1
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
2
|
Zhao H, Huang X, Ma B, Jiang B, Jiang Z, Cai J. Productive Poplar Genotypes Exhibited Temporally Stable Low Stem Embolism Resistance and Hydraulic Resistance Segmentation at the Stem-Leaf Transition. PLANT, CELL & ENVIRONMENT 2025; 48:992-1004. [PMID: 39390757 DOI: 10.1111/pce.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Breeding tree genotypes that are both productive and drought-resistant is a primary goal in forestry. However, the relationships between plant hydraulics and yield at the genotype level, and their temporal stabilities, remain unclear. We selected six poplar genotypes from I-101 (Populus alba) × 84 K (P. alba × Popolus tremula var. glandulosa) for experiments in the first and fourth years after planting in a common garden. Measurements included stem embolism resistance, shoot hydraulic resistance and its partitioning between stems and leaves, vessel- and pit-level anatomy, leaf carbon acquisition capacity, carbon allocation to leaves, and aboveground biomass (yield proxy). Significant genetic variations in hydraulic properties and yield were found among genotypes in both years. Productive genotypes had wide vessels, large thin pit membranes, small pit apertures, and shallow pit chambers. Hydraulic resistance was negatively correlated with yield, enabling high stomatal conductance and assimilation rates. Productive genotypes allocated less aboveground carbon and hydraulic resistance to leaves. Temporally stable trade-offs between stem embolism resistance and yield, and between hydraulic segmentation and yield, were identified. These findings highlight the tight link between hydraulic function and yield and suggest that stable trade-offs may challenge breeding poplar genotypes that are both productive and drought-resistant.
Collapse
Affiliation(s)
- Han Zhao
- College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Huang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bolong Ma
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bo Jiang
- School of Information Science & Technology, Northwest University, Xi'an, China
| | - Zaimin Jiang
- College of Life Sciences, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| | - Jing Cai
- College of Forestry, Northwest A&F University, Yangling, China
- Qinling National Forest Ecosystem Research Station, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Jiao F, Xu X, Xue P, Gong H, Liu X, Liu J, Zhang K, Yang Y, Qiu J, Zou C. Land carbon sink function variation across bedrock types in Southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124030. [PMID: 39799770 DOI: 10.1016/j.jenvman.2025.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
Terrestrial ecosystem carbon sinks are a natural deposit that absorbs carbon from the atmosphere. A stable land carbon sink facilitates more reliable predictions of carbon sequestration under changing climate conditions. In contrast, a highly variable land carbon sink will introduce significant uncertainty into model predictions. Karst regions have attracted increasing attention due to their significant contribution to global land carbon sequestration capacity. However, understanding the stability of land carbon sinks and its driving factors in karst areas remains limited. This study focused on the world's largest karst zone, located in Southwest China (SWC), to assess the stability of land carbon sinks. By analyzing inter-annual variation (IAV) in net ecosystem productivity (NEP), we aimed to elucidate the spatial distribution of the stability of land carbon sinks and the dominant climatic drivers. We compared the stability of land carbon sinks across bedrocks, which were classified by carbonate content: non-karst, Discontinuous Carbonate Rocks (DCR), and Continuous Carbonate Rocks (CCR). Our findings showed that while land carbon sinks in karst bedrocks exhibited higher increased NEP rates than those in non-karst areas. Notably, we observed an inverse relationship between the rate and stability-regions with rapid land carbon sink enhancement were often characterized by instability, particularly in karst areas. Moreover, the drivers of the stability of land carbon sinks varied significantly between bedrock types. In non-karst regions, water availability was the primary factor influencing stability, whereas temperature was more dominant in karst regions. DCR regions showed lower stability due to the high sensitivity of land carbon sinks to temperature, while CCR regions experienced reduced stability linked to greater temperature variability. Our results highlight the need to consider the combined effects of bedrock type and climate factors on stability, offering valuable insights for managing and enhancing carbon sequestration capacity in a changing environment.
