1
|
Li W, Zhang C, Wang Y. Evaporative self-assembly in colloidal droplets: Emergence of ordered structures from complex fluids. Adv Colloid Interface Sci 2024; 333:103286. [PMID: 39232473 DOI: 10.1016/j.cis.2024.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/14/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Colloidal droplet evaporation is an intriguing and intricate phenomenon that has captured the interest of scientists across diverse disciplines, including physical chemistry, fluid dynamics, and soft matter science, over the past two decades. Despite being a non-equilibrium system with inherent challenges posed by coffee ring formation and Marangoni effects, which hinder the precise control of deposition patterns, evaporative self-assembly presents a convenient and cost-effective approach for generating arrays of well-ordered structures and functional patterns with wide-ranging applications in inkjet printing, photonic crystals, and biochemical assays. In the realm of printed electronics and photonics, effectively mitigating coffee rings while achieving uniformity and orderliness has emerged as a critical factor in realising the next generation of large-area, low-cost, flexible devices that are exceptionally sensitive and high-performance. This review highlights the evaporative self-assembly process in colloidal droplets with a focus on the intricate mechanical environment, self-assembly at diverse interfaces, and potential applications of these assembling ordered structures.
Collapse
Affiliation(s)
- Weibin Li
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Chen Zhang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuren Wang
- National Microgravity Laboratory, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
2
|
Synnatschke K, Müller A, Gabbett C, Mohn MJ, Kelly AG, Mosina K, Wu B, Caffrey E, Cassidy O, Backes C, Sofer Z, Kaiser U, Coleman JN. Inert Liquid Exfoliation and Langmuir-Type Thin Film Deposition of Semimetallic Metal Diborides. ACS NANO 2024; 18:28596-28608. [PMID: 39382209 PMCID: PMC11503910 DOI: 10.1021/acsnano.4c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Graphite is one of only a few layered materials that can be exfoliated into nanosheets with semimetallic properties, which limits the applications of nanosheet-based electrodes to material combinations compatible with the work function of graphene. It is therefore important to identify additional metallic or semimetallic two-dimensional (2D) nanomaterials that can be processed in solution for scalable fabrication of printed electronic devices. Metal diborides represent a family of layered non-van der Waals crystals with semimetallic properties for all nanosheet thicknesses. While previous reports show that the exfoliated nanomaterial is prone to oxidation, we demonstrate a readily accessible inert exfoliation process to produce quasi-2D nanoplatelets with intrinsic material properties. For this purpose, we demonstrate the exfoliation of three representative metal diborides (MgB2, CrB2, and ZrB2) under inert conditions. Nanomaterial is characterized using a combination of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, IR, and UV-vis measurements, with only minimal oxidation indicated postprocessing. By depositing the pristine metal diboride nanoplatelets as thin films using a Langmuir-type deposition technique, the ohmic behavior of the networks is validated. Furthermore, the material decomposition is studied by using a combination of electrical and optical measurements after controlled exposure to ambient conditions. Finally, we report an efficient, low-cost approach for sample encapsulation to protect the nanomaterials from oxidation. This is used to demonstrate low-gauge factor strain sensors, confirming metal diboride nanosheets as a suitable alternative to graphene for electrode materials in printed electronics.
Collapse
Affiliation(s)
- Kevin Synnatschke
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Alina Müller
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| | - Cian Gabbett
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Michael Johannes Mohn
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Adam G. Kelly
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Bing Wu
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Eoin Caffrey
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Oran Cassidy
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Claudia Backes
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
- Institute
of Physical Chemistry, University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague16628 Czech Republic
| | - Ute Kaiser
- Central
Facility of Electron Microscopy, Electron Microscopy Group of Materials
Science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jonathan N. Coleman
- School
of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Chair
of Applied Physical Chemistry, Heidelberg
University, Im Neuenheimer
Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Carey T, Maughan J, Doolan L, Caffrey E, Garcia J, Liu S, Kaur H, Ilhan C, Seyedin S, Coleman JN. Knot Architecture for Biocompatible and Semiconducting 2D Electronic Fiber Transistors. SMALL METHODS 2024; 8:e2301654. [PMID: 38602193 DOI: 10.1002/smtd.202301654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Wearable devices have generally been rigid due to their reliance on silicon-based technologies, while future wearables will utilize flexible components for example transistors within microprocessors to manage data. Two-dimensional (2D) semiconducting flakes have yet to be investigated in fiber transistors but can offer a route toward high-mobility, biocompatible, and flexible fiber-based devices. Here, the electrochemical exfoliation of semiconducting 2D flakes of tungsten diselenide (WSe2) and molybdenum disulfide (MoS2) is shown to achieve homogeneous coatings onto the surface of polyester fibers. The high aspect ratio (>100) of the flake yields aligned and conformal flake-to-flake junctions on polyester fibers enabling transistors with mobilities μ ≈1 cm2 V-1 s-1 and a current on/off ratio, Ion/Ioff ≈102-104. Furthermore, the cytotoxic effects of the MoS2 and WSe2 flakes with human keratinocyte cells are investigated and found to be biocompatible. As an additional step, a unique transistor 'knot' architecture is created by leveraging the fiber diameter to establish the length of the transistor channel, facilitating a route to scale down transistor channel dimensions (≈100 µm) and utilize it to make a MoS2 fiber transistor with a human hair that achieves mobilities as high as μ ≈15 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Tian Carey
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Jack Maughan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Eoin Caffrey
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - James Garcia
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Shixin Liu
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Cansu Ilhan
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Shayan Seyedin
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centers, Trinity College Dublin, Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Yang M, Schoop LM. Friends not Foes: Exfoliation of Non-van der Waals Materials. Acc Chem Res 2024; 57:2490-2499. [PMID: 39150546 DOI: 10.1021/acs.accounts.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
ConspectusTwo-dimensional materials have been a focus of study for decades, resulting in the development of a library of nanosheets made by a variety of methods. However, many of these atomically thin materials are exfoliated from van der Waals (vdW) compounds, which inherently have weaker bonding between layers in the bulk crystal. Even though there are diverse properties and structures within this class of compounds, it would behoove the community to look beyond these compounds toward the exfoliation of non-vdW compounds as well. A particular class of non-vdW compounds that may be amenable to exfoliation are the ionically bonded layered materials, which are structurally similar to vdW compounds but have alkali ions intercalated between the layers. Although initially they may have been more difficult to exfoliate due to a lack of methodology beyond mechanical exfoliation, many synthesis techniques have been developed that have been used successfully in exfoliating non-vdW materials. In fact, as we will show, in some cases it has even proven to be advantageous to start the exfoliation from a non-vdW compound.The method we will highlight here is chemical exfoliation, which has developed significantly and is better understood mechanistically compared to when it was first conceived. Encompassing many methods, such as acid/base reactions, solvent reactions, and oxidative extractions, chemical exfoliation can be tailored to the delamination of non-vdW materials, which opens up many more possibilities of compounds to study. In addition, beginning with intercalated analogues of vdW materials can even lead to more consistent and higher quality results, overcoming some challenges associated with chemical exfoliation in general. To exemplify this, we will discuss our group's work on the synthesis of a 1T'-WS2 monolayer ink. By starting with K0.5WS2, the exfoliated 1T'-WS2 nanosheets obtained were larger and more uniform in thickness than those from previous syntheses beginning with vdW materials. The crystallinity of the nanosheets was high enough that films made from this ink were superconducting. We will also show how soft chemical methods can be used to make new phases from existing compounds, such as HxCrS2 from NaCrS2. This material was found to have alternating amorphous and crystalline layers. Its biphasic structure improved the material's performance as a battery electrode, enabling reversible Cr redox and faster Na-ion diffusion. From these and other examples, we will see how chemical exfoliation of non-vdW materials compares to other methods, as well as how this technique can be further extended to known compounds that can be deintercalated electrochemically and to quasi-one-dimensional crystals.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Mondal SK, Prakasan L, Kolluru N, Pradhan JR, Dasgupta S. Inkjet-Printed, High-Performance MoS 2 Transistors and Unipolar Logic Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42392-42405. [PMID: 39080865 DOI: 10.1021/acsami.4c05529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Two-dimensional (2D) semiconductor field-effect film transistors combine large carrier mobility with mechanical flexibility and therefore can be ideally suitable for wearable electronics or at the sensor interfaces of smart sensor systems. However, such applications require large-area solution processing as opposed to single-flake devices, where the critical challenge to overcome is the high interflake resistance values. In this report, using a narrow-channel, near-vertical transport device architecture, we have fabricated inkjet-printed sub-20 nm channel electrolyte-gated transistors with predominantly intraflake carrier transport. Therefore, the electronics transport in these transistors is not dominated by the high interflake resistance, and the intraflake material properties including doping density, defect concentration, contact resistance, and threshold voltage modulation can be examined and optimized independently to achieve a current density as high as 280 μA·μm-1. In addition, through the passivation of the sulfur vacancies with a tailored surface treatment, we demonstrate an impressive On-Off current ratio exceeding 1 × 107, complemented by a low subthreshold swing of 100 mV·decade-1. Next, exploiting these high-performance transistors, unipolar depletion-load-type inverters have been fabricated that show a maximum gain of 31. Furthermore, we have realized NAND, NOR, and OR gates, demonstrating their seamless operation at a frequency of 1 kHz. Therefore, this work represents an important step forward to realize electronic circuits based on printed 2D thin film transistors.
