1
|
Knödlseder N, Fábrega MJ, Santos-Moreno J, Manils J, Toloza L, Marín Vilar M, Fernández C, Broadbent K, Maruotti J, Lemenager H, Carolis C, Zouboulis CC, Soler C, Lood R, Brüggemann H, Güell M. Delivery of a sebum modulator by an engineered skin microbe in mice. Nat Biotechnol 2024; 42:1661-1666. [PMID: 38195987 DOI: 10.1038/s41587-023-02072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024]
Abstract
Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.
Collapse
Affiliation(s)
- Nastassia Knödlseder
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - María-José Fábrega
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Manils
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Marín Vilar
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Cristina Fernández
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Katrina Broadbent
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | | | | | - Carlo Carolis
- Protein Technologies Facility, Center of Genomic Regulation, Barcelona, Spain
| | - Christos C Zouboulis
- Hochschulklinik für Dermatologie, Venerologie und Allergologie, Immunologisches Zentrum; Städtisches Klinikum Dessau; and Medizinische Hochschule Brandenburg Theodor Fontane und Fakultät für Gesundheitswissenschaften Brandenburg, Dessau-Roßlau, Germany
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rolf Lood
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
2
|
Khadka VD, Markey L, Boucher M, Lieberman TD. Commensal Skin Bacteria Exacerbate Inflammation and Delay Skin Barrier Repair. J Invest Dermatol 2024; 144:2541-2552.e10. [PMID: 38604402 DOI: 10.1016/j.jid.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/13/2024]
Abstract
The skin microbiome can both trigger beneficial immune stimulation and pose a potential infection threat. Previous studies have shown that colonization of mouse skin with the model human skin commensal Staphylococcus epidermidis is protective against subsequent excisional wound or pathogen challenge. However, less is known about concurrent skin damage and exposure to commensal microbes, despite growing interest in interventional probiotic therapy. In this study, we address this open question by applying commensal skin bacteria at a high dose to abraded skin. Although depletion of the skin microbiome through antibiotics delayed repair from damage, probiotic-like application of commensals-including the mouse commensal Staphylococcus xylosus, 3 distinct isolates of S. epidermidis, and all other tested human skin commensals-also significantly delayed barrier repair. Increased inflammation was observed within 4 hours of S. epidermidis exposure and persisted through day 4, at which point the skin displayed a chronic wound-like inflammatory state with increased neutrophil infiltration, increased fibroblast activity, and decreased monocyte differentiation. Transcriptomic analysis suggested that the prolonged upregulation of early canonical proliferative pathways inhibited the progression of barrier repair. These results highlight the nuanced role of members of the skin microbiome in modulating barrier integrity and indicate the need for caution in their development as probiotics.
Collapse
Affiliation(s)
- Veda D Khadka
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura Markey
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Magalie Boucher
- The Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tami D Lieberman
- Institute for Medical Engineering & Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Ragon Institute of Mass General, Massachusetts Institute of Technology, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Lemieux-Labonté V, Pathmanathan JS, Terrat Y, Tromas N, Simard A, Haase CG, Lausen CL, Willis CKR, Lapointe FJ. Pseudogymnoascus destructans invasion stage impacts the skin microbial functions of highly vulnerable Myotis lucifugus. FEMS Microbiol Ecol 2024; 100:fiae138. [PMID: 39400741 PMCID: PMC11523048 DOI: 10.1093/femsec/fiae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/06/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024] Open
Abstract
The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic, and established). Our results support three new hypotheses about Pd and skin functional microbiome: (1) there is an important effect of Pd invasion stage, especially at the epidemic stage; (2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; (3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger sample sizes and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.
Collapse
Affiliation(s)
| | - Jananan S Pathmanathan
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, Paris, 75005, France
| | - Yves Terrat
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Nicolas Tromas
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H2V 0B3, Canada
| | - Anouk Simard
- Ministère de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, G1R 5V7, Canada
| | - Catherine G Haase
- Department of Biology, Austin Peay State University, Clarksville, TN, 37044, United States
| | - Cori L Lausen
- Wildlife Conservation Society Canada, Kaslo, British-Columbia, V0G 1M0, Canada
| | - Craig K R Willis
- Department of Biology and Centre for Forest Interdisciplinary Research, University of Winnipeg, Winnipeg, Manitoba, R3B 2E9, Canada
| | | |
Collapse
|
4
|
Zhou J, Xu Y, Wang H, Chen C, Wang K. Decoding skin mysteries: Unveiling the link between microbiota and keloid scars through a Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40004. [PMID: 39465868 PMCID: PMC11479508 DOI: 10.1097/md.0000000000040004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024] Open
Abstract
The cause of keloids remains unclear, but studies suggest a link between skin microbiota and keloid formation. However, the causal relationship has not been confirmed. This study utilized Genome-Wide Association Studies (GWAS) data from 2 population-based German cohorts, comprising a total of 1656 skin samples. To bolster the reliability of our results, we incorporated GWAS data from 3 keloid cohorts, encompassing 2555 patients and 870,556 controls (GWAS ID: keloid1, ebi-a-GCST90018874; keloid2, bbj-a-131; keloid3, ebi-a-GCST90018654). Subsequently, we employed bidirectional 2-sample Mendelian randomization (MR) analysis to probe the causal relationship between the variables. The primary method employed was the inverse-variance weighted (IVW) method, supported by heterogeneity analysis, horizontal pleiotropy testing, outlier detection, and "leave-one-out" sensitivity analysis. By synthesizing the results from 3 groups of MR analyses, we discovered a negative causal association between a.ASV063 [Finegoldia (unc.)] located on the volar forearm and keloid disease (IVW (keloid1) odds ratio (OR): 0.939, 95% confidence interval (CI): 0.886-0.994, P = .032; IVW (keloid2) OR: 0.897, 95% CI: 0.813-0.990, P = .031; IVW (keloid3) OR: 0.900, 95% CI: 0.825-0.981, P = .017). Similarly, a negative causal relationship may also exist between the genus: Bacteroides from the antecubital fossa and keloid disease (IVW (keloid1) OR: 0.928, 95% CI: 0.884-0.973, P = .002; IVW (keloid2) OR: 0.891, 95% CI: 0.820-0.968, P = .007; IVW (keloid3) OR: 0.918, 95% CI: 0.849-0.992, P = .030). Additionally, no reverse causation was found, with all analyses showing no signs of horizontal pleiotropy or heterogeneity. This study offers new insights for the prevention and treatment of keloids.
Collapse
Affiliation(s)
- Jie Zhou
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Yixin Xu
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Haitao Wang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chao Chen
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| | - Kun Wang
- Department of General Surgery, The Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Department of General Surgery, The Wujin Clinical college of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
5
|
Gómez-Arias PJ, Gay-Mimbrera J, Rivera-Ruiz I, Aguilar-Luque M, Juan-Cencerrado M, Mochón-Jiménez C, Gómez-García F, Sánchez-González S, Ortega-Hernández A, Gómez-Garre D, Parra-Peralbo E, Isla-Tejera B, Ruano J. Association Between Scalp Microbiota Imbalance, Disease Severity, and Systemic Inflammatory Markers in Alopecia Areata. Dermatol Ther (Heidelb) 2024:10.1007/s13555-024-01281-2. [PMID: 39384736 DOI: 10.1007/s13555-024-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Alopecia areata (AA) is an autoimmune disease causing non-scarring hair loss, with both genetic and environmental factors implicated. Recent research highlights a possible role for scalp microbiota in influencing both local and systemic inflammatory responses, potentially impacting AA progression. This study examines the link among scalp microbiota imbalances, AA severity, and systemic inflammation. METHODS We conducted a cross-sectional study with 24 participants, including patients with AA of varying severities and healthy controls. Scalp microbial communities were analyzed using swab samples and ion torrent sequencing of the 16S rRNA gene across multiple hypervariable regions. We explored correlations among bacterial abundance, microbiome metabolic pathways, and circulating inflammatory markers. RESULTS Our findings reveal significant dysbiosis in the scalp microbiota of patients with AA compared to healthy controls. Severe AA cases had an increased presence of pro-inflammatory microbial taxa like Proteobacteria, whereas milder cases had higher levels of anti-inflammatory Actinobacteria. Notable species differences included abundant gram-negative bacteria such as Alistipes inops and Bacteroides pleibeius in severe AA, contrasted with Blautia faecis and Pyramydobacter piscolens predominantly in controls. Significantly, microbial imbalance correlated with AA severity (SALT scores) and systemic inflammatory markers, with elevated pro-inflammatory cytokines linked to more severe disease. CONCLUSION These results suggest that scalp microbiota may play a role in AA-related inflammation, although it is unclear whether the shifts are a cause or consequence of hair loss. Further research is needed to clarify the causal relationship and mechanisms involved.
