1
|
Khaled G, Benvegnu T, Amin K, Tranchimand S, Chamieh H. Glycosyltransferase enzymatic assays: Overview and comparative analysis. Anal Biochem 2025; 702:115826. [PMID: 40049438 DOI: 10.1016/j.ab.2025.115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze the transfer of an activated sugar donor to a variety of acceptors including proteins, lipids, carbohydrates, and other small molecules. GTs participate in numerous cellular and physiological processes in both prokaryotic and eukaryotic cells. Those include prokaryotic cell wall biogenesis, eukaryotic post-translational protein modifications, extracellular matrix synthesis, cell signaling, biofilm formation and many others. As such, GTs are exploited as molecular therapeutical targets but also as synthetic tools for the development of polysaccharides and glycoconjugates. In vitro study of GTs activities is now essential to characterize the growing number of predicted GTs, available from sequenced genomes, in order to determine their specificities, their modes of action and their roles in vivo. However, characterization of glycosyltransferases in vitro, both on cellular extracts and on purified enzymes, faces significant challenges. Many methods are currently employed i. e. radiochemical techniques, spectrometric measurements, generally after coupling with∗ other reactions, and even more sophisticated strategies involving product separations by chromatography or/and electrophoresis, followed by detailed structural analysis by NMR or mass spectrometry. Here we overview the common methods deployed for the characterization of GTs. We highlight the challenges arising from these enzymes. The advantages and limitations of each of the presented techniques are also discussed.
Collapse
Affiliation(s)
- Ghazal Khaled
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Khadija Amin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France.
| | - Hala Chamieh
- Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon; Lebanese University, Faculty of Science, Rafic Hariri Campus, Hadat, Lebanon.
| |
Collapse
|
2
|
Guo W, Wang F, Lv J, Yu J, Wu Y, Wuriyanghan H, Le L, Pu L. Phenotyping, genome-wide dissection, and prediction of maize root architecture for temperate adaptability. IMETA 2025; 4:e70015. [PMID: 40236777 PMCID: PMC11995184 DOI: 10.1002/imt2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
Root System Architecture (RSA) plays an essential role in influencing maize yield by enhancing anchorage and nutrient uptake. Analyzing maize RSA dynamics holds potential for ideotype-based breeding and prediction, given the limited understanding of the genetic basis of RSA in maize. Here, we obtained 16 root morphology-related traits (R-traits), 7 weight-related traits (W-traits), and 108 slice-related microphenotypic traits (S-traits) from the meristem, elongation, and mature zones by cross-sectioning primary, crown, and lateral roots from 316 maize lines. Significant differences were observed in some root traits between tropical/subtropical and temperate lines, such as primary and total root diameters, root lengths, and root area. Additionally, root anatomy data were integrated with genome-wide association study (GWAS) to elucidate the genetic architecture of complex root traits. GWAS identified 809 genes associated with R-traits, 261 genes linked to W-traits, and 2577 key genes related to 108 slice-related traits. We confirm the function of a candidate gene, fucosyltransferase5 (FUT5), in regulating root development and heat tolerance in maize. The different FUT5 haplotypes found in tropical/subtropical and temperate lines are associated with primary root features and hold promising applications in molecular breeding. Furthermore, we performed machine learning prediction models of RSA using root slice traits, achieving high prediction accuracy. Collectively, our study offers a valuable tool for dissecting the genetic architecture of RSA, along with resources and predictive models beneficial for molecular design breeding and genetic enhancement.
Collapse
Affiliation(s)
- Weijun Guo
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- School of Life ScienceInner Mongolia UniversityHohhotChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Fanhua Wang
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
- School of Life ScienceInner Mongolia UniversityHohhotChina
| | - Jianyue Lv
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Jia Yu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Yue Wu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | | | - Liang Le
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Li Pu
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Ali B, Mary‐Huard T, Charcosset A, Moreau L, Rincent R. Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions. THE PLANT GENOME 2025; 18:e20553. [PMID: 39779652 PMCID: PMC11711123 DOI: 10.1002/tpg2.20553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization. It allows likely causal markers to account for a certain portion of genetic variance independently from the remaining markers. We systematically tested a list of 5110 GO terms for their predictive performance for physiological (platform traits) and productivity traits (field grain yield) in a maize (Zea mays L.) panel using genomic features best linear unbiased prediction (GFBLUP) model. Predictive abilities were compared to the classical genomic best linear unbiased prediction (GBLUP). Predictive gains with categorizing markers based on a given GO term strongly depend on the trait and on the growth conditions, as a term can be useful for a given trait in a given condition or somewhat similar conditions but not useful for the same trait in a different condition. Overall, results of all GFBLUP models compared to GBLUP show that the former might be less efficient than the latter. Even though we could not identify a prior criterion to determine which GO terms can offer benefit to a given trait, we could a posteriori find biological interpretations of the results, meaning that GFBLUP could be helpful if more about the gene functions and their relationships with the growth conditions was known.
Collapse
Affiliation(s)
- Baber Ali
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tristan Mary‐Huard
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- MIA Paris‐Saclay, INRAE, AgroParisTechUniversité Paris‐SaclayPalaiseauFrance
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
4
|
Bhattarai M, Javaid T, Venkataraghavan A, Faik A. In Vitro GT-array ( i-GT-ray), a Platform for Screening of Glycosyltransferase Activities and Protein-Protein Interactions. Bio Protoc 2024; 14:e5066. [PMID: 39346762 PMCID: PMC11427220 DOI: 10.21769/bioprotoc.5066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 10/01/2024] Open
Abstract
Progress in bioinformatics has facilitated the identification of a large number of putative glycosyltransferases (GTs) associated with many physiological processes. However, many of these GTs remain with unknown biochemical function due to numerous technical limitations. One of these limitations is the lack of innovative tools for large-scale screening of enzyme activity in vitro and testing protein-protein interactions (PPIs) between GT partners. Currently, testing the enzyme activity of a protein requires its production in a heterologous expression system and purification before enzyme assays, a process that is time-consuming and not amenable to high-throughput screening. To overcome this, we developed a platform called in vitro GT-array (i-GT-ray). In this platform, 96-well microplates are coated with plasmid DNA encoding for tagged GTs and a capture antibody. Tagged GTs are produced from plasmid DNA via a cell-free in vitro transcription/translation (IVTT) system and captured through the anti-tag capture antibody directly on microplates. After washing to remove IVTT components, the captured enzymes can be considered purified, and their activity can be tested directly on microplates. The whole process can be performed in less than two days, compared to several weeks for currently available screening methods. The i-GT-ray platform has also been adapted to investigate PPIs between GTs. Here, we provide a practical user guide for the preparation of GT-arrays coated with plasmid DNA and a capture antibody that can be used for monitoring enzyme activity and PPIs of GTs in a high-throughput manner. Key features • Synthesis of tagged proteins directly from plasmid DNA, which are captured by anti-tag antibody attached to microplates. • Captured tagged proteins can be considered as purified proteins ready for enzyme assays. • Our platform can be used for high-throughput screening of enzyme activity and protein-protein interactions in vitro in a short time. • Our platform can be used for biochemical characterization of difficult proteins such as membrane-integrated glycosyltransferases. • Our platform can be adapted to downstream analytical methods such as mass spectrometry (i.e., DPS-MS).
Collapse
Affiliation(s)
- Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology program, Ohio University, Athens, OH, USA
| | - Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
- Molecular and Cellular Biology program, Ohio University, Athens, OH, USA
| |
Collapse
|
5
|
Cui L, Sun M, Zhang L, Zhu H, Kong Q, Dong L, Liu X, Zeng X, Sun Y, Zhang H, Duan L, Li W, Zou C, Zhang Z, Cai W, Ming Y, Lübberstedt T, Liu H, Yang X, Li X. Quantitative trait locus analysis of gray leaf spot resistance in the maize IBM Syn10 DH population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:183. [PMID: 39002016 DOI: 10.1007/s00122-024-04694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
KEY MESSAGE The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.
