1
|
Kuhn AM, Bosis KE, Wohleb ES. Neuroimmunomodulation: The History of Science in Psychoneuroimmunology. Neuroimmunomodulation 2024; 31:211-229. [PMID: 39369707 DOI: 10.1159/000541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century. SUMMARY The objective of this review was to provide historical context for influential discoveries, surprising findings, and preclinical models in stress-related neuroimmune research. Furthermore, we summarize this work and present a current understanding of the stress pathways and their effects on the immune system and behavior. We focus on recent work demonstrating stress-induced immune changes within the brain and highlight studies investigating stress effects on microglia. Lastly, we conclude with potential areas for future investigation concerning microglia heterogeneity, bone marrow niches, and sex differences. KEY MESSAGES Stress is a phenomenon that ties together not only the central and peripheral nervous system, but the immune system as well. The cumulative effects of stress can enhance or suppress immune function, based on the intensity and duration of the stressor. These stress-induced immune alterations are associated with neurobiological changes, including structural remodeling of neurons and decreased neurogenesis, and these contribute to the development of behavioral and cognitive deficits. As such, research in this field has revealed important insights into neuroimmune communication as well as molecular and cellular mediators of complex behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Alexander M Kuhn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly E Bosis
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric S Wohleb
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Hussain A, Shah A, Akoto A, Peters AJ, Nelson SM. Pituitary stalk interruption syndrome: A rare cause of amenorrhea in a patient with normal stature and secondary sexual characteristics. Radiol Case Rep 2024; 19:277-280. [PMID: 38028284 PMCID: PMC10654425 DOI: 10.1016/j.radcr.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare disorder characterized by the imaging triad of thinned or absent pituitary stalk, ectopic posterior pituitary lobe, and hypoplastic or absent anterior lobe. Patients typically present with 1 or more anterior pituitary lobe hormone deficits, most commonly growth hormone or gonadotropin, but patients may achieve normal stature and secondary sexual characteristics. Here, we present a case of a young female patient presenting with amenorrhea, normal stature, and sexual development, and an imaging triad of PSIS. To our knowledge, this is the first case of PSIS to present with hyperprolactinemia and an otherwise normal pituitary hormone profile.
Collapse
Affiliation(s)
- Anam Hussain
- Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA
| | - Akshat Shah
- Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA
| | - Atteh Akoto
- Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435 USA
| | - Austin J. Peters
- Wright Patterson Air Force Base, 4881 Sugar Maple Dr, Dayton, OH, 45434 USA
| | - Steve M. Nelson
- Wright Patterson Air Force Base, 4881 Sugar Maple Dr, Dayton, OH, 45434 USA
| |
Collapse
|
3
|
Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, Chen P, Chen Z, Ren H, Yan Y, Geng L, Fu S, Mei L, Li G, Wu L, Jiang Y, Qian W, Zhang L, Peng W, Xu M, Hu J, Jiang M, Chen L, Tang C, Zhu Y, Lin D, Zhou JN, Li Y. A tool kit of highly selective and sensitive genetically encoded neuropeptide sensors. Science 2023; 382:eabq8173. [PMID: 37972184 PMCID: PMC11205257 DOI: 10.1126/science.abq8173] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chunling Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Takuya Osakada
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Peng Chen
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zijun Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huixia Ren
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Shengwei Fu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Long Mei
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Ling Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yiwen Jiang
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Weiran Qian
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanling Peng
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Xu
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chao Tang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dayu Lin
- Department of Psychiatry and Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Srivastava N, Chudasama B, Baranwal M. Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases 2023; 18:060801. [PMID: 38078795 DOI: 10.1116/6.0003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Magnetic hyperthermia utilizing magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF) represents a promising approach in the field of cancer treatment. Active targeting has emerged as a valuable strategy to enhance the effectiveness and specificity of drug delivery. Active targeting utilizes specific biomarkers that are predominantly found in abundance on cancer cells while being minimally expressed on healthy cells. Current comprehensive review provides an overview of several cancer-specific biomarkers, including human epidermal growth factor, transferrin, folate, luteinizing hormone-releasing hormone, integrin, cluster of differentiation (CD) receptors such as CD90, CD95, CD133, CD20, and CD44 also CXCR4 and vascular endothelial growth factor, these biomarkers bind to ligands present on the surface of MNPs, enabling precise targeting. Additionally, this review touches various combination therapies employed to combat cancer. Magnetic hyperthermia synergistically enhances the efficacy of conventional cancer treatments such as targeted chemotherapy, radiation therapy, gene therapy, and immunotherapy.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
5
|
Eat, Train, Sleep-Retreat? Hormonal Interactions of Intermittent Fasting, Exercise and Circadian Rhythm. Biomolecules 2021; 11:biom11040516. [PMID: 33808424 PMCID: PMC8065500 DOI: 10.3390/biom11040516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled by a complex system of central and peripheral pacemakers, influenced by exogenous factors like light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on these results and personal physical goals, optimal time periods for food intake and exercise have been identified. This review shows that appropriate nutrition and exercise timing are powerful tools to support, rather than not disturb, the circadian rhythm and potentially contribute to the prevention of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real issue: the misalignment of our biological with our social time.
Collapse
|
6
|
McEwen BS. Redefining neuroendocrinology: Epigenetics of brain-body communication over the life course. Front Neuroendocrinol 2018; 49:8-30. [PMID: 29132949 DOI: 10.1016/j.yfrne.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
The brain is the central organ of stress and adaptation to stress that perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor, and it does so somewhat differently in males and females. The expression of steroid hormone receptors throughout the brain has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the entire brain and body via hormonal and neural pathways. Mediated in part via systemic hormonal influences, the adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. This article is both an account of an emerging field elucidating brain-body interactions at multiple levels, from molecules to social organization, as well as a personal account of my laboratory's role and, most importantly, the roles of trainees and colleagues, along with my involvement in interdisciplinary groups working on this topic.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA. http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| |
Collapse
|
7
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
8
|
Polysomnographic findings in craniopharyngioma patients. Sleep Breath 2017; 21:975-982. [DOI: 10.1007/s11325-017-1574-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 11/26/2022]
|
9
|
Abstract
Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, the Rockefeller University, New York, New York, USA
| |
Collapse
|
10
|
McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 2017; 95:24-39. [PMID: 27870427 PMCID: PMC5120618 DOI: 10.1002/jnr.23809] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell School of Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
11
|
Ranganathan P, Kumar RG, Davis K, McCullough EH, Berga SL, Wagner AK. Longitudinal sex and stress hormone profiles among reproductive age and post-menopausal women after severe TBI: A case series analysis. Brain Inj 2016; 30:452-461. [PMID: 26963638 DOI: 10.3109/02699052.2016.1144081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVES To describe hormone profiles for pre-/post-menopausal women, to monitor time to resumption of menstruation among pre-menopausal women and to describe cortisol associated LH suppression and phasic variation in other sex hormones over timeMethods and procedures: This study determined amenorrhea duration and characterized acute (days 0-7) and chronic (months 1-6) gonadotropins [luteinizing hormone and follicle stimulating hormone (LH, FSH)], sex hormones (progesterone, estradiol) and stress hormone (cortisol) profiles. Women were pre-menopausal (n = 3) or post-menopausal (n = 3). Among pre-menopausal women, menstrual cycle resolution and phase association (luteal/follicular) was monitored using self-report monthly reproductive history questionnaires. This study compared post-TBI hormone profiles, stratified by menopausal status, to hormone levels from seven controls and described 6- and 12-month outcomes for these women. MAIN OUTCOMES AND RESULTS Consistent with functional hypothalamic amenorrhea (FHA), menstruation resumption among pre-menopausal women occurred when serum cortisol normalized to luteal phase control levels. For post-menopausal women, serum cortisol reductions corresponded with resolution of suppressed LH levels. CONCLUSIONS The stress of TBI results in anovulation and central hypothalamic-pituitary-ovarian (HPG) axis suppression. Future work will examine acute/chronic consequences of post-TBI hypercortisolemia and associated HPG suppression, the temporal association of HPG suppression with other neuroendocrine adaptations and how HPG suppression impacts multidimensional recovery for women with TBI.