Collapse
Affiliation(s)
- Pedro J Gómez-Arias
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Jesús Gay-Mimbrera
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
| | - Irene Rivera-Ruiz
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Macarena Aguilar-Luque
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
| | - Miguel Juan-Cencerrado
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Carmen Mochón-Jiménez
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Francisco Gómez-García
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| | - Silvia Sánchez-González
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain
| | - Adriana Ortega-Hernández
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratory of Vascular Biology and Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 4ª Planta Sur, C/ Profesor Martín Lagos, S/N, 28040, Madrid, Spain.
| | - Esmeralda Parra-Peralbo
- Department of Pharmacy and Nutrition, Faculty of Biomedical Science and Health, Universidad Europea, Madrid, Spain
| | - Beatriz Isla-Tejera
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain.
- Department of Pharmacy, Reina Sofía University Hospital, 14004, Córdoba, Spain.
| | - Juan Ruano
- Inflammatory Immune-Mediated Chronic Skin Diseases Laboratory, IMIBIC/Reina Sofia University Hospital/University of Cordoba, 14004, Córdoba, Spain
- Department of Dermatology, Reina Sofía University Hospital, 14004, Córdoba, Spain
| |
Collapse
|
6
|
Radaschin DS, Tatu A, Iancu AV, Beiu C, Popa LG. The Contribution of the Skin Microbiome to Psoriasis Pathogenesis and Its Implications for Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1619. [PMID: 39459406 PMCID: PMC11509136 DOI: 10.3390/medicina60101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with significant morbidity and a considerable negative impact on the patients' quality of life. The complex pathogenesis of psoriasis is still incompletely understood. Genetic predisposition, environmental factors like smoking, alcohol consumption, psychological stress, consumption of certain drugs, and mechanical trauma, as well as specific immune dysfunctions, contribute to the onset of the disease. Mounting evidence indicate that skin dysbiosis plays a significant role in the development and exacerbation of psoriasis through loss of immune tolerance to commensal skin flora, an altered balance between Tregs and effector cells, and an excessive Th1 and Th17 polarization. While the implications of skin dysbiosis in psoriasis pathogenesis are only starting to be revealed, the progress in the characterization of the skin microbiome changes in psoriasis patients has opened a whole new avenue of research focusing on the modulation of the skin microbiome as an adjuvant treatment for psoriasis and as part of a long-term plan to prevent disease flares. The skin microbiome may also represent a valuable predictive marker of treatment response and may aid in the selection of the optimal personalized treatment. We present the current knowledge on the skin microbiome changes in psoriasis and the results of the studies that investigated the efficacy of the different skin microbiome modulation strategies in the management of psoriasis, and discuss the complex interaction between the host and skin commensal flora.
Collapse
Affiliation(s)
- Diana Sabina Radaschin
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alin Tatu
- Department of Clinical Medical, Faculty of Medicine and Pharmacy, “Saint Parascheva” Infectious Disease Clinical Hospital, Multidisciplinary Integrated Centre of Dermatological Interface Research Centre (MICDIR), “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Alina Viorica Iancu
- Department of Morphological and Functional Sciences, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
7
|
Mattsson HK, de Freitas MAM, de Azevedo GPR, Salazar V, Vieira VV, Tschoeke DA, Thompson CC, Thompson FL. Pseudoalteromonas simplex sp. nov. Isolated from the Skin of Bandtail Puffer Fish (Sphoeroides spengleri). Curr Microbiol 2024; 81:384. [PMID: 39354231 DOI: 10.1007/s00284-024-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
A novel bacterial isolate A520T (A520T = CBAS 737T = CAIM 1944T) was obtained from the skin of bandtail puffer fish Sphoeroides spengleri (Tetraodontidae Family), collected in Arraial do Cabo (Rio de Janeiro, Brazil). A520T is Gram-stain-negative, flagellated and aerobic bacteria. Optimum growth occurs at 25-30 °C in the presence of 3% NaCl. The genome sequence of the novel isolate consisted of 4.5 Mb (4082 coding genes and G+C content of 41.1%). The closest phylogenetic neighbor was Pseudoalteromonas shioyasakiensis JCM 18891T (97.9% 16S rRNA sequence similarity, 94.8% Average Amino Acid Identity, 93% Average Nucleotide Identity and 51.8% similarity in Genome-to-Genome-Distance). Several in silico phenotypic features are useful to differentiate A520T from its closest phylogenetic neighbors, including trehalose, D-mannose, cellobiose, pyrrolidonyl-beta-naphthylamide, starch hydrolysis, D-xylose, lactose, tartrate utilization, sucrose, citrate, glycerol, mucate and acetate utilization, malonate, glucose oxidizer, gas from glucose, nitrite to gas, L-rhamnose, ornithine decarboxylase, lysine decarboxylase and yellow pigment. The genome of the novel species contains 3 gene clusters (~ 66.81 Kbp in total) coding for different types of bioactive compounds that could indicate ecological roles pertaining to the bandtail puffer fish host. Based on genome-based taxonomic approach, strain A520T (A520T = CBAS 737T = CAIM 1944T) is proposed as a new species, Pseudoalteromonas simplex sp. nov.
Collapse
Affiliation(s)
- Hannah K Mattsson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Vinicius Salazar
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica V Vieira
- Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
9
|
Flayer CH, Kernin IJ, Matatia PR, Zeng X, Yarmolinsky DA, Han C, Naik PR, Buttaci DR, Aderhold PA, Camire RB, Zhu X, Tirard AJ, McGuire JT, Smith NP, McKimmie CS, McAlpine CS, Swirski FK, Woolf CJ, Villani AC, Sokol CL. A γδ T cell-IL-3 axis controls allergic responses through sensory neurons. Nature 2024; 634:440-446. [PMID: 39232162 DOI: 10.1038/s41586-024-07869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024]
Abstract
In naive individuals, sensory neurons directly detect and respond to allergens, leading to both the sensation of itch and the activation of local innate immune cells, which initiate the allergic immune response1,2. In the setting of chronic allergic inflammation, immune factors prime sensory neurons, causing pathologic itch3-7. Although these bidirectional neuroimmune circuits drive responses to allergens, whether immune cells regulate the set-point for neuronal activation by allergens in the naive state is unknown. Here we describe a γδ T cell-IL-3 signalling axis that controls the allergen responsiveness of cutaneous sensory neurons. We define a poorly characterized epidermal γδ T cell subset8, termed GD3 cells, that produces its hallmark cytokine IL-3 to promote allergic itch and the initiation of the allergic immune response. Mechanistically, IL-3 acts on Il3ra-expressing sensory neurons in a JAK2-dependent manner to lower their threshold for allergen activation without independently eliciting itch. This γδ T cell-IL-3 signalling axis further acts by means of STAT5 to promote neuropeptide production and the initiation of allergic immunity. These results reveal an endogenous immune rheostat that sits upstream of and governs sensory neuronal responses to allergens on first exposure. This pathway may explain individual differences in allergic susceptibility and opens new therapeutic avenues for treating allergic diseases.