Collapse
Affiliation(s)
- Sandeep Kumar Mondal
- Department of Materials Engineering, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore 560012, India
| | - Lakshmi Prakasan
- Department of Materials Engineering, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore 560012, India
| | - Naveen Kolluru
- Department of Materials Engineering, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore 560012, India
| | - Jyoti Ranjan Pradhan
- Department of Materials Engineering, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore 560012, India
| | - Subho Dasgupta
- Department of Materials Engineering, Indian Institute of Science (IISc), CV Raman Avenue, Bangalore 560012, India
| |
Collapse
|
6
|
Wang S, Li W, Xue J, Ge J, He J, Hou J, Xie Y, Li Y, Zhang H, Sofer Z, Lin Z. A library of 2D electronic material inks synthesized by liquid-metal-assisted intercalation of crystal powders. Nat Commun 2024; 15:6388. [PMID: 39079965 PMCID: PMC11289403 DOI: 10.1038/s41467-024-50697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.
Collapse
Affiliation(s)
- Shengqi Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjie Li
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Junying Xue
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jifeng Ge
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jing He
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Junyang Hou
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hao Zhang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Choi KH, Lee SH, Kang J, Zhang X, Jeon J, Bang HS, Kim Y, Kim D, Kim KI, Kim YH, Oh HS, Chang J, Lee JH, Yu HK, Choi JY. Scalable Fabrication of Quasi-One-Dimensional van der Waals Ta 2Pt 3Se 8 Nanowire Thin Films via Solution Processing for NO 2 Gas Sensing over Large Areas. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35463-35473. [PMID: 38946100 DOI: 10.1021/acsami.4c05091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Solution-based processing of van der Waals (vdW) one- (1D) and two-dimensional (2D) materials is an effective strategy to obtain high-quality molecular chains or atomic sheets in a large area with scalability. In this work, quasi-1D vdW Ta2Pt3Se8 was exfoliated via liquid phase exfoliation (LPE) to produce a stably dispersed Ta2Pt3Se8 nanowire solution. In order to screen the optimal exfoliation solvent, nine different solvents were employed with different total surface tensions and polar/dispersive (P/D) component (P/D) ratios. The LPE behavior of Ta2Pt3Se8 was elucidated by matching the P/D ratios between Ta2Pt3Se8 and the applied solvent, resulting in N-methyl-2-pyrrolidone (NMP) as an optimal solvent owing to the well-matched total surface tension and P/D ratio. Subsequently, Ta2Pt3Se8 nanowire thin films are manufactured via vacuum filtration using a Ta2Pt3Se8/NMP dispersion. Then, gas sensing devices are fabricated onto the Ta2Pt3Se8 nanowire thin films, and gas sensing property toward NO2 is evaluated at various thin-film thicknesses. A 50 nm thick Ta2Pt3Se8 thin-film device exhibited a percent response of 25.9% at room temperature and 32.4% at 100 °C, respectively. In addition, the device showed complete recovery within 14.1 min at room temperature and 3.5 min at 100 °C, respectively.
Collapse
Affiliation(s)
- Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hoon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsu Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Xiaojie Zhang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon-Suk Bang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeongjin Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dahoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung In Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yeong Hyeop Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung-Suk Oh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Gabbett C, Kelly AG, Coleman E, Doolan L, Carey T, Synnatschke K, Liu S, Dawson A, O'Suilleabhain D, Munuera J, Caffrey E, Boland JB, Sofer Z, Ghosh G, Kinge S, Siebbeles LDA, Yadav N, Vij JK, Aslam MA, Matkovic A, Coleman JN. Understanding how junction resistances impact the conduction mechanism in nano-networks. Nat Commun 2024; 15:4517. [PMID: 38806479 PMCID: PMC11133347 DOI: 10.1038/s41467-024-48614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.
Collapse
Affiliation(s)
- Cian Gabbett
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Adam G Kelly
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- i3N/CENIMAT, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Emmet Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Anthony Dawson
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Domhnall O'Suilleabhain
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007, Oviedo, Asturias, Spain
| | - Eoin Caffrey
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - John B Boland
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Goutam Ghosh
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, NL-2629, HZ, Delft, The Netherlands
| | - Sachin Kinge
- Materials Research & Development, Toyota Motor Europe, B1930, Zaventem, Belgium
| | - Laurens D A Siebbeles
- Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, NL-2629, HZ, Delft, The Netherlands
| | - Neelam Yadav
- Department of Electronic & Electrical Engineering, Trinity College Dublin 2, Dublin 2, Ireland
| | - Jagdish K Vij
- Department of Electronic & Electrical Engineering, Trinity College Dublin 2, Dublin 2, Ireland
| | - Muhammad Awais Aslam
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700, Leoben, Austria
| | - Aleksandar Matkovic
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700, Leoben, Austria
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
9
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhang K, Zhang T, You J, Zheng X, Zhao M, Zhang L, Kong J, Luo Z, Huang S. Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307587. [PMID: 38084456 DOI: 10.1002/smll.202307587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Indexed: 05/12/2024]
Abstract
2D metal chalcogenides (MCs) have garnered significant attention from both scientific and industrial communities due to their potential in developing next-generation functional devices. Vapor-phase deposition methods have proven highly effective in fabricating high-quality 2D MCs. Nevertheless, the conventionally high thermal budgets required for synthesizing 2D MCs pose limitations, particularly in the integration of multiple components and in specialized applications (such as flexible electronics). To overcome these challenges, it is desirable to reduce the thermal energy requirements, thus facilitating the growth of various 2D MCs at lower temperatures. Numerous endeavors have been undertaken to develop low-temperature vapor-phase growth techniques for 2D MCs, and this review aims to provide an overview of the latest advances in low-temperature vapor-phase growth of 2D MCs. Initially, the review highlights the latest progress in achieving high-quality 2D MCs through various low-temperature vapor-phase techniques, including chemical vapor deposition (CVD), metal-organic CVD, plasma-enhanced CVD, atomic layer deposition (ALD), etc. The strengths and current limitations of these methods are also evaluated. Subsequently, the review consolidates the diverse applications of 2D MCs grown at low temperatures, covering fields such as electronics, optoelectronics, flexible devices, and catalysis. Finally, current challenges and future research directions are briefly discussed, considering the most recent progress in the field.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Tianyi Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
| | - Xudong Zheng
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, 999077, China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
11
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
12
|
Zhao M, Casiraghi C, Parvez K. Electrochemical exfoliation of 2D materials beyond graphene. Chem Soc Rev 2024; 53:3036-3064. [PMID: 38362717 DOI: 10.1039/d3cs00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
After the discovery of graphene in 2004, the field of atomically thin crystals has exploded with the discovery of thousands of 2-dimensional materials (2DMs) with unique electronic and optical properties, by making them very attractive for a broad range of applications, from electronics to energy storage and harvesting, and from sensing to biomedical applications. In order to integrate 2DMs into practical applications, it is crucial to develop mass scalable techniques providing crystals of high quality and in large yield. Electrochemical exfoliation is one of the most promising methods for producing 2DMs, as it enables quick and large-scale production of solution processable nanosheets with a thickness well below 10 layers and lateral size above 1 μm. Originally, this technique was developed for the production of graphene; however, in the last few years, this approach has been successfully extended to other 2DMs, such as transition metal dichalcogenides, black phosphorous, hexagonal boron nitride, MXenes and many other emerging 2D materials. This review first provides an introduction to the fundamentals of electrochemical exfoliation and then it discusses the production of each class of 2DMs, by introducing their properties and giving examples of applications. Finally, a summary and perspective are given to address some of the challenges in this research area.
Collapse
Affiliation(s)
- Minghao Zhao
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| | - Khaled Parvez
- Department of Chemistry, University of Manchester, M13 9PL Manchester, UK.
| |
Collapse
|
13
|
Peng Z, Grillo A, Pelella A, Liu X, Boyes M, Xiao X, Zhao M, Wang J, Hu Z, Di Bartolomeo A, Casiraghi C. Fully printed memristors made with MoS 2 and graphene water-based inks. MATERIALS HORIZONS 2024; 11:1344-1353. [PMID: 38180062 DOI: 10.1039/d3mh01224g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
2-Dimensional materials (2DMs) offer an attractive solution for the realization of high density and reliable memristors, compatible with printed and flexible electronics. In this work we fabricate a fully inkjet printed MoS2-based resistive switching memory, where graphene is used as top electrode and silver is used as bottom electrode. Memristic effects are observed only after annealing of each printed component. The printed memory on silicon shows low SET/RESET voltage, short switching times (less than 0.1 s) and resistance switching ratios of 103-105, comparable or superior to the performance obtained in devices with both printed silver electrodes on rigid substrates. The same device on Kapton shows resistance switching ratios of 102-103 and remains stable at least up to 2% of strain. The memristor resistance switching is attributed to the formation of Ag conductive filaments, which can be suppressed by integrating graphene grown by chemical vapour deposition (CVD) onto the silver electrode. Temperature-dependent electrical measurements starting from 200 K show that memristic behavior appears at a temperature of ∼300 K, confirming that an energy threshold is needed to form the conductive filament. This work shows that inkjet printing is a very powerful technique for the fabrication of 2DMs-based resistive switches onto rigid and flexible substrates.