Collapse
Affiliation(s)
- Lina Cui
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Mingfei Sun
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lin Zhang
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hongjie Zhu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qianqian Kong
- School of Agriculture, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ling Dong
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xianjun Liu
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xing Zeng
- Department of Agronomy, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanjie Sun
- Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua, 152052, China
| | - Haiyan Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Luyao Duan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Wenyi Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Chengjia Zou
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Zhenyu Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - WeiLi Cai
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China
| | - Yulin Ming
- Liangshan Seed Management Station, Xichang, 615000, China
| | | | - Hongjun Liu
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuerong Yang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Xiao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest China, Ministry of Agriculture, Chengdu, 610066, China.
| |
Collapse
|
6
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
7
|
Bhattarai M, Wang Q, Javaid T, Venkataraghavan A, Al Hassan MT, O'Neill M, Tan L, Chen H, Faik A. Streamlining assays of glycosyltransferases activity using in vitro GT-array (i-GT-ray) platform: Application to family GT37 fucosyltransferases. J Biol Chem 2024; 300:105734. [PMID: 38336294 PMCID: PMC10933551 DOI: 10.1016/j.jbc.2024.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.
Collapse
Affiliation(s)
- Matrika Bhattarai
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Tasleem Javaid
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA
| | | | - Md Tanim Al Hassan
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ahmed Faik
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
8
|
Waszczak C, Yarmolinsky D, Leal Gavarrón M, Vahisalu T, Sierla M, Zamora O, Carter R, Puukko T, Sipari N, Lamminmäki A, Durner J, Ernst D, Winkler JB, Paulin L, Auvinen P, Fleming AJ, Andersson MX, Kollist H, Kangasjärvi J. Synthesis and import of GDP-l-fucose into the Golgi affect plant-water relations. THE NEW PHYTOLOGIST 2024; 241:747-763. [PMID: 37964509 DOI: 10.1111/nph.19378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023]
Abstract
Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | | | - Marina Leal Gavarrón
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Olena Zamora
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, CB2 1LR, Cambridge, UK
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Airi Lamminmäki
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew J Fleming
- School of Biosciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
9
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
10
|
Stratilová B, Šesták S, Stratilová E, Vadinová K, Kozmon S, Hrmova M. Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1529-1544. [PMID: 37658783 DOI: 10.1111/tpj.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Kristína Vadinová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Maria Hrmova
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, South Australia, 5064, Australia
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
11
|
Xiang M, Yuan S, Zhang Q, Liu X, Li Q, Leng Z, Sha J, Anderson CT, Xiao C. Galactosylation of xyloglucan is essential for the stabilization of the actin cytoskeleton and endomembrane system through the proper assembly of cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5104-5123. [PMID: 37386914 DOI: 10.1093/jxb/erad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaohui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jingjing Sha
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Orłowska M, Barua D, Piłsyk S, Muszewska A. Fucose as a nutrient ligand for Dikarya and a building block of early diverging lineages. IMA Fungus 2023; 14:17. [PMID: 37670396 PMCID: PMC10481521 DOI: 10.1186/s43008-023-00123-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Fucose is a deoxyhexose sugar present and studied in mammals. The process of fucosylation has been the primary focus in studies relating to fucose in animals due to the presence of fucose in Lewis antigens. Very few studies have reported its presence in Fungi, mostly in Mucoromycotina. The constitution of 25% and 12% of this sugar in the carbohydrates of cell wall in the respective Umbelopsis and Mucorales strains boosts the need to bridge the gap of knowledge on fucose metabolism across the fungal tree of life. In the absence of a network map involving fucose proteins, we carried out an in-silico approach to construct the fucose metabolic map in Fungi. We analyzed the taxonomic distribution of 85 protein families in Fungi including diverse early diverging fungal lineages. The expression of fucose-related protein-coding genes proteins was validated with the help of transcriptomic data originating from representatives of early diverging fungi. We found proteins involved in several metabolic activities apart from fucosylation such as synthesis, transport and binding. Most of the identified protein families are shared with Metazoa suggesting an ancestral origin in Opisthokonta. However, the overall complexity of fucose metabolism is greater in Metazoa than in Fungi. Massive gene loss has shaped the evolutionary history of these metabolic pathways, leading to a repeated reduction of these pathways in most yeast-forming lineages. Our results point to a distinctive mode of utilization of fucose among fungi belonging to Dikarya and the early diverging lineages. We speculate that, while Dikarya used fucose as a source of nutrients for metabolism, the early diverging group of fungi depended on fucose as a building block and signaling compound.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
13
|
Wang L, Wu K, Liu Z, Li Z, Shen J, Wu Z, Liu H, You L, Yang G, Rensing C, Feng R. Selenite reduced uptake/translocation of cadmium via regulation of assembles and interactions of pectins, hemicelluloses, lignins, callose and Casparian strips in rice roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130812. [PMID: 36709735 DOI: 10.1016/j.jhazmat.2023.130812] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Selenium (Se) can reduce cadmium (Cd) uptake/translocation via regulating pectins, hemicelluloses and lignins of plant root cell walls, but the detailed molecular mechanisms are not clear. In this study, six hydroponic experiments were set up to explore the relationships of uptake/translocation inhibition of Cd by selenite (Se(IV)) with cell wall component (CWC) synthesis and/or interactions. Cd and Se was supplied (alone or combinedly) at 1.0 mg L-1 and 0.5 mg L-1, respectively, with the treatment without Cd and Se as the control. When compared to the Cd1 treatment, the Se0.5Cd1 treatment 1) significantly increased total sugar concentrations in pectins, hemicelluloses and callose, suggesting an enhanced capacity of binding Cd or blocking Cd translocation; 2) stimulated the deposition of Casparian strips (CS) in root endodermis and exodermis to block Cd translocation; 3) stimulated the release of C-O-C (-OH- or -O-) and CO (carboxyl, carbonyl, or amide) to combine Cd; 4) regulated differential expression genes (DEGs) and metabolites (DMs) correlated with synthesis and/or interactions of CWSs to affect cell wall net structure to affect root cell division, subsequent root morphology and finally elemental uptake; and 5) stimulated de-methylesterification of pectins via reducing expression abundances of many DMs and DEGs in the Yang Cycle to reduce supply of methyls to homogalacturonan, and regulated gene expressions of pectin methylesterase to release carboxyls to combine Cd; and 6) down-regulated gene expressions associated with Cd uptake/translocation.