Collapse
Affiliation(s)
- Fusheng Jiao
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaojuan Xu
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China.
| | - Peng Xue
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Haibo Gong
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiang Liu
- Geography Department, Humboldt University Berlin, Berlin, 10099, Germany
| | - Jing Liu
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China
| | - Kun Zhang
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China
| | - Yue Yang
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China
| | - Jie Qiu
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China.
| | - Changxin Zou
- Nanjing Institute of Environmental Sciences (NIES), Ministry of Ecology and Environment (MEE), Nanjing, 210042, China
| |
Collapse
|
4
|
Brodribb TJ, Bourbia I. Deadly predictions in trees. TREE PHYSIOLOGY 2025; 45:tpae155. [PMID: 39658203 DOI: 10.1093/treephys/tpae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Affiliation(s)
- Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Australia
| |
Collapse
|
5
|
Costa GB, Oliveira GJS, Souza JP. Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species. JOURNAL OF PLANT RESEARCH 2025; 138:51-64. [PMID: 39585585 DOI: 10.1007/s10265-024-01598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Phenotypic plasticity may allow plant species to cope with environmental variability that influences plant growth and may limit the distribution of a species. The present study investigated the morphophysiology and phenotypic plasticity responses due to light and water variability of young Dimorphandra exaltata plants, an endemic threatened tree from the Atlantic Forest. After emergence, plants were grown in two light conditions: shading (70%) and full sun. At 160 days old, we measured chlorophyll a fluorescence, chlorophyll indices, and biomass allocation. Afterward, the plants were subdivided into two water regimes: irrigation vs suspension of irrigation. At 310 days old, morphophysiological measurements and stem water potential were taken. D. exaltata plants showed higher specific leaf area (SLA, 160 days old) and chlorophyll b (310 days old) under shading. Over time, plants under shading showed a decrease in SLA. Also, there was a decrease in the leaf area ratio in both light treatments and an increase in the phenotypic plasticity index. Even showing morphological adjustments to light and water deficit, the higher biomass allocation to roots at the expense of the aboveground part could impair the growth of young plants in understory areas. The phenotypic plasticity presented by D. exaltata does not guarantee that the species can withstand severe disturbance while maintaining normal development. Therefore, it is important to understand the effects of ecosystem fragmentation and water variation and their impacts on the maintenance of species in their areas of occurrence, especially endangered species such as D. exaltata.
Collapse
Affiliation(s)
- Gabriela Brito Costa
- Institute of Biology and Health Sciences, Federal University of Viçosa, Campus Florestal, Florestal, 35690-000, Brazil.
| | - Gustavo Júnio Santos Oliveira
- Institute of Biology and Health Sciences, Federal University of Viçosa, Campus Florestal, Florestal, 35690-000, Brazil
| | - João Paulo Souza
- Institute of Biology and Health Sciences, Federal University of Viçosa, Campus Florestal, Florestal, 35690-000, Brazil
| |
Collapse
|
6
|
Zailaa J, Scoffoni C, Brodersen CR. Stomatal closure as a driver of minimum leaf conductance declines at high temperature and vapor pressure deficit in Quercus. PLANT PHYSIOLOGY 2024; 197:kiae551. [PMID: 39418086 DOI: 10.1093/plphys/kiae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Rising global temperatures and vapor pressure deficits (VPDs) are increasing plant water demand and becoming major drivers of large-scale plant mortality. Controlling transient leaf water loss after stomatal closure (minimum stomatal conductance [gmin]) is recognized as a key trait determining how long plants survive during soil drought. Yet, substantial uncertainty remains regarding how gmin responds to elevated temperatures and VPD and the underlying mechanisms. We measured gmin in 24 Quercus species from temperate and Mediterranean climates to determine whether gmin was sensitive to a coupled temperature and VPD increase. We also explored mechanistic links to phenology, climate, evolutionary history, and leaf anatomy. We found that gmin in all species exhibited a nonlinear negative temperature and VPD dependence. At 25 °C (VPD = 2.2 kPa), gmin varied from 1.19 to 8.09 mmol m-2 s-1 across species but converged to 0.57 ± 0.06 mmol m-2 s-1 at 45 °C (VPD = 6.6 kPa). In a subset of species, the effect of temperature and VPD on gmin was reversible and linked to the degree of stomatal closure, which was greater at 45 °C than at 25 °C. Our results show that gmin is dependent on temperature and VPD, is highly conserved in Quercus species, and is linked to leaf anatomy and stomatal behavior.