Collapse
Affiliation(s)
- Zixing Peng
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Alessandro Grillo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Aniello Pelella
- Physics Department "E. R. Caianiello", University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Salerno, Italy
| | - Xuzhao Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, UK
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, UK
| | - Matthew Boyes
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Xiaoyu Xiao
- Department of Electrical and Electronics, University of Manchester, Oxford Road, Manchester, UK
| | - Minghao Zhao
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Jingjing Wang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| | - Zhirun Hu
- Department of Electrical and Electronics, University of Manchester, Oxford Road, Manchester, UK
| | - Antonio Di Bartolomeo
- Physics Department "E. R. Caianiello", University of Salerno, via Giovanni Paolo II n. 132, Fisciano, 84084, Salerno, Italy
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
14
|
Yang M, Cheng G, Mathur N, Singha R, Yuan F, Yao N, Schoop LM. Chemical exfoliation of 1-dimensional antiferromagnetic nanoribbons from a non-van der Waals material. NANOSCALE HORIZONS 2024; 9:479-486. [PMID: 38258388 DOI: 10.1039/d3nh00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As the demand for increasingly varied types of 1-dimensional (1D) materials grows, there is a greater need for new methods to synthesize these types of materials in a simple and scalable way. Chemical exfoliation is commonly used to make 2-dimensional (2D) materials, often in a way that is both straightforward and suitable for making larger quantities, yet this method has thus far been underutilized for synthesizing 1D materials. In the few instances when chemical exfoliation has been used to make 1D materials, the starting compound has been a van der Waals material, thus excluding any structures without these weak bonds inherently present. We demonstrate here that ionically bonded crystals can also be chemically exfoliated to 1D structures by choosing KFeS2 as an example. Using chemical exfoliation, antiferromagnetic 1D nanoribbons can be yielded in a single step. The nanoribbons are crystalline and closely resemble the parent compound both in structure and in intrinsic antiferromagnetism. The facile chemical exfoliation of an ionically bonded crystal shown in this work opens up opportunities for the synthesis of both magnetic and non-magnetic 1D nanomaterials from a greater variety of starting structures.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | | | - Nitish Mathur
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Ratnadwip Singha
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Fang Yuan
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| | - Nan Yao
- Princeton Materials Institute, Princeton, NJ 08544, USA
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Joung SY, Yim H, Lee D, Shim J, Yoo SY, Kim YH, Kim JS, Kim H, Hyeong SK, Kim J, Noh YY, Bae S, Park MJ, Choi JW, Lee CH. All-Solution-Processed High-Performance MoS 2 Thin-Film Transistors with a Quasi-2D Perovskite Oxide Dielectric. ACS NANO 2024; 18:1958-1968. [PMID: 38181200 DOI: 10.1021/acsnano.3c06972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Assembling solution-processed van der Waals (vdW) materials into thin films holds great promise for constructing large-scale, high-performance thin-film electronics, especially at low temperatures. While transition metal dichalcogenide thin films assembled in solution have shown potential as channel materials, fully solution-processed vdW electronics have not been achieved due to the absence of suitable dielectric materials and high-temperature processing. In this work, we report on all-solution-processedvdW thin-film transistors (TFTs) comprising molybdenum disulfides (MoS2) as the channel and Dion-Jacobson-phase perovskite oxides as the high-permittivity dielectric. The constituent layers are prepared as colloidal solutions through electrochemical exfoliation of bulk crystals, followed by sequential assembly into a semiconductor/dielectric heterostructure for TFT construction. Notably, all fabrication processes are carried out at temperatures below 250 °C. The fabricated MoS2 TFTs exhibit excellent device characteristics, including high mobility (>10 cm2 V-1 s-1) and an on/off ratio exceeding 106. Additionally, the use of a high-k dielectric allows for operation at low voltage (∼5 V) and leakage current (∼10-11 A), enabling low power consumption. Our demonstration of the low-temperature fabrication of high-performance TFTs presents a cost-effective and scalable approach for heterointegrated thin-film electronics.
Collapse
Affiliation(s)
- Su-Yeon Joung
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Haena Yim
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Donghun Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaehyung Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - So Yeon Yoo
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Seok Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunjun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Junhee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54896, Republic of Korea
| | - Myung Jin Park
- National Institute for Nanomaterials Technology, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Ji-Won Choi
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Nanomaterials Science and Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Gabbett C, Doolan L, Synnatschke K, Gambini L, Coleman E, Kelly AG, Liu S, Caffrey E, Munuera J, Murphy C, Sanvito S, Jones L, Coleman JN. Quantitative analysis of printed nanostructured networks using high-resolution 3D FIB-SEM nanotomography. Nat Commun 2024; 15:278. [PMID: 38177181 PMCID: PMC10767099 DOI: 10.1038/s41467-023-44450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Networks of solution-processed nanomaterials are becoming increasingly important across applications in electronics, sensing and energy storage/generation. Although the physical properties of these devices are often completely dominated by network morphology, the network structure itself remains difficult to interrogate. Here, we utilise focused ion beam - scanning electron microscopy nanotomography (FIB-SEM-NT) to quantitatively characterise the morphology of printed nanostructured networks and their devices using nanometre-resolution 3D images. The influence of nanosheet/nanowire size on network structure in printed films of graphene, WS2 and silver nanosheets (AgNSs), as well as networks of silver nanowires (AgNWs), is investigated. We present a comprehensive toolkit to extract morphological characteristics including network porosity, tortuosity, specific surface area, pore dimensions and nanosheet orientation, which we link to network resistivity. By extending this technique to interrogate the structure and interfaces within printed vertical heterostacks, we demonstrate the potential of this technique for device characterisation and optimisation.
Collapse
Affiliation(s)
- Cian Gabbett
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Kevin Synnatschke
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Laura Gambini
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Emmet Coleman
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Adam G Kelly
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Shixin Liu
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Eoin Caffrey
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/ Leopoldo Calvo Sotelo, 18, 33007, Oviedo, Asturias, Spain
| | - Catriona Murphy
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Stefano Sanvito
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Lewys Jones
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
18
|
Liao L, Kovalska E, Regner J, Song Q, Sofer Z. Two-Dimensional Van Der Waals Thin Film and Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303638. [PMID: 37731156 DOI: 10.1002/smll.202303638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/07/2023] [Indexed: 09/22/2023]
Abstract
In the rapidly evolving field of thin-film electronics, the emergence of large-area flexible and wearable devices has been a significant milestone. Although organic semiconductor thin films, which can be manufactured through solution processing, have been identified, their utility is often undermined by their poor stability and low carrier mobility under ambient conditions. However, inorganic nanomaterials can be solution-processed and demonstrate outstanding intrinsic properties and structural stability. In particular, a series of two-dimensional (2D) nanosheet/nanoparticle materials have been shown to form stable colloids in their respective solvents. However, the integration of these 2D nanomaterials into continuous large-area thin with precise control of layer thickness and lattice orientation still remains a significant challenge. This review paper undertakes a detailed analysis of van der Waals thin films, derived from 2D materials, in the advancement of thin-film electronics and optoelectronic devices. The superior intrinsic properties and structural stability of inorganic nanomaterials are highlighted, which can be solution-processed and underscor the importance of solution-based processing, establishing it as a cornerstone strategy for scalable electronic and optoelectronic applications. A comprehensive exploration of the challenges and opportunities associated with the utilization of 2D materials for the next generation of thin-film electronics and optoelectronic devices is presented.
Collapse
Affiliation(s)
- Liping Liao
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Evgeniya Kovalska
- Faculty of Environment, Science and Economy, Department of Engineering, Exeter, EX4 4QF, UK
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| | - Qunliang Song
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Czech Republic
| |
Collapse
|
19
|
Ren X, Qiu F, Deng W, Fang X, Wu Y, Yu S, Liu X, Grigorian S, Shi J, Jie J, Zhang X, Zhang X. Topology-Mediated Molecule Nucleation Anchoring Enables Inkjet Printing of Organic Semiconducting Single Crystals for High-Performance Printed Electronics. ACS NANO 2023; 17:25175-25184. [PMID: 38055464 DOI: 10.1021/acsnano.3c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Printable organic semiconducting single crystals (OSSCs) offer tantalizing opportunities for next-generation wearable electronics, but their development has been plagued by a long-standing yet inherent problem─spatially uncontrolled and stochastic nucleation events─which usually causes the formation of polycrystalline films and hence limited performance. Here, we report a convenient approach to precisely manipulate the elusive molecule nucleation process for high-throughput inkjet printing of OSSCs with record-high mobility. By engineering curvature of the contact line with a teardrop-shaped micropattern, molecule nucleation is elegantly anchored at the vertex of the topological structure, enabling formation of a single nucleus for the subsequent growth of OSSCs. Using this approach, we achieve patterned growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystals, yielding a breakthrough for an organic field-effect transistor array with a high average mobility of 12.5 cm2 V-1 s-1. These findings not only provide keen insights into controlling molecule nucleation kinetics but also offer opportunities for high-performance printed electronics.