Collapse
Affiliation(s)
- Cameron H Flayer
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabela J Kernin
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peri R Matatia
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiangsunze Zeng
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - David A Yarmolinsky
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cai Han
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parth R Naik
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean R Buttaci
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pamela A Aderhold
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan B Camire
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice J Tirard
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John T McGuire
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Clive S McKimmie
- Virus Host Interaction Team, Skin Research Centre, University of York, York, UK
| | - Cameron S McAlpine
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute and the Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute and the Department of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford J Woolf
- FM Kirby Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
García-Patiño MG, Marcial-Medina MC, Ruiz-Medina BE, Licona-Limón P. IL-17 in skin infections and homeostasis. Clin Immunol 2024; 267:110352. [PMID: 39218195 DOI: 10.1016/j.clim.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Interleukin (IL) 17 is a proinflammatory cytokine belonging to a structurally related group of cytokines known as the IL-17 family. It has been profoundly studied for its contribution to the pathology of autoimmune diseases. However, it also plays an important role in homeostasis and the defense against extracellular bacteria and fungi. IL-17 is important for epithelial barriers, including the skin, where some of its cellular targets reside. Most of the research work on IL-17 has focused on its effects in the skin within the context of autoimmune diseases or sterile inflammation, despite also having impact on other skin conditions. In recent years, studies on the role of IL-17 in the defense against skin pathogens and in the maintenance of skin homeostasis mediated by the microbiota have grown in importance. Here we review and discuss the cumulative evidence regarding the main contribution of IL-17 in the maintenance of skin integrity as well as its protective or pathogenic effects during some skin infections.
Collapse
Affiliation(s)
- M G García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M C Marcial-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B E Ruiz-Medina
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Chen D, Hu S, Wang X, Chen Z, Xu W. Causal relationship between 150 skin microbiomes and prostate cancer: insights from bidirectional mendelian randomization and meta-analysis. Front Immunol 2024; 15:1463309. [PMID: 39386206 PMCID: PMC11461290 DOI: 10.3389/fimmu.2024.1463309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Background Despite relevant research, the relationship between skin microbiomes and prostate cancer remains controversial. This study utilizes bidirectional Mendelian randomization (MR) analysis combined with meta-analysis to explore the potential link between the two. Objective This study aims to identify the causal relationship between 150 skin microbiomes and prostate cancer (PCa) using bidirectional Mendelian randomization (MR) and meta-analysis. Methods This study employed a comprehensive Bidirectional Two-sample MR analysis using publicly available genetic data to ascertain the relationship between 150 skin microbiomes and PCa. We conducted extensive sensitivity analyses, tests for heterogeneity, and assessments of horizontal pleiotropy to ensure the accuracy of our results. Subsequently, we conducted a meta-analysis to strengthen our conclusions' robustness further. Finally, we performed reverse causal verification on the positive skin microbiomes and PCa. Results After conducting a meta-analysis and multiple corrections of the MR analysis results, our findings reveal a correlation between Neisseria in dry skin and PCa risk, identifying it as a risk factor. The IVW result shows an Odds Ratio (OR) of 1.009 (95% Confidence Interval [CI]: 1.004-1.014, P = 0.027). Furthermore, the reverse MR analysis indicates the absence of an inverse causal relationship between the two. Apart from the identified skin microbiome, no significant associations were found between the other microbiomes and PCa. Conclusions The study identified a correlation between Neisseria in dry skin, one of the 150 skin microbiomes, and the risk of developing PCa, establishing it as a risk factor for increased susceptibility to PCa.
Collapse
Affiliation(s)
- Daolei Chen
- Department of Surgery, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, China
| | - Songqi Hu
- Department of Surgery, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, China
| | - Xinchao Wang
- Department of Surgery, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, China
| | - Zhisi Chen
- Department of Surgery, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, China
| | - Wanxian Xu
- Department of Surgery, First People’s Hospital of Kunming City & Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Graduate School, Kunming Medical University, Kunming, China
| |
Collapse
|
12
|
Bogdan C, Islam NAK, Barinberg D, Soulat D, Schleicher U, Rai B. The immunomicrotope of Leishmania control and persistence. Trends Parasitol 2024; 40:788-804. [PMID: 39174373 DOI: 10.1016/j.pt.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Leishmania is an intracellular protozoan transmitted by sand fly vectors; it causes cutaneous, mucocutaneous, or visceral disease. Its growth and survival are impeded by type 1 T helper cell responses, which entail interferon (IFN)-γ-mediated macrophage activation. Leishmania partially escapes this host defense by triggering immune cell and cytokine responses that favor parasite replication rather than killing. Novel methods for in situ analyses have revealed that the pathways of immune control and microbial evasion are strongly influenced by the tissue context, the micro milieu factors, and the metabolism at the site of infection, which we collectively term the 'immunomicrotope'. Understanding the components and the impact of the immunomicrotope will enable the development of novel strategies for the treatment of chronic leishmaniasis.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany.
| | - Noor-A-Kasida Islam
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - David Barinberg
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| | - Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Ulrike Schleicher
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany; FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Schlossplatz 1, D-91054 Erlangen, Germany
| | - Baplu Rai
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054 Erlangen, Germany
| |
Collapse
|
13
|
Wells AC, Lima-Junior DS, Link VM, Smelkinson M, Krishnamurthy SR, Chi L, Segrist E, Rivera CA, Teijeiro A, Bouladoux N, Belkaid Y. Adaptive immunity to retroelements promotes barrier integrity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606346. [PMID: 39149266 PMCID: PMC11326312 DOI: 10.1101/2024.08.09.606346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Maintenance of tissue integrity is a requirement of host survival. This mandate is of prime importance at barrier sites that are constitutively exposed to the environment. Here, we show that exposure of the skin to non-inflammatory xenobiotics promotes tissue repair; more specifically, mild detergent exposure promotes the reactivation of defined retroelements leading to the induction of retroelement-specific CD8+ T cells. These T cell responses are Langerhans cell dependent and establish tissue residency within the skin. Upon injury, retroelement-specific CD8+ T cells significantly accelerate wound repair via IL-17A. Collectively, this work demonstrates that tonic environmental exposures and associated adaptive responses to retroelements can be coopted to preemptively set the tissue for maximal resilience to injury.
Collapse
Affiliation(s)
- Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma Souza Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R. Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisha Segrist
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A. Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Haghani NB, Lampe RH, Samuel BS, Chalasani SH, Matty MA. Identification and characterization of a skin microbiome on Caenorhabditis elegans suggests environmental microbes confer cuticle protection. Microbiol Spectr 2024; 12:e0016924. [PMID: 38980017 PMCID: PMC11302229 DOI: 10.1128/spectrum.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the wild, C. elegans are emersed in environments teeming with a veritable menagerie of microorganisms. The C. elegans cuticular surface serves as a barrier and first point of contact with their microbial environments. In this study, we identify microbes from C. elegans natural habitats that associate with its cuticle, constituting a simple "skin microbiome." We rear our animals on a modified CeMbio, mCeMbio, a consortium of ecologically relevant microbes. We first combine standard microbiological methods with an adapted micro skin-swabbing tool to describe the skin-resident bacteria on the C. elegans surface. Furthermore, we conduct 16S rRNA gene sequencing studies to identify relative shifts in the proportion of mCeMbio bacteria upon surface-sterilization, implying distinct skin- and gut-microbiomes. We find that some strains of bacteria, including Enterobacter sp. JUb101, are primarily found on the nematode skin, while others like Stenotrophomonas indicatrix JUb19 and Ochrobactrum vermis MYb71 are predominantly found in the animal's gut. Finally, we show that this skin microbiome promotes host cuticle integrity in harsh environments. Together, we identify a skin microbiome for the well-studied nematode model and propose its value in conferring host fitness advantages in naturalized contexts. IMPORTANCE The genetic model organism C. elegans has recently emerged as a tool for understanding host-microbiome interactions. Nearly all of these studies either focus on pathogenic or gut-resident microbes. Little is known about the existence of native, nonpathogenic skin microbes or their function. We demonstrate that members of a modified C. elegans model microbiome, mCeMbio, can adhere to the animal's cuticle and confer protection from noxious environments. We combine a novel micro-swab tool, the first 16S microbial sequencing data from relatively unperturbed C. elegans, and physiological assays to demonstrate microbially mediated protection of the skin. This work serves as a foundation to explore wild C. elegans skin microbiomes and use C. elegans as a model for skin research.