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA 90032, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Haverroth EJ, Da-Silva CJ, Taggart M, Oliveira LA, Cardoso AA. Shoot hydraulic impairments induced by root waterlogging: Parallels and contrasts with drought. PLANT PHYSIOLOGY 2024; 197:kiae336. [PMID: 38865443 PMCID: PMC11663564 DOI: 10.1093/plphys/kiae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024]
Abstract
Soil waterlogging and drought correspond to contrasting water extremes resulting in plant dehydration. Dehydration in response to waterlogging occurs due to impairments to root water transport, but no previous study has addressed whether limitations to water transport occur beyond this organ or whether dehydration alone can explain shoot impairments. Using common bean (Phaseolus vulgaris) as a model species, we report that waterlogging also impairs water transport in leaves and stems. During the very first hours of waterlogging, leaves transiently dehydrated to water potentials close to the turgor loss point, possibly driving rapid stomatal closure and partially explaining the decline in leaf hydraulic conductance. The initial decline in leaf hydraulic conductance (occurring within 24 h), however, surpassed the levels predicted to occur based solely on dehydration. Constraints to leaf water transport resulted in a hydraulic disconnection between leaves and stems, furthering leaf dehydration during waterlogging and after soil drainage. As leaves dehydrated later during waterlogging, leaf embolism initiated and extensive embolism levels amplified leaf damage. The hydraulic disconnection between leaves and stems prevented stem water potentials from declining below the threshold for critical embolism levels in response to waterlogging. This allowed plants to survive waterlogging and soil drainage. In summary, leaf and stem dehydration are central in defining plant impairments in response to waterlogging, thus creating similarities between waterlogging and drought. Yet, our findings point to the existence of additional players (likely chemicals) partially controlling the early declines in leaf hydraulic conductance and contributing to leaf damage during waterlogging.
Collapse
Affiliation(s)
- Eduardo J Haverroth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cristiane J Da-Silva
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew Taggart
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Leonardo A Oliveira
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Knighton J, Sanchez-Martinez P, Anderegg L. A global dataset of tree hydraulic and structural traits imputed from phylogenetic relationships. Sci Data 2024; 11:1336. [PMID: 39695137 PMCID: PMC11655663 DOI: 10.1038/s41597-024-04254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
We present a dataset of plant hydraulic and structural traits imputed for 55,779 tree species based on TRY plant trait dataset observations and phylogenetic relationships. We collected plant trait values for maximum stomatal conductance (gsMAX), xylem pressure at 12%, 50%, and 88% conductance loss (P12, P50, P88), maximum observed rooting depth (rdMAX), photosynthetic Water Use Efficiency (WUE), maximum plant height (height), Specific Leaf Area (SLA), and leaf Nitrogen content (LeafN). We demonstrated that each of these traits exhibited remarkably large phylogenetic signals across all land plants. Based on the strength of this signal we then developed random forest (RF) models trained on TRY trait data to impute the traits of previously unstudied tree species using Phylogenetic Eigenvector Maps. We quantified imputed trait uncertainty by fitting RF model test dataset residuals to skew exponential power distributions accounting for heteroscedasticity, demonstrating encouraging lack of biases in the imputed dataset. The resulting dataset of imputed trait values can support global analyses of plant trait variations and species-level parameterization of earth systems models.
