CD) which can result in a variety of pathological diseases, including premature aging. Furthermore, we summarize recent evidence suggesting that CD may also be a predisposing factor for the development of age-related neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), although more investigation is required to prove this link. Finally, certain chrono-enhancement approaches have been offered as intervention strategies to prevent, alleviate, or mitigate the impacts of CD. This review thus aims to bring together recent advancements in the chronobiology of the aging process, as well as its role in NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India; Psychedelics Research Group, Biological Psychiatry Laboratory and Hadassah BrainLabs, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
17
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
18
|
O'Siorain JR, Curtis AM. Circadian Control of Redox Reactions in the Macrophage Inflammatory Response. Antioxid Redox Signal 2022; 37:664-678. [PMID: 35166129 DOI: 10.1089/ars.2022.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Macrophages are immune sentinels located throughout the body that function in both amplification and resolution of the inflammatory response. The circadian clock has emerged as a central regulator of macrophage inflammation. Reduction-oxidation (redox) reactions are central to both the circadian clock and macrophage function. Recent Advances: Circadian regulation of metabolism controls the macrophage inflammatory response, whereby disruption of the clock causes dysfunctional inflammation. Altering metabolism and reactive oxygen/nitrogen species (RONS) production rescues the inflammatory phenotype of clock-disrupted macrophages. Critical Issues: The circadian clock possesses many layers of regulation. Understanding how redox reactions coordinate clock function is critical to uncover the full extent of circadian regulation of macrophage inflammation. We provide insights into how circadian regulation of redox affects macrophage pattern recognition receptor signaling, immunometabolism, phagocytosis, and inflammasome activation. Future Directions: Many diseases associated with aberrant macrophage-derived inflammation exhibit time-of-day rhythms in disease symptoms and severity and are sensitive to circadian disruption. Macrophage function is highly dependent on redox reactions that signal through RONS. Future studies are needed to evaluate the extent of circadian control of macrophage inflammation, specifically in the context of redox signaling. Antioxid. Redox Signal. 37, 664-678.
Collapse
Affiliation(s)
- James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
19
|
Cirillo ENM, Colangeli M, Di Francesco A, Kröger M, Rondoni L. Transport and nonequilibrium phase transitions in polygonal urn models. CHAOS (WOODBURY, N.Y.) 2022; 32:093127. [PMID: 36182393 DOI: 10.1063/5.0101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
We study the deterministic dynamics of N point particles moving at a constant speed in a 2D table made of two polygonal urns connected by an active rectangular channel, which applies a feedback control on the particles, inverting the horizontal component of their velocities when their number in the channel exceeds a fixed threshold. Such a bounce-back mechanism is non-dissipative: it preserves volumes in phase space. An additional passive channel closes the billiard table forming a circuit in which a stationary current may flow. Under specific constraints on the geometry and on the initial conditions, the large N limit allows nonequilibrium phase transitions between homogeneous and inhomogeneous phases. The role of ergodicity in making a probabilistic theory applicable is discussed for both rational and irrational urns. The theoretical predictions are compared with the numerical simulation results. Connections with the dynamics of feedback-controlled biological systems are highlighted.