Collapse
Affiliation(s)
- Nadia B. Haghani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Robert H. Lampe
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, California, USA
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sreekanth H. Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- University of California San Diego, La Jolla, California, USA
| | - Molly A. Matty
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
- Biology, University of Portland, Portland, Oregon, USA
| |
Collapse
|
15
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
16
|
Choa R, Harris JC, Yang E, Yokoyama Y, Okumura M, Kim M, To J, Lou M, Nelson A, Kambayashi T. Thymic stromal lymphopoietin induces IL-4/IL-13 from T cells to promote sebum secretion and adipose loss. J Allergy Clin Immunol 2024; 154:480-491. [PMID: 38157943 PMCID: PMC11211244 DOI: 10.1016/j.jaci.2023.11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - MinJu Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Meng Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Amanda Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pa
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
17
|
Wang X, Zhu Z. A Mendelian randomization analysis reveals the multifaceted role of the skin microbiota in liver cancer. Front Microbiol 2024; 15:1422132. [PMID: 39113845 PMCID: PMC11303314 DOI: 10.3389/fmicb.2024.1422132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC, or hepatic cancer, HC) and cholangiocarcinoma (CCA, or hepatic bile duct cancer, HBDC) are two major types of primary liver cancer (PLC). Previous studies have suggested that microbiota can either act as risk factors or preventive factors in PLC. However, no study has reported the relationship between skin microbiota and PLC. Therefore, we conducted a two-sample Mendelian randomization (MR) study to assess the causality between skin microbiota and PLC. Methods Data from the genome-wide association study (GWAS) on skin microbiota were collected. The GWAS summary data of GCST90018803 (HBDC) and GCST90018858 (HC) were utilized in the discovery and verification phases, respectively. The inverse variance weighted (IVW) method was utilized as the principal method in our MR study. The MR-Egger intercept test, Cochran's Q-test, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and leave-one-out analysis were conducted to identify the heterogeneity and pleiotropy. Results The results showed that Veillonella (unc.) plays a protective role in HBDC, while the family Neisseriaceae has a positive association with HBDC risk. The class Betaproteobacteria, Veillonella (unc.), and the phylum Bacillota (Firmicutes) play a protective role in HC. Staphylococcus epidermidis, Corynebacterium (unc.), the family Neisseriaceae, and Pasteurellaceae sp. were associated with an increased risk of HC. Conclusion This study provided new evidence regarding the association between skin microbiota and PLC, suggesting that skin microbiota plays a role in PLC progression. Skin microbiota could be a novel and effective way for PLC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zexin Zhu
- Department of Surgical Oncology, The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Yu T, Xu X, Liu Y, Wang X, Wu S, Qiu Z, Liu X, Pan X, Gu C, Wang S, Dong L, Li W, Yao X. Multi-omics signatures reveal genomic and functional heterogeneity of Cutibacterium acnes in normal and diseased skin. Cell Host Microbe 2024; 32:1129-1146.e8. [PMID: 38936370 DOI: 10.1016/j.chom.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Cutibacterium acnes is the most abundant bacterium of the human skin microbiome since adolescence, participating in both skin homeostasis and diseases. Here, we demonstrate individual and niche heterogeneity of C. acnes from 1,234 isolate genomes. Skin disease (atopic dermatitis and acne) and body site shape genomic differences of C. acnes, stemming from horizontal gene transfer and selection pressure. C. acnes harbors characteristic metabolic functions, fewer antibiotic resistance genes and virulence factors, and a more stable genome compared with Staphylococcus epidermidis. Integrated genome, transcriptome, and metabolome analysis at the strain level unveils the functional characteristics of C. acnes. Consistent with the transcriptome signature, C. acnes in a sebum-rich environment induces toxic and pro-inflammatory effects on keratinocytes. L-carnosine, an anti-oxidative stress metabolite, is up-regulated in the C. acnes metabolome from atopic dermatitis and attenuates skin inflammation. Collectively, our study reveals the joint impact of genes and the microenvironment on C. acnes function.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoqiang Xu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yang Liu
- 01life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhuoqiong Qiu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoyu Pan
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chaoying Gu
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shangshang Wang
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
19
|
Ruchti F, Zwicky P, Becher B, Dubrac S, LeibundGut-Landmann S. Epidermal barrier impairment predisposes for excessive growth of the allergy-associated yeast Malassezia on murine skin. Allergy 2024; 79:1531-1547. [PMID: 38385963 DOI: 10.1111/all.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The skin barrier is vital for protection against environmental threats including insults caused by skin-resident microbes. Dysregulation of this barrier is a hallmark of atopic dermatitis (AD) and ichthyosis, with variable consequences for host immune control of colonizing commensals and opportunistic pathogens. While Malassezia is the most abundant commensal fungus of the skin, little is known about the host control of this fungus in inflammatory skin diseases. METHODS In this experimental study, MC903-treated mice were colonized with Malassezia spp. to assess the host-fungal interactions in atopic dermatitis. Additional murine models of AD and ichthyosis, including tape stripping, K5-Nrf2 overexpression and flaky tail mice, were employed to confirm and expand the findings. Skin fungal counts were enumerated. High parameter flow cytometry was used to characterize the antifungal response in the AD-like skin. Structural and functional alterations in the skin barrier were determined by histology and transcriptomics of bulk skin. Finally, differential expression of metabolic genes in Malassezia in atopic and control skin was quantified. RESULTS Malassezia grows excessively in AD-like skin. Fungal overgrowth could, however, not be explained by the altered immune status of the atopic skin. Instead, we found that by upregulating key metabolic genes in the altered cutaneous niche, Malassezia acquired enhanced fitness to efficiently colonise the impaired skin barrier. CONCLUSIONS This study provides evidence that structural and metabolic changes in the dysfunctional epidermal barrier environment provide increased accessibility and an altered lipid profile, to which the lipid-dependent yeast adapts for enhanced nutrient assimilation. Our findings reveal fundamental insights into the implication of the mycobiota in the pathogenesis of common skin barrier disorders.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Christophers E. Epithelial microabscessing in neutrophilic skin diseases. J Eur Acad Dermatol Venereol 2024; 38:990-992. [PMID: 38794926 DOI: 10.1111/jdv.19883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 05/26/2024]
Affiliation(s)
- Enno Christophers
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
21
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
22
|
Tham EH, Chia M, Riggioni C, Nagarajan N, Common JE, Kong HH. The skin microbiome in pediatric atopic dermatitis and food allergy. Allergy 2024; 79:1470-1484. [PMID: 38308490 PMCID: PMC11142881 DOI: 10.1111/all.16044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The skin microbiome is an extensive community of bacteria, fungi, mites, viruses and archaea colonizing the skin. Fluctuations in the composition of the skin microbiome have been observed in atopic dermatitis (AD) and food allergy (FA), particularly in early life, established disease, and associated with therapeutics. However, AD is a multifactorial disease characterized by skin barrier aberrations modulated by genetics, immunology, and environmental influences, thus the skin microbiome is not the sole feature of this disease. Future research should focus on mechanistic understanding of how early-life skin microbial shifts may influence AD and FA onset, to guide potential early intervention strategies or as microbial biomarkers to identify high-risk infants who may benefit from possible microbiome-based biotherapeutic strategies. Harnessing skin microbes as AD biotherapeutics is an emerging field, but more work is needed to investigate whether this approach can lead to sustained clinical responses.
Collapse
Affiliation(s)
- Elizabeth Huiwen Tham
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System (NUHS), Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Minghao Chia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Carmen Riggioni
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Niranjan Nagarajan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - John E.A. Common
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heidi H. Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
24
|
Saheb Kashaf S, Kong HH. Adding Fuel to the Fire? The Skin Microbiome in Atopic Dermatitis. J Invest Dermatol 2024; 144:969-977. [PMID: 38530677 PMCID: PMC11034722 DOI: 10.1016/j.jid.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 03/28/2024]
Abstract
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease characterized by epidermal barrier dysfunction, immune system dysregulation, and skin microbiome alterations. Skin microbiome studies in AD have demonstrated that disease flares are associated with microbial shifts, particularly Staphylococcus aureus predominance. AD-associated S. aureus strains differ from those in healthy individuals across various genomic loci, including virulence factors, adhesion proteins, and proinflammatory molecules-which may contribute to complex microbiome barrier-immune system interactions in AD. Different microbially based treatments for AD have been explored, and their future therapeutic successes will depend on a deeper understanding of the potential microbial contributions to the disease.