Collapse
Affiliation(s)
- Xiaobin Ren
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fengquan Qiu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaochen Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiming Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Shengyu Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyue Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Souren Grigorian
- Department of Physics, University of Siegen, Siegen 57072, Germany
| | - Jialin Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
20
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
21
|
Baek S, Jeong S, Ban HW, Ryu J, Kim Y, Gu DH, Son C, Yoon TS, Lee J, Son JS. Nanoscale Vertical Resolution in Optical Printing of Inorganic Nanoparticles. ACS NANO 2023. [PMID: 38044586 DOI: 10.1021/acsnano.3c09787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Direct optical printing of functional inorganics shows tremendous potential as it enables the creation of intricate two-dimensional (2D) patterns and affordable design and production of various devices. Although there have been recent advancements in printing processes using short-wavelength light or pulsed lasers, the precise control of the vertical thickness in printed 3D structures has received little attention. This control is vital to the diverse functionalities of inorganic thin films and their devices, as they rely heavily on their thicknesses. This lack of research is attributed to the technical intricacy and complexity involved in the lithographic processes. Herein, we present a generalized optical 3D printing process for inorganic nanoparticles using maskless digital light processing. We develop a range of photocurable inorganic nanoparticle inks encompassing metals, semiconductors, and oxides, combined with photolinkable ligands and photoacid generators, enabling the direct solidification of nanoparticles in the ink medium. Our process creates complex and large-area patterns with a vertical resolution of ∼50 nm, producing 50-nm-thick 2D films and several micrometer-thick 3D architectures with no layer height difference via layer-by-layer deposition. Through fabrication and operation of multilayered switching devices with Au electrodes and Ag-organic resistive layers, the feasibility of our process for cost-effective manufacturing of multilayered devices is demonstrated.
Collapse
Affiliation(s)
- Seongheon Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sanggyun Jeong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyeong Woo Ban
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiyeon Ryu
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoonkyum Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Da Hwi Gu
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Changil Son
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Sik Yoon
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jiseok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Gyeongsangbuk-do, 37673, Republic of Korea
| |
Collapse
|
22
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Liu S, Carey T, Munuera J, Synnatschke K, Kaur H, Coleman E, Doolan L, Coleman JN. Solution-Processed Heterojunction Photodiodes Based on WSe 2 Nanosheet Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304735. [PMID: 37735147 DOI: 10.1002/smll.202304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Solution-processed photodetectors incorporating liquid-phase-exfoliated transition metal dichalcogenide nanosheets are widely reported. However, previous studies mainly focus on the fabrication of photoconductors, rather than photodiodes which tend to be based on heterojunctions and are harder to fabricate. Especially, there are rare reports on introducing commonly used transport layers into heterojunctions based on nanosheet networks. In this study, a reliable solution-processing method is reported to fabricate heterojunction diodes with tungsten selenide (WSe2 ) nanosheets as the optical absorbing material and PEDOT: PSS and ZnO as injection/transport-layer materials. By varying the transport layer combinations, the obtained heterojunctions show rectification ratios of up to ≈104 at ±1 V in the dark, without relying on heavily doped silicon substrates. Upon illumination, the heterojunction can be operated in both photoconductor and photodiode modes and displays self-powered behaviors at zero bias.
Collapse
Affiliation(s)
- Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
- Department of Physics, Faculty of Sciences, University of Oviedo, C/Leopoldo Calvo Sotelo, 18 Oviedo, Asturias, 33007, Spain
| | - Kevin Synnatschke
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Emmet Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College, Dublin 2, Ireland
| |
Collapse
|
24
|
Rangnekar SV, Sangwan VK, Jin M, Khalaj M, Szydłowska BM, Dasgupta A, Kuo L, Kurtz HE, Marks TJ, Hersam MC. Electroluminescence from Megasonically Solution-Processed MoS 2 Nanosheet Films. ACS NANO 2023; 17:17516-17526. [PMID: 37606956 DOI: 10.1021/acsnano.3c06034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to their superior optoelectronic properties, monolayer two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for electroluminescent devices. However, challenges in isolating optoelectronically active TMD monolayers using scalable liquid phase exfoliation have precluded electroluminescence in large-area, solution-processed TMD films. Here, we overcome these limitations and demonstrate electroluminescence from molybdenum disulfide (MoS2) nanosheet films by employing a monolayer-rich MoS2 ink produced by electrochemical intercalation and megasonic exfoliation. Characteristic monolayer MoS2 photoluminescence and electroluminescence spectral peaks at 1.88-1.90 eV are observed in megasonicated MoS2 films, with the emission intensity increasing with film thickness over the range 10-70 nm. Furthermore, employing a vertical light-emitting capacitor architecture enables uniform electroluminescence in large-area devices. These results indicate that megasonically exfoliated MoS2 monolayers retain their direct bandgap character in electrically percolating thin films even following multistep solution processing. Overall, this work establishes megasonicated MoS2 inks as an additive manufacturing platform for flexible, patterned, and miniaturized light sources that can likely be expanded to other TMD semiconductors.
Collapse
Affiliation(s)
- Sonal V Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mengru Jin
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Maryam Khalaj
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Beata M Szydłowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Anushka Dasgupta
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lidia Kuo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heather E Kurtz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
25
|
Azzaroni O, Piccinini E, Fenoy G, Marmisollé W, Ariga K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. NANOTECHNOLOGY 2023; 34:472001. [PMID: 37567153 DOI: 10.1088/1361-6528/acef26] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
The layer-by-layer (LbL) technique has been proven to be one of the most versatile approaches in order to fabricate functional nanofilms. The use of simple and inexpensive procedures as well as the possibility to incorporate a very wide range of materials through different interactions have driven its application in a wide range of fields. On the other hand, field-effect transistors (FETs) are certainly among the most important elements in electronics. The ability to modulate the flowing current between a source and a drain electrode via the voltage applied to the gate electrode endow these devices to switch or amplify electronic signals, being vital in all of our everyday electronic devices. In this topical review, we highlight different research efforts to engineer field-effect transistors using the LbL assembly approach. We firstly discuss on the engineering of the channel material of transistors via the LbL technique. Next, the deposition of dielectric materials through this approach is reviewed, allowing the development of high-performance electronic components. Finally, the application of the LbL approach to fabricate FETs-based biosensing devices is also discussed, as well as the improvement of the transistor's interfacial sensitivity by the engineering of the semiconductor with polyelectrolyte multilayers.
Collapse
Affiliation(s)
- Omar Azzaroni
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Gonzalo Fenoy
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímica Teóricas y Aplicadas (INIFTA)-Universidad Nacional de La Plata-CONICET-Diagonal 113 y 64 (1900), Argentina
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0825, Japan
| |
Collapse
|
26
|
Wang S, Xue J, Xu D, He J, Dai Y, Xia T, Huang Y, He Q, Duan X, Lin Z. Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals. Nat Protoc 2023; 18:2814-2837. [PMID: 37525001 DOI: 10.1038/s41596-023-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/01/2023] [Indexed: 08/02/2023]
Abstract
Electrochemical molecular intercalation of layered semiconducting crystals with organic cations followed by ultrasonic exfoliation has proven to be an effective approach to producing a rich family of organic/inorganic hybrid superlattices and high-quality, solution-processable 2D semiconductors. A traditional method for exfoliating 2D crystals relies on the intercalation of inorganic alkali metal cations. The organic cations (e.g., alkyl chain-substituted quaternary ammonium cations) are much larger than their inorganic counterparts, and the bulky molecular structure endows distinct intercalation and exfoliation chemistry, as well as molecular tunability. By using this protocol, many layered 2D crystals (including graphene, black phosphorus and versatile metal chalcogenides) can be electrochemically intercalated with organic quaternary alkylammonium cations. Subsequent solution-phase exfoliation of the intercalated compounds is realized by regular bath sonication for a short period (5-30 min) to produce free-standing, thin 2D nanosheets. It is also possible to graft additional ligands on the nanosheet surface. The thickness of the exfoliated nanosheets can be measured by using atomic force microscopy and Raman spectroscopy. Modifying the chemical structure and geometrical configuration of alkylammonium cations results in different exfoliation behavior and a family of versatile organic/inorganic hybrid superlattices with tunable physical/chemical properties. The whole protocol takes ~6 h for the successful production of stable, ultrathin 2D nanosheet dispersion in solution and another 11 h for depositing thin films and transferring them onto an arbitrary surface. This protocol does not require expertise beyond basic electrochemistry knowledge and conventional colloidal nanocrystal synthesis and processing.
Collapse
Affiliation(s)
- Shengqi Wang
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Junying Xue
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Dong Xu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jing He
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Tingyi Xia
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Qureshi A, Niazi JH. Graphene-interfaced flexible and stretchable micro-nano electrodes: from fabrication to sweat glucose detection. MATERIALS HORIZONS 2023; 10:1580-1607. [PMID: 36880340 DOI: 10.1039/d2mh01517j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flexible and stretchable wearable electronic devices have received tremendous attention for their non-invasive and personal health monitoring applications. These devices have been fabricated by integrating flexible substrates and graphene nanostructures for non-invasive detection of physiological risk biomarkers from human bodily fluids, such as sweat, and monitoring of human physical motion tracking parameters. The extraordinary properties of graphene nanostructures in fully integrated wearable devices have enabled improved sensitivity, electronic readouts, signal conditioning and communication, energy harvesting from power sources through electrode design and patterning, and graphene surface modification or treatment. This review explores advances made toward the fabrication of graphene-interfaced wearable sensors, flexible and stretchable conductive graphene electrodes, as well as their potential applications in electrochemical sensors and field-effect-transistors (FETs) with special emphasis on monitoring sweat biomarkers, mainly in glucose-sensing applications. The review emphasizes flexible wearable sweat sensors and provides various approaches thus far employed for the fabrication of graphene-enabled conductive and stretchable micro-nano electrodes, such as photolithography, electron-beam evaporation, laser-induced graphene designing, ink printing, chemical-synthesis and graphene surface modification. It further explores existing graphene-interfaced flexible wearable electronic devices utilized for sweat glucose sensing, and their technological potential for non-invasive health monitoring applications.