Collapse
Affiliation(s)
- LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - KongYuan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiQing Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZengFei Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jun Shen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZiHan Wu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - LeXing You
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - GuiDi Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
14
|
Songsomboon K, Crawford R, Crawford J, Hansen J, Cummings J, Mattson N, Bergstrom GC, Viands DR. Genome-Wide Associations with Resistance to Bipolaris Leaf Spot (Bipolaris oryzae (Breda de Haan) Shoemaker) in a Northern Switchgrass Population (Panicum virgatum L.). PLANTS 2022; 11:plants11101362. [PMID: 35631787 PMCID: PMC9144872 DOI: 10.3390/plants11101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study aimed to determine the resistant populations via multiple phenotyping approaches and identify potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern association panel. The disease resistance was evaluated from both natural (field evaluations in Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and leaf disk assays). The most resistant populations based on a combination of three phenotyping approaches—detached leaf, leaf disk, and mean from two locations—were ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’. The GWAS from the association panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N, and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins, homeostatic proteins, anti-apoptotic proteins, and ABC transporter.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
- Correspondence:
| | - Ryan Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Jamie Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Julie Hansen
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | | | - Neil Mattson
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Gary C. Bergstrom
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Donald R. Viands
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| |
Collapse
|
15
|
Ishida K, Yokoyama R. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. JOURNAL OF PLANT RESEARCH 2022; 135:145-156. [PMID: 35000024 DOI: 10.1007/s10265-021-01361-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 05/21/2023]
Abstract
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
16
|
An Y, Lu W, Li W, Pan L, Lu M, Cesarino I, Li Z, Zeng W. Dietary Fiber in Plant Cell Walls—The Healthy Carbohydrates. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Dietary fiber (DF) is one of the major classes of nutrients for humans. It is widely distributed in the edible parts of natural plants, with the cell wall being the main DF-containing structure. The DF content varies significantly in different plant species and organs, and the processing procedure can have a dramatic effect on the DF composition of plant-based foods. Given the considerable nutritional value of DF, a deeper understanding of DF in food plants, including its composition and biosynthesis, is fundamental to the establishment of a daily intake reference of DF and is also critical to molecular breeding programs for modifying DF content. In the past decades, plant cell wall biology has seen dramatic progress, and such knowledge is of great potential to be translated into DF-related food science research and may provide future research directions for improving the health benefits of food crops. In this review, to spark interdisciplinary discussions between food science researchers and plant cell wall biologists, we focus on a specific category of DF—cell wall carbohydrates. We first summarize the content and composition of carbohydrate DF in various plant-based foods, and then discuss the structure and biosynthesis mechanism of each carbohydrate DF category, in particular the respective biosynthetic enzymes. Health impacts of DF are highlighted, and finally, future directions of DF research are also briefly outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão, São Paulo, Brazil
| | | | | |
Collapse
|
17
|
Zhong R, Phillips DR, Ye ZH. A Single Xyloglucan Xylosyltransferase Is Sufficient for Generation of the XXXG Xylosylation Pattern of Xyloglucan. PLANT & CELL PHYSIOLOGY 2021; 62:1589-1602. [PMID: 34264339 DOI: 10.1093/pcp/pcab113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Xyloglucan is the most abundant hemicellulose in the primary cell walls of dicots. Dicot xyloglucan is the XXXG type consisting of repeating units of three consecutive xylosylated Glc residues followed by one unsubstituted Glc. Its xylosylation is catalyzed by xyloglucan 6-xylosyltransferases (XXTs) and there exist five XXTs (AtXXT1-5) in Arabidopsis. While AtXXT1 and AtXXT2 have been shown to add the first two Xyl residues in the XXXG repeat, which XXTs are responsible for the addition of the third Xyl residue remains elusive although AtXXT5 was a proposed candidate. In this report, we generated recombinant proteins of all five Arabidopsis XXTs and one rice XXT (OsXXT1) in the mammalian HEK293 cells and investigated their ability to sequentially xylosylate Glc residues to generate the XXXG xylosylation pattern. We found that like AtXXT1/2, AtXXT4 and OsXXT1 could efficiently xylosylate the cellohexaose (G6) acceptor to produce mono- and di-xylosylated G6, whereas AtXXT5 was only barely capable of adding one Xyl onto G6. When AtXXT1-catalyzed products were used as acceptors, AtXXT1/2/4 and OsXXT1, but not AtXXT5, were able to xylosylate additional Glc residues to generate tri- and tetra-xylosylated G6. Further characterization of the tri- and tetra-xylosylated G6 revealed that they had the sequence of GXXXGG and GXXXXG with three and four consecutive xylosylated Glc residues, respectively. In addition, we have found that although tri-xylosylation occurred on G6, cello-oligomers with a degree of polymerization of 3 to 5 could only be mono- and di-xylosylated. Together, these results indicate that each of AtXXT1/2/4 and OsXXT1 is capable of sequentially adding Xyl onto three contiguous Glc residues to generate the XXXG xylosylation pattern and these findings provide new insight into the biochemical mechanism underlying xyloglucan biosynthesis.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Nitrate Regulates Maize Root Transcriptome through Nitric Oxide Dependent and Independent Mechanisms. Int J Mol Sci 2021; 22:ijms22179527. [PMID: 34502437 PMCID: PMC8431222 DOI: 10.3390/ijms22179527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
Maize root responds to nitrate by modulating its development through the coordinated action of many interacting players. Nitric oxide is produced in primary root early after the nitrate provision, thus inducing root elongation. In this study, RNA sequencing was applied to discover the main molecular signatures distinguishing the response of maize root to nitrate according to their dependency on, or independency of, nitric oxide, thus discriminating the signaling pathways regulated by nitrate through nitric oxide from those regulated by nitrate itself of by further downstream factors. A set of subsequent detailed functional annotation tools (Gene Ontology enrichment, MapMan, KEGG reconstruction pathway, transcription factors detection) were used to gain further information and the lateral root density was measured both in the presence of nitrate and in the presence of nitrate plus cPTIO, a specific NO scavenger, and compared to that observed for N-depleted roots. Our results led us to identify six clusters of transcripts according to their responsiveness to nitric oxide and to their regulation by nitrate provision. In general, shared and specific features for the six clusters were identified, allowing us to determine the overall root response to nitrate according to its dependency on nitric oxide.
Collapse
|
19
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-Wide Association Mapping of Mixed Linkage (1,3;1,4)-β-Glucan and Starch Contents in Rice Whole Grain. FRONTIERS IN PLANT SCIENCE 2021; 12:665745. [PMID: 34512678 PMCID: PMC8424012 DOI: 10.3389/fpls.2021.665745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
The glucan content of rice is a key factor defining its nutritional and economic value. Starch and its derivatives have many industrial applications such as in fuel and material production. Non-starch glucans such as (1,3;1,4)-β-D-glucan (mixed-linkage β-glucan, MLG) have many benefits in human health, including lowering cholesterol, boosting the immune system, and modulating the gut microbiome. In this study, the genetic variability of MLG and starch contents were analyzed in rice (Oryza sativa L.) whole grain, by performing a new quantitative analysis of the polysaccharide content of rice grains. The 197 rice accessions investigated had an average MLG content of 252 μg/mg, which was negatively correlated with the grain starch content. A new genome-wide association study revealed seven significant quantitative trait loci (QTLs) associated with the MLG content and two QTLs associated with the starch content in rice whole grain. Novel genes associated with the MLG content were a hexose transporter and anthocyanidin 5,3-O-glucosyltransferase. Also, the novel gene associated with the starch content was a nodulin-like domain. The data pave the way for a better understanding of the genes involved in determining both MLG and starch contents in rice grains and should facilitate future plant breeding programs.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Asadollah Ahmadikhah
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Lauren S. McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- Wallenberg Wood Science Centre, Stockholm, Sweden
| | - Pär K. Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
20
|
Ancient origin of fucosylated xyloglucan in charophycean green algae. Commun Biol 2021; 4:754. [PMID: 34140625 PMCID: PMC8211770 DOI: 10.1038/s42003-021-02277-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.
Collapse
|
21
|
A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. Int J Mol Sci 2021; 22:ijms22031360. [PMID: 33572987 PMCID: PMC7866395 DOI: 10.3390/ijms22031360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), β-1,6-galactotetraose (β-1,6-Gal4) and β-1,3-galactopentose (β-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the β-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.
Collapse
|
22
|
Lin S, Medina CA, Norberg OS, Combs D, Wang G, Shewmaker G, Fransen S, Llewellyn D, Yu LX. Genome-Wide Association Studies Identifying Multiple Loci Associated With Alfalfa Forage Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:648192. [PMID: 34220880 PMCID: PMC8253570 DOI: 10.3389/fpls.2021.648192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 05/15/2023]
Abstract
Autotetraploid alfalfa is a major hay crop planted all over the world due to its adaptation in different environments and high quality for animal feed. However, the genetic basis of alfalfa quality is not fully understood. In this study, a diverse panel of 200 alfalfa accessions were planted in field trials using augmented experimental design at three locations in 2018 and 2019. Thirty-four quality traits were evaluated by Near Infrared Reflectance Spectroscopy (NIRS). The plants were genotyped using a genotyping by sequencing (GBS) approach and over 46,000 single nucleotide polymorphisms (SNPs) were obtained after variant calling and filtering. Genome-wide association studies (GWAS) identified 28 SNP markers associated with 16 quality traits. Among them, most of the markers were associated with fiber digestibility and protein content. Phenotypic variations were analyzed from three locations and different sets of markers were identified by GWAS when using phenotypic data from different locations, indicating that alfalfa quality traits were also affected by environmental factors. Among different sets of markers identified by location, two markers were associated with nine traits of fiber digestibility. One marker associated with lignin content was identified consistently in multiple environments. Putative candidate genes underlying fiber-related loci were identified and they are involved in the lignin and cell wall biosynthesis. The DNA markers and associated genes identified in this study will be useful for the genetic improvement of forage quality in alfalfa after the validation of the markers.