Collapse
Affiliation(s)
- Prerna Ranganathan
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Raj G Kumar
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Kendra Davis
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Emily H McCullough
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA
| | - Sarah L Berga
- b Department of Obstetrics/Gynecology , Wake Forest University , Winston-Salem , NC , USA
| | - Amy K Wagner
- a Department of Physical Medicine and Rehabilitation , University of Pittsburgh , Pittsburgh , PA , USA.,c University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d Safar Center for Resuscitation Research , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
12
|
McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016; 41:3-23. [PMID: 26076834 PMCID: PMC4677120 DOI: 10.1038/npp.2015.171] [Citation(s) in RCA: 870] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
The hippocampus provided the gateway into much of what we have learned about stress and brain structural and functional plasticity, and this initial focus has expanded to other interconnected brain regions, such as the amygdala and prefrontal cortex. Starting with the discovery of adrenal steroid, and later, estrogen receptors in the hippocampal formation, and subsequent discovery of dendritic and spine synapse remodeling and neurogenesis in the dentate gyrus, mechanistic studies have revealed both genomic and rapid non-genomic actions of circulating steroid hormones in the brain. Many of these actions occur epigenetically and result in ever-changing patterns of gene expression, in which there are important sex differences that need further exploration. Moreover, glucocorticoid and estrogen actions occur synergistically with an increasing number of cellular mediators that help determine the qualitative nature of the response. The hippocampus has also been a gateway to understanding lasting epigenetic effects of early-life experiences. These findings in animal models have resulted in translation to the human brain and have helped change thinking about the nature of brain malfunction in psychiatric disorders and during aging, as well as the mechanisms of the effects of early-life adversity on the brain and the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. Tel: +1 212 327 8624, Fax: +1 212 327 8634, E-mail: or http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| |
Collapse
|
13
|
Pan W. Festschrift to highlight the career of Abba J. Kastin as a founding editor, researcher, and educator in the peptide field. Preface. Peptides 2015; 72:1-3. [PMID: 26275336 DOI: 10.1016/j.peptides.2015.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weihong Pan
- Biopotentials Sleep Center, Baton Rouge, LA 70809, USA.
| |
Collapse
|
14
|
Fink G. 60 YEARS OF NEUROENDOCRINOLOGY: MEMOIR: Harris' neuroendocrine revolution: of portal vessels and self-priming. J Endocrinol 2015; 226:T13-24. [PMID: 25967698 DOI: 10.1530/joe-15-0130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/28/2023]
Abstract
Geoffrey Harris, while still a medical student at Cambridge, was the first researcher (1937) to provide experimental proof for the then tentative view that the anterior pituitary gland was controlled by the CNS. The elegant studies carried out by Harris in the 1940s and early 1950s, alone and in collaboration with John Green and Dora Jacobsohn, established that this control was mediated by a neurohumoral mechanism that involved the transport by hypophysial portal vessel blood of chemical substances from the hypothalamus to the anterior pituitary gland. The neurohumoral control of anterior pituitary secretion was proved by the isolation and characterisation of the 'chemical substances' (mainly neuropeptides) and the finding that these substances were released into hypophysial portal blood in a manner consistent with their physiological functions. The new discipline of neuroendocrinology - the way that the brain controls endocrine glands and vice versa - revolutionised the treatment of endocrine disorders such as growth and pubertal abnormalities, infertility and hormone-dependent tumours, and it underpins our understanding of the sexual differentiation of the brain and key aspects of behaviour and mental disorder. Neuroendocrine principles are illustrated in this Thematic Review by way of Harris' major interest: hypothalamic-pituitary-gonadal control. Attention is focussed on the measurement of GnRH in hypophysial portal blood and the role played by the self-priming effect of GnRH in promoting the onset of puberty and enabling the oestrogen-induced surge or pulses of GnRH to trigger the ovulatory gonadotrophin surge in humans and other spontaneously ovulating mammals.
Collapse
Affiliation(s)
- George Fink
- Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne, Kenneth Myer Building, Genetics Lane, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
McEwen BS, Gray JD, Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 2015; 226:T67-83. [PMID: 25934706 PMCID: PMC4515381 DOI: 10.1530/joe-15-0121] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/12/2022]
Abstract
The discovery of steroid hormone receptors in brain regions that mediate every aspect of brain function has broadened the definition of 'neuroendocrinology' to include the reciprocal communication between the brain and the body via hormonal and neural pathways. The brain is the central organ of stress and adaptation to stress because it perceives and determines what is threatening, as well as the behavioral and physiological responses to the stressor. The adult and developing brain possess remarkable structural and functional plasticity in response to stress, including neuronal replacement, dendritic remodeling, and synapse turnover. Stress causes an imbalance of neural circuitry subserving cognition, decision-making, anxiety and mood that can alter expression of those behaviors and behavioral states. This imbalance, in turn, affects systemic physiology via neuroendocrine, autonomic, immune and metabolic mediators. In the short term, as for increased fearful vigilance and anxiety in a threatening environment, these changes may be adaptive. But, if the danger passes and the behavioral state persists along with the changes in neural circuitry, such maladaptation may need intervention with a combination of pharmacological and behavioral therapies, as is the case for chronic anxiety and depression. There are important sex differences in the brain responses to stressors that are in urgent need of further exploration. Moreover, adverse early-life experience, interacting with alleles of certain genes, produce lasting effects on brain and body over the life-course via epigenetic mechanisms. While prevention is most important, the plasticity of the brain gives hope for therapies that take into consideration brain-body interactions.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Jason D Gray
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Carla Nasca
- Laboratory of NeuroendocrinologyThe Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
16
|
McEwen BS. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain. Climacteric 2014; 17 Suppl 2:18-25. [PMID: 25225752 DOI: 10.3109/13697137.2014.949662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The brain is a target of steroid hormone actions that affect brain architecture, molecular and neurochemical processes, behavior and neuroprotection via both genomic and non-genomic actions. Estrogens have such effects throughout the brain and this article provides an historical and current view of how this new view has come about and how it has affected the study of sex differences, as well as other areas of neuroscience, including the effects of stress on the brain.