Collapse
Affiliation(s)
- Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
28
|
Zhu K, Tao Y, Clark DE, Hong W, Li CW. Solution-Phase Synthesis of Vanadium Intercalated 1T'-WS 2 with Tunable Electronic Properties. NANO LETTERS 2023; 23:4471-4478. [PMID: 37155184 DOI: 10.1021/acs.nanolett.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Metal ion intercalation into Group VI transition metal dichalcogenides enables control over their carrier transport properties. In this work, we demonstrate a low-temperature, solution-phase synthetic method to intercalate cationic vanadium complexes into bulk WS2. Vanadium intercalation expands the interlayer spacing from 6.2 to 14.2 Å and stabilizes the 1T' phase of WS2. Kelvin-probe force microscopy measurements indicate that vanadium binding in the van der Waals gap causes an increase in the Fermi level of 1T'-WS2 by 80 meV due to hybridization of vanadium 3d orbitals with the conduction band of the TMD. As a result, the carrier type switches from p-type to n-type, and carrier mobility increases by an order of magnitude relative to the Li-intercalated precursor. Both the conductivity and thermal activation barrier for carrier transport are readily tuned by varying the concentration of VCl3 during the cation-exchange reaction.
Collapse
Affiliation(s)
- Kuixin Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiyin Tao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniel E Clark
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Schiettecatte P, Singh S, Zhou P, Hens Z. The Dynamic Interaction of Surfactants with Colloidal Molybdenum Disulfide Nanosheets Calls for Thermodynamic Stabilization by Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6568-6579. [PMID: 37095622 DOI: 10.1021/acs.langmuir.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down liquid-phase exfoliation (LPE) and bottom-up hot-injection synthesis are scalable methods to produce colloids of two-dimensional (2D) van der Waals (vdW) solids. Generally thought off as two entirely different fields, we show that similar stabilization mechanisms apply to colloids of molybdenum disulfide (MoS2) produced by both methods. By screening the colloidal stability of MoS2 produced in a hot-injection synthesis in a wide range of solvents, we observe that colloidal stability can be understood based on solution thermodynamics, wherein matching the solubility parameter of solvent and nanomaterial maximizes colloidal stability. Identical to MoS2 produced through LPE, optimal solvents to disperse MoS2 produced from the bottom-up have similar solubility parameters of ≈22 MPa1/2 and include aromatic solvents with polar functionalities, such as o-dichlorobenzene, and polar aprotic solvents, such as N,N-dimethylformamide. We further complemented our findings by nuclear magnetic resonance (NMR) spectrscopy, highlighting that organic surfactants, such as oleylamine and oleic acid, have a minimal affinity toward the nanocrystal surface and engage in a highly dynamic adsorption/desorption equilibrium. We thus conclude that hot injection yields MoS2 colloids with comparable surfaces as those produced by LPE. These similarities might offer the prospect of using established procedures developed for LPE nanomaterials to postprocess colloidally synthesized dispersions of 2D colloids as processable inks.
Collapse
Affiliation(s)
- Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
| | - Shalini Singh
- Department of Chemical Sciences, Unviersity of Limerick, Limerick V94T9PX, Ireland
| | - Pengshang Zhou
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
- Jiangnan University, Wuxi 214122, China
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, Ghent 9000, Belgium
- Center for Nano and Biophotonics, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
30
|
Ippolito S, Urban F, Zheng W, Mazzarisi O, Valentini C, Kelly AG, Gali SM, Bonn M, Beljonne D, Corberi F, Coleman JN, Wang HI, Samorì P. Unveiling Charge-Transport Mechanisms in Electronic Devices Based on Defect-Engineered MoS 2 Covalent Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211157. [PMID: 36648210 DOI: 10.1002/adma.202211157] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Device performance of solution-processed 2D semiconductors in printed electronics has been limited so far by structural defects and high interflake junction resistance. Covalently interconnected networks of transition metal dichalcogenides potentially represent an efficient strategy to overcome both limitations simultaneously. Yet, the charge-transport properties in such systems have not been systematically researched. Here, the charge-transport mechanisms of printed devices based on covalent MoS2 networks are unveiled via multiscale analysis, comparing the effects of aromatic versus aliphatic dithiolated linkers. Temperature-dependent electrical measurements reveal hopping as the dominant transport mechanism: aliphatic systems lead to 3D variable range hopping, unlike the nearest neighbor hopping observed for aromatic linkers. The novel analysis based on percolation theory attributes the superior performance of devices functionalized with π-conjugated molecules to the improved interflake electronic connectivity and formation of additional percolation paths, as further corroborated by density functional calculations. Valuable guidelines for harnessing the charge-transport properties in MoS2 devices based on covalent networks are provided.
Collapse
Affiliation(s)
- Stefano Ippolito
- ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Francesca Urban
- ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Onofrio Mazzarisi
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany
| | - Cataldo Valentini
- ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Adam G Kelly
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2, D02 K8N4, Ireland
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Federico Corberi
- Department of Physics, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Jonathan N Coleman
- School of Physics, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), Trinity College Dublin, Dublin 2, D02 K8N4, Ireland
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paolo Samorì
- ISIS UMR 7006, Université de Strasbourg, CNRS, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
31
|
Kassem O, Pimpolari L, Dun C, Polyushkin DK, Zarattini M, Dimaggio E, Chen L, Basso G, Parenti F, Urban JJ, Mueller T, Fiori G, Casiraghi C. Water-based 2-dimensional anatase TiO 2 inks for printed diodes and transistors. NANOSCALE 2023; 15:5689-5695. [PMID: 36880645 PMCID: PMC10035403 DOI: 10.1039/d2nr05786g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
2-Dimensional (2D) materials are attracting strong interest in printed electronics because of their unique properties and easy processability, enabling the fabrication of devices with low cost and mass scalable methods such as inkjet printing. For the fabrication of fully printed devices, it is of fundamental importance to develop a printable dielectric ink, providing good insulation and the ability to withstand large electric fields. Hexagonal boron nitride (h-BN) is typically used as a dielectric in printed devices. However, the h-BN film thickness is usually above 1 μm, hence limiting the use of h-BN in low-voltage applications. Furthermore, the h-BN ink is composed of nanosheets with broad lateral size and thickness distributions, due to the use of liquid-phase exfoliation (LPE). In this work, we investigate anatase TiO2 nanosheets (TiO2-NS), produced by a mass scalable bottom-up approach. We formulate the TiO2-NS into a water-based and printable solvent and demonstrate the use of the material with sub-micron thickness in printed diodes and transistors, hence validating the strong potential of TiO2-NS as a dielectric for printed electronics.
Collapse
Affiliation(s)
- Omar Kassem
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK.
| | - Lorenzo Pimpolari
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa 56122, Italy
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Dmitry K Polyushkin
- Institute of Photonics, Vienna University of Technology, Vienna, 1040, Austria
| | - Marco Zarattini
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK.
| | - Elisabetta Dimaggio
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa 56122, Italy
| | - Liming Chen
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK.
| | - Giovanni Basso
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa 56122, Italy
| | - Federico Parenti
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa 56122, Italy
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Thomas Mueller
- Institute of Photonics, Vienna University of Technology, Vienna, 1040, Austria
| | - Gianluca Fiori
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Pisa 56122, Italy
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL UK.
| |
Collapse
|
32
|
Carey T, Cassidy O, Synnatschke K, Caffrey E, Garcia J, Liu S, Kaur H, Kelly AG, Munuera J, Gabbett C, O’Suilleabhain D, Coleman JN. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS NANO 2023; 17:2912-2922. [PMID: 36720070 PMCID: PMC9933598 DOI: 10.1021/acsnano.2c11319] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The investigation of high-mobility two-dimensional (2D) flakes beyond molybdenum disulfide (MoS2) will be necessary to create a library of high-mobility solution-processed networks that conform to substrates and remain functional over thousands of bending cycles. Here we report electrochemical exfoliation of large-aspect-ratio (>100) semiconducting flakes of tungsten diselenide (WSe2) and tungsten disulfide (WS2) as well as MoS2 as a comparison. We use Langmuir-Schaefer coating to achieve highly aligned and conformal flake networks, with minimal mesoporosity (∼2-5%), at low processing temperatures (120 °C) and without acid treatments. This allows us to fabricate electrochemical transistors in ambient air, achieving average mobilities of μMoS2 ≈ 11 cm2 V-1 s-1, μWS2 ≈ 9 cm2 V-1 s-1, and μWSe2 ≈ 2 cm2 V-1 s-1 with a current on/off ratios of Ion/Ioff ≈ 2.6 × 103, 3.4 × 103, and 4.2 × 104 for MoS2, WS2, and WSe2, respectively. Moreover, our transistors display threshold voltages near ∼0.4 V with subthreshold slopes as low as 182 mV/dec, which are essential factors in maintaining power efficiency and represent a 1 order of magnitude improvement in the state of the art. Furthermore, the performance of our WSe2 transistors is maintained on polyethylene terephthalate (PET) even after 1000 bending cycles at 1% strain.