Collapse
Affiliation(s)
- Sen Lin
- Plant Germplasm Introduction Testing and Research, Agricultural Research Service, United States Department of Agriculture, Prosser, WA, United States
| | - Cesar Augusto Medina
- Plant Germplasm Introduction Testing and Research, Agricultural Research Service, United States Department of Agriculture, Prosser, WA, United States
| | - O. Steven Norberg
- Franklin County Extension Office, Washington State University, Pasco, WA, United States
| | - David Combs
- Department of Dairy Science, University of Wisconsin, Madison, WI, United States
| | - Guojie Wang
- Eastern Oregon Agricultural and Natural Resource Program, Oregon State University, La Grande, OR, United States
| | - Glenn Shewmaker
- Kimberly R&E Center, University of Idaho, Kimberly, ID, United States
| | - Steve Fransen
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, United States
| | - Don Llewellyn
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Long-Xi Yu
- Plant Germplasm Introduction Testing and Research, Agricultural Research Service, United States Department of Agriculture, Prosser, WA, United States
- *Correspondence: Long-Xi Yu,
| |
Collapse
|
23
|
Soto MJ, Prabhakar PK, Wang HT, Backe J, Chapla D, Bartetzko M, Black IM, Azadi P, Peña MJ, Pfrengle F, Moremen KW, Urbanowicz BR, Hahn MG. AtFUT4 and AtFUT6 Are Arabinofuranose-Specific Fucosyltransferases. FRONTIERS IN PLANT SCIENCE 2021; 12:589518. [PMID: 33633757 PMCID: PMC7900004 DOI: 10.3389/fpls.2021.589518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/19/2021] [Indexed: 05/03/2023]
Abstract
The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The Arabidopsis thaliana fucosyltransferases (FUTs), AtFUT4, and AtFUT6, are members of the plant-specific GT family 37 (GT37). AtFUT4 and AtFUT6 transfer fucose (Fuc) onto arabinose (Ara) residues of arabinogalactan (AG) proteins (AGPs) and have been postulated to be non-redundant AGP-specific FUTs. AtFUT4 and AtFUT6 were recombinantly expressed in mammalian HEK293 cells and purified for biochemical analysis. We report an updated understanding on the specificities of AtFUT4 and AtFUT6 that are involved in the synthesis of wall localized AGPs. Our findings suggest that they are selective enzymes that can utilize various arabinogalactan (AG)-like and non-AG-like oligosaccharide acceptors, and only require a free, terminal arabinofuranose. We also report with GUS promoter-reporter gene studies that AtFUT4 and AtFUT6 gene expression is sub-localized in different parts of developing A. thaliana roots.
Collapse
Affiliation(s)
- Maria J. Soto
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Pradeep Kumar Prabhakar
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Hsin-Tzu Wang
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Jason Backe
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Digantkumar Chapla
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Max Bartetzko
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
| | - Ian M. Black
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Parastoo Azadi
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Maria J. Peña
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kelley W. Moremen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Breeanna R. Urbanowicz
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Breeanna R. Urbanowicz,
| | - Michael G. Hahn
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Plant Biology, University of Georgia, Athens, GA, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Michael G. Hahn,
| |
Collapse
|
24
|
Zabotina OA, Zhang N, Weerts R. Polysaccharide Biosynthesis: Glycosyltransferases and Their Complexes. FRONTIERS IN PLANT SCIENCE 2021; 12:625307. [PMID: 33679837 PMCID: PMC7933479 DOI: 10.3389/fpls.2021.625307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze reactions attaching an activated sugar to an acceptor substrate, which may be a polysaccharide, peptide, lipid, or small molecule. In the past decade, notable progress has been made in revealing and cloning genes encoding polysaccharide-synthesizing GTs. However, the vast majority of GTs remain structurally and functionally uncharacterized. The mechanism by which they are organized in the Golgi membrane, where they synthesize complex, highly branched polysaccharide structures with high efficiency and fidelity, is also mostly unknown. This review will focus on current knowledge about plant polysaccharide-synthesizing GTs, specifically focusing on protein-protein interactions and the formation of multiprotein complexes.
Collapse
|
25
|
da Silva ÍGM, Lucas EF, Advincula R. On the use of an agro waste, Miscanthus x. Giganteus, as filtrate reducer for water-based drilling fluids. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1845195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ítalo G. M. da Silva
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elizabete F. Lucas
- Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rigoberto Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and Sensitive Detection of Oligosaccharides Using Desalting Paper Spray Mass Spectrometry (DPS-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2226-2235. [PMID: 32910855 PMCID: PMC8189650 DOI: 10.1021/jasms.0c00310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Conventional mass spectrometry (MS)-based analytical methods for small carbohydrate fragments (oligosaccharides, degree of polymerization 2-12) are time-consuming due to the need for an offline sample pretreatment such as desalting. Herein, we report a new paper spray ionization method, named desalting paper spray (DPS), which employs a piece of triangular filter paper for both sample desalting and ionization. Unlike regular paper spray ionization (PSI) and nanoelectrospray ionization (nanoESI), DPS-MS allows fast and sensitive detection of oligosaccharides in biological samples having complex matrices (e.g., Tris, PBS, HEPES buffers, or urine). When an oligosaccharide sample is loaded onto the filter paper substrate (10 × 5 mm, height × base) made mostly of cellulose, oligosaccharides are adsorbed on the paper via hydrophilic interactions with cellulose. Salts and buffers can be washed away using an ACN/H2O (90/10 v/v) solution, while oligosaccharides can be eluted from the paper using a solution of ACN/H2O/formic acid (FA) (10/90/1 v/v/v) and directly spray-ionized from the tip of the paper. Various saccharides at trace levels (e.g., 50 fmol) in nonvolatile buffer can be quickly analyzed by DPS-MS (<5 min per sample). DPS-MS is also applicable for direct detection of oligosaccharides from glycosyltransferase (GT) reactions, a challenging task that typically requires a radioactive assay. Quantitative analysis of acceptor and product oligosaccharides shows increased product with increased GT enzymes used for the reaction, a result in line with the radioactivity assay. This work suggests that DPS-MS has potential for rapid oligosaccharide analysis from biological samples.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Matrika Bhattarai
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
| | - Pengyi Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Tariq Alnsour
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
| | - Michael Held
- Deparment of Chemistry and Biochemistry, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Ahmed Faik
- Department of Environmental and Plant Biology & Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey
- Corresponding Authors: Hao Chen - Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey. , Ahmed Faik – Department of Environmental and Plant Biology, Ohio University, Athens, Ohio. , Michael Held – Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio.
| |
Collapse
|
27
|
Sheng H, Chen S. Plant silicon-cell wall complexes: Identification, model of covalent bond formation and biofunction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:13-19. [PMID: 32736240 DOI: 10.1016/j.plaphy.2020.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Silicon (Si) is the second most abundant element on earth crust, consisting primarily of silicate minerals. Si is found in the tissues of almost all terrestrial plants and is mostly deposited in specialized cells or cell walls as amorphous silica. Numerous discoveries have shown that in addition to non-covalent interactions through amorphous silica, Si can form covalent bonds with plant cell wall components such as hemicelluloses, pectin and lignin. The covalent bonds may be formed via Si-O-C linkages between monosilicic acid (H4SiO4) and cis-diols of cell wall polysaccharides or lignin. The covalently bound organosilicon, independent of amorphous inorganic silica, may play a crucial role in plant cell wall structure and remodeling and thus plant growth and its resistance against biotic and abiotic stresses. This review discusses the existing research on the discovery of plant silicon-cell wall complexes and proposes a model of their covalent bond formation and biofunction.