Collapse
Affiliation(s)
- Emilio N M Cirillo
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, via A. Scarpa 16, 00161 Roma, Italy
| | - Matteo Colangeli
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, via Vetoio, 67100 L'Aquila, Italy
| | - Antonio Di Francesco
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Università degli Studi dell'Aquila, via Vetoio, 67100 L'Aquila, Italy
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Lamberto Rondoni
- Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
20
|
Ntambiyukuri A, Li X, Xiao D, Wang A, Zhan J, He L. Circadian Rhythm Regulates Reactive Oxygen Species Production and Inhibits Al-Induced Programmed Cell Death in Peanut. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081271. [PMID: 36013450 PMCID: PMC9410085 DOI: 10.3390/life12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Peanut is among the most important oil crops in the world. In the southern part of China, peanut is highly produced; however, the arable land is acidic. In acidic soils, aluminum (Al) inhibits plant growth and development by changing the properties of the cell wall and causing the disorder of the intracellular metabolic process. Circadian rhythm is an internal mechanism that occurs about every 24 h and enables plants to maintain internal biological processes with a daily cycle. To investigate the effect of photoperiod and Al stress on the Al-induced programmed cell death (PCD), two peanut varieties were treated with 100 μM AlCl3 under three photoperiodic conditions (8/16, SD; 12/12, ND; 16/8 h, LD). The results show that Al toxicity was higher in ZH2 than in 99-1507 and higher under LD than under SD. Root length decreased by 30, 37.5, and 50% in ZH2 and decreased by 26.08, 34.78, and 47.82% in 99-1507 under SD, ND, and LD, respectively, under Al stress. Photoperiod and Al induced cell death and ROS production. MDA content, PME activity, and LOX activity increased under SD, ND, and LD, respectively, under Al stress both in ZH2 and 99-1507. APX, SOD, CAT, and POD activities were higher under SD, ND, and LD, respectively. Al stress increased the level of AhLHY expression under SD and ND but decreased it under LD in both ZH2 and 99-1507. Contrastingly, AhSTS expression levels increased exponentially and were higher under SD, LD, and ND, respectively, under Al stress. Our results will be a useful platform to research PCD induced by Al and gain new insights into the genetic manipulation of the circadian clock for plant stress response.
Collapse
Affiliation(s)
- Aaron Ntambiyukuri
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
| | - Longfei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China
- Correspondence: (D.X.); (L.H.)
| |
Collapse
|
21
|
Kelly KP, Borsetti H, Wenzler ME, Ustione A, Kim K, Christov PP, Ramirez B, Bauer JA, Piston DW, Johnson CH, Sulikowski GA. Screen for Small-Molecule Modulators of Circadian Rhythms Reveals Phenazine as a Redox-State Modifying Clockwork Tuner. ACS Chem Biol 2022; 17:1658-1664. [PMID: 35679588 PMCID: PMC9398883 DOI: 10.1021/acschembio.2c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high-throughput cell-based screen identified redox-active small molecules that produce a period lengthening of the circadian rhythm. The strongest period lengthening phenotype was induced by a phenazine carboxamide (VU661). Comparison to two isomeric benzquinoline carboxamides (VU673 and VU164) shows the activity is associated with the redox modulating phenazine functionality. Furthermore, ex vivo cell analysis using optical redox ratio measurements shows the period lengthening phenotype to be associated with a shift to the NAD/FAD oxidation state of nicotinamide and flavine coenzymes.
Collapse
Affiliation(s)
- Kevin P Kelly
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Hugo Borsetti
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marta E Wenzler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Alessandro Ustione
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bianca Ramirez
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joshua A Bauer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David W Piston
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
22
|
Cysteine Oxidation Promotes Dimerization/Oligomerization of Circadian Protein Period 2. Biomolecules 2022; 12:biom12070892. [PMID: 35883448 PMCID: PMC9313148 DOI: 10.3390/biom12070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
The molecular circadian clock is based on a transcriptional/translational feedback loop in which the stability and half-life of circadian proteins is of importance. Cysteine residues of proteins are subject to several redox reactions leading to S-thiolation and disulfide bond formation, altering protein stability and function. In this work, the ability of the circadian protein period 2 (PER2) to undergo oxidation of cysteine thiols was investigated in HEK-293T cells. PER2 includes accessible cysteines susceptible to oxidation by nitroso cysteine (CysNO), altering its stability by decreasing its monomer form and subsequently increasing PER2 homodimers and multimers. These changes were reversed by treatment with 2-mercaptoethanol and partially mimicked by hydrogen peroxide. These results suggest that cysteine oxidation can prompt PER2 homodimer and multimer formation in vitro, likely by S-nitrosation and disulphide bond formation. These kinds of post-translational modifications of PER2 could be part of the redox regulation of the molecular circadian clock.