Collapse
|
33
|
Zou T, Kim HJ, Kim S, Liu A, Choi MY, Jung H, Zhu H, You I, Reo Y, Lee WJ, Kim YS, Kim CJ, Noh YY. High-Performance Solution-Processed 2D P-Type WSe 2 Transistors and Circuits through Molecular Doping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208934. [PMID: 36418776 DOI: 10.1002/adma.202208934] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Semiconducting ink based on 2D single-crystal flakes with dangling-bond-free surfaces enables the implementation of high-performance devices on form-free substrates by cost-effective and scalable printing processes. However, the lack of solution-processed p-type 2D semiconducting inks with high mobility is an obstacle to the development of complementary integrated circuits. Here, a versatile strategy of doping with Br2 is reported to enhance the hole mobility by orders of magnitude for p-type transistors with 2D layered materials. Br2 -doped WSe2 transistors show a field-effect hole mobility of more than 27 cm2 V-1 s-1 , and a high on/off current ratio of ≈107 , and exhibits excellent operational stability during the on-off switching, cycling, and bias stressing testing. Moreover, complementary inverters composed of patterned p-type WSe2 and n-type MoS2 layered films are demonstrated with an ultra-high gain of 1280 under a driving voltage (VDD ) of 7 V. This work unveils the high potential of solution-processed 2D semiconductors with low-temperature processability for flexible devices and monolithic circuitry.
Collapse
Affiliation(s)
- Taoyu Zou
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Hyun-Jun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Soonhyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
- Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Ao Liu
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Min-Yeong Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Haksoon Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Huihui Zhu
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Insang You
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Youjin Reo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Woo-Ju Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Sung Kim
- Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Cheol-Joo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yong-Young Noh
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
34
|
Song J, Liu H, Zhao Z, Guo X, Liu CK, Griggs S, Marks A, Zhu Y, Law HKW, McCulloch I, Yan F. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. SCIENCE ADVANCES 2023; 9:eadd9627. [PMID: 36630506 PMCID: PMC9833676 DOI: 10.1126/sciadv.add9627] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical transistors (ECTs) have shown broad applications in bioelectronics and neuromorphic devices due to their high transconductance, low working voltage, and versatile device design. To further improve the device performance, semiconductor materials with both high carrier mobilities and large capacitances in electrolytes are needed. Here, we demonstrate ECTs based on highly oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs). The ion-conductive vertical nanopores formed within the 2D c-MOFs films lead to the most convenient ion transfer in the bulk and high volumetric capacitance, endowing the devices with fast speeds and ultrahigh transconductance. Ultraflexible device arrays are successfully used for wearable on-skin recording of electrocardiogram (ECG) signals along different directions, which can provide various waveforms comparable with those of multilead ECG measurement systems for monitoring heart conditions. These results indicate that 2D c-MOFs are excellent semiconductor materials for high-performance ECTs with promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Chun-ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| |
Collapse
|
35
|
van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev 2023; 123:271-326. [PMID: 36563316 DOI: 10.1021/acs.chemrev.2c00456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc oxide is an extensively studied semiconductor with a wide band gap in the near-UV. Its many interesting properties have found use in optics, electronics, catalysis, sensing, as well as biomedicine and microbiology. In the nanoscale regime the functional properties of ZnO can be precisely tuned by manipulating its size, shape, chemical composition (doping), and surface states. In this review, we focus on the colloidal synthesis of ZnO nanocrystals (NCs) and provide a critical analysis of the synthetic methods currently available for preparing ZnO colloids. First, we outline key thermodynamic considerations for the nucleation and growth of colloidal nanoparticles, including an analysis of different reaction methodologies and of the role of dopant ions on nanoparticle formation. We then comprehensively review and discuss the literature on ZnO NC systems, including reactions in polar solvents that traditionally occur at low temperatures upon addition of a base, and high temperature reactions in organic, nonpolar solvents. A specific section is dedicated to doped NCs, highlighting both synthetic aspects and structure-property relationships. The versatility of these methods to achieve morphological and compositional control in ZnO is explicated. We then showcase some of the key applications of ZnO NCs, both as suspended colloids and as deposited coatings on supporting substrates. Finally, a critical analysis of the current state of the art for ZnO colloidal NCs is presented along with existing challenges and future directions for the field.
Collapse
Affiliation(s)
- Joel van Embden
- School of Science, RMIT University, MelbourneVictoria, 3001, Australia
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131Padova, Italy.,Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie (ITCP), Engesserstrasse 20, 76131Karlsruhe, Germany
| | - Kevin R Kittilstved
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | | |
Collapse
|
36
|
Zhu Z, Kim JS, Moody MJ, Lauhon LJ. Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of Printed van der Waals Thin-Film Transistors. ACS NANO 2023; 17:575-586. [PMID: 36573755 DOI: 10.1021/acsnano.2c09527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inks based on two-dimensional (2D) materials could be used to tune the properties of printed electronics while maintaining compatibility with scalable manufacturing processes. However, a very wide range of performances have been reported in printed thin-film transistors in which the 2D channel material exhibits considerable variation in microstructure. The lack of quantitative physics-based relationships between film microstructure and transistor performance limits the codesign of exfoliation, sorting, and printing processes to inefficient empirical approaches. To rationally guide the development of 2D inks and related processing, we report a gate-dependent resistor network model that establishes distinct microstructure-performance relationships created by near-edge and intersheet resistances in printed van der Waals thin-film transistors. The model is calibrated by analyzing electrical output characteristics of model transistors consisting of overlapping 2D nanosheets with varied thicknesses that are mechanically exfoliated and transferred. Kelvin probe force microscopy analysis on the model transistors leads to the discovery that the nanosheet edges, not the intersheet resistance, limit transport due to their impact on charge carrier depletion and scattering. Our model suggests that when transport in a 2D material network is limited by the near-edge resistance, the optimum nanosheet thickness is dictated by a trade-off between charged impurity screening and gate screening, and the film mobilities are more sensitive to variations in printed nanosheet density. Removal of edge states can enable the realization of higher mobilities with thinner nanosheets due to reduced junction resistances and reduced gate screening. Our analysis of the influence of nanosheet edges on the effective film mobility not only examines the prospects of extant exfoliation methods to achieve the optimum microstructure but also provides important perspectives on processes that are essential to maximizing printed film performance.
Collapse
Affiliation(s)
- Zhehao Zhu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Joon-Seok Kim
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Michael J Moody
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
37
|
Pereira GC. Novel Nanotechnology-Driven Prototypes for AI-Enriched Implanted Prosthetics Following Organ Failure. Methods Mol Biol 2023; 2575:195-237. [PMID: 36301477 DOI: 10.1007/978-1-0716-2716-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meeting medical challenges posed by global burdens is proven to be of primary interest. One example is the COVID-19 epidemic that humankind is currently experiencing, since around December 2019. Innovation is key to respond rapidly and effectively to sanitary and health emergencies, when human lives are severely threatened. In this scenery, medical devices that can be rapidly launched in the market and manufactured at scale are crucial for saving lives. One example is a lifesaving respiratory device launched in about 10 days (Mercedes F1 team's new device based on continuous positive airway pressure devices) and rapidly approved by international agencies responsible for assuring drug and medical devices safety, in response to the COVID-19 burden. Remarkably, it is the first time in history that mankind observes disease spread reaching such high proportions, globally, in such short time scale. However, while this epidemic had, in March 2020, reached the critical figures of about 38,000 deaths and c. 738,000 infected, organ donation and transplantation patients are suffering for years, accounting for an increasing number of affected, annually. These patients are invisible for the general public. Therefore, this chapter approaches the organ donation and transplantation burden, proposing effective solutions to leverage the suffering, improving life quality of patients enduring several underlying issues, from hemodialysis complications and critical organ failure to lacking compatible donors. This, on the basis of technology repurposing, to speed up approval processes followed by international agencies responsible for assuring drug and medical devices safety, while adding innovative methods to existing technology and reducing invasiveness.
Collapse
|
38
|
Can TTT, Choi WS. Improved Electrical Properties of EHD Jet-Patterned MoS 2 Thin-Film Transistors with Printed Ag Electrodes on a High-k Dielectric. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:194. [PMID: 36616104 PMCID: PMC9824249 DOI: 10.3390/nano13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Electrohydrodynamic (EHD) jet printing is known as a versatile method to print a wide viscosity range of materials that are impossible to print by conventional inkjet printing. Hence, with the understanding of the benefits of EHD jet printing, solution-based MoS2 and a high-viscosity Ag paste were EHD jet-printed for electronic applications in this work. In particular, printed MoS2 TFTs with a patterned Ag source and drain were successfully fabricated with low-k silica (SiO2) and high-k alumina (Al2O3) gate dielectrics, respectively. Eventually, the devices based on Al2O3 exhibited much better electrical properties compared to the ones based on SiO2. Interestingly, an improvement of around one order of magnitude in hysteresis was achieved for devices after changing the gate insulator from SiO2 to Al2O3. In effect, the results of this work for the printed MoS2 and the printed Ag source and drains for TFTs demonstrate a new approach for jet printing in the fabrication of electronic devices.