Collapse
Affiliation(s)
- Huachun Sheng
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
28
|
The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 2020; 117:20316-20324. [PMID: 32737163 PMCID: PMC7443942 DOI: 10.1073/pnas.2007245117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant cells have a polysaccharide-based wall that maintains their structural and functional integrity and determines their shape. Reorganization of wall components is required to allow growth and differentiation. One matrix polysaccharide that is postulated to play an important role in this reorganization is xyloglucan (XyG). While the structure of XyG is well understood, its biosynthesis is not. Through genetic studies with Arabidopsis CSLC genes, we demonstrate that they are responsible for the synthesis of the XyG glucan backbone. A quintuple cslc mutant is able to grow and develop normally but lacks detectable XyG. These results raise important questions regarding cell wall structure and its reorganization during growth. The series of cslc mutants will be valuable tools for investigating these questions. Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.
Collapse
|
29
|
Zhong R, Cui D, Phillips DR, Richardson EA, Ye ZH. A Group of O-Acetyltransferases Catalyze Xyloglucan Backbone Acetylation and Can Alter Xyloglucan Xylosylation Pattern and Plant Growth When Expressed in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:1064-1079. [PMID: 32167545 PMCID: PMC7295396 DOI: 10.1093/pcp/pcaa031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Xyloglucan is a major hemicellulose in plant cell walls and exists in two distinct types, XXXG and XXGG. While the XXXG-type xyloglucan from dicot species only contains O-acetyl groups on side-chain galactose (Gal) residues, the XXGG-type xyloglucan from Poaceae (grasses) and Solanaceae bears O-acetyl groups on backbone glucosyl (Glc) residues. Although O-acetyltransferases responsible for xyloglucan Gal acetylation have been characterized, the biochemical mechanism underlying xyloglucan backbone acetylation remains to be elucidated. In this study, we showed that recombinant proteins of a group of DUF231 members from rice and tomato were capable of transferring acetyl groups onto O-6 of Glc residues in cello-oligomer acceptors, indicating that they are xyloglucan backbone 6-O-acetyltransferases (XyBATs). We further demonstrated that XyBAT-acetylated cellohexaose oligomers could be readily xylosylated by AtXXT1 (Arabidopsis xyloglucan xylosyltransferase 1) to generate acetylated, xylosylated cello-oligomers, whereas AtXXT1-xylosylated cellohexaose oligomers were much less effectively acetylated by XyBATs. Heterologous expression of a rice XyBAT in Arabidopsis led to a severe reduction in cell expansion and plant growth and a drastic alteration in xyloglucan xylosylation pattern with the formation of acetylated XXGG-type units, including XGG, XGGG, XXGG, XXGG,XXGGG and XXGGG (G denotes acetylated Glc). In addition, recombinant proteins of two Arabidopsis XyBAT homologs also exhibited O-acetyltransferase activity toward cellohexaose, suggesting their possible role in mediating xyloglucan backbone acetylation in vivo. Our findings provide new insights into the biochemical mechanism underlying xyloglucan backbone acetylation and indicate the importance of maintaining the regular xyloglucan xylosylation pattern in cell wall function.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | | | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
30
|
Wang M, Xu Z, Guo S, Zhou G, ONeill M, Kong Y. Identification of two functional xyloglucan galactosyltransferase homologs BrMUR3 and BoMUR3 in brassicaceous vegetables. PeerJ 2020; 8:e9095. [PMID: 32461829 PMCID: PMC7231499 DOI: 10.7717/peerj.9095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Xyloglucan (XyG) is the predominant hemicellulose in the primary cell walls of most dicotyledonous plants. Current models of these walls predict that XyG interacts with cellulose microfibrils to provide the wall with the rigidity and strength necessary to maintain cell integrity. Remodeling of this network is required to allow cell elongation and plant growth. In this study, homologs of Arabidopsis thaliana MURUS3 (MUR3), which encodes a XyG-specific galactosyltransferase, were obtained from Brassica rapa (BrMUR3) to Brassica oleracea (BoMUR3). Genetic complementation showed that BrMUR3 and BoMUR3 rescue the phenotypic defects of the mur3-3 mutant. Xyloglucan subunit composition analysis provided evidence that BrMUR3 and BoMUR3 encode a galactosyltransferase, which transfers a galactose residue onto XyG chains. The detection of XXFG and XLFG XyG subunits (restoration of fucosylated side chains) in mur3-3 mutants overexpressing BrMUR3 or BoMUR3 show that MUR3 from Brassica to Arabidopsis are comparable as they add Gal to the third xylosyl residue of the XXXG subunit. Our results provide additional information for functional dissection and evolutionary analysis of MUR3 genes derived from brassicaceous species.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Gongke Zhou
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Malcolm ONeill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
31
|
Transcriptome analysis of metabolisms related to fruit cracking during ripening of a cracking-susceptible grape berry cv. Xiangfei (Vitis vinifera L.). Genes Genomics 2020; 42:639-650. [PMID: 32274647 DOI: 10.1007/s13258-020-00930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Grape is an economically valuable fruit around the world. However, some cultivars are prone to fruit cracking during ripening, leading to severe losses. OBJECTIVE We aimed to find important metabolisms related to fruit cracking during ripening process. METHODS RNA-Sequence and analysis was applied to the pericarp of cracking-susceptible 'Xiang Fei' at 1 (W1), 2 (W2) and 3 weeks (W3) after veraison on Illumina HiSeq xten; RESULTS: Compared with W1, the berry cracking rate increased significantly in W2 and W3. Through transcriptomic analysis, a total of 22,609 genes were expressed in the grape pericarp, among which 805 and 2758 genes were significantly differentially regulated in W1-vs.-W2 and W1-vs.-W3 comparison, respectively. Besides, 304 and 354 genes were up- and down-regulated in both comparisons. The significantly enriched GO terms of both W1-W2 and W1-W3 are related to cell wall and wax biosynthesis. And lipid metabolism, which are involved in the top 20 enriched KEGG pathways of both comparisons, was related to wax biosynthesis. Further, GO enrichment analysis of differentially expressed genes (DEGs) with same regulatory changes also indicated that the continuously up-regulated DEGs are significantly enriched in cell wall component biosynthesis and hydrolase. CONCLUSION These findings suggested that genes related to cell wall metabolism and cuticle biosynthesis may play important roles in regulating grape berry cracking. Our results provide a reference for further studies on the molecular mechanism underlying fruit cracking.
Collapse
|
32
|
Guo ZH, Ma PF, Yang GQ, Hu JY, Liu YL, Xia EH, Zhong MC, Zhao L, Sun GL, Xu YX, Zhao YJ, Zhang YC, Zhang YX, Zhang XM, Zhou MY, Guo Y, Guo C, Liu JX, Ye XY, Chen YM, Yang Y, Han B, Lin CS, Lu Y, Li DZ. Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos. MOLECULAR PLANT 2019; 12:1353-1365. [PMID: 31145999 DOI: 10.1016/j.molp.2019.05.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 05/15/2023]
Abstract
Polyploidization is a major driver of speciation and its importance to plant evolution has been well recognized. Bamboos comprise one diploid herbaceous and three polyploid woody lineages, and are members of the only major subfamily in grasses that diversified in forests, with the woody members having a tree-like lignified culm. In this study, we generated four draft genome assemblies of major bamboo lineages with three different ploidy levels (diploid, tetraploid, and hexaploid). We also constructed a high-density genetic linkage map for a hexaploid species of bamboo, and used a linkage-map-based strategy for genome assembly and identification of subgenomes in polyploids. Further phylogenomic analyses using a large dataset of syntenic genes with expected copies based on ploidy levels revealed that woody bamboos originated subsequent to the divergence of the herbaceous bamboo lineage, and experienced complex reticulate evolution through three independent allopolyploid events involving four extinct diploid ancestors. A shared but distinct subgenome was identified in all polyploid forms, and the progenitor of this subgenome could have been critical in ancient polyploidizations and the origin of woody bamboos. Important genetic clues to the unique flowering behavior and woody trait in bamboos were also found. Taken together, our study provides significant insights into ancient reticulate evolution at the subgenome level in the absence of extant donor species, and offers a potential model scenario for broad-scale study of angiosperm origination by allopolyploidization.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin-Yong Hu
- Key Laboratory for Plant Diversity and Biogeography in East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Mi-Cai Zhong
- Key Laboratory for Plant Diversity and Biogeography in East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Gui-Ling Sun
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, Henan 475001, China
| | - Yu-Xing Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - You-Jie Zhao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Yi-Chi Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Xiao Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Xue-Mei Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meng-Yuan Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Mei Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yang Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Bin Han
- National Center for Gene Research, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei.