Collapse
Affiliation(s)
- James Knighton
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, Connecticut, USA.
| | | | - Leander Anderegg
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
9
|
Coelho-Silva D, Guimarães ZTM, Podadera DS, Modolo GS, Rossi S, Ferreira MJ, Marcati CR. Hydraulic and structural traits of trees across light gradients in the Amazon secondary forest. TREE PHYSIOLOGY 2024; 44:tpae146. [PMID: 39541424 DOI: 10.1093/treephys/tpae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Amazonian species are generally unable to adapt to long drought periods, indicating a low capacity to adjust their hydraulic traits. Secondary forests account for 20% of forest cover in the Amazon, making natural regeneration species crucial under climate change scenarios. In this study, we compared the hydraulic traits of five species, including non-pioneers (Bertholletia excelsa Bonpl., Carapa guianensis Aubl., Hymenaea courbaril L.) and pioneers [Cedrela fissilis Vell., Tabebuia rosea (Bertol.) Bertero ex A.DC.], across light conditions (understory, intermediate, gap) in a 22-year-old secondary forest in Central Amazon, Brazil. Twenty-five saplings were planted and monitored in 3 plots × 5 blocks. Five years after the plantation, we assessed growth, wood density, leaf water potential at predawn and midday, xylem embolism resistance (P50), and hydraulic safety margins (HSM). The leaf water potential ranged from -2.9 to 0 MPa. The non-pioneer species C. guianensis and H. courbaril exhibited the lowest P50 (-4.06 MPa), indicating higher embolism resistance, whereas the pioneer T. rosea had the highest P50 (-1.25 MPa), indicating lower resistance. The HSM varied from -1.60 to 3.26 MPa, with lower values in gap conditions during the dry period (-1.60 MPa), especially affecting pioneer species. Wood density was influenced by both light and species type, with non-pioneers showing a generally higher density, with H. courbaril reaching 0.75 g cm-3 in the understory while the pioneer T. rosea showed the lowest density (0.27 g cm-3). These results highlight that light conditions affect hydraulic traits differently across species strategies, especially during early growth. Non-pioneer, slow-growing native species appear more resilient to light variation, making them suitable for future plantations aimed at climate adaptation in secondary forests.
Collapse
Affiliation(s)
- Debora Coelho-Silva
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| | - Zilza T M Guimarães
- Coordination of Environmental Dynamics, National Institute of Amazon Research, Manaus, Amazonas 69060-731, Brazil
| | - Diego S Podadera
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| | - Guilherme S Modolo
- Coordination of Environmental Dynamics, National Institute of Amazon Research, Manaus, Amazonas 69060-731, Brazil
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Marciel J Ferreira
- Department of Forest Sciences, Federal University of Amazonas, Manaus, Amazonas 69077-000, Brazil
| | - Carmen R Marcati
- Department of Forest Science, Soil and Environment, School of Agricultural Sciences, Botucatu, São Paulo State University, São Paulo 01049-010, Brazil
| |
Collapse
|
10
|
Gao B, Tao F, Wang M, Huang X, Lu Y, Jia Y, Zhang X, Li W. Ordered rise and disordered fall: dynamic changes of membrane lipids during girdling-induced tree mortality in Populus yunnanensis. PLANTA 2024; 261:13. [PMID: 39666183 DOI: 10.1007/s00425-024-04582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Understanding the mechanisms behind drought-induced tree mortality is crucial for predicting the impact of global climate change on forests. We studied the mechanism at the cellular level in Populus yunnanensis by profiling membrane lipid molecules in leaves, branch phloem, top and bottom trunk phloem under trunk-girdling-induced drought conditions. We found that both lipid composition and content changed, depending on the tree's tissue positions and the progression of the girdling effect. The compositional changes were similar between the leaves and branches and between the top and bottom trunk phloem. The lipid content initially increased and then decreased until complete degradation, with similar fold increases between leaves and branch phloem, and between top and bottom trunk phloem. However, the fold increase in the former two was significantly lower than that in the latter two. The lipid composition remained stable during the increase but changed during the decrease. The decrease in phloem lipids occurred later than in leaves and simultaneously across positions. Our findings provide novel insights into the mechanisms of water deficit and carbohydrate allocation in drought-induced tree mortality, and suggest that the onset of phloem lipid degradation could serve as a threshold for predicting tree mortality.