Collapse
|
39
|
Fluorescent Carbon Quantum Dots for Effective Tumor Diagnosis: A Comprehensive Review. BIOMEDICAL ENGINEERING ADVANCES 2023. [DOI: 10.1016/j.bea.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
40
|
Zhang P, Fu Y, Zhang X, Zhang X, Li BW, Nan CW. Flexible high-performance microcapacitors enabled by all-printed two-dimensional nanosheets. Sci Bull (Beijing) 2022; 67:2541-2549. [PMID: 36604032 DOI: 10.1016/j.scib.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 12/10/2022]
Abstract
Chemically exfoliated nanosheets have exhibited great potential for applications in various electronic devices. Solution-based processing strategies such as inkjet printing provide a low-cost, environmentally friendly, and scalable route for the fabrication of flexible devices based on functional inks of two-dimensional nanosheets. In this study, chemically exfoliated high-k perovskite nanosheets (i.e., Ca2Nb3O10 and Ca2NaNb4O13) are well dispersed in appropriate solvents to prepare printable inks, and then, a series of microcapacitors with Ag and graphene electrodes are printed. The resulting microcapacitors, Ag/Ca2Nb3O10/Ag, graphene/Ca2Nb3O10/graphene, and graphene/Ca2NaNb4O13/graphene, demonstrate high capacitance densities of 20, 80, and 150 nF/cm2 and high dielectric constants of 26, 110, and 200, respectively. Such dielectric enhancement in the microcapacitors with graphene electrodes is possibly attributed to the dielectric/graphene interface. In addition, these microcapacitors also exhibit good insulating performance with a moderate electrical breakdown strength of approximately 1 MV/cm, excellent flexibility, and thermal stability up to 200 ℃. This work demonstrates the potential of high-k perovskite nanosheets for additive manufacturing of flexible high-performance dielectric capacitors.
Collapse
Affiliation(s)
- Pengxiang Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Yushui Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xihua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China; State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Cui Y, Zhu J, Tong H, Zou R. Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. iScience 2022; 26:105824. [PMID: 36632064 PMCID: PMC9826899 DOI: 10.1016/j.isci.2022.105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MXene, 2D material, can be synthesized as single flake with 1 nm thickness by using phase change material, polymer and graphene oxide. Meanwhile, the MXene and its composite derivative materials have been applied widely in electro-to-thermal conversion, photo-to-thermal conversion, thermal energy storage, and 3D printing ink aspects. Furthermore, the forward-looking utilization of the MXene nanomaterials in hydrogen energy storage, radio frequency field application, CO2 capture and remediation of environmental pollution, is explored. This article reveals that the efficiencies of the photo-to-thermal and electro-to-thermal energy conversions with the MXene nanomaterials could reach about 80-90%. In parallel, it is demonstrated that the MXene printed ink has the excellent rheological property and high viscosity and stability of liquid, which contribute to arranging the multi-dimensional architectures with functional materials and controlling the flow rate of the MXene ink in the range of 0.03-0.15 mL/min for speedily printing and various printing structures.
Collapse
Affiliation(s)
- Yuanlong Cui
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| | - Jie Zhu
- Department of Architecture and Built Environment, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Hui Tong
- School of Architecture and Urban Planning, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China
| | - Ran Zou
- School of Management Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan 250101, China,Corresponding author
| |
Collapse
|
42
|
Grillo A, Peng Z, Pelella A, Di Bartolomeo A, Casiraghi C. Etch and Print: Graphene-Based Diodes for Silicon Technology. ACS NANO 2022; 17:1533-1540. [PMID: 36475589 PMCID: PMC9878974 DOI: 10.1021/acsnano.2c10684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The graphene-silicon junction is one of the simplest conceivable interfaces in graphene-integrated semiconductor technology that can lead to the development of future generation of electronic and optoelectronic devices. However, graphene's integration is currently expensive and time-consuming and shows several challenges in terms of large-scale device fabrication, effectively preventing the possibility of implementing this technology into industrial processes. Here, we show a simple and cost-effective fabrication technique, based on inkjet printing, for the realization of printed graphene-silicon rectifying devices. The printed graphene-silicon diodes show an ON/OFF ratio higher than 3 orders of magnitude and a significant photovoltaic effect, resulting in a fill factor of ∼40% and a photocurrent efficiency of ∼2%, making the devices suitable for both electronic and optoelectronic applications. Finally, we demonstrate large-area pixeled photodetectors and compatibility with back-end-of-line fabrication processes.
Collapse
Affiliation(s)
- Alessandro Grillo
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Zixing Peng
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| | - Aniello Pelella
- Physics
Department “E. R. Caianiello”, University of Salerno, via Giovanni Paolo II n. 132, Fisciano84084, Salerno, Italy
| | - Antonio Di Bartolomeo
- Physics
Department “E. R. Caianiello”, University of Salerno, via Giovanni Paolo II n. 132, Fisciano84084, Salerno, Italy
| | - Cinzia Casiraghi
- Department
of Chemistry, University of Manchester, ManchesterM13 9PL, United Kingdom
| |
Collapse
|
43
|
Liu S, Wang J, Shao J, Ouyang D, Zhang W, Liu S, Li Y, Zhai T. Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200734. [PMID: 35501143 DOI: 10.1002/adma.202200734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
With the reduction of feature size and increase of integration density, traditional 3D semiconductors are unable to meet the future requirements of chip integration. The current semiconductor fabrication technologies are approaching their physical limits based on Moore's law. 2D materials such as graphene, transitional metal dichalcogenides, etc., are of great promise for future memory, logic, and photonic devices due to their unique and excellent properties. To prompt 2D materials and devices from the laboratory research stage to the industrial integrated circuit-level, it is necessary to develop advanced nanopatterning methods to obtain high-quality, wafer-scale, and patterned 2D products. Herein, the recent development of nanopatterning technologies, particularly toward realizing large-scale practical application of 2D materials is reviewed. Based on the technological progress, the unique requirement and advances of the 2D integration process for logic, memory, and optoelectronic devices are further summarized. Finally, the opportunities and challenges of nanopatterning technologies of 2D materials for future integrated chip devices are prospected.
Collapse
Affiliation(s)
- Shenghong Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiefan Shao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
44
|
Li L, Yu X, Lin Z, Cai Z, Cao Y, Kong W, Xiang Z, Gu Z, Xing X, Duan X, Song Y. Interface Capture Effect Printing Atomic-Thick 2D Semiconductor Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207392. [PMID: 36128664 DOI: 10.1002/adma.202207392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/17/2022] [Indexed: 06/15/2023]
Abstract
2D semiconductor crystals offer the opportunity to further extend Moore's law to the atomic scale. For practical and low-cost electronic applications, directly printing devices on substrates is advantageous compared to conventional microfabrication techniques that utilize expensive photolithography, etching, and vacuum-metallization processes. However, the currently printed 2D transistors are plagued by unsatisfactory electrical performance, thick semiconductor layers, and low device density. Herein, a facile and scalable 2D semiconductor printing strategy is demonstrated utilizing the interface capture effect and hyperdispersed 2D nanosheet ink to fabricate high-quality and atomic-thick semiconductor thin-film arrays without additional surfactants. Printed robust thin-film transistors using 2D semiconductors (e.g., MoS2 ) and 2D conductive electrodes (e.g., graphene) exhibit high electrical performance, including a carrier mobility of up to 6.7 cm2 V-1 s-1 and an on/off ratio of 2 × 106 at 25 °C. As a proof of concept, 2D transistors are printed with a density of ≈47 000 devices per square centimeter. In addition, this method can be applied to many other 2D materials, such as NbSe2 , Bi2 Se3 , and black phosphorus, for printing diverse high-quality thin films. Thus, the strategy of printable 2D thin-film transistors provides a scalable pathway for the facile manufacturing of high-performance electronics at an affordable cost.
Collapse
Affiliation(s)
- Lihong Li
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xiaoxia Yu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhaoyang Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhenren Cai
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Yawei Cao
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Wei Kong
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Zhongyuan Xiang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Zhengkun Gu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
- Micro/nano Circuit Printing Preparation Laboratory, Zhongguancun Open Laboratory, Zhongguancun Science Park, Beijing, 100190, P. R. China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100190, P. R. China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing, 100190, P. R. China
| |
Collapse
|
45
|
Zheng W, Saiz F, Shen Y, Zhu K, Liu Y, McAleese C, Conran B, Wang X, Lanza M. Defect-Free Metal Deposition on 2D Materials via Inkjet Printing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104138. [PMID: 34734445 DOI: 10.1002/adma.202104138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
2D materials have many outstanding properties that make them attractive for the fabrication of electronic devices, such as high conductivity, flexibility, and transparency. However, integrating 2D materials in commercial devices and circuits is challenging because their structure and properties can be damaged during the fabrication process. Recent studies have demonstrated that standard metal deposition techniques (like electron beam evaporation and sputtering) significantly damage the atomic structure of 2D materials. Here it is shown that the deposition of metal via inkjet printing technology does not produce any observable damage in the atomic structure of ultrathin 2D materials, and it can keep a sharp interface. These conclusions are supported by abundant data obtained via atomistic simulations, transmission electron microscopy, nanochemical metrology, and device characterization in a probe station. The results are important for the understanding of inkjet printing technology applied to 2D materials, and they could contribute to the better design and optimization of electronic devices and circuits.