| | - Ying Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
33
|
Faik A, Held M. Review: Plant cell wall biochemical omics: The high-throughput biochemistry for polysaccharide biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:49-56. [PMID: 31300141 DOI: 10.1016/j.plantsci.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Progress in the functional biochemical analysis of plant glycosyltransferases (GTs) has been slow because plant GTs are generally membrane proteins, operate as part of larger, multimeric complexes, and utilize a vast complexity of substrate acceptors. Therefore, the field would benefit from development of adequate high throughput expression as well as product detection and characterization techniques. Here we review current approaches to tackle such obstacles and suggest a new path forward: nucleic acid programmable protein arrays (NAPPA) with liquid sample desorption ionization (LS-DESI-MS) mass spectrometry. NAPPA utilizes in vitro transcription and translation to produce epitope-tagged fusion proteins from cloned GT cDNAs. LS-DESI is a soft ionization technique that allows rapid and sensitive MS-based product characterization in situ. Coupling both approaches provides the opportunity to examine individual GT functions as well as protein-protein interactions. Furthermore, advances in automated oligosaccharide synthesis and lipid nanodisc technology should allow testing of plant GT activity in presence of numerous substrate acceptors and lipid environments in a high throughput fashion. Thus, NAPPA-DESI-MS has great potential to make headway in biochemical characterization of the large number of plant GTs.
Collapse
Affiliation(s)
- Ahmed Faik
- Environmental and Plant Biology Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA.
| | - Michael Held
- Chemistry and Biochemistry Department, Athens 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens 45701, USA
| |
Collapse
|
34
|
Ahn E, Hu Z, Perumal R, Prom LK, Odvody G, Upadhyaya HD, Magill C. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut. PLoS One 2019; 14:e0216671. [PMID: 31086384 PMCID: PMC6516728 DOI: 10.1371/journal.pone.0216671] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Collapse
Affiliation(s)
- Ezekiel Ahn
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Ramasamy Perumal
- Kansas State University, Agricultural Research Center, Hays, Kansas, United States of America
| | - Louis K. Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, Texas, United States of America
| | - Gary Odvody
- Texas A&M AgriLife Research, Corpus Christi, Texas, United States of America
| | - Hari D. Upadhyaya
- ICRISAT, Patancheru, Telangana, India
- King Abdulaziz University, Jeddah, Saudi Arabia
| | - Clint Magill
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
35
|
Zhang L, Paasch BC, Chen J, Day B, He SY. An important role of l-fucose biosynthesis and protein fucosylation genes in Arabidopsis immunity. THE NEW PHYTOLOGIST 2019; 222:981-994. [PMID: 30552820 DOI: 10.1111/nph.15639] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/01/2018] [Indexed: 05/28/2023]
Abstract
Plants mount coordinated immune responses to defend themselves against pathogens. However, the cellular components required for plant immunity are not fully understood. The jasmonate-mimicking coronatine (COR) toxin produced by Pseudomonas syringae pv. tomato (Pst) DC3000 functions to overcome plant immunity. We previously isolated eight Arabidopsis (scord) mutants that exhibit increased susceptibility to a COR-deficient mutant of PstDC3000. Among them, the scord6 mutant exhibits defects both in stomatal closure response and in restricting bacterial multiplication inside the apoplast. However, the identity of SCORD6 remained elusive. In this study, we aim to identify the SCORD6 gene. We identified SCORD6 via next-generation sequencing and found it to be MURUS1 (MUR1), which is involved in the biosynthesis of GDP-l-fucose. Discovery of SCORD6 as MUR1 led to a series of experiments that revealed a multi-faceted role of l-fucose biosynthesis in stomatal and apoplastic defenses as well as in pattern-triggered immunity and effector-triggered immunity, including glycosylation of pattern-recognition receptors. Furthermore, compromised stomatal and/or apoplastic defenses were observed in mutants of several fucosyltransferases with specific substrates (e.g. O-glycan, N-glycan or the DELLA transcriptional repressors). Collectively, these results uncover a novel and broad role of l-fucose and protein fucosylation in plant immunity.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, East Lansing, MI, 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bradley C Paasch
- Department of Energy Plant Research Laboratory, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jin Chen
- Department of Energy Plant Research Laboratory, East Lansing, MI, 48824, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, East Lansing, MI, 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
36
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
37
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
38
|
Xu H, Ding A, Chen S, Marowa P, Wang D, Chen M, Hu R, Kong Y, O’Neill M, Chai G, Zhou G. Genome-Wide Analysis of Sorghum GT47 Family Reveals Functional Divergences of MUR3-Like Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1773. [PMID: 30619385 PMCID: PMC6302003 DOI: 10.3389/fpls.2018.01773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 05/13/2023]
Abstract
Sorghum (Sorghum bicolor) is an important bioenergy crop. Its biomass mainly consists of the cellulosic and non-cellulosic polysaccharides, both which can be converted to biofuels. The biosynthesis of non-cellulosic polysaccharides involves several glycosyltransferases (GT) families including GT47. However, there was no systemic study on GT47 family in sorghum to date. Here, we identified 39 sorghum GT47 family members and showed the functional divergences of MURUS3 (MUR3) homologs. Sorghum GT47 proteins were phylogenetically clustered into four distinct subfamilies. Within each subfamily, gene structure was relatively conserved between the members. Ten gene pairs were identified from the 39 GT47 genes, of which two pairs might be originated from tandem duplication. 25.6% (10/39) of sorghum GT47 genes were homologous to Arabidopsis MUR3, a xyloglucan biosynthesis gene in primary cell walls. SbGT47_2, SbGT47_7, and SbGT47_8, three most homologous genes of MUR3, exhibited different tissue expression patterns and were selected for complementation into Arabidopsis mur3-3. Physiological and cell wall analyses showed that SbGT47_2 and SbGT47_7 may be two functional xyloglucan galactosyltransferases in sorghum. Further studies found that MUR3-like genes are widely present in the seed plants but not in the chlorophytic alga Chlamydomonas reinhardtii. Our results provide novel information for evolutionary analysis and functional dissection of sorghum GT47 family members.