Collapse
Affiliation(s)
- B S McEwen
- Alfred E. Mirsky Professor, Head, Harold and Margaret Milliken Hatch, Laboratory of Neuroendocrinology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
17
|
Pickering L, Jennum P, Gammeltoft S, Poulsgaard L, Feldt-Rasmussen U, Klose M. Sleep-wake and melatonin pattern in craniopharyngioma patients. Eur J Endocrinol 2014; 170:873-84. [PMID: 24682900 DOI: 10.1530/eje-13-1025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To assess the influence of craniopharyngioma or consequent surgery on melatonin secretion, and the association with fatigue, sleepiness, sleep pattern and sleep quality. DESIGN Cross-sectional study. METHODS A total of 15 craniopharyngioma patients were individually matched to healthy controls. In this study, 24-h salivary melatonin and cortisol were measured. Sleep-wake patterns were characterised by actigraphy and sleep diaries recorded for 2 weeks. Sleepiness, fatigue, sleep quality and general health were assessed by Multidimensional Fatigue Inventory, Pittsburgh Sleep Quality Index, Epworth Sleepiness Scale and Short-Form 36. RESULTS Patients had increased mental fatigue, daytime dysfunction, sleep latency and lower general health (all, P≤0.05), and they tended to have increased daytime sleepiness, general fatigue and impaired sleep quality compared with controls. The degree of hypothalamic injury was associated with an increased BMI and lower mental health (P=0.01). High BMI was associated with increased daytime sleepiness, daytime dysfunction, mental fatigue and lower mental health (all, P≤0.01). Low midnight melatonin was associated with reduced sleep time and efficiency (P≤0.03) and a tendency for increased sleepiness, impaired sleep quality and physical health. Midnight melatonin remained independently related to sleep time after adjustment for cortisol. Three different patterns of melatonin profiles were observed; normal (n=6), absent midnight peak (n=6) and phase-shifted peak (n=2). Only patients with absent midnight peak had impaired sleep quality, increased daytime sleepiness and general and mental fatigue. CONCLUSION Craniopharyngioma patients present with changes in circadian pattern and daytime symptoms, which may be due to the influence of the craniopharyngioma or its treatment on the hypothalamic circadian and sleep regulatory nuclei.
Collapse
Affiliation(s)
- Line Pickering
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| | - Poul Jennum
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| | - Steen Gammeltoft
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| | - Lars Poulsgaard
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| | - Ulla Feldt-Rasmussen
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| | - Marianne Klose
- Department of EndocrinologyCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, DenmarkDanish Center for Sleep MedicineDepartment of Clinical BiochemistryCopenhagen University Hospital, Glostrup Hospital, Ndr. Ringvej 57, DK-2600 Glostrup, DenmarkDepartment of NeurosurgeryCopenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen East, Denmark
| |
Collapse
|
18
|
Investigation of the novel lead of melanocortin 1 receptor for pigmentary disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:254678. [PMID: 24693320 PMCID: PMC3947904 DOI: 10.1155/2014/254678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/15/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
Knowing the role of MC1R in skin tanning can provide a brand new idea to resolve pigmentary disorders. α MSH has 13 amino acids and is the most essential pigmentary melanocortin responsible for melanin synthesis. One could utilize the compound library to find lead compounds by virtual screening from peptide database and traditional Chinese medicine (TCM) database@Taiwan. Computational simulation provided a convenient technology to survey potential lead. Ligand-based validation set up the reliable model for molecular dynamics simulation. Molecular dynamics simulation approved the binding affinity and stability of the peptides selected by virtual screening. Thus, we concluded that Glu-Glu-Lys-Glu (EEKE), Glu-Gly-Gly-Ser-Val-Glu-Ser (EGGSVES), and Glu-Glu-Asp-Cys-Lys (EEDCK) were potent lead peptides for MC1R to resolve pigmentary disorders.
Collapse
|
19
|
SHASTRI N, MANHAR SK, TALWAR GP. Important Role of the Carrier in the Induction of Antibody Response Without Freund's Complete Adjuvant Against a “Self” Peptide Luteinizing Hormone-Releasing Hormone (LHRH)*. Am J Reprod Immunol 2013. [DOI: 10.1111/j.1600-0897.1981.tb00051.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
20
|
Abstract
Stress is a state of the mind, involving both brain and body as well as their interactions; it differs among individuals and reflects not only major life events but also the conflicts and pressures of daily life that alter physiological systems to produce a chronic stress burden that, in turn, is a factor in the expression of disease. This burden reflects the impact of not only life experiences but also genetic variations and individual health behaviors such as diet, physical activity, sleep, and substance abuse; it also reflects stable epigenetic modifications in development that set lifelong patterns of physiological reactivity and behavior through biological embedding of early environments interacting with cumulative change from experiences over the lifespan. Hormones associated with the chronic stress burden protect the body in the short run and promote adaptation (allostasis), but in the long run, the burden of chronic stress causes changes in the brain and body that can lead to disease (allostatic load and overload). Brain circuits are plastic and remodeled by stress to change the balance between anxiety, mood control, memory, and decision making. Such changes may have adaptive value in particular contexts, but their persistence and lack of reversibility can be maladaptive. However, the capacity of brain plasticity to effects of stressful experiences in adult life has only begun to be explored along with the efficacy of top-down strategies for helping the brain change itself, sometimes aided by pharmaceutical agents and other treatments.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
21
|
McEwen BS. The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 2012; 72:878-90. [PMID: 21898852 DOI: 10.1002/dneu.20968] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adult brain is capable of considerable structural and functional plasticity and the study of hormone actions in brain has contributed to our understanding of this important phenomenon. In particular, stress and stress-related hormones such as glucocorticoids and mineralocorticoids play a key role in the ability of acute and chronic stress to cause reversible remodeling of neuronal connections in the hippocampus, prefrontal cortex, and amygdala. To produce this plasticity, these hormones act by both genomic and non-genomic mechanisms together with ongoing, experience-driven neural activity mediated by excitatory amino acid neurotransmitters, neurotrophic factors such as brain derived neurotrophic factor, extracellular molecules such as neural cell adhesion molecule, neuropeptides such as corticotrophin releasing factor, and endocannabinoids. The result is a dynamic brain architecture that can be modified by experience. Under this view, the role of pharmaceutical agents, such as antidepressants, is to facilitate such plasticity that must also be guided by experiences.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
22
|
McEwen BS, Akama KT, Spencer-Segal JL, Milner TA, Waters EM. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci 2012; 126:4-16. [PMID: 22289042 DOI: 10.1037/a0026708] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
From its origins in how the brain controls the endocrine system via the hypothalamus and pituitary gland, neuroendocrinology has evolved into a science that now includes hormone action on many aspects of brain function. These actions involve the whole central nervous system and not just the hypothalamus. Advances in our understanding of cellular and molecular actions of steroid hormones have gone beyond the important cell nuclear actions of steroid hormone receptors to include signaling pathways that intersect with other mediators such as neurotransmitters and neuromodulators. This has, in turn, broadened the search for and identification of steroid receptors to include nonnuclear sites in synapses, dendrites, mitochondria, and glial cells, as well as cell nuclei. The study of estrogen receptors and estrogen actions on processes related to cognition, mood, autonomic regulation, pain, and neuroprotection, among other functions, has led the way in this new view of hormone actions on the brain. In this review, we summarize past and current work in our laboratory on this topic. This exciting and growing field involving many laboratories continues to reshape our ideas and approaches to neuroendocrinology both at the bench and the bedside.
Collapse
Affiliation(s)
- Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
23
|
Kastin AJ, Pan W. Concepts for biologically active peptides. Curr Pharm Des 2011; 16:3390-400. [PMID: 20726835 DOI: 10.2174/138161210793563491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 08/12/2010] [Indexed: 12/21/2022]
Abstract
Here we review a unique aspect of CNS research on biologically active peptides that started against a background of prevalent dogmas but ended by exerting considerable influence on the field. During the course of refuting some doctrines, we introduced several concepts that were unconventional and paradigm-shifting at the time. We showed that (1) hypothalamic peptides can act 'up' on the brain as well as 'down' on the pituitary, (2) peripheral peptides can affect the brain, (3) peptides can cross the blood-brain barrier, (4) the actions of peptides can persist longer than their half-lives in blood, (5) perinatal administration of peptides can exert actions persisting into adulthood, (6) a single peptide can have more than one action, (7) dose-response relationships of peptides need not be linear, (8) the brain produces antiopiate as well as opiate peptides, (9) there is a selective high affinity endogenous peptide ligand for the mu-opiate receptor, (10) a peptide's name does not restrict its effects, and (11) astrocytes assume an active role in response to metabolic disturbance and hyperleptinemia. The evolving questions in our laboratories reflect the diligent effort of the neuropeptide community to identify the roles of peptides in the CNS. The next decade is expected to see greater progress in the following areas: (a) interactions of peptides with other molecules in the CNS; (b) peptide involvement in cell-cell interactions; and (c) peptides in neuropsychiatric, autoimmune, and neurodegenerative diseases. The development of peptidomics and gene silencing approaches will expedite the formation of many new concepts in a new era.