Collapse
Affiliation(s)
- Wenwen Zheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Fernan Saiz
- Institute of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yaqing Shen
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Kaichen Zhu
- MIND, Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Martí i Franquès 1, Barcelona, E-08028, Spain
| | - Yingwen Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Clifford McAleese
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Ben Conran
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Xiaochen Wang
- Aixtron Ltd, Anderson Road, Buckingway Business Park, Swavesy, CB24 4FQ, UK
| | - Mario Lanza
- Institute of Material Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Smith BN, Meikle H, Doherty JL, Lu S, Tutoni G, Becker ML, Therien MJ, Franklin AD. Ionic dielectrics for fully printed carbon nanotube transistors: impact of composition and induced stresses. NANOSCALE 2022; 14:16845-16856. [PMID: 36331392 PMCID: PMC9719746 DOI: 10.1039/d2nr04206a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Printed carbon nanotube thin-film transistors (CNT-TFTs) are candidates for flexible electronics with printability on a wide range of substrates. Among the layers comprising a CNT-TFT, the gate dielectric has proven most difficult to additively print owing to challenges in film uniformity, thickness, and post-processing requirements. Printed ionic dielectrics show promise for addressing these issues and yielding devices that operate at low voltages thanks to their high-capacitance electric double layers. However, the printing of ionic dielectrics in their various compositions is not well understood, nor is the impact of certain stresses on these materials. In this work, we studied three compositionally distinct ionic dielectrics in fully printed CNT-TFTs: the polar-fluorinated polymer elastomer PVDF-HFP; an ion gel consisting of triblock polymer PS-PMMA-PS and ionic liquid EMIM-TFSI; and crystalline nanocellulose (CNC) with a salt concentration of 0.05%. Although ion gel has been thoroughly studied, e-PVDF-HFP and CNC printing are relatively new and this study provides insights into their ink formulation, print processing, and performance as gate dielectrics. Using a consistent aerosol jet printing approach, each ionic dielectric was printed into similar CNT-TFTs, allowing for direct comparison through extensive characterization, including mechanical and electrical stress tests. The ionic dielectrics were found to have distinct operational dependencies based on their compositional and ionic attributes. Overall, the results reveal a number of trade-offs that must be managed when selecting a printable ionic dielectric, with CNC showing the strongest performance for low-voltage operation but the ion gel and elastomer exhibiting better stability under bias and mechanical stresses.
Collapse
Affiliation(s)
- Brittany N Smith
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Hope Meikle
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - James L Doherty
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Shiheng Lu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | - Gianna Tutoni
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | | | | - Aaron D Franklin
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
47
|
Zhang X, Zhang Y, Yu H, Zhao H, Cao Z, Zhang Z, Zhang Y. Van der Waals-Interface-Dominated All-2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207966. [PMID: 36353883 DOI: 10.1002/adma.202207966] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The interface is the device. As the feature size rapidly shrinks, silicon-based electronic devices are facing multiple challenges of material performance decrease and interface quality degradation. Ultrathin 2D materials are considered as potential candidates in future electronics by their atomically flat surfaces and excellent immunity to short-channel effects. Moreover, due to naturally terminated surfaces and weak van der Waals (vdW) interactions between layers, 2D materials can be freely stacked without the lattice matching limit to form high-quality heterostructure interfaces with arbitrary components and twist angles. Controlled interlayer band alignment and optimized interfacial carrier behavior allow all-2D electronics based on 2D vdW interfaces to exhibit more comprehensive functionality and better performance. Especially, achieving the same computing capacity of multiple conventional devices with small footprint all-2D devices is considered to be the key development direction of future electronics. Herein, the unique properties of all-2D vdW interfaces and their construction methods are systematically reviewed and the main performance contributions of different vdW interfaces in 2D electronics are summarized, respectively. Finally, the recent progress and challenges for all-2D vdW electronics are discussed, and how to improve the compatibility of 2D material devices with silicon-based industrial technology is pointed out as a critical challenge.
Collapse
Affiliation(s)
- Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanzhe Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hang Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihong Cao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
48
|
Liu S, Ding EX, Kelly AG, Doolan L, Gabbett C, Kaur H, Munuera J, Carey T, Garcia J, Coleman JN. Solution processed, vertically stacked hetero-structured diodes based on liquid-exfoliated WS 2 nanosheets: from electrode-limited to bulk-limited behavior. NANOSCALE 2022; 14:15679-15690. [PMID: 36263752 DOI: 10.1039/d2nr04196k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vertically stacked metal-semiconductor-metal heterostructures, based on liquid-processed nanomaterials, hold great potential for various printed electronic applications. Here we describe the fabrication of such devices by spray-coating semiconducting tungsten disulfide (WS2) nanosheets onto indium tin oxide (ITO) bottom electrodes, followed by spraying single-walled carbon nanotubes (SWNTs) as the top electrode. Depending on the formulation of the SWNTs ink, we could fabricate either Ohmic or Schottky contacts at the WS2/SWNTs interface. Using isopropanol-dispersed SWNTs led to Ohmic contacts and bulk-limited devices, characterized by out-of-plane conductivities of ∼10-4 S m-1. However, when aqueous SWNTs inks were used, rectification was observed, due to the formation of a doping-induced Schottky barrier at the WS2/SWNTs interface. For thin WS2 layers, such devices were characterized by a barrier height of ∼0.56 eV. However, increasing the WS2 film thickness led to increased series resistance, leading to a change-over from electrode-limited to bulk-limited behavior at a transition thickness of ∼2.6 μm. This work demonstrates that Ohmic/Schottky behavior is tunable and lays the foundation for fabricating large-area 2D nanosheet-based solution-deposited devices and stacks.
Collapse
Affiliation(s)
- Shixin Liu
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Er-Xiong Ding
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Adam G Kelly
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Luke Doolan
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Cian Gabbett
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Harneet Kaur
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Jose Munuera
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Tian Carey
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - James Garcia
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| | - Jonathan N Coleman
- School of Physics, CRANN & AMBER Research Centres, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
49
|
Wang S, Liu X, Xu M, Liu L, Yang D, Zhou P. Two-dimensional devices and integration towards the silicon lines. NATURE MATERIALS 2022; 21:1225-1239. [PMID: 36284239 DOI: 10.1038/s41563-022-01383-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Despite technical efforts and upgrades, advances in complementary metal-oxide-semiconductor circuits have become unsustainable in the face of inherent silicon limits. New materials are being sought to compensate for silicon deficiencies, and two-dimensional materials are considered promising candidates due to their atomically thin structures and exotic physical properties. However, a potentially applicable method for incorporating two-dimensional materials into silicon platforms remains to be illustrated. Here we try to bridge two-dimensional materials and silicon technology, from integrated devices to monolithic 'on-silicon' (silicon as the substrate) and 'with-silicon' (silicon as a functional component) circuits, and discuss the corresponding requirements for material synthesis, device design and circuitry integration. Finally, we summarize the role played by two-dimensional materials in the silicon-dominated semiconductor industry and suggest the way forward, as well as the technologies that are expected to become mainstream in the near future.
Collapse
Affiliation(s)
- Shuiyuan Wang
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China
| | - Xiaoxian Liu
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China
| | - Mingsheng Xu
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics & Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Liwei Liu
- Frontier Institute of Chip and System & Qizhi Institute, Fudan University, Shanghai, China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics & Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Peng Zhou
- Shanghai Key Lab for Future Computing Hardware and System, School of Microelectronics, Fudan University, Shanghai, China.
- Frontier Institute of Chip and System & Qizhi Institute, Fudan University, Shanghai, China.
- Hubei Yangtze Memory Laboratories, Wuhan, China.
| |
Collapse
|
50
|
Liu A, Zhu H, Zou T, Reo Y, Ryu GS, Noh YY. Evaporated nanometer chalcogenide films for scalable high-performance complementary electronics. Nat Commun 2022; 13:6372. [PMID: 36289230 PMCID: PMC9605968 DOI: 10.1038/s41467-022-34119-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The exploration of stable and high-mobility semiconductors that can be grown over a large area using cost-effective methods continues to attract the interest of the electronics community. However, many mainstream candidates are challenged by scarce and expensive components, manufacturing costs, low stability, and limitations of large-area growth. Herein, we report wafer-scale ultrathin (metal) chalcogenide semiconductors for high-performance complementary electronics using standard room temperature thermal evaporation. The n-type bismuth sulfide delivers an in-situ transition from a conductor to a high-mobility semiconductor after mild post-annealing with self-assembly phase conversion, achieving thin-film transistors with mobilities of over 10 cm2 V-1 s-1, on/off current ratios exceeding 108, and high stability. Complementary inverters are constructed in combination with p-channel tellurium device with hole mobilities of over 50 cm2 V-1 s-1, delivering remarkable voltage transfer characteristics with a high gain of 200. This work has laid the foundation for depositing scalable electronics in a simple and cost-effective manner, which is compatible with monolithic integration with commercial products such as organic light-emitting diodes.
Collapse
Affiliation(s)
- Ao Liu
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - Huihui Zhu
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - Taoyu Zou
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - Youjin Reo
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - Gi-Seong Ryu
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| | - Yong-Young Noh
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673 Republic of Korea
| |
Collapse
|