Collapse
|
23
|
Zhang YS, Alvarez JL, Ghazanfar AA. Arousal elevation drives the development of oscillatory vocal output. J Neurophysiol 2022; 127:1519-1531. [PMID: 35475704 PMCID: PMC9169828 DOI: 10.1152/jn.00007.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Adult behaviors, such as vocal production, often exhibit temporal regularity. In contrast, their immature forms are more irregular. We ask whether the coupling of motor behaviors with arousal changes gives rise to temporal regularity: Do they drive the transition from variable to regular motor output over the course of development? We used marmoset monkey vocal production to explore this putative influence of arousal on the nonlinear changes in their developing vocal output patterns. Based on a detailed analysis of vocal and arousal dynamics in marmosets, we put forth a general model incorporating arousal and auditory feedback loops for spontaneous vocal production. Using this model, we show that a stable oscillation can emerge as the baseline arousal increases, predicting the transition from stochastic to periodic oscillations observed during marmoset vocal development. We further provide a solution for how this model can explain vocal development as the joint consequence of energetic growth and social feedback. Together, we put forth a plausible mechanism for the development of arousal-mediated adaptive behavior.NEW & NOTEWORTHY The development of motor behaviors, and the influence of energetic and social factors on it, has long been of interest, yet we lack an integrated picture of how these different systems may interact. Through the lens of vocal development in infant marmosets, this study offers a solution for social behavior development by linking motor production with arousal states. Increases in arousal can drive the system out of stochastic states toward oscillatory dynamics ready for communication.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - John L Alvarez
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
24
|
Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway. iScience 2022; 25:104267. [PMID: 35521538 PMCID: PMC9062755 DOI: 10.1016/j.isci.2022.104267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/13/2021] [Accepted: 04/13/2022] [Indexed: 02/03/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) integrates light and systemic signals from peripheral tissues to coordinate physiology and behavior daily rhythms. However, the contribution that nutrients and feeding patterns provide to the SCN network regulation remains controversial. Here, we found that time-restricted feeding (TRF) in ZT0-4 (Zeitgeber Time) generates a robust and long-term shift in locomotor behavior and increased wakefulness. Intracellular Ca2+ signals in SCN GABAergic neurons of freely moving mice showed significant activation after ZT0-4 TRF treatment. Furthermore, RNA-seq profiling of SCN showed that TRF during ZT0-4 increased Insulin-like Growth Factor 2 (Igf2) expression and dysregulated ion transporters, including the downregulation of Kcc2. SCN neuron-specific loss of function of Kcc2 amplified ZT0-4 TRF induced aftereffect. Moreover, overexpression of IGF2 in SCN GABAergic neurons extended the locomotion range, mirroring the TRF aftereffect. In summary, our study showed that the IGF2-KCC2 pathway plays an important role for TRF induced behavior changes.
Collapse
|
25
|
Circadian and Immunity Cycle Talk in Cancer Destination: From Biological Aspects to In Silico Analysis. Cancers (Basel) 2022; 14:cancers14061578. [PMID: 35326729 PMCID: PMC8945968 DOI: 10.3390/cancers14061578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The circadian cycle is a natural cycle of the body repeated every 24 h, based on a day and night rhythm, and it affects many body processes. The present article reviews the importance and role of the circadian cycle in cancer and its association with the immune system and immunotherapy drugs at the cellular and molecular levels. It also examines the genes and cellular pathways involved in both circadian and immune systems. It offers possible computational solutions to increase the effectiveness of cancer treatment concerning the circadian cycle. Abstract Cancer is the leading cause of death and a major problem to increasing life expectancy worldwide. In recent years, various approaches such as surgery, chemotherapy, radiation, targeted therapies, and the newest pillar, immunotherapy, have been developed to treat cancer. Among key factors impacting the effectiveness of treatment, the administration of drugs based on the circadian rhythm in a person and within individuals can significantly elevate drug efficacy, reduce adverse effects, and prevent drug resistance. Circadian clocks also affect various physiological processes such as the sleep cycle, body temperature cycle, digestive and cardiovascular processes, and endocrine and immune systems. In recent years, to achieve precision patterns for drug administration using computational methods, the interaction of the effects of drugs and their cellular pathways has been considered more seriously. Integrated data-derived pathological images and genomics, transcriptomics, and proteomics analyses have provided an understanding of the molecular basis of cancer and dramatically revealed interactions between circadian and immunity cycles. Here, we describe crosstalk between the circadian cycle signaling pathway and immunity cycle in cancer and discuss how tumor microenvironment affects the influence on treatment process based on individuals’ genetic differences. Moreover, we highlight recent advances in computational modeling that pave the way for personalized immune chronotherapy.