Collapse
Affiliation(s)
- Bo Gao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Faqing Tao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Mulan Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, Yunnan Minzu University, Kunming, 650504, China
| | - Xing Huang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yuanxue Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xudong Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Weiqi Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
11
|
Harrison Day BL, Johnson KM, Tonet V, Bourbia I, Blackman CJ, Brodribb TJ. A one-way ticket: Wheat roots do not functionally refill xylem emboli following rehydration. PLANT PHYSIOLOGY 2024; 196:2362-2373. [PMID: 39297870 PMCID: PMC11638109 DOI: 10.1093/plphys/kiae407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 12/14/2024]
Abstract
Understanding xylem embolism spread in roots is essential for predicting the loss of function across root systems during drought. However, the lasting relevance of root embolism to plant recovery depends on whether roots can refill xylem emboli and resume function after rehydration. Using MicroCT and optical and dye staining methods, we investigated embolism repair in rehydrated intact roots of wheat (Triticum aestivum L. 'Krichauff') exposed to a severe water deficit of -3.5 MPa, known to cause approximately 30% total root network embolism in this species. Air emboli in the xylem vessels of intact roots remained clearly observable using MicroCT after overnight rehydration. This result was verified by xylem staining of the root system and optical quantification of emboli, both of which indicated a lack of functional root xylem recovery 60 h following soil re-saturation. The absence of root xylem refilling in wheat has substantial implications for how we understand plant recovery after drought. Our findings suggest that xylem embolism causes irreversible damage to the soil-root hydraulic connection in affected parts of the root network.
Collapse
Affiliation(s)
| | - Kate M Johnson
- Plant Ecology Research Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, 8930 Birmensdorf, Switzerland
| | - Vanessa Tonet
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris J Blackman
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
12
|
Mackay DS. Future tree mortality is impossible to observe, but a new model reveals why tropical tree traits matter more than climate change variability for predicting hydraulic failure. THE NEW PHYTOLOGIST 2024; 244:2115-2117. [PMID: 39136132 DOI: 10.1111/nph.20049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
This article is a Commentary on Robbins et al. (2024), 244: 2239–2250.
Collapse
Affiliation(s)
- D Scott Mackay
- Department of Geography, University at Buffalo, 105 Wilkeson Quadrangle, Buffalo, NY, 14261, USA
- Department of Environment and Sustainability, University at Buffalo, 373 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|
13
|
Haynes RS, Lucieer A, Brodribb TJ, Tonet V, Cimoli E. Predicting key water stress indicators of Eucalyptus viminalis and Callitris rhomboidea using high-resolution visible to short-wave infrared spectroscopy. PLANT, CELL & ENVIRONMENT 2024; 47:4992-5006. [PMID: 39119823 DOI: 10.1111/pce.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drought is one of the main factors contributing to tree mortality worldwide and drought events are set to become more frequent and intense in the face of a changing climate. Quantifying water stress of forests is crucial in predicting and understanding their vulnerability to drought-induced mortality. Here, we explore the use of high-resolution spectroscopy in predicting water stress indicators of two native Australian tree species, Callitris rhomboidea and Eucalyptus viminalis. Specific spectral features and indices derived from leaf-level spectroscopy were assessed as potential proxies to predict leaf water potential (Ψleaf), equivalent water thickness (EWT) and fuel moisture content (FMC) in a dedicated laboratory experiment. New spectral indices were identified that enabled very high confidence linear prediction of Ψleaf for both species (R2 > 0.85) with predictive capacity increasing when accounting for a breakpoint in the relationships using segmented regression (E. viminalis, R2 > 0.89; C. rhomboidea, R2 > 0.87). EWT and FMC were also linearly predicted to a high accuracy (E. viminalis, R2 > 0.90; C. rhomboidea, R2 > 0.80). This study highlights the potential of spectroscopy as a tool for predicting measures of plant water noninvasively, enabling broader applications for monitoring and managing plant water stress.