Collapse
Affiliation(s)
- Abba J Kastin
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
24
|
Roch GJ, Busby ER, Sherwood NM. Evolution of GnRH: diving deeper. Gen Comp Endocrinol 2011; 171:1-16. [PMID: 21185290 DOI: 10.1016/j.ygcen.2010.12.014] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/18/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a central role in vertebrate reproduction. The evolutionary origin of this neuropeptide and its receptor is not obvious, but the advent of genomics makes it possible to examine the roots of GnRH and delve deeper into its ancestral relationships. New peptide sequences identified in invertebrates from annelids to tunicates reveal GnRH-like peptides of 10-12 amino acids. Structural conservation suggests homology between the 15 known invertebrate peptides and the 15 known vertebrate GnRHs. The functions of the invertebrate GnRH-like peptides are not necessarily related to reproduction. We suggest that structurally related families of invertebrate peptides including corazonin and adipokinetic hormone (AKH) form a superfamily of neuropeptides with the GnRH family. GnRH receptors have also been identified in invertebrates from annelids to tunicates suggesting that the origin of GnRH and its receptor extends deep in evolution to the origin of bilaterian animals. To resolve the relationship of invertebrate and vertebrate receptors, we conducted large-scale phylogenetic analysis using maximum likelihood. The data support a superfamily that includes GnRH, AKH and corazonin receptors derived from both published sequences and unpublished gene model predictions. Closely related to the GnRHR superfamily is the vasopressin/oxytocin superfamily of receptors. Phylogenetic analysis suggests a shared ancestry with deep roots. A functional role for GnRH in vertebrates or invertebrates leads to questions about the evolutionary origin of the pituitary. Our analysis suggests a functioning pituitary was the result of genomic duplications in early vertebrates.
Collapse
Affiliation(s)
- Graeme J Roch
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
25
|
Dalvi PS, Nazarians-Armavil A, Tung S, Belsham DD. Immortalized neurons for the study of hypothalamic function. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1030-52. [PMID: 21248304 DOI: 10.1152/ajpregu.00649.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothalamus is a vital part of the central nervous system: it harbors control systems implicated in regulation of a wide range of homeostatic processes, including energy balance and reproduction. Structurally, the hypothalamus is a complex neuroendocrine tissue composed of a multitude of unique neuronal cell types that express a number of neuromodulators, including hormones, classical neurotransmitters, and specific neuropeptides that play a critical role in mediating hypothalamic function. However, neuropeptide and receptor gene expression, second messenger activation, and electrophysiological and secretory properties of these hypothalamic neurons are not yet fully defined, primarily because the heterogeneity and complex neuronal architecture of the neuroendocrine hypothalamus make such studies challenging to perform in vivo. To circumvent this problem, our research group recently generated embryonic- and adult-derived hypothalamic neuronal cell models by utilizing the novel molecular techniques of ciliary neurotrophic factor-induced neurogenesis and SV40 T antigen transfer to primary hypothalamic neuronal cell cultures. Significant research with these cell lines has demonstrated their value as a potential tool for use in molecular genetic analysis of hypothalamic neuronal function. Insights gained from hypothalamic immortalized cells used in conjunction with in vivo models will enhance our understanding of hypothalamic functions such as neurogenesis, neuronal plasticity, glucose sensing, energy homeostasis, circadian rhythms, and reproduction. This review discusses the generation and use of hypothalamic cell models to study mechanisms underlying the function of individual hypothalamic neurons and to gain a more complete understanding of the overall physiology of the hypothalamus.
Collapse
Affiliation(s)
- Prasad S Dalvi
- Dept. of Physiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Syrier JLM, Beyerman HC. On the optical purity of synthetic thyrotropin-releasing hormone. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19740930408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Perry M, Li Q, Kennedy RT. Review of recent advances in analytical techniques for the determination of neurotransmitters. Anal Chim Acta 2009; 653:1-22. [PMID: 19800472 PMCID: PMC2759352 DOI: 10.1016/j.aca.2009.08.038] [Citation(s) in RCA: 248] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/18/2022]
Abstract
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluble gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest.
Collapse
Affiliation(s)
- Maura Perry
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
28
|
Xu J, Zhu Z, Duan P, Li W, Zhang Y, Wu J, Hu Z, Roque RS, Liu J. Cloning, expression, and purification of a highly immunogenic recombinant gonadotropin-releasing hormone (GnRH) chimeric peptide. Protein Expr Purif 2006; 50:163-70. [PMID: 17064933 DOI: 10.1016/j.pep.2006.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 11/24/2022]
Abstract
To design an anti-gonadotropin-releasing hormone (GnRH) vaccine capable of eliciting strong immunogenicity, a gene fragment encoding a chimeric peptide was constructed using polymerase chain reaction and ligated into a novel expression vector for recombinant expression in a T7 RNA polymerase-based expression system. The chimeric peptide called GnRH3-hinge-MVP contained three linear repeats of GnRH (GnRH3), a fragment of the human IgG1 hinge region, and a T-cell epitope of measles virus protein (MVP). The expression plasmid contained the GnRH3-hinge-MVP construct ligated to its fusion partner (AnsB-C) via an unique acid labile Asp-Pro linker. The recombinant fusion protein was expressed in an inclusion body in Escherichia coli under IPTG or lactose induction and the target peptide was easily purified using washing of urea and ethanol precipitation. The target chimeric peptide was isolated from the fusion partner following acid hydrolysis and purified using DEAE-Sephacel chromatography. The purified GnRH3-hinge-MVP was determined to be highly homogeneous by IEF analysis and the N-terminal sequencing. Further, immunization of female mice with the recombinant chimeric peptide resulted in generation of high-titer antibodies specific for GnRH. The results showed that GnRH3-hinge-MVP could be considered as a candidate anti-GnRH vaccine.