Collapse
Affiliation(s)
- Sara Saheb Kashaf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA; Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Heidi H Kong
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
25
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Chi L, Liu C, Gribonika I, Gschwend J, Corral D, Han SJ, Lim AI, Rivera CA, Link VM, Wells AC, Bouladoux N, Collins N, Lima-Junior DS, Enamorado M, Rehermann B, Laffont S, Guéry JC, Tussiwand R, Schneider C, Belkaid Y. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 2024; 384:eadk6200. [PMID: 38574174 DOI: 10.1126/science.adk6200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.
Collapse
Affiliation(s)
- Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia A Rivera
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandria C Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Kim TS, Ikeuchi T, Theofilou VI, Williams DW, Greenwell-Wild T, June A, Adade EE, Li L, Abusleme L, Dutzan N, Yuan Y, Brenchley L, Bouladoux N, Sakamachi Y, Palmer RJ, Iglesias-Bartolome R, Trinchieri G, Garantziotis S, Belkaid Y, Valm AM, Diaz PI, Holland SM, Moutsopoulos NM. Epithelial-derived interleukin-23 promotes oral mucosal immunopathology. Immunity 2024; 57:859-875.e11. [PMID: 38513665 PMCID: PMC11058479 DOI: 10.1016/j.immuni.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Armond June
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Emmanuel E Adade
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Loreto Abusleme
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yosuke Sakamachi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert J Palmer
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex M Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Dey S, Vieyra-Garcia PA, Joshi AA, Trajanoski S, Wolf P. Modulation of the skin microbiome in cutaneous T-cell lymphoma delays tumour growth and increases survival in the murine EL4 model. Front Immunol 2024; 15:1255859. [PMID: 38646524 PMCID: PMC11026597 DOI: 10.3389/fimmu.2024.1255859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of lymphoproliferative disorders of skin-homing T cells causing chronic inflammation. These disorders cause impairment of the immune environment, which leads to severe infections and/or sepsis due to dysbiosis. In this study, we elucidated the host-microbial interaction in CTCL that occurs during the phototherapeutic treatment regime and determined whether modulation of the skin microbiota could beneficially affect the course of CTCL. EL4 T-cell lymphoma cells were intradermally grafted on the back of C57BL/6 mice. Animals were treated with conventional therapeutics such as psoralen + UVA (PUVA) or UVB in the presence or absence of topical antibiotic treatment (neomycin, bacitracin, and polymyxin B sulphate) as an adjuvant. Microbial colonisation of the skin was assessed to correlate with disease severity and tumour growth. Triple antibiotic treatment significantly delayed tumour occurrence (p = 0.026), which prolonged the survival of the mice (p = 0.033). Allocation to phototherapeutic agents PUVA, UVB, or none of these, along with antibiotic intervention, reduced the tumour growth significantly (p = 0.0327, p ≤ 0.0001, p ≤ 0.0001 respectively). The beta diversity indices calculated using the Bray-Curtis model showed that the microbial population significantly differed after antibiotic treatment (p = 0.001). Upon modulating the skin microbiome by antibiotic treatment, we saw an increase in commensal Clostridium species, e.g., Lachnospiraceae sp. (p = 0.0008), Ruminococcaceae sp. (p = 0.0001)., Blautia sp. (p = 0.007) and a significant reduction in facultative pathogens Corynebacterium sp. (p = 0.0009), Pelomonas sp. (p = 0.0306), Streptococcus sp. (p ≥ 0.0001), Pseudomonas sp. (p = 0.0358), and Cutibacterium sp. (p = 0.0237). Intriguingly, we observed a significant decrease in Staphylococcus aureus frequency (p = 0.0001) but an increase in the overall detection frequency of the Staphylococcus genus, indicating that antibiotic treatment helped regain the microbial balance and increased the number of non-pathogenic Staphylococcus populations. These study findings show that modulating microbiota by topical antibiotic treatment helps to restore microbial balance by diminishing the numbers of pathogenic microbes, which, in turn, reduces chronic inflammation, delays tumour growth, and increases survival rates in our CTCL model. These findings support the rationale to modulate the microbial milieu during the disease course of CTCL and indicate its therapeutic potential.
Collapse
MESH Headings
- Animals
- Microbiota/drug effects
- Mice
- Skin/microbiology
- Skin/pathology
- Skin/immunology
- Skin/drug effects
- Skin Neoplasms/microbiology
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Lymphoma, T-Cell, Cutaneous/microbiology
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/therapy
- Mice, Inbred C57BL
- Disease Models, Animal
- Anti-Bacterial Agents/therapeutic use
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/administration & dosage
- Cell Line, Tumor
- Female
- Humans
Collapse
Affiliation(s)
- Saptaswa Dey
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | | | - Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Medical University of Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
29
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
30
|
Yang K, Yong JY, He Y, Yu L, Luo GN, Chen J, Ge YM, Yang YJ, Ding WJ, Hu YM. Melatonin restores DNFB-induced dysbiosis of skin microbiota in a mouse model of atopic dermatitis. Life Sci 2024; 342:122513. [PMID: 38387700 DOI: 10.1016/j.lfs.2024.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The epidermic microbiota plays crucial roles in the pathogenesis of atopic dermatitis (AD), a common inflammatory skin disease. Melatonin (MLT) has been shown to ameliorate skin damage in AD patients, yet the underlying mechanism is unclear. METHODS Using 2,4-dinitrofluorobenzene (DNFB) to induce an AD model, MLT intervention was applied for 14 days to observe its pharmaceutical effect. Skin lesions were observed using HE staining, toluidine blue staining and electron microscopy. Dermal proinflammatory factor (IL-4 and IL-13) and intestinal barrier indices (ZO1 and Occludin) were assessed by immunohistochemistry and RT-qPCR, respectively. The dysbiotic microbiota was analyzed using 16S rRNA sequencing. RESULTS MLT significantly improved skin lesion size; inflammatory status (mast cells, IgE, IL-4, and IL-13); and the imbalance of the epidermal microbiota in AD mice. Notably, Staphylococcus aureus is the key bacterium associated with dysbiosis of the epidermal microbiota and may be involved in the fine modulation of mast cells, IL-4, IL-13 and IgE. Correlation analysis between AD and the gut revealed that intestinal dysbiosis occurred earlier than that of the pathological structure in the gut. CONCLUSION Melatonin reverses DNFB-induced skin damage and epidermal dysbiosis, especially in S. aureus.
Collapse
Affiliation(s)
- Kun Yang
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jiang-Yan Yong
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China
| | - Yan He
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Gui-Ning Luo
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jilan Chen
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Yi-Man Ge
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China
| | - You-Jun Yang
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Yi-Mei Hu
- Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China; Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shi-er-qiao Road, Chengdu, 610072, SichuanProvince, China.
| |
Collapse
|
31
|
Hernandez-Nicols BF, Robledo-Pulido JJ, Alvarado-Navarro A. Etiopathogenesis of Psoriasis: Integration of Proposed Theories. Immunol Invest 2024; 53:348-415. [PMID: 38240030 DOI: 10.1080/08820139.2024.2302823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Psoriasis is a chronic inflammatory disease characterized by squamous and erythematous plaques on the skin and the involvement of the immune system. Global prevalence for psoriasis has been reported around 1-3% with a higher incidence in adults and similar proportions between men and women. The risk factors associated with psoriasis are both extrinsic and intrinsic, out of which a polygenic predisposition is a highlight out of the latter. Psoriasis etiology is not yet fully described, but several hypothesis have been proposed: 1) the autoimmunity hypothesis is based on the over-expression of antimicrobial peptides such as LL-37, the proteins ADAMTSL5, K17, and hsp27, or lipids synthesized by the PLA2G4D enzyme, all of which may serve as autoantigens to promote the differentiation of autoreactive lymphocytes T and unleash a chronic inflammatory response; 2) dysbiosis of skin microbiota hypothesis in psoriasis has gained relevance due to the observations of a loss of diversity and the participation of pathogenic bacteria such as Streptococcus spp. or Staphylococcus spp. the fungi Malassezia spp. or Candida spp. and the virus HPV, HCV, or HIV in psoriatic plaques; 3) the oxidative stress hypothesis, the most recent one, describes that the cell injury and the release of proinflammatory mediators and antimicrobial peptides that leads to activate of the Th1/Th17 axis observed in psoriasis is caused by a higher release of reactive oxygen species and the imbalance between oxidant and antioxidant mechanisms. This review aims to describe the mechanisms involved in the three hypotheses on the etiopathogeneses of psoriasis.