Collapse
Affiliation(s)
- Ryan S Haynes
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Arko Lucieer
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Vanessa Tonet
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Emiliano Cimoli
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
- Insitute of Marine and Antarctic Studies (IMAS), University of Tasmania, Battery Point, Tasmania, Australia
| |
Collapse
|
14
|
Liu J, Huang J, Peng S, Xiong D. Rewatering after drought: Unravelling the drought thresholds and function recovery-limiting factors in maize leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5457-5469. [PMID: 39205650 DOI: 10.1111/pce.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Drought and subsequent rewatering are common in agriculture, where recovery from mild droughts is easier than from severe ones. The specific drought threshold and factors limiting recovery are under-researched. This study subjected maize plants to varying drought degrees before rewatering, and measuring plant water status, gas exchange, hydraulic conductance, hormone levels, and cellular damage throughout. We discovered that stomatal reopening in plants was inhibited with leaf water potentials below about -1.7 MPa, hindering postdrought photosynthetic recovery. Neither hydraulic loss nor abscisic acid (ABA) content was the factor inhibited stomatal reopening on the second day following moderate drought stress and rewatering. But stomatal reopening was significantly correlated to the interaction between hydraulic signals and ABA content under severe drought. Extended drought led to leaf death at about -2.8 MPa or 57% relative water content, influenced by reduced rehydration capacity, not hydraulic failure. The lethal threshold remained relatively constant across leaf stages, but the recoverable safety margin (RSM), that is, the water potential difference between stomatal closure and recovery capacity loss, significantly decreased with leaf aging due to delayed stomatal closure during drought. Our findings indicate hydraulic failure alone does not cause maize leaf death, highlighting the importance of RSM in future research.
Collapse
Affiliation(s)
- Junzhou Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Hesse BD, Hikino K, Gebhardt T, Buchhart C, Dervishi V, Goisser M, Pretzsch H, Häberle KH, Grams TEE. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175805. [PMID: 39197757 DOI: 10.1016/j.scitotenv.2024.175805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Forests globally are experiencing severe droughts, leading to significant reductions in growth, crown dieback and even tree mortality. The ability of forest ecosystems to acclimate to prolonged and repeated droughts is critical for their survival with ongoing climate change. In a five-year throughfall exclusion experiment, we investigated the long-term physiological and morphological acclimation of mature Norway spruce (Picea abies [L.] KARST.) and European beech (Fagus sylvatica L.) to repeated summer drought at the leaf, shoot and whole tree level. Throughout the drought period, spruce reduced their total water use by 70 % to only 4-9 L per day and tree, while beech was less affected with about 30 % reduction of water use. During the first two summers, spruce achieved this by closing their stomata by up to 80 %. Additionally, from the second drought summer onwards, spruce produced shorter shoots and needles, resulting in a stepwise reduction of total leaf area of over 50 % by the end of the experiment. Surprisingly, no premature leaf loss was observed. This reduction in leaf area allowed a gradual increase in stomatal conductance. After the five-year drought experiment, water consumption per leaf area was the same as in the controls, while the total water consumption of spruce was still reduced. In contrast, beech showed no significant reduction in whole-tree leaf area, but nevertheless reduced water use by up to 50 % by stomatal closure. If the restriction of transpiration by stomatal closure is sufficient to ensure survival of Norway spruce during the first drought summers, then the slow but steady reduction in leaf area will ensure successful acclimation of water use, leading to reduced physiological drought stress and long-term survival. Neighboring beech appeared to benefit from the water-saving strategy of spruce by using the excess water.