Collapse
Affiliation(s)
- Jinshu Xu
- The Biopharmaceutical College, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Khan MAH, Prevost M, Waterston MM, Harvey MJA, Ferro VA. Effect of immunisation against gonadotrophin releasing hormone isoforms (mammalian GnRH-I, chicken GnRH-II and lamprey GnRH-III) on murine spermatogenesis. Vaccine 2006; 25:2051-63. [PMID: 17240004 DOI: 10.1016/j.vaccine.2006.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 11/16/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
In mammals, the hypothalamic decapeptide, gonadotrophin releasing hormone (GnRH-I), is regarded as the major fertility regulating peptide. However, a range of isoforms also exists, varying only in the core region between amino acids 5-8. The physiological role of two of these, GnRH-II and GnRH-III, remains controversial, particularly with regard to fertility. The basis of the present study was to examine whether there is potential for GnRH-II and GnRH-III to be developed into highly specific vaccines, and to determine what the impact of their neutralisation would be on fertility. Computer modelling was used to predict how many common amino acids could be sequentially removed from the N-terminus, without loss of conformational structure. Sequences predicted to retain structure, were synthesised and conjugated to tetanus toxoid. Male mice were actively immunised, in study weeks 0, 2, 4 and 6 and peptide specific ELISA carried out. Mice immunised with TT-GnRH-I, TT-GnRH-II and TT-GnRH-III conjugates induced high antibody titres to the respective peptide. However, serum from TT-GnRH-I treated mice showed cross-reactivity to GnRH-II and GnRH-III peptides, and serum from TT-GnRH-II immunised mice showed cross-reactivity to GnRH-III. On the other hand, serum from only two of the TT-GnRH-III treated animals showed cross-reactivity to GnRH-II. Histological examination of the testes enabled comparative quantification of the disruption to spermatogenesis. Immunisation against TT-GnRH-I and TT-GnRH-III caused 66% and 68%, respectively, of seminiferous tubules viewed to show evidence of spermatogenesis, compared with 82% and 92% against TT-GnRH-II and untreated controls, respectively. Endocrine analysis revealed that only the TT-GnRH-I immunised animals showed significant reduction (p<0.05) in follicle stimulating hormone, while testosterone levels were reduced in the TT-GnRH-I and TT-GnRH-III treated animals. Taken together, our data suggests that GnRH-I and GnRH-III are implicated in spermatogenesis, unlike GnRH-II.
Collapse
Affiliation(s)
- Mohammad A H Khan
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka 565 0871, Japan
| | | | | | | | | |
Collapse
|
30
|
Guilgur LG, Moncaut NP, Canário AVM, Somoza GM. Evolution of GnRH ligands and receptors in gnathostomata. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:272-83. [PMID: 16716622 DOI: 10.1016/j.cbpa.2006.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/19/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final common signaling molecule used by the brain to regulate reproduction in all vertebrates. Until now, a total of 24 GnRH structural variants have been characterized from vertebrate, protochordate and invertebrate nervous tissue. Almost all vertebrates already investigated have at least two GnRH forms coexisting in the central nervous system. Furthermore, it is now well accepted that three GnRH forms are present both in early and late evolved teleostean fishes. The number and taxonomic distribution of the different GnRH variants also raise questions about the phylogenetic relationships between them. Most of the GnRH phylogenetic analyses are in agreement with the widely accepted idea that the GnRH family can be divided into three main groups. However, the examination of the gnathostome GnRH phylogenetic relationships clearly shows the existence of two main paralogous GnRH lineages: the ''midbrain GnRH" group and the "forebrain GnRH" group. The first one, represented by chicken GnRH-II forms, and the second one composed of two paralogous lineages, the salmon GnRH cluster (only represented in teleostean fish species) and the hypophysotropic GnRH cluster, also present in tetrapods. This analysis suggests that the two forebrain clades share a common precursor and reinforces the idea that the salmon GnRH branch has originated from a duplication of the hypophysotropic lineage. GnRH ligands exert their activity through G protein-coupled receptors of the rhodopsin-like family. As with the ligands, multiple GnRHRs are expressed in individual vertebrate species and phylogenetic analyses have revealed that all vertebrate GnRHRs cluster into three main receptor types. However, new data and a new phylogenetic analysis propose a two GnRHR type model, in which different rounds of gene duplications may have occurred in different groups within each lineage.
Collapse
Affiliation(s)
- Leonardo G Guilgur
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET-Universidad Nacional de General San Martín, IIB-INTECH, Camino de Circunvalación Laguna Km. 6, CC 164, B7130IWA, Chascomús, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
31
|
Sherwood NM, Wu S. Developmental role of GnRH and PACAP in a zebrafish model. Gen Comp Endocrinol 2005; 142:74-80. [PMID: 15862551 DOI: 10.1016/j.ygcen.2005.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 11/28/2022]
Abstract
GnRH is expressed early in development long before reproduction begins. To determine whether GnRH has a role in development, gene knockdown with morpholinos was used in one-cell zebrafish embryos to block translation of gnrh mRNA into protein. Gene knockdown of gnrh2, gnrh3 or both at the one-cell stage resulted in a high percentage of embryos at 24-48 h with a defective mid-hindbrain boundary and underdeveloped eyes; a small percentage of embryos at 72 h had a defective heart. In similar studies on GHRH-PACAP, gene knockdown resulted in a smaller brain and eyes, but a normal-appearing heart. The evidence supports a role for the three neuropeptides in early development.
Collapse
Affiliation(s)
- Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, BC, Canada V8W 3N5.
| | | |
Collapse
|
32
|
Jinshu X, Jingjing L, Duan P, Zheng Z, Ding M, Jie W, Rongyue C, Zhuoyi H. The immunogenicity of recombinant and dimeric gonadotrophin-releasing hormone vaccines incorporating a T-helper epitope and GnRH or repeated GnRH units. J Immunol Methods 2004; 289:111-22. [PMID: 15251417 DOI: 10.1016/j.jim.2004.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 10/30/2003] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
In this study, we designed two linear peptides, GnRH-hinge-MVP, which consists of human gonadotrophin-releasing hormone (GnRH), hinge fragment 225-232/225'-232' of human IgG1 and a T helper peptide from measles virus protein (MVP), and GnRH3-hinge-MVP, which contains three copies of GnRH (so termed GnRH3). The DNA constructs encoding for the two peptides were fused to the C-terminal encoding sequence of asparaginase, encompassing residues 199-326, through an acid-labile aspartyl-prolyl linker. The chimeric genes were expressed at high levels in Escherichia coli. The fusion proteins were purified to approximate homogeneity by means of washing the inclusion bodies and by ethanol precipitation. The GnRH-hinge-MVP or the GnRH3-hinge-MVP was released from the fusion proteins by cleavage with hydrochloric acid and further oxidized into double-chain miniproteins after purification. Both dimeric constructs proved to be efficient immunogens. It was shown that rats immunized with the immunogens generated antibodies specific for GnRH. The dimeric GnRH3-hinge-MVP containing three copies of GnRH in each chain induced a higher titre of anti-GnRH antibodies than the GnRH-hinge-MVP, containing a single copy of GnRH in each chain. These results demonstrate that combining multicopies or single copies of peptide with hinge fragment of human IgG and T helper peptide from measles virus protein can induce anti-peptide immune responses. Our data also suggest that these methods of preparation and dimerization of the recombinant polypeptides may provide a useful strategy for other polypeptide vaccine developments.
Collapse
Affiliation(s)
- Xu Jinshu
- Minigene Pharmacy Laboratory, Biopharmaceutical College, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Takahashi K. Translational medicine in fish-derived peptides: from fish endocrinology to human physiology and diseases. Endocr J 2004; 51:1-17. [PMID: 15004403 DOI: 10.1507/endocrj.51.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies have revealed the importance of fish-derived peptide hormones to human endocrinology. These peptides include melanin-concentrating hormone (MCH), urocortins (human urotensin-I), and urotensin-II. MCH, a hypothalamic peptide, is a potent stimulator on appetite. Urocortins, e.g. urocortin 1 and urocortin 3 (stresscopin), are endogenous ligands for the corticotropin-releasing factor (CRF) receptors, particularly CRF type 2 receptor, that mediates a vasodilator action, a positive inotropic action and a central appetite-inhibiting action. These actions mediated by CRF type 2 receptor may ameliorate the stress response. Human urotensin-II is a potent vasoconstrictor peptide, while it acts as a vasodilator on some arteries. Human urotensin-II is expressed in various types of cells and tissues, including cardiovascular tissues, as well as many types of tumor cells. Thus, these fish-derived peptides appear to play important roles in human physiology, such as appetite regulation, stress response and cardiovascular regulation, and also in diseases, for example, obesity, cardiovascular diseases and tumors. Development of antagonists/agonists against the receptors for these peptides may open new strategies for the treatment of various diseases, including obesity-related diseases, hypertension, heart failure and malignant tumors.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
34
|
Klowden MJ. Contributions of insect research toward our understanding of neurosecretion. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:101-114. [PMID: 12811763 DOI: 10.1002/arch.10093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The process of neurosecretion is an important and widespread method of biological communication among animals. Although insects and vertebrates appear to be very different, neurosecretory mechanisms and the neuropeptides themselves are often the same. The gradual acceptance of neurosecretion as a biological phenomenon, largely as a result of research done with insects, is discussed.