Collapse
|
26
|
Kuldyushev N, Schönherr R, Coburger I, Ahmed M, Hussein RA, Wiesel E, Godbole A, Pfirrmann T, Hoshi T, Heinemann SH. A GFP-based ratiometric sensor for cellular methionine oxidation. Talanta 2022; 243:123332. [PMID: 35276500 DOI: 10.1016/j.talanta.2022.123332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
Abstract
Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.
Collapse
Affiliation(s)
- Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Ina Coburger
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Eric Wiesel
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Amod Godbole
- Center for Molecular Biomedicine, Institute for Molecular Cell Biology, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Thorsten Pfirrmann
- Institute for Physiological Chemistry, Martin Luther University Halle-Wittenberg, Hollystr. 1, 06144, Halle/Saale, Germany; Department of Medicine, Health and Medical University, Olympischer Weg 1, 14471 Potsdam, Germany
| | - Toshinori Hoshi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104-6085, USA
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
27
|
Ali AAH, von Gall C. Adult Neurogenesis under Control of the Circadian System. Cells 2022; 11:cells11050764. [PMID: 35269386 PMCID: PMC8909047 DOI: 10.3390/cells11050764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
The mammalian circadian system is a hierarchically organized system, which controls a 24-h periodicity in a wide variety of body and brain functions and physiological processes. There is increasing evidence that the circadian system modulates the complex multistep process of adult neurogenesis, which is crucial for brain plasticity. This modulatory effect may be exercised via rhythmic systemic factors including neurotransmitters, hormones and neurotrophic factors as well as rhythmic behavior and physiology or via intrinsic factors within the neural progenitor cells such as the redox state and clock genes/molecular clockwork. In this review, we discuss the role of the circadian system for adult neurogenesis at both the systemic and the cellular levels. Better understanding of the role of the circadian system in modulation of adult neurogenesis can help develop new treatment strategies to improve the cognitive deterioration associated with chronodisruption due to detrimental light regimes or neurodegenerative diseases.
Collapse
|
28
|
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 2022; 7:41. [PMID: 35136018 PMCID: PMC8825842 DOI: 10.1038/s41392-022-00899-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The term “circadian rhythms” describes endogenous oscillations with ca. 24-h period associated with the earth’s daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Travelli
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Davide Voltan
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | | | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
29
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
30
|
Becker-Krail DD, Parekh PK, Ketchesin KD, Yamaguchi S, Yoshino J, Hildebrand MA, Dunham B, Ganapathiraiu MK, Logan RW, McClung CA. Circadian transcription factor NPAS2 and the NAD + -dependent deacetylase SIRT1 interact in the mouse nucleus accumbens and regulate reward. Eur J Neurosci 2022; 55:675-693. [PMID: 35001440 PMCID: PMC9355311 DOI: 10.1111/ejn.15596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
Substance use disorders are associated with disruptions to both circadian rhythms and cellular metabolic state. At the molecular level, the circadian molecular clock and cellular metabolic state may be interconnected through interactions with the nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylase, sirtuin 1 (SIRT1). In the nucleus accumbens (NAc), a region important for reward, both SIRT1 and the circadian transcription factor neuronal PAS domain protein 2 (NPAS2) are highly enriched, and both are regulated by the metabolic cofactor NAD+ . Substances of abuse, like cocaine, greatly disrupt cellular metabolism and promote oxidative stress; however, their effects on NAD+ in the brain remain unclear. Interestingly, cocaine also induces NAc expression of both NPAS2 and SIRT1, and both have independently been shown to regulate cocaine reward in mice. However, whether NPAS2 and SIRT1 interact in the NAc and/or whether together they regulate reward is unknown. Here, we demonstrate diurnal expression of Npas2, Sirt1 and NAD+ in the NAc, which is altered by cocaine-induced upregulation. Additionally, co-immunoprecipitation reveals NPAS2 and SIRT1 interact in the NAc, and cross-analysis of NPAS2 and SIRT1 chromatin immunoprecipitation sequencing reveals several reward-relevant and metabolic-related pathways enriched among shared gene targets. Notably, NAc-specific Npas2 knock-down or a functional Npas2 mutation in mice attenuates SIRT1-mediated increases in cocaine preference. Together, our data reveal an interaction between NPAS2 and SIRT1 in the NAc, which may serve to integrate cocaine's effects on circadian and metabolic factors, leading to regulation of drug reward.