Collapse
Affiliation(s)
- Brenda Fernanda Hernandez-Nicols
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan José Robledo-Pulido
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Anabell Alvarado-Navarro
- Centro de Investigación en Inmunología y Dermatología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
32
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2322574121. [PMID: 38451947 PMCID: PMC10945812 DOI: 10.1073/pnas.2322574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.
Collapse
Affiliation(s)
- Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Unite Metaorganisme, Immunology Department, Pasteur Institute, 75015 Paris, France
| |
Collapse
|
33
|
Klassert TE, Zubiria-Barrera C, Denkel L, Neubert R, Schneegans A, Kulle A, Vester A, Bloos F, Schulze C, Epstude J, Gastmeier P, Geffers C, Slevogt H. Skin dysbiosis and loss of microbiome site specificity in critically ill patients. Microbiol Spectr 2024; 12:e0307823. [PMID: 38353551 PMCID: PMC10913461 DOI: 10.1128/spectrum.03078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
An increasing amount of evidence has linked critical illness with dysbiotic microbiome signatures in different body sites. The disturbance of the indigenous microbiota structures has been further associated with disease severity and outcome and has been suggested to pose an additional risk for complications in intensive care units (ICUs), including hospital-acquired infections. A better understanding of the microbial dysbiosis in critical illness might thus help to develop strategies for the prevention of such complications. While most of the studies addressing microbiome changes in ICU patients have focused on the gut, the lung, or the oral cavity, little is known about the microbial communities on the skin of ICU patients. Since the skin is the outermost organ and the first immune barrier against pathogens, its microbiome might play an important role in the risk management for critically ill patients. This observational study characterizes the skin microbiome in ICU patients covering five different body sites at the time of admission. Our results show a profound dysbiosis on the skin of critically ill patients, which is characterized by a loss of site specificity and an overrepresentation of gut bacteria on all skin sites when compared to a healthy group. This study opens a new avenue for further investigations on the effect of skin dysbiosis in the ICU setting and points out the need of strategies for the management of dysbiosis in critically ill patients.IMPORTANCEUnbalanced gut microbiota in critically ill patients has been associated with poor outcome and complications during the intensive care unit (ICU) stay. Whether the disturbance of the microbial communities in these patients is extensive for other body sites, such as the skin, is largely unknown. The skin not only is the largest organ of the body but also serves as the first immune barrier against potential pathogens. This study characterized the skin microbiota on five different body sites in ICU patients at the time of admission. The observed disturbance of the bacterial communities might help to develop new strategies in the risk management of critically ill patients.
Collapse
Affiliation(s)
- Tilman E. Klassert
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI Braunschweig, Braunschweig, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
| | - Cristina Zubiria-Barrera
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI Braunschweig, Braunschweig, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
| | - Luisa Denkel
- Institute for Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Neubert
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI Braunschweig, Braunschweig, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
| | - Antony Schneegans
- ZIK Septomics, Host Septomics, Jena University Hospital, Jena, Germany
| | - Aylina Kulle
- ZIK Septomics, Host Septomics, Jena University Hospital, Jena, Germany
| | - Antje Vester
- ZIK Septomics, Host Septomics, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Christian Schulze
- Department of Internal Medicine I, Cardiology, Angiology, Intensive Medical Care, University Hospital Jena, Jena, Germany
| | - Jörg Epstude
- Department of Hospital Hygiene, Thuringia Clinic "Georgius Agricola", Saalfeld/Saale, Germany
| | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Geffers
- Institute for Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hortense Slevogt
- Respiratory Infection Dynamics, Helmholtz Centre for Infection Research - HZI Braunschweig, Braunschweig, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
| |
Collapse
|
34
|
Yang Y, Huang J, Zeng A, Long X, Yu N, Wang X. The role of the skin microbiome in wound healing. BURNS & TRAUMA 2024; 12:tkad059. [PMID: 38444635 PMCID: PMC10914219 DOI: 10.1093/burnst/tkad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 03/07/2024]
Abstract
The efficient management of skin wounds for rapid and scarless healing represents a major clinical unmet need. Nonhealing skin wounds and undesired scar formation impair quality of life and result in high healthcare expenditure worldwide. The skin-colonizing microbiota contributes to maintaining an intact skin barrier in homeostasis, but it also participates in the pathogenesis of many skin disorders, including aberrant wound healing, in many respects. This review focuses on the composition of the skin microbiome in cutaneous wounds of different types (i.e. acute and chronic) and with different outcomes (i.e. nonhealing and hypertrophic scarring), mainly based on next-generation sequencing analyses; furthermore, we discuss the mechanistic insights into host-microbe and microbe-microbe interactions during wound healing. Finally, we highlight potential therapeutic strategies that target the skin microbiome to improve healing outcomes.
Collapse
Affiliation(s)
- Yuyan Yang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| | - Xiaojun Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100005, China
| |
Collapse
|
35
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
36
|
Lee EG, Oh JE. From neglect to spotlight: the underappreciated role of B cells in cutaneous inflammatory diseases. Front Immunol 2024; 15:1328785. [PMID: 38426103 PMCID: PMC10902158 DOI: 10.3389/fimmu.2024.1328785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
The skin, covering our entire body as its largest organ, manifests enormous complexities and a profound interplay of systemic and local responses. In this heterogeneous domain, B cells were considered strangers. Yet, recent studies have highlighted their existence in the skin and their distinct role in modulating cutaneous immunity across various immune contexts. Accumulating evidence is progressively shedding light on the significance of B cells in maintaining skin health and in skin disorders. Herein, we integrate current insights on the systemic and local contributions of B cells in three prevalent inflammatory skin conditions: Pemphigus Vulgaris (PV), Systemic Lupus Erythematosus (SLE), and Atopic Dermatitis (AD), underscoring the previously underappreciated importance of B cells within skin immunity. Moreover, we address the potential adverse effects of current treatments used for skin diseases, emphasizing their unintentional consequences on B cells. These comprehensive approaches may pave the way for innovative therapeutic strategies that effectively address the intricate nature of skin disorders.
Collapse
Affiliation(s)
- Eun-Gang Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- BioMedical Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Cha J, Kim TG, Bhae E, Gwak HJ, Ju Y, Choe YH, Jang IH, Jung Y, Moon S, Kim T, Lee W, Park JS, Chung YW, Yang S, Kang YK, Hyun YM, Hwang GS, Lee WJ, Rho M, Ryu JH. Skin microbe-dependent TSLP-ILC2 priming axis in early life is co-opted in allergic inflammation. Cell Host Microbe 2024; 32:244-260.e11. [PMID: 38198924 DOI: 10.1016/j.chom.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Euihyun Bhae
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea
| | - Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Young Ho Choe
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taehyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wuseong Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul 04763, Korea; Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
38
|
Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol 2024; 10:107-147. [PMID: 38525038 PMCID: PMC10955174 DOI: 10.3934/microbiol.2024007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
The gut microbiota (GM), as a forgotten organ, refers to the microbial community that resides in the gastrointestinal tract and plays a critical role in a variety of physiological activities in different body organs. The GM affects its targets through neurological, metabolic, immune, and endocrine pathways. The GM is a dynamic system for which exogenous and endogenous factors have negative or positive effects on its density and composition. Since the mid-twentieth century, laboratory animals are known as the major tools for preclinical research; however, each model has its own limitations. So far, two main models have been used to explore the effects of the GM under normal and abnormal conditions: the isolated germ-free and antibiotic-treated models. Both methods have strengths and weaknesses. In many fields of host-microbe interactions, research on these animal models are known as appropriate experimental subjects that enable investigators to directly assess the role of the microbiota on all features of physiology. These animal models present biological model systems to either study outcomes of the absence of microbes, or to verify the effects of colonization with specific and known microbial species. This paper reviews these current approaches and gives advantages and disadvantages of both models.