Collapse
Affiliation(s)
- Marc J Klowden
- Division of Entomology, University of Idaho, Moscow 83844, USA.
| |
Collapse
|
35
|
Affiliation(s)
- William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Medicine (Endocrinology), and Cell Biology, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
36
|
Tejada F, Peñafiel R, Pinilla L, Cremades A. Influence of different neural systems on the secretion of sex hormones in potassium deficient mice. Life Sci 2002; 71:1511-21. [PMID: 12127906 DOI: 10.1016/s0024-3205(02)01929-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of different neural systems that modulate GnRH secretion by hypothalamic neurons was investigated in mice exposed to hypokalemic conditions, in which the pulsatile release of GnRH has been shown to be altered and associated with a significant decrease of plasma sex steroids. Our results demonstrate that the potentiation of the inhibitory pathways mediated by opiates and GABA may be implicated in the decrease of sex hormones secretion produced by hypokalemia since treatment with higher doses of naloxone or flumazenil are required to restore progesterone or testosterone levels in potassium deficient mice. The combination treatment of prazoxin and naloxone suggests that the inhibitory action of opiates take place through its action on noradrenergic neurons. It is also possible that the inhibition of GnRH release could be due to a decrease in the tonic stimulatory action of noradrenergic pathway implicated in the control of GnRH release. Our results also reveal that it is unlikely that the glutamatergic system may play any relevant direct role in the decrease of sex steroid secretion observed in potassium deficient mice. Finally, these results together with the normal pattern of estradiol levels found along the estrus cycle in potassium deficient mice indicate that factors different from estradiol and acting on neural systems implicated in the regulation of GnRH-secreting neurons participate in the generation of the preovulatory surge of GnRH.
Collapse
Affiliation(s)
- Francisco Tejada
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
37
|
Metzler DE, Metzler CM, Sauke DJ. Chemical Communication Between Cells. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Duan WR, Shin JL, Jameson JL. Estradiol suppresses phosphorylation of cyclic adenosine 3',5'-monophosphate response element binding protein (CREB) in the pituitary: evidence for indirect action via gonadotropin-releasing hormone. Mol Endocrinol 1999; 13:1338-52. [PMID: 10446907 DOI: 10.1210/mend.13.8.0322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estradiol acts on the hypothalamus and pituitary gland to modulate the synthesis and secretion of gonadotropins. We recently reported that GnRH-induced transcription of the human gonadotropin alpha-gene promoter is increased markedly in transfected pituitary cells derived from animals treated with estradiol. Because the cAMP response element binding (CREB) protein plays an important role in the transcriptional regulation of this promoter and is highly regulated by posttranslational phosphorylation, we hypothesized that it might serve as a target for estradiol-induced sensitivity to GnRH. In this study, we assessed the roles of estradiol and GnRH in the regulation of CREB phosphorylation in the rat pituitary. Using an antibody that specifically recognizes phosphorylated CREB (pCREB), we found that the pituitary content of pCREB was inversely related to the level of estradiol during the estrous cycle. Ovariectomy increased the level of pCREB, and treatment with estradiol for 10 days decreased the content of pCREB dramatically (93% inhibition). A similar reduction of pCREB was seen when ovariectomized rats were treated with a GnRH receptor antagonist for 10 days. This result indicates that the ovariectomy-induced increase in pCREB is GnRH-dependent. In alphaT3 gonadotrope cells, estradiol had no direct effect on CREB phosphorylation, whereas GnRH increased CREB phosphorylation 4- to 5-fold within 5 min. We conclude that estradiol inhibits CREB phosphorylation in the gonadotrope, probably by inhibiting GnRH production. The estradiol-induced decrease in CREB phosphorylation is proposed to lower basal alpha-promoter activity and increase its responsiveness to GnRH.
Collapse
Affiliation(s)
- W R Duan
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | | | |
Collapse
|
39
|
Kim JW, Lee YS, Kim BK, Park DC, Lee JM, Kim IK, Namkoong SE. Cell cycle arrest in endometrial carcinoma cells exposed to gonadotropin-releasing hormone analog. Gynecol Oncol 1999; 73:368-71. [PMID: 10366462 DOI: 10.1006/gyno.1999.5398] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) has been shown to have an inhibitory effect on the growth of several hormone-dependent human tumors. We have treated a human endometrial cancer cell line which expresses GnRH receptor with GnRH analog, D-Trp6-LHRH, in order to study whether there are differences in cell cycle kinetic response. Flow cytometric analysis revealed that cultured carcinoma cells showed a cell cycle arrest at the G1-S transition after treatment with 10 microM D-Trp6-LHRH for 36 h. Western blot analysis showed that the level of p16 protein was obvious following 24 h of D-Trp6-LHRH treatment. These results suggest that the mechanism by which GnRH inhibits the growth of endometrial carcinoma cells may include effects on cell cycle arrest.
Collapse
Affiliation(s)
- J W Kim
- Kangnam St. Mary's Hospital, Catholic Research Institutes of Medical Science, Catholic University Medical College, 505 Banpo-dong, Seocho-ku, Seoul, 137-040, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Tejada F, Cremades A, Avilés M, Castells MT, Peñafiel R. Hypokalemia alters sex hormone and gonadotropin levels: evidence that FSH may be required for luteinization. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E1037-45. [PMID: 9843747 DOI: 10.1152/ajpendo.1998.275.6.e1037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypokalemia produced different effects on steroid sex hormone concentrations in plasma and ovary in the mouse. Estradiol levels were slightly increased, whereas circulating progesterone was markedly decreased in all estrous periods. The preovulatory surge of gonadotropins and the secondary surge of follicle-stimulating hormone (FSH) at estrus were also decreased, but basal levels of both gonadotropins were unaffected. Supplementation with luteinizing hormone (LH), FSH, or gonadotropin-releasing hormone (GnRH) at proestrus rapidly normalized plasma and ovarian progesterone levels at this stage of the estrous cycle. Plasma progesterone levels at diestrus were restored only by combined treatment, at the periovulatory stage, with LH and FSH or GnRH but not by LH or FSH alone. The results demonstrate a lack of steroidogenic activity in the corpus luteum of the potassium-deficient mice and, furthermore, that FSH plays an important role in luteinization in the hypokalemic mice. We conclude that alteration of the transcellular potassium gradient may affect the regulation of the periovulatory surge of gonadotropins and progesterone secretion, probably by altering the release of GnRH from the hypothalamus. In addition, the results suggest that FSH may play a certain role as a luteotropic hormone in mice.