Collapse
Affiliation(s)
- Darius D. Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Puja K. Parekh
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Brandon Dunham
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi K. Ganapathiraiu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Center for Neuroscience, University of Pittsburgh, PA, USA,Correspondence: Colleen A. McClung,
| |
Collapse
|
31
|
Gillette MU, Mitchell JW. Electrophysiology of the Suprachiasmatic Nucleus: Single-Unit Recording. Methods Mol Biol 2022; 2482:181-189. [PMID: 35610427 DOI: 10.1007/978-1-0716-2249-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oscillatory output from the suprachiasmatic nuclei (SCN) of the hypothalamus communicates time-of-day information to the brain and body. The SCN's intrinsic ~24-h rhythm can be measured in the neuronal firing rate both in vivo and in vitro, where it continues unperturbed. This robust reporter of endogenous physiology in the SCN brain slice can be widely used to study dynamic changes in SCN physiology, its changing sensitivity to phase-altering signals, and underlying mechanisms. To provide relevant and reproducible data, care must be taken to ensure health of the SCN brain slice. The methods detailed here have been proven to produce healthy, long-lived brain slices.
Collapse
Affiliation(s)
- Martha U Gillette
- Department of Cell and Developmental Biology and Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jennifer W Mitchell
- Department of Cell and Developmental Biology and Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
32
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
33
|
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42:101887. [PMID: 33579666 PMCID: PMC8113039 DOI: 10.1016/j.redox.2021.101887] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.
Collapse
Affiliation(s)
- Bato Korac
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, L7 8TX, Liverpool, UK
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
34
|
Joye DAM, Evans JA. Sex differences in daily timekeeping and circadian clock circuits. Semin Cell Dev Biol 2021; 126:45-55. [PMID: 33994299 DOI: 10.1016/j.semcdb.2021.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
The circadian system regulates behavior and physiology in many ways important for health. Circadian rhythms are expressed by nearly every cell in the body, and this large system is coordinated by a central clock in the suprachiasmatic nucleus (SCN). Sex differences in daily rhythms are evident in humans and understanding how circadian function is modulated by biological sex is an important goal. This review highlights work examining effects of sex and gonadal hormones on daily rhythms, with a focus on behavior and SCN circuitry in animal models commonly used in pre-clinical studies. Many questions remain in this area of the field, which would benefit from further work investigating this topic.
Collapse
Affiliation(s)
- Deborah A M Joye
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA
| | - Jennifer A Evans
- Marquette University, Department of Biomedical Sciences, Milwaukee, WI, USA.
| |
Collapse
|
35
|
Redox and Antioxidant Modulation of Circadian Rhythms: Effects of Nitroxyl, N-Acetylcysteine and Glutathione. Molecules 2021; 26:molecules26092514. [PMID: 33925826 PMCID: PMC8123468 DOI: 10.3390/molecules26092514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated. Here, the one-electron reduction of NO• nitroxyl was pharmacologically delivered by Angeli’s salt (AS) donor to assess its modulation on phase-resetting of locomotor rhythms in hamsters. Intracerebroventricular AS generated nitroxyl at the SCN, promoting phase-delays at CT14, but potentiated light-induced phase-advances at CT18. Glutathione/glutathione disulfide (GSH/GSSG) couple measured in SCN homogenates showed higher values at CT14 (i.e., more reduced) than at CT18 (oxidized). In addition, administration of antioxidants N-acetylcysteine (NAC) and GSH induced delays per se at CT14 but did not affect light-induced advances at CT18. Thus, the relative of NO• nitroxyl generates phase-delays in a reductive SCN environment, while an oxidative favors photic-advances. These data suggest that circadian phase-locking mechanisms should include redox SCN environment, generating relatives of NO•, as well as coupling with the molecular oscillator.