Collapse
Affiliation(s)
| | - Mahmoud Salami
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I. R. Iran
| |
Collapse
|
39
|
Mrázek J, Mrázková L, Mekadim C, Jarošíková T, Krayem I, Sohrabi Y, Demant P, Lipoldová M. Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice. Appl Microbiol Biotechnol 2024; 108:145. [PMID: 38240984 PMCID: PMC10799115 DOI: 10.1007/s00253-024-13002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.
Collapse
Affiliation(s)
- Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Lucie Mrázková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
| | - Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Taťána Jarošíková
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
| | - Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Department of Medical Genetics, 3Rd Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Namestí Sitna 3105, 272 01, Kladno, Czech Republic
- Department of Medical Genetics, 3Rd Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| |
Collapse
|
40
|
Liu Y, Cai Y. An emerging and promising anticancer strategy: colonization of engineered Staphylococcus epidermidis. MedComm (Beijing) 2024; 5:e467. [PMID: 38222316 PMCID: PMC10784856 DOI: 10.1002/mco2.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
41
|
Le Bras C, Rault L, Jacquet N, Daniel N, Chuat V, Valence F, Bellanger A, Bousarghin L, Blat S, Le Loir Y, Le Huërou-Luron I, Even S. Two human milk-like synthetic bacterial communities displayed contrasted impacts on barrier and immune responses in an intestinal quadricellular model. ISME COMMUNICATIONS 2024; 4:ycad019. [PMID: 38415201 PMCID: PMC10897888 DOI: 10.1093/ismeco/ycad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 02/29/2024]
Abstract
The human milk (HM) microbiota, a highly diverse microbial ecosystem, is thought to contribute to the health benefits associated with breast-feeding, notably through its impact on infant gut microbiota. Our objective was to further explore the role of HM bacteria on gut homeostasis through a "disassembly/reassembly" strategy. HM strains covering the diversity of HM cultivable microbiota were first characterized individually and then assembled in synthetic bacterial communities (SynComs) using two human cellular models, peripheral blood mononuclear cells and a quadricellular model mimicking intestinal epithelium. Selected HM bacteria displayed a large range of immunomodulatory properties and had variable effects on epithelial barrier, allowing their classification in functional groups. This multispecies characterization of HM bacteria showed no clear association between taxonomy and HM bacteria impacts on epithelial immune and barrier functions, revealing the entirety and complexity of HM bacteria potential. More importantly, the assembly of HM strains into two SynComs of similar taxonomic composition but with strains exhibiting distinct individual properties, resulted in contrasting impacts on the epithelium. These impacts of SynComs partially diverged from the predicted ones based on individual bacteria. Overall, our results indicate that the functional properties of the HM bacterial community rather than the taxonomic composition itself could play a crucial role in intestinal homeostasis of infants.
Collapse
Affiliation(s)
- Charles Le Bras
- STLO, INRAE, Institut Agro, Rennes, 35042, France
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Lucie Rault
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| | | | | | | | | | | | - Latifa Bousarghin
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Rennes-Saint Gilles, 35590, France
| | - Yves Le Loir
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| | | | - Sergine Even
- STLO, INRAE, Institut Agro, Rennes, 35042, France
| |
Collapse
|
42
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
43
|
Vanderwolf K, Kyle C, Davy C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ 2023; 11:e16680. [PMID: 38144187 PMCID: PMC10740688 DOI: 10.7717/peerj.16680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Diseases vary among and within species but the causes of this variation can be unclear. Immune responses are an important driver of disease variation, but mechanisms on how the body resists pathogen establishment before activation of immune responses are understudied. Skin surfaces of mammals are the first line of defense against abiotic stressors and pathogens, and skin attributes such as pH, microbiomes, and lipids influence disease outcomes. Sebaceous glands produce sebum composed of multiple types of lipids with species-specific compositions. Sebum affects skin barrier function by contributing to minimizing water loss, supporting thermoregulation, protecting against pathogens, and preventing UV-induced damage. Sebum also affects skin microbiome composition both via its antimicrobial properties, and by providing potential nutrient sources. Intra- and interspecific variation in sebum composition influences skin disease outcomes in humans and domestic mammal species but is not well-characterized in wildlife. We synthesized knowledge on sebum function in mammals in relation to skin diseases and the skin microbiome. We found that sebum composition was described for only 29 live, wild mammalian species. Sebum is important in dermatophilosis, various forms of dermatitis, demodicosis, and potentially white-nose syndrome. Sebum composition likely affects disease susceptibility, as lipid components can have antimicrobial functions against specific pathogens. It is unclear why sebum composition is species-specific, but both phylogeny and environmental effects may drive differences. Our review illustrates the role of mammal sebum function and influence on skin microbes in the context of skin diseases, providing a baseline for future studies to elucidate mechanisms of disease resistance beyond immune responses.
Collapse
Affiliation(s)
- Karen Vanderwolf
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Christopher Kyle
- Forensic Science Department, Trent University, Peterborough, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, Peterborough, Ontario, Canada
| | - Christina Davy
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
44
|
Machado ACHR, Marinheiro LJ, Benson HAE, Grice JE, Martins TDS, Lan A, Lopes PS, Andreo-Filho N, Leite-Silva VR. A Novel Handrub Tablet Loaded with Pre- and Post-Biotic Solid Lipid Nanoparticles Combining Virucidal Activity and Maintenance of the Skin Barrier and Microbiome. Pharmaceutics 2023; 15:2793. [PMID: 38140133 PMCID: PMC10747770 DOI: 10.3390/pharmaceutics15122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE This study aimed to develop a holobiont tablet with rapid dispersibility to provide regulation of the microbiota, virucidal activity, and skin barrier protection. METHODS A 23 factorial experiment was planned to define the best formulation for the development of the base tablet, using average weight, hardness, dimensions, swelling rate, and disintegration time as parameters to be analyzed. To produce holobiont tablets, the chosen base formulation was fabricated by direct compression of prebiotics, postbiotics, and excipients. The tablets also incorporated solid lipid nanoparticles containing postbiotics that were obtained by high-pressure homogenization and freeze-drying. The in vitro virucidal activity against alpha-coronavirus particles (CCoV-VR809) was determined in VERO cell culture. In vitro analysis, using monolayer cells and human equivalent skin, was performed by rRTq-PCR to determine the expression of interleukins 1, 6, 8, and 17, aquaporin-3, involucrin, filaggrin, FoxO3, and SIRT-1. Antioxidant activity and collagen-1 synthesis were also performed in fibroblast cells. Metagenomic analysis of the skin microbiome was determined in vivo before and after application of the holobiont tablet, during one week of continuous use, and compared to the use of alcohol gel. Samples were analyzed by sequencing the V3-V4 region of the 16S rRNA gene. RESULTS A handrub tablet with rapid dispersibility was developed for topical use and rinse off. After being defined as safe, the virucidal activity was found to be equal to or greater than that of 70% alcohol, with a reduction in interleukins and maintenance or improvement of skin barrier gene markers, in addition to the reestablishment of the skin microbiota after use. CONCLUSIONS The holobiont tablets were able to improve the genetic markers related to the skin barrier and also its microbiota, thereby being more favorable for use as a hand sanitizer than 70% alcohol.
Collapse
Affiliation(s)
- Ana Carolina Henriques Ribeiro Machado
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, Rua Pedro de Toledo, 720, Sao Paulo 04039-002, SP, Brazil; (A.C.H.R.M.); (V.R.L.-S.)
| | - Laís Júlio Marinheiro
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
| | | | - Jeffrey Ernest Grice
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| | - Tereza da Silva Martins
- Laboratório de Materiais Híbridos, Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, 2° Andar, Diadema 09913-030, SP, Brazil;
| | - Alexandra Lan
- Shanghai Pechoin Daily Chemical Corporation, Shanghai 200060, China;
| | - Patricia Santos Lopes
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
| | - Newton Andreo-Filho
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Vania Rodrigues Leite-Silva
- Programa de Pós-Graduação em Medicina Translacional, Universidade Federal de São Paulo, Rua Pedro de Toledo, 720, Sao Paulo 04039-002, SP, Brazil; (A.C.H.R.M.); (V.R.L.-S.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau, 210, Diadema 09913-030, SP, Brazil; (L.J.M.); (P.S.L.)