Collapse
Affiliation(s)
- Hua Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Sihui Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Prince Marowa
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Dian Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Guohua Chai
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
39
|
Zhong R, Cui D, Ye ZH. Xyloglucan O-acetyltransferases from Arabidopsis thaliana and Populus trichocarpa catalyze acetylation of fucosylated galactose residues on xyloglucan side chains. PLANTA 2018; 248:1159-1171. [PMID: 30083810 DOI: 10.1007/s00425-018-2972-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/01/2018] [Indexed: 05/26/2023]
Abstract
AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are O-acetyltransferases acetylating fucosylated galactose residues on xyloglucan and AXY9 does not directly catalyze O-acetylation of xyloglucan but exhibits weak acetylesterase activity. Xyloglucan is a major hemicellulose that cross-links cellulose in the primary walls of dicot plants and the galactose (Gal) residues on its side chains can be mono- and di-O-acetylated. In Arabidopsis thaliana, mutations of three AXY (altered xyloglucan) genes, AXY4, AXY4L and AXY9, have previously been shown to cause a reduction in xyloglucan acetylation, but their biochemical functions remain to be investigated. In this report, we demonstrated that recombinant proteins of AXY4/XGOAT1 (xyloglucan O-acetyltransferase1), AXY4L/XGOAT2 and their close homologs from Populus trichocarpa, PtrXGOATs, displayed O-acetyltransferase activities transferring acetyl groups from acetyl CoA onto xyloglucan oligomers. Structural analysis of XGOAT-catalyzed reaction products revealed that XGOATs mediated predominantly 6-O-monoacetylation and a much lesser degree of 3-O and 4-O-monoacetylation and 4,6-di-O-acetylation of Gal residues on xyloglucan side chains. XGOATs appeared to preferentially acetylate fucosylated Gal residues with little activity toward non-fucosylated Gal residues. Mutations of the conserved amino acid residues in the GDS and DXXH motifs in AXY4/XGOAT1 resulted in a drastic reduction in its ability to transfer acetyl groups onto xyloglucan oligomers. In addition, although recombinant AXY9 was unable to transfer acetyl groups from acetyl CoA onto xyloglucan oligomers, it was catalytically active as demonstrated by its weak acetylesterase activity that was also exhibited by AXY4/XGOAT1 and AXY4L/XGOAT2. Furthermore, we showed that the AXY8 fucosidase was able to hydrolyze fucosyl residues from both non-acetylated and acetylated xyloglucan oligomers. These findings provide biochemical evidence that AXY4/XGOAT1, AXY4L/XGOAT2 and PtrXGOATs are xyloglucan O-acetyltransferases catalyzing acetyl transfer onto fucosylated Gal residues on xyloglucan side chains and the defucosylation of these acetylated side chains by apoplastic AXY8 generates side chains with acetylated, non-fucosylated Gal residues.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dongtao Cui
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Zhao X, Liu N, Shang N, Zeng W, Ebert B, Rautengarten C, Zeng QY, Li H, Chen X, Beahan C, Bacic A, Heazlewood JL, Wu AM. Three UDP-xylose transporters participate in xylan biosynthesis by conveying cytosolic UDP-xylose into the Golgi lumen in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1125-1134. [PMID: 29300997 PMCID: PMC6018967 DOI: 10.1093/jxb/erx448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/26/2017] [Indexed: 05/20/2023]
Abstract
UDP-xylose (UDP-Xyl) is synthesized by UDP-glucuronic acid decarboxylases, also termed UDP-Xyl synthases (UXSs). The Arabidopsis genome encodes six UXSs, which fall into two groups based upon their subcellular location: the Golgi lumen and the cytosol. The latter group appears to play an important role in xylan biosynthesis. Cytosolic UDP-Xyl is transported into the Golgi lumen by three UDP-Xyl transporters (UXT1, 2, and 3). However, while single mutants affected in the UDP-Xyl transporter 1 (UXT1) showed a substantial reduction in cell wall xylose content, a double mutant affected in UXT2 and UXT3 had no obvious effect on cell wall xylose deposition. This prompted us to further investigate redundancy among the members of the UXT family. Multiple uxt mutants were generated, including a triple mutant, which exhibited collapsed vessels and reduced cell wall thickness in interfascicular fiber cells. Monosaccharide composition, molecular weight, nuclear magnetic resonance, and immunolabeling studies demonstrated that both xylan biosynthesis (content) and fine structure were significantly affected in the uxt triple mutant, leading to phenotypes resembling those of the irx mutants. Pollination was also impaired in the uxt triple mutant, likely due to reduced filament growth and anther dehiscence caused by alterations in the composition of the cell walls. Moreover, analysis of the nucleotide sugar composition of the uxt mutants indicated that nucleotide sugar interconversion is influenced by the cytosolic UDP-Xyl pool within the cell. Taken together, our results underpin the physiological roles of the UXT family in xylan biosynthesis and provide novel insights into the nucleotide sugar metabolism and trafficking in plants.
Collapse
Affiliation(s)
- Xianhai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Nian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Na Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Qing-Yin Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Cherie Beahan
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
41
|
Morales‐Cruz A, Allenbeck G, Figueroa‐Balderas R, Ashworth VE, Lawrence DP, Travadon R, Smith RJ, Baumgartner K, Rolshausen PE, Cantu D. Closed-reference metatranscriptomics enables in planta profiling of putative virulence activities in the grapevine trunk disease complex. MOLECULAR PLANT PATHOLOGY 2018; 19:490-503. [PMID: 28218463 PMCID: PMC6638111 DOI: 10.1111/mpp.12544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Grapevines, like other perennial crops, are affected by so-called 'trunk diseases', which damage the trunk and other woody tissues. Mature grapevines typically contract more than one trunk disease and often multiple grapevine trunk pathogens (GTPs) are recovered from infected tissues. The co-existence of different GTP species in complex and dynamic microbial communities complicates the study of the molecular mechanisms underlying disease development, especially under vineyard conditions. The objective of this study was to develop and optimize a community-level transcriptomics (i.e. metatranscriptomics) approach that could monitor simultaneously the virulence activities of multiple GTPs in planta. The availability of annotated genomes for the most relevant co-infecting GTPs in diseased grapevine wood provided the unprecedented opportunity to generate a multi-species reference for the mapping and quantification of DNA and RNA sequencing reads. We first evaluated popular sequence read mappers using permutations of multiple simulated datasets. Alignment parameters of the selected mapper were optimized to increase the specificity and sensitivity for its application to metagenomics and metatranscriptomics analyses. Initial testing on grapevine wood experimentally inoculated with individual GTPs confirmed the validity of the method. Using naturally infected field samples expressing a variety of trunk disease symptoms, we show that our approach provides quantitative assessments of species composition, as well as genome-wide transcriptional profiling of potential virulence factors, namely cell wall degradation, secondary metabolism and nutrient uptake for all co-infecting GTPs.
Collapse
Affiliation(s)
- Abraham Morales‐Cruz
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | - Gabrielle Allenbeck
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| | | | - Vanessa E. Ashworth
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCA92521USA
| | - Daniel P. Lawrence
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Renaud Travadon
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Rhonda J. Smith
- University of California Cooperative Extension, Sonoma CountySanta RosaCA95403USA
| | - Kendra Baumgartner
- United States Department of Agriculture ‐ Agricultural Research ServiceCrops Pathology and Genetics Research UnitDavisCA95616USA
| | - Philippe E. Rolshausen
- Department of Botany and Plant SciencesUniversity of California RiversideRiversideCA92521USA
| | - Dario Cantu
- Department of Viticulture and EnologyUniversity of California DavisDavisCA95616USA
| |
Collapse
|
42
|
Urbanowicz BR, Bharadwaj VS, Alahuhta M, Peña MJ, Lunin VV, Bomble YJ, Wang S, Yang JY, Tuomivaara ST, Himmel ME, Moremen KW, York WS, Crowley MF. Structural, mutagenic and in silico studies of xyloglucan fucosylation in Arabidopsis thaliana suggest a water-mediated mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:931-949. [PMID: 28670741 PMCID: PMC5735850 DOI: 10.1111/tpj.13628] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 05/17/2023]
Abstract
The mechanistic underpinnings of the complex process of plant polysaccharide biosynthesis are poorly understood, largely because of the resistance of glycosyltransferase (GT) enzymes to structural characterization. In Arabidopsis thaliana, a glycosyl transferase family 37 (GT37) fucosyltransferase 1 (AtFUT1) catalyzes the regiospecific transfer of terminal 1,2-fucosyl residues to xyloglucan side chains - a key step in the biosynthesis of fucosylated sidechains of galactoxyloglucan. We unravel the mechanistic basis for fucosylation by AtFUT1 with a multipronged approach involving protein expression, X-ray crystallography, mutagenesis experiments and molecular simulations. Mammalian cell culture expressions enable the sufficient production of the enzyme for X-ray crystallography, which reveals the structural architecture of AtFUT1 in complex with bound donor and acceptor substrate analogs. The lack of an appropriately positioned active site residue as a catalytic base leads us to propose an atypical water-mediated fucosylation mechanism facilitated by an H-bonded network, which is corroborated by mutagenesis experiments as well as detailed atomistic simulations.