Collapse
|
36
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
37
|
Bernardi J, Aromolaran KA, Zhu H, Aromolaran AS. Circadian Mechanisms: Cardiac Ion Channel Remodeling and Arrhythmias. Front Physiol 2021; 11:611860. [PMID: 33519516 PMCID: PMC7841411 DOI: 10.3389/fphys.2020.611860] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms are involved in many physiological and pathological processes in different tissues, including the heart. Circadian rhythms play a critical role in adverse cardiac function with implications for heart failure and sudden cardiac death, highlighting a significant contribution of circadian mechanisms to normal sinus rhythm in health and disease. Cardiac arrhythmias are a leading cause of morbidity and mortality in patients with heart failure and likely cause ∼250,000 deaths annually in the United States alone; however, the molecular mechanisms are poorly understood. This suggests the need to improve our current understanding of the underlying molecular mechanisms that increase vulnerability to arrhythmias. Obesity and its associated pathologies, including diabetes, have emerged as dangerous disease conditions that predispose to adverse cardiac electrical remodeling leading to fatal arrhythmias. The increasing epidemic of obesity and diabetes suggests vulnerability to arrhythmias will remain high in patients. An important objective would be to identify novel and unappreciated cellular mechanisms or signaling pathways that modulate obesity and/or diabetes. In this review we discuss circadian rhythms control of metabolic and environmental cues, cardiac ion channels, and mechanisms that predispose to supraventricular and ventricular arrhythmias including hormonal signaling and the autonomic nervous system, and how understanding their functional interplay may help to inform the development and optimization of effective clinical and therapeutic interventions with implications for chronotherapy.
Collapse
Affiliation(s)
- Joyce Bernardi
- Masonic Medical Research Institute, Utica, NY, United States
| | | | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | |
Collapse
|
38
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
39
|
Brancaccio M, Wolfes AC, Ness N. Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1344:87-110. [PMID: 34773228 DOI: 10.1007/978-3-030-81147-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco Brancaccio
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Anne C Wolfes
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Natalie Ness
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| |
Collapse
|
40
|
Sharma A, Sethi G, Tambuwala MM, Aljabali AAA, Chellappan DK, Dua K, Goyal R. Circadian Rhythm Disruption and Alzheimer's Disease: The Dynamics of a Vicious Cycle. Curr Neuropharmacol 2020; 19:248-264. [PMID: 32348224 PMCID: PMC8033974 DOI: 10.2174/1570159x18666200429013041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
All mammalian cells exhibit circadian rhythm in cellular metabolism and energetics. Autonomous cellular clocks are modulated by various pathways that are essential for robust time keeping. In addition to the canonical transcriptional translational feedback loop, several new pathways of circadian timekeeping - non-transcriptional oscillations, post-translational modifications, epigenetics and cellular signaling in the circadian clock - have been identified. The physiology of circadian rhythm is expansive, and its link to the neurodegeneration is multifactorial. Circadian rhythm disruption is prevelant in contamporary society where light-noise, shift-work, and transmeridian travel are commonplace, and is also reported from the early stages of Alzheimer's disease (AD). Circadian alignment by bright light therapy in conjunction with chronobiotics is beneficial for treating sundowning syndrome and other cognitive symptoms in advanced AD patients. We performed a comprehensive analysis of the clinical and translational reports to review the physiology of the circadian clock, delineate its dysfunction in AD, and unravel the dynamics of the vicious cycle between two pathologies. The review delineates the role of putative targets like clock proteins PER, CLOCK, BMAL1, ROR, and clock-controlled proteins like AVP, SIRT1, FOXO, and PK2 towards future approaches for management of AD. Furthermore, the role of circadian rhythm disruption in aging is delineated.