Collapse
Affiliation(s)
- F Tejada
- Department of Pharmacology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
41
|
Funk KW, Greer J, Adjei AL. LHRH agonists. PHARMACEUTICAL BIOTECHNOLOGY 1998; 11:151-82. [PMID: 9760680 DOI: 10.1007/0-306-47384-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K W Funk
- Abbott Laboratories, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
42
|
Ferro VA, Stimson WH. Investigation into suitable carrier molecules for use in an anti-gonadotrophin releasing hormone vaccine. Vaccine 1998; 16:1095-102. [PMID: 9682364 DOI: 10.1016/s0264-410x(98)80104-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gonadal function can be controlled through immunoneutralisation of gonadotrophin releasing hormone (GnRH), with an analogue, GnRH-glycys, linked to a carrier molecule and an appropriate adjuvant. In this study, four different types of carrier molecule were investigated: (a) single and branched amino acid polymers--[poly-(D-glu, D-lys) and poly-(phe, glu)-poly(DL-ala)-poly(lys)]; (b) bacterial toxoids--diphtheria (DT) and tetanus (TT); (c) synthetic T-helper epitopes--derived from malarial circumsporozite protein (CS) and measles virus fusion protein (MVF); and (d) thyroglobulin (Thy)--a large protein. The effect of non-ionic surfactant vesicles (NISV) and an aluminum hydroxide based adjuvant (alum), was also examined. Although good antibody responses were achieved with GnRH-glycys-DT, GnRH-glycys-TT and GnRH-glycys-Thy, adsorbed onto alum and the dimerised synthetic T-helper epitope constructs, incorporated into NISV, a critical antibody titre was necessary to result in morphological changes in the gonads and complete suppression of spermatogenesis. This was only achieved with tetanus toxoid and the dimerised T-helper epitopes.
Collapse
Affiliation(s)
- V A Ferro
- University of Strathclyde, Department of Immunology, Glasgow, Scotland
| | | |
Collapse
|
43
|
Ferro VA, Stimson WH. Immunoneutralisation of gonadotrophin releasing hormone: a potential treatment for oestrogen-dependent breast cancer. Eur J Cancer 1997; 33:1468-78. [PMID: 9337691 DOI: 10.1016/s0959-8049(97)00126-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to assess the therapeutic potential of active immunisation with GnRH-glycys-PPD in a hormone-dependent experimental model. Mammary tumours were induced in female rats using dimethylbenzanthracene (DMBA) and the effects of GnRH immunoneutralisation on tumour development were evaluated. High titres of anti-GnRH IgG correlated with a decrease in oestrogen levels and subsequent tumour suppression. A comparison of immunised and non-immunised animals showed that when GnRH-specific IgG levels were at a maximum titre (80-100 micrograms/ml), nearly 10% of the GnRH-glycys-PPD treated animals showed mammary masses, compared with all the non-treated animals at the same stage in the study. When the antibody levels fell, tumour regrowth was observed, but to a level below that observed in the non-treated animals. Following further treatment with the analogue, the tumours regressed again, showing their retention of hormone dependency. This is consistent with other endocrine manipulations in the treatment of breast cancer; the advantages of immunisation with GnRH-glycys lies in its non-toxicity and reduction in side-effects, which were mainly adjuvant-induced.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Atrophy
- Disease Progression
- Estradiol/blood
- Female
- Genitalia, Female/pathology
- Gonadotropin-Releasing Hormone/antagonists & inhibitors
- Gonadotropin-Releasing Hormone/immunology
- Immunization/methods
- Immunoglobulin G/blood
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Neoplasms, Hormone-Dependent/chemically induced
- Neoplasms, Hormone-Dependent/immunology
- Neoplasms, Hormone-Dependent/pathology
- Neoplasms, Hormone-Dependent/therapy
- Palpation
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- V A Ferro
- Department of Immunology, University of Strathclyde, Todd Centre, Glasgow, U.K
| | | |
Collapse
|
44
|
Carson AF, McCaughey WJ, Mackie DP, Higgins HC, Steen RW. Production and biological activity of murine monoclonal antibodies against GnRH. Theriogenology 1997; 48:193-207. [PMID: 16728119 DOI: 10.1016/s0093-691x(97)84067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/1996] [Accepted: 11/05/1996] [Indexed: 10/17/2022]
Abstract
Immunization against GnRH represents a nonsurgical means of castrating domestic species. However, clear target antibody titres for bioactivity have not been established. The aims of this study were to produce characterized anti-GnRH monoclonal antibodies and to determine a threshold titre. Three murine monoclonals were developed which produced IgG2a class immunoglobulins and bound 50% I(125)-GnRH at a 10(6) to 10(7) dilution. The antibodies were specific to GnRH, showed a strong affinity (Ka values from 1.99 to 2.60 x 10(10) litres/mole), and were directed towards the amino terminus. In female mice all 3 antibody clones interrupted ovarian cyclicity, causing an extension in diestrus followed by prolonged estrus/metestrus (12 to 30 d). Throughout this period circulating titres were greater than 15% I(125)-GnRH binding at a 5 x 10(4) dilution. In male mice, immunization with 0.2 ml of ascites significantly reduced testes (P < 0.05), epididymides (P < 0.001) and seminal vesicle (P < 0.01) weights. A 0.1 ml dose (61.4 +/- 18.6% binding at a 10(6) dilution) was ineffective. A serial dilution study indicated that a titre of 50% binding at 2 x 10(6) dilution (antigen binding capacity of 268 +/- 35 ng/ml) was required to completely block GnRH activity. This is a higher tire than threshold levels determined previously. Identification of factors determining the titre required for bioactivity is needed.
Collapse
Affiliation(s)
- A F Carson
- Agricultural Research Institute of Northern Ireland, Hillsborough, Co. Down BT26 6DR, UK
| | | | | | | | | |
Collapse
|
45
|
Abstract
The ubiquitous nature of neuropeptides and their respective receptors in the central and peripheral nervous systems suggests that peptides play a key role in controlling physiological processes. Investigations on a cellular level have demonstrated that neuropeptides exert powerful modulatory effects on neurons and neuronal circuits; however, despite these compelling considerations, investigators have rarely been able to assign discrete functional roles to individual neuropeptides. Numerous studies have addressed the influence of neuropeptides on learning and memory processes. Workers have primarily utilized peripheral or central injection of neuropeptides to suggest a facilitatory, or less commonly inhibitory, role in acquisition, retention, or retrieval of memories. Although highly suggestive, critical concerns regarding the specificity of the observed effects have often remained. Recently, the neurogenetic approach has demonstrated the role of a novel neuropeptide in a specific memory phase, high affinity antagonists have confirmed the importance of some endogenous neuropeptides, and evidence of neuropeptide dysfunction in disease states, particularly Alzheimer's disease, has emerged. Continued refinement of traditional techniques, combined with information from alternative approaches, promises to consolidate the role of neuropeptides in learning and memory.
Collapse
Affiliation(s)
- M B Feany
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
46
|
Ferro VA, O'Grady JE, Notman J, Stimson WH. An investigation into the immunogenicity of a GnRH analogue in male rats: a comparison of the toxicity of various adjuvants used in conjunction with GnRH-glycys. Vaccine 1996; 14:451-7. [PMID: 8735559 DOI: 10.1016/0264-410x(95)00164-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunization of male Copenhagen Fischer rats with a gonadotrophin releasing hormone (GnRH) analogue, conjugated to PPD resulted in high levels of antibody being produced which disrupted gonadal function in male rats. The antibody reduced serum testosterone levels and subsequently suppressed spermatogenesis. Alternatives to Freund's adjuvant were tested, namely, aluminium hydroxide and non-ionic surfactant vesicles (NISV). The study showed that aluminium hydroxide was as effective as Freund's adjuvant and less toxic, in both BCG and non-BCG primed animals. However, NISV were completely non-toxic and most effective in conjunction with BCG priming. The data obtained showed that NISV have the potential to be used as an alternative to FCA and aluminium hydroxide-based adjuvants.