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia;
| |
Collapse
|
45
|
Skaar EP. Biogeography of the genus Staphylococci on human skin. Proc Natl Acad Sci U S A 2023; 120:e2318509120. [PMID: 38019842 PMCID: PMC10722967 DOI: 10.1073/pnas.2318509120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Eric P. Skaar
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
46
|
Zielińska M, Pawłowska A, Orzeł A, Sulej L, Muzyka-Placzyńska K, Baran A, Filipecka-Tyczka D, Pawłowska P, Nowińska A, Bogusławska J, Scholz A. Wound Microbiota and Its Impact on Wound Healing. Int J Mol Sci 2023; 24:17318. [PMID: 38139146 PMCID: PMC10743523 DOI: 10.3390/ijms242417318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is a complex process influenced by age, systemic conditions, and local factors. The wound microbiota's crucial role in this process is gaining recognition. This concise review outlines wound microbiota impacts on healing, emphasizing distinct phases like hemostasis, inflammation, and cell proliferation. Inflammatory responses, orchestrated by growth factors and cytokines, recruit neutrophils and monocytes to eliminate pathogens and debris. Notably, microbiota alterations relate to changes in wound healing dynamics. Commensal bacteria influence immune responses, keratinocyte growth, and blood vessel development. For instance, Staphylococcus epidermidis aids keratinocyte progression, while Staphylococcus aureus colonization impedes healing. Other bacteria like Group A Streptococcus spp. And Pseudomonas affect wound healing as well. Clinical applications of microbiota-based wound care are promising, with probiotics and specific bacteria like Acinetobacter baumannii aiding tissue repair through molecule secretion. Understanding microbiota influence on wound healing offers therapeutic avenues. Tailored approaches, including probiotics, prebiotics, and antibiotics, can manipulate the microbiota to enhance immune modulation, tissue repair, and inflammation control. Despite progress, critical questions linger. Determining the ideal microbiota composition for optimal wound healing, elucidating precise influence mechanisms, devising effective manipulation strategies, and comprehending the intricate interplay between the microbiota, host, and other factors require further exploration.
Collapse
Affiliation(s)
- Małgorzata Zielińska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Agnieszka Pawłowska
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Anna Orzeł
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Luiza Sulej
- Students Research Group of Obstetrics and Gynecology Department at St. Sophia Hospital, 01-004 Warsaw, Poland; (A.P.)
| | - Katarzyna Muzyka-Placzyńska
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Arkadiusz Baran
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Dagmara Filipecka-Tyczka
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| | - Paulina Pawłowska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Nowińska
- Students Scientific Association, Department of Hygiene and Epidemiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland;
| | - Anna Scholz
- Ist Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (M.Z.); (A.O.)
| |
Collapse
|
47
|
Roslan MAM, Omar MN, Sharif NAM, Raston NHA, Arzmi MH, Neoh HM, Ramzi AB. Recent advances in single-cell engineered live biotherapeutic products research for skin repair and disease treatment. NPJ Biofilms Microbiomes 2023; 9:95. [PMID: 38065982 PMCID: PMC10709320 DOI: 10.1038/s41522-023-00463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The human microbiome has emerged as a key player in maintaining skin health, and dysbiosis has been linked to various skin disorders. Amidst growing concerns regarding the side effects of antibiotic treatments, the potential of live biotherapeutic products (LBPs) in restoring a healthy microbiome has garnered significant attention. This review aims to evaluate the current state of the art of the genetically or metabolically engineered LBPs, termed single-cell engineered LBPs (eLBPs), for skin repair and disease treatment. While some studies demonstrate promising outcomes, the translation of eLBPs into clinical applications remains a significant hurdle. Substantial concerns arise regarding the practical implementation and scalability of eLBPs, despite the evident potential they hold in targeting specific cells and delivering therapeutic agents. This review underscores the need for further research, robust clinical trials, and the exploration of current advances in eLBP-based bioengineered bacterial chassis and new outlooks to substantiate the viability and effectiveness of eLBPs as a transformative approach in skin repair and disease intervention.
Collapse
Affiliation(s)
| | - Mohd Norfikri Omar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nur Azlina Mohd Sharif
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental & Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Melbourne Dental School, The University of Melbourne, 3053, Melbourne, Victoria, Australia
| | - Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
48
|
Lionakis MS. Tregs tame skin bacteria and IFN-γ-associated pathology. J Exp Med 2023; 220:e20231571. [PMID: 37815549 PMCID: PMC10563549 DOI: 10.1084/jem.20231571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Mibrobial dysbiosis worsens cutaneous leishmaniasis. In this issue of JEM, Singh et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20230558) show that Rorγt+ regulatory T cells suppress pathogenic IFN-γ responses to control Staphylococcus aureus growth and limit S. aureus- and Leishmamia braziliensis-associated immunopathology at the skin barrier.
Collapse
Affiliation(s)
- Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Singh TP, Farias Amorim C, Lovins VM, Bradley CW, Carvalho LP, Carvalho EM, Grice EA, Scott P. Regulatory T cells control Staphylococcus aureus and disease severity of cutaneous leishmaniasis. J Exp Med 2023; 220:e20230558. [PMID: 37812390 PMCID: PMC10561556 DOI: 10.1084/jem.20230558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/02/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Cutaneous leishmaniasis causes alterations in the skin microbiota, leading to pathologic immune responses and delayed healing. However, it is not known how these microbiota-driven immune responses are regulated. Here, we report that depletion of Foxp3+ regulatory T cells (Tregs) in Staphylococcus aureus-colonized mice resulted in less IL-17 and an IFN-γ-dependent skin inflammation with impaired S. aureus immunity. Similarly, reducing Tregs in S. aureus-colonized and Leishmania braziliensis-infected mice increased IFN-γ, S. aureus, and disease severity. Importantly, analysis of lesions from L. braziliensis patients revealed that low FOXP3 gene expression is associated with high IFNG expression, S. aureus burden, and delayed lesion resolution compared to patients with high FOXP3 expression. Thus, we found a critical role for Tregs in regulating the balance between IL-17 and IFN-γ in the skin, which influences both bacterial burden and disease. These results have clinical ramifications for cutaneous leishmaniasis and other skin diseases associated with a dysregulated microbiome when Tregs are limited or dysfunctional.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria M. Lovins
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lucas P. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Edgar M. Carvalho
- Servico de Imunologia, Complexo Hospitalar Universitario Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
- Laboratorio de Pesquisas Clinicas do Instituto de Pesquisas Goncalo Moniz, Fiocruz, Salvador, Brazil
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Khadka VD, Markey L, Boucher M, Lieberman TD. Commensal skin bacteria exacerbate inflammation and delay skin healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569980. [PMID: 38106058 PMCID: PMC10723327 DOI: 10.1101/2023.12.04.569980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The skin microbiome can both trigger beneficial immune stimulation and pose a potential infection threat. Previous studies have shown that colonization of mouse skin with the model human skin commensal Staphylococcus epidermidis is protective against subsequent excisional wound or pathogen challenge. However, less is known about concurrent skin damage and exposure to commensal microbes, despite growing interest in interventional probiotic therapy. Here, we address this open question by applying commensal skin bacteria at a high dose to abraded skin. While depletion of the skin microbiome via antibiotics delayed repair from damage, application of commensals-- including the mouse commensal Staphylococcus xylosus, three distinct isolates of S. epidermidis, and all other tested human skin commensals-- also significantly delayed barrier repair. Increased inflammation was observed within four hours of S. epidermidis exposure and persisted through day four, at which point the skin displayed a chronic-wound-like inflammatory state with increased neutrophil infiltration, increased fibroblast activity, and decreased monocyte differentiation. Transcriptomic analysis suggested that the prolonged upregulation of early canonical proliferative pathways inhibited the progression of barrier repair. These results highlight the nuanced role of members of the skin microbiome in modulating barrier integrity and indicate the need for caution in their development as probiotics.
Collapse
Affiliation(s)
- Veda D Khadka
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA, United States
| | - Laura Markey
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA, United States
| | - Magalie Boucher
- Division of Comparative Medicine, Massachusetts Institute of Technology; Cambridge, MA, United States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA, United States
- Ragon Institute of Mass General, MIT and Harvard; Cambridge. MA, United States
| |
Collapse
|