Collapse
Affiliation(s)
- Ashish Sharma
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Medical Drive, 117 600, Singapore
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid 21163, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Solan 173 212, Himachal Pradesh, India
| |
Collapse
|
41
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
42
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
43
|
O' Neill JS, Hoyle NP, Robertson JB, Edgar RS, Beale AD, Peak-Chew SY, Day J, Costa ASH, Frezza C, Causton HC. Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis. Nat Commun 2020; 11:4706. [PMID: 32943618 PMCID: PMC7499178 DOI: 10.1038/s41467-020-18330-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast physiology is temporally regulated, this becomes apparent under nutrient-limited conditions and results in respiratory oscillations (YROs). YROs share features with circadian rhythms and interact with, but are independent of, the cell division cycle. Here, we show that YROs minimise energy expenditure by restricting protein synthesis until sufficient resources are stored, while maintaining osmotic homeostasis and protein quality control. Although nutrient supply is constant, cells sequester and store metabolic resources via increased transport, autophagy and biomolecular condensation. Replete stores trigger increased H+ export which stimulates TORC1 and liberates proteasomes, ribosomes, chaperones and metabolic enzymes from non-membrane bound compartments. This facilitates translational bursting, liquidation of storage carbohydrates, increased ATP turnover, and the export of osmolytes. We propose that dynamic regulation of ion transport and metabolic plasticity are required to maintain osmotic and protein homeostasis during remodelling of eukaryotic proteomes, and that bioenergetic constraints selected for temporal organisation that promotes oscillatory behaviour.
Collapse
Affiliation(s)
- John S O' Neill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | | | | | - Rachel S Edgar
- Molecular Virology, Department of Medicine, Imperial College, London, W2 1NY, UK
| | - Andrew D Beale
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Helen C Causton
- Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
44
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
45
|
Potential circadian effects on translational failure for neuroprotection. Nature 2020; 582:395-398. [PMID: 32494010 DOI: 10.1038/s41586-020-2348-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
Abstract
Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.
Collapse
|
46
|
Barca‐Mayo O, Boender AJ, Armirotti A, De Pietri Tonelli D. Deletion of astrocytic BMAL1 results in metabolic imbalance and shorter lifespan in mice. Glia 2020; 68:1131-1147. [PMID: 31833591 PMCID: PMC7496695 DOI: 10.1002/glia.23764] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Disruption of the circadian cycle is strongly associated with metabolic imbalance and reduced longevity in humans. Also, rodent models of circadian arrhythmia, such as the constitutive knockout of the clock gene Bmal1, leads to metabolic disturbances and early death. Although astrocyte clock regulates molecular and behavioral circadian rhythms, its involvement in the regulation of energy balance and lifespan is unknown. Here, we show that astrocyte-specific deletion of Bmal1 is sufficient to alter energy balance, glucose homeostasis, and reduce lifespan. Mutant animals displayed impaired hypothalamic molecular clock, age-dependent astrogliosis, apoptosis of hypothalamic astrocytes, and increased glutamate and GABA levels. Importantly, modulation of GABAA-receptor signaling completely restored glutamate levels, delayed the reactive gliosis as well as the metabolic phenotypes and expanded the lifespan of the mutants. Our results demonstrate that the astrocytic clock can influence many aspects of brain function and neurological disease and suggest astrocytes and GABAA receptor as pharmacological targets to prevent the metabolic dysfunctions and shortened lifespan associated with alterations of circadian rhythms.
Collapse
Affiliation(s)
- Olga Barca‐Mayo
- Neurobiology of miRNA labFondazione Istituto Italiano di TecnologiaGenoaItaly
| | - Arjen J. Boender
- Neuromodulation of Cortical and Subcortical Circuits LabFondazione Istituto Italiano di TecnologiaGenoaItaly
| | - Andrea Armirotti
- D3 PharmaChemistryFondazione Istituto Italiano di TecnologiaGenoaItaly
| | | |
Collapse
|
47
|
Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis 2020; 139:104832. [PMID: 32179175 PMCID: PMC7727873 DOI: 10.1016/j.nbd.2020.104832] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
A substantial body of research now implicates the circadian clock in the regulation of an array of diverse biological processes including glial function, metabolism, peripheral immune responses, and redox homeostasis. Sleep abnormalities and other forms of circadian disruption are common symptoms of aging and neurodegeneration. Circadian clock disruption may also influence the aging processes and the pathogenesis of neurodegenerative diseases. The specific mechanisms governing the interaction between circadian systems, aging, and the immune system are still being uncovered. Here, we review the evidence supporting a bidirectional relationship between aging and the circadian system. Further, we explore the hypothesis that age-related circadian deterioration may exacerbate multiple pathogenic processes, priming the brain for neurodegeneration.