Collapse
Affiliation(s)
- Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Vivek S. Bharadwaj
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Markus Alahuhta
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Vladimir V. Lunin
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Yannick J. Bomble
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Sami T. Tuomivaara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael E. Himmel
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael F. Crowley
- Biosciences Division, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| |
Collapse
|
43
|
Shi DC, Wang J, Hu RB, Zhou GK, O'Neill MA, Kong YZ. Boron-bridged RG-II and calcium are required to maintain the pectin network of the Arabidopsis seed mucilage ultrastructure. PLANT MOLECULAR BIOLOGY 2017; 94:267-280. [PMID: 28364389 DOI: 10.1007/s11103-017-0606-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
The structure of a pectin network requires both calcium (Ca2+) and boron (B). Ca2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an "egg-box" structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca2+is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca2+in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca2+. Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca2+to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.
Collapse
Affiliation(s)
- Da-Chuan Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Ke Yuan Jing 4th Road, Laoshan District, Qingdao, 266101, Shandong, People's Republic of China
| | - Juan Wang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Rui-Bo Hu
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Gong-Ke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Ying-Zhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Ke Yuan Jing 4th Road, Laoshan District, Qingdao, 266101, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Xu Z, Wang M, Shi D, Zhou G, Niu T, Hahn MG, O'Neill MA, Kong Y. DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:156-169. [PMID: 28330559 DOI: 10.1016/j.plantsci.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/14/2016] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Our previous study of the Arabidopsis mur3-3 mutant and mutant plants in which the mur3-3 phenotypes are suppressed (xxt2mur3-3, xxt5mur3-3, xxt1xxt2mur3-3 and 35Spro:XLT2:mur3-3) showed that hypocotyl cell elongation is decreased in plants that synthesize galactose-deficient xyloglucan. To obtain genome-wide insight into the transcriptome changes and regulatory networks that may be involved in this decreased elongation, we performed digital gene expression analyses of the etiolated hypocotyls of wild type (WT), mur3-3 and the four suppressor lines. Numerous differentially expressed genes (DEGs) were detected in comparisons between WT and mur3-3 (1423), xxt2mur3-3 and mur3-3 (675), xxt5mur3-3 and mur3-3 (1272), xxt1xxt2mur3-3 and mur3-3 (1197) and 35Spro:XLT2:mur3-3 vs mur3-3 (121). 550 overlapped DEGs were detected among WT vs mur3-3, xxt2mur3-3 vs mur3-3, xxt5mur3-3 vs mur3-3, and xxt1xxt2mur3-3 vs mur3-3 comparisons. These DEGs include 46 cell wall-related genes, 24 transcription factors, 6 hormone-related genes, 9 protein kinase genes and 9 aquaporin genes. The expression of all of the 550 overlapped genes is restored to near wild-type levels in the four mur3-3 suppressor lines. qRT-PCR of fifteen of these 550 genes showed that their expression levels are consistent with the digital gene expression data. Overexpression of some of these genes (XTH4, XTH30, PME3, EXPA11, MYB88, ROT3, AT5G37790, WAG2 and TIP2;3) that are down-regulated in mur3-3 partially rescued the short hypocotyl phenotype but not the aerial phenotype of mur3-3, indicating that different mechanisms exist between hypocotyl cell elongation and leaf cell elongation.
Collapse
Affiliation(s)
- Zongchang Xu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Meng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Dachuan Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Tiantian Niu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA; Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|
45
|
Raikhel NV. Firmly Planted, Always Moving. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:1-27. [PMID: 27860488 DOI: 10.1146/annurev-arplant-042916-040829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
I was a budding pianist immersed in music in Leningrad, in the Soviet Union (now Saint Petersburg, Russia), when I started over, giving up sheet music for the study of ciliates. In a second starting-over story, I emigrated to the United States, where I switched to studying carbohydrate-binding plant lectin proteins, dissecting plant vesicular trafficking, and isolating novel glycosyltransferases responsible for making cell wall polysaccharides. I track my journey as a plant biologist from student to principal investigator to founding director of the Center for Plant Cell Biology and then director of the Institute for Integrative Genome Biology at the University of California, Riverside. I discuss implementing a new vision as the first and (so far) only female editor in chief of Plant Physiology, as well as how my laboratory helped develop chemical genomics tools to study the functions of essential plant proteins. Always wanting to give back what I received, I discuss my present efforts to develop female scientist leadership in Chinese universities and a constant theme throughout my life: a love of art and travel.
Collapse
Affiliation(s)
- Natasha V Raikhel
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
46
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
47
|
Egorova KS, Toukach PV. CSDB_GT: a new curated database on glycosyltransferases. Glycobiology 2016; 27:285-290. [PMID: 28011601 DOI: 10.1093/glycob/cww137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
Glycosyltransferases (GTs) are carbohydrate-active enzymes (CAZy) involved in the synthesis of natural glycan structures. The application of CAZy is highly demanded in biotechnology and pharmaceutics. However, it is being hindered by the lack of high-quality and comprehensive repositories of the research data accumulated so far. In this paper, we describe a new curated Carbohydrate Structure Glycosyltransferase Database (CSDB_GT). Currently, CSDB_GT provides ca. 780 activities exhibited by GTs, as well as several other CAZy, found in Arabidopsis thaliana and described in ca. 180 publications. It covers most published data on A. thaliana GTs with evidenced functions. CSDB_GT is linked to the Carbohydrate Structure Database (CSDB), which stores data on archaeal, bacterial, fungal and plant glycans. The CSDB_GT data are supported by experimental evidences and can be traced to original publications. CSDB_GT is freely available at http://csdb.glycoscience.ru/gt.html.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| | - Philip V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow, Russia
| |
Collapse
|
48
|
Voothuluru P, Anderson JC, Sharp RE, Peck SC. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress. PLANT, CELL & ENVIRONMENT 2016; 39:2043-2054. [PMID: 27341663 DOI: 10.1111/pce.12778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.
Collapse
Affiliation(s)
- Priyamvada Voothuluru
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey C Anderson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Robert E Sharp
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Scott C Peck
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
49
|
Expression, purification and biochemical characterization of AtFUT1, a xyloglucan-specific fucosyltransferase from Arabidopsis thaliana. Biochimie 2016; 128-129:183-92. [PMID: 27580247 DOI: 10.1016/j.biochi.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
Efforts to identify genes and characterize enzymes involved in the biosynthesis of plant cell wall polysaccharides have yet to produce and purify to homogeneity an active plant cell wall synthesizing enzyme suitable for structural studies. In Arabidopsis, the last step of xyloglucan (XG) biosynthesis is catalyzed by fucosyltransferase 1 (AtFUT1), which transfers l-fucose from GDP-β-l-fucose to a specific galactose on the XG core. Here, we describe the production of a soluble form of AtFUT1 (HisΔ68-AtFUT1) and its purification to milligram quantities. An active form of AtFUT1 was produced in an insect cell culture medium, using a large-scale expression system, and purified in a two-step protocol. Characterization of purified HisΔ68-AtFUT1 revealed that the enzyme behaves as a non-covalent homodimer in solution. A bioluminescent transferase assay confirmed HisΔ68-AtFUT1 activity on its substrates, namely GDP-fucose and tamarind XG, with calculated Km values of 42 μM and 0.31 μM, respectively. Moreover, the length of the XG-derived acceptor quantitatively affected fucosyltransferase activity in a size-dependent manner. The affinity of HisΔ68-AtFUT1 for tamarind XG and GDP was determined using isothermal titration calorimetry (ITC). Interestingly, ITC data suggest that HisΔ68-AtFUT1 undergoes conformational changes in the presence of its first co-substrate (XG or GDP), which then confers greater affinity for the second co-substrate. The procedure described in this study can potentially be transferred to other enzymes involved in plant cell wall synthesis.
Collapse
|
50
|
Temple H, Saez-Aguayo S, Reyes FC, Orellana A. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 2016; 26:913-925. [PMID: 27507902 DOI: 10.1093/glycob/cww054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/24/2016] [Indexed: 12/15/2022] Open
Abstract
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered.
Collapse
Affiliation(s)
- Henry Temple
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Susana Saez-Aguayo
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Francisca C Reyes
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, FONDAP Center for Genome Regulation, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, Santiago, RM 837-0146, Chile
| |
Collapse
|