Collapse
Affiliation(s)
- V A Ferro
- Department of Immunology, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
47
|
Abstract
Although the ability of UV irradiation to induce pigmentation in vivo and in vitro is well documented, the intracellular signals that trigger this response are poorly understood. We have recently shown that increasing DNA repair after irradiation enhances UV-induced melanization. Moreover, addition of small DNA fragments, particularly thymine dinucleotides (pTpT), selected to mimic sequences excised during the repair of UV-induced DNA photoproducts, to unirradiated pigment cells in vitro or to guinea pig skin in vivo induces a pigment response indistinguishable from UV-induced tanning. Here we present further evidence that DNA damage and/or the repair of this damage increases melanization. (i) Treatment with the restriction enzyme Pvu II or the DNA-damaging chemical agents methyl methanesulfonate (MMS) or 4-nitroquinoline 1-oxide (4-NQO) produces a 4- to 10-fold increase in melanin content in Cloudman S91 murine melanoma cells and an up to 70% increase in normal human melanocytes, (ii) UV irradiation, MMS, and pTpT all upregulate the mRNA level for tyrosinase, the rate-limiting enzyme in melanin biosynthesis. (iii) Treatment with pTpT or MMS increases the response of S91 cells to melanocyte-stimulating hormone (MSH) and increases the binding of MSH to its cell surface receptor, as has been reported for UV irradiation. Together, these data suggest that UV-induced DNA damage and/or the repair of this damage is an important signal in the pigmentation response to UV irradiation. Because Pvu II acts exclusively on DNA and because MMS and 4-NQO, at the concentrations used, primarily interact with DNA, such a stimulus alone appears sufficient to induce melanogenesis. Of possible practical importance, the dinucleotide pTpT mimics most, if not all, of the effects of UV irradiation on pigmentation, tyrosinase mRNA regulation, and response to MSH without the requirement for antecedent DNA damage.
Collapse
Affiliation(s)
- M S Eller
- Department of Dermatology, Boston University School of Medicine, MA 02118-2394, USA
| | | | | |
Collapse
|
48
|
Abstract
Like non-peptidergic transmitters, neuropeptides and their receptors display a wide distribution in specific cell types of the nervous system. The peptides are synthesized, typically as part of a larger precursor molecule, on the rough endoplasmic reticulum in the cell body. In the trans-Golgi network, they are sorted to the regulated secretory pathway, packaged into so-called large dense-core vesicles, and concentrated. Large dense-core vesicles are preferentially located at sites distant from active zones of synapses. Exocytosis may occur not only at synaptic specializations in axonal terminals but frequently also at nonsynaptic release sites throughout the neuron. Large dense-core vesicles are distinguished from small, clear synaptic vesicles, which contain "classical' transmitters, by their morphological appearance and, partially, their biochemical composition, the mode of stimulation required for release, the type of calcium channels involved in the exocytotic process, and the time course of recovery after stimulation. The frequently observed "diffuse' release of neuropeptides and their occurrence also in areas distant to release sites is paralleled by the existence of pronounced peptide-peptide receptor mismatches found at the light microscopic and ultrastructural level. Coexistence of neuropeptides with other peptidergic and non-peptidergic substances within the same neuron or even within the same vesicle has been established for numerous neuronal systems. In addition to exerting excitatory and inhibitory transmitter-like effects and modulating the release of other neuroactive substances in the nervous system, several neuropeptides are involved in the regulation of neuronal development.
Collapse
Affiliation(s)
- G K Zupanc
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Physikalische Biologie, Tübingen, Germany.
| |
Collapse
|
49
|
Howl J, Yarwood NJ, Stock D, Wheatley M. Probing the V1a vasopressin receptor binding site with pyroglutamate-substituted linear antagonists. Neuropeptides 1996; 30:73-9. [PMID: 8868303 DOI: 10.1016/s0143-4179(96)90058-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have synthesized eight analogues of the linear vasopressin antagonist DTyr(Et)2-Phe3-Gln4-Asn5-Arg6-Pro7-Arg8-Tyr(NH2)9 substituted with L-, or D-, pyroglutamate at position-1, Asn or Val at position-4 and Arg or Met at position 6. All of these peptides bound to the V1a vasopressin receptor with affinities ranging 33.6-5, 470 nM. Of this series, only two peptides, [LpGlu1Val4Arg6Tyr(NH2)9]AVP Kd = 48.4 nM and [DpGlu1Val4Arg6Tyr(NH2)9]AVP Kd = 691 nM, bound to the V2 vasopressin receptor. All of the neurohypophysial hormone receptors studied (V1a VPR, V2 VPR and OTR) were found to be stereoselective with respect to the N-terminal pGlu residue. The effect on binding characteristics of L-pGlu1 and D-pGlu1 analogues was dependent on both the sequence of the peptide and on the receptor subtype in question. From these data we found that peptide 5, which has the structure DpGlu-DTyr(Et)-Phe-Val-Asn-Arg-Pro-ARg-Tyr(NH2), exhibited the highest V1a/OTR selectivity reported to date (V1aVPR Kd = 82 nM; OTR no binding at 10 microM). As such, peptide 5 will provide useful leads to the development of ligands with enhanced V1a/OTR selectivity. The binding affinity and hydrophobicity of pyroglutamate-substituted peptides was compared with previously characterized V1a receptor antagonists which contained a range of position-1 substitutions. The hydrophobicity of both cyclic and linear antagonists was markedly increased relative to the agonists AVP and [Phe2Orn8]VT but increased hydrophobicity alone did not exclusively lead to high affinity antagonists. Data presented support the contention that in addition to a general increase in hydrophobicity/lipophilicity, position-1 influences the pharmacophore of vasopressin antagonists by providing molecular determinants for ligand/receptor interaction.
Collapse
Affiliation(s)
- J Howl
- School of Biochemistry, University of Birmingham, UK
| | | | | | | |
Collapse
|
50
|
Nakagawa J, Mori H, Maeda T, Matsuo T, Okada Y. Dynamics of secretory granules in somatotrophs of rats after stimulation with growth hormone-releasing factor: a stereological analysis. Cell Tissue Res 1995; 282:493-501. [PMID: 8581943 DOI: 10.1007/bf00318881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anterior pituitary tissue of male rats injected with growth hormone-releasing factor (GRF) was either processed for stereology at the light- and electron-microscopic levels, or homogenized for growth hormone (GH) assay 2-60 min after GRF injection. Secretory granules of somatotrophs became smaller but increased in numerical density 2 min after GRF injection. Their volume density began to increase at 5 min. The frequency of exocytosis of the granules was most prominent as early as 2 min after GRF injection and reduced thereafter. GH levels in the tissue were lowest at 2-5 min, and returned to the control value by 60 min. Serum GH levels were highest at 15 min; even at 60 min, this value was higher than in the controls. These findings suggest that secretory granules in somatotrophs are stimulated to divide by GRF, resulting in a decrease in size and an increase in number. The discrepancy between the earlier formation of new secretory granules and the later restoration of intracellular GH levels implies that GRF first stimulates the synthesis of constituents of granules other than GH, and only later the synthesis of GH, and that newly formed small secretory granules contain less GH. From the clearance rate of serum GH and the frequency of granule exocytosis, it can be estimated that about a half million granules are released to maintain 1 ng/ml of serum GH in rats.
Collapse
Affiliation(s)
- J Nakagawa
- Department of Pathology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569 Japan
| | | | | | | | | |
Collapse
|