Collapse
Affiliation(s)
- Brian V Lananna
- Dept. of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik S Musiek
- Dept. of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
48
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Kizhuveetil U, Omer S, Karunagaran D, Suraishkumar GK. Improved redox anti-cancer treatment efficacy through reactive species rhythm manipulation. Sci Rep 2020; 10:1588. [PMID: 32005913 PMCID: PMC6994657 DOI: 10.1038/s41598-020-58579-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/16/2020] [Indexed: 02/01/2023] Open
Abstract
Rhythms in the pseudo-steady state (PSS) levels of reactive species (RS), particularly superoxide and hydroxyl radicals, exist in cancer cells. The RS rhythm characteristics, particularly frequency and amplitude, are entrained (reset) by the anticancer compounds/drugs. In this work, we show for the first time that the phase of the RS rhythm at which the drug is added is significantly important in determining the cytotoxicity of anticancer compounds/drugs such as menadione and curcumin, in two different cancer cell lines. Curcumin, the more effective of the two drugs (IC50 = 15 µM, SiHa; 6 µM, HCT116) induced reset of superoxide and hydroxyl rhythms from 15.4 h to 9 h, and 25 h to 11 h respectively, as well as caused increases in these radical levels. However, menadione (IC50 = 20 µM, SiHa; 17 µM, HCT116) affected only the superoxide levels. Drug treatment at different time points/phase of the RS rhythm resulted in a maximum of 27% increase in cytotoxicity, which is significant. Further, we report for the first time, an unexpected absence of a correlation between the intracellular PSS RS and antioxidant levels; thus, the practice of using antioxidant enzyme levels as surrogate markers of intracellular oxidative stress levels may need a re-consideration. Therefore, the RS rhythm could be a fundamental/generic target to manipulate for improved cancer therapy.
Collapse
Affiliation(s)
- Uma Kizhuveetil
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sonal Omer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - D Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
50
|
Kouzehgarani GN, Bothwell MY, Gillette MU. Circadian rhythm of redox state regulates membrane excitability in hippocampal CA1 neurons. Eur J Neurosci 2020; 51:34-46. [PMID: 30614107 PMCID: PMC6609501 DOI: 10.1111/ejn.14334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022]
Abstract
Behaviors, such as sleeping, foraging, and learning, are controlled by different regions of the rat brain, yet they occur rhythmically over the course of day and night. They are aligned adaptively with the day-night cycle by an endogenous circadian clock in the suprachiasmatic nucleus (SCN), but local mechanisms of rhythmic control are not established. The SCN expresses a ~24-hr oscillation in reduction-oxidation that modulates its own neuronal excitability. Could circadian redox oscillations control neuronal excitability elsewhere in the brain? We focused on the CA1 region of the rat hippocampus, which is known for integrating information as memories and where clock gene expression undergoes a circadian oscillation that is in anti-phase to the SCN. Evaluating long-term imaging of endogenous redox couples and biochemical determination of glutathiolation levels, we observed oscillations with a ~24 hr period that is 180° out-of-phase to the SCN. Excitability of CA1 pyramidal neurons, primary hippocampal projection neurons, also exhibits a rhythm in resting membrane potential that is circadian time-dependent and opposite from that of the SCN. The reducing reagent glutathione rapidly and reversibly depolarized the resting membrane potential of CA1 neurons; the magnitude is time-of-day-dependent and, again, opposite from the SCN. These findings extend circadian redox regulation of neuronal excitability from the SCN to the hippocampus. Insights into this system contribute to understanding hippocampal circadian processes, such as learning and memory, seizure susceptibility, and memory loss with aging.
Collapse
Affiliation(s)
- Ghazal Naseri Kouzehgarani
- Neuroscience Program, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA and Beckman Institute for Advanced Science & Technology, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | - Mia Y. Bothwell
- Departments of Molecular & Integrative Physiology and University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
| | - Martha U. Gillette
- Neuroscience Program, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Departments of Molecular & Integrative Physiology and University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., B107 CLSL, MC-123, Urbana, IL 61801, USA and Beckman Institute for Advanced Science & Technology, 405 N. Mathews Ave., Urbana, IL 61801, USA
| |
Collapse
|