Collapse
Affiliation(s)
- Benjamin D Hesse
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; University of Natural Resources and Life Sciences, Department of Integrative Biology and Biodiversity Research, Institute of Botany, Gregor-Mendel-Straße 33, 1180 Vienna, Austria.
| | - Kyohsuke Hikino
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeå, Sweden
| | - Timo Gebhardt
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Forest and Agroforest Systems, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Claudia Buchhart
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Vjosa Dervishi
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany; Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Michael Goisser
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Hans Pretzsch
- Technical University of Munich, School of Life Sciences, Chair for Forest Growth and Yield Science, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| | - Karl-Heinz Häberle
- Technical University of Munich, School of Life Sciences, Chair of Restoration Ecology, Emil-Ramann-Str. 6, 85354 Freising, Germany
| | - Thorsten E E Grams
- Technical University of Munich, School of Life Sciences, Land Surface-Atmosphere Interactions, Ecophysiology of Plants, Hans-Carl-von-Carlowitz Platz 2, 85354 Freising, Germany
| |
Collapse
|
16
|
Wang Y, Wu Y, Bao Q, Shi H, Zhang Y. Integrating Physiology, Transcriptome, and Metabolome Analyses Reveals the Drought Response in Two Quinoa Cultivars with Contrasting Drought Tolerance. Int J Mol Sci 2024; 25:12188. [PMID: 39596254 PMCID: PMC11594460 DOI: 10.3390/ijms252212188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is an annual broadleaf plant belonging to the Amaranthaceae family. It is a nutritious food crop and is considered to be drought-tolerant, but drought is still one of the most important abiotic stress factors limiting its yield. Quinoa responses to drought are related to drought intensity and genotype. This study used two different drought-responsive quinoa cultivars, LL1 (drought-tolerant) and ZK1 (drought-sensitive), to reveal the important mechanisms of drought response in quinoa by combining physiological, transcriptomic, and metabolomic analyses. The physiological analysis indicated that Chla/Chlb might be important for drought tolerance in quinoa. A total of 1756 and 764 differentially expressed genes (DEGs) were identified in LL1 and ZK1, respectively. GO (Gene Ontology) enrichment analysis identified 52 common GO terms, but response to abscisic acid (GO:0009737) and response to osmotic stress (GO:0006970) were only enriched in LL1. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed that glycerophospholipid metabolism (ko00564) and cysteine and methionine metabolism (ko00270) ranked at the top of the list in both cultivars. A total of 1844 metabolites were identified by metabolomic analysis. "Lipids and lipid-like" molecules had the highest proportions. The DEMs in LL1 and ZK1 were mainly categorized 6 and 4 Human Metabolome Database (HMDB) superclasses, respectively. KEGG analysis revealed that the 'α-linolenic acid metabolism' was enriched in both LL1 and ZK1. Joint KEGG analysis also revealed that the 'α-linolenic acid metabolism' pathway was enriched by both the DEGs and DEMs of LL1. There were 17 DEGs and 8 DEMs enriched in this pathway, and methyl jasmonate (MeJA) may play an important role in the drought response of quinoa. This study will provide information for the identification of drought resistance in quinoa, research on the molecular mechanism of drought resistance, and genetic breeding for drought resistance in quinoa.
Collapse
Affiliation(s)
- Yang Wang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
- College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Yang Wu
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| | - Qinghan Bao
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
- College of Life Sciences, Jilin Normal University, Siping 136000, China
| | - Huimin Shi
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| | - Yongping Zhang
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (Y.W.); (Q.B.)
| |
Collapse
|
17
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
18
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
19
|
Wang C, Xia S, Yu X, Wen L. Timing mowing for maximal energy gain - Managing foraging habitat of wintering geese under extreme drought conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122360. [PMID: 39243644 DOI: 10.1016/j.jenvman.2024.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The availability of high-quality food resources is a critical determinant of wildlife fitness. Over the past two decades, phenological mismatch - the temporal misalignment between animals' peak nutrient demand and optimal resource availability - has emerged as a significant conservation challenge. This issue is particularly worrisome for migratory birds, which must accumulate energy reserves to meet the elevated metabolic demands of migration between breeding and wintering grounds. In Poyang Lake, a crucial wintering ground along the East Asian-Australasian flyway, increasing asynchrony between vegetation growth and the migration of herbivorous waterbirds significantly impedes conservation efforts and presents a major management challenge for this Ramsar wetland. This study evaluates the efficacy of mowing, a grassland management measure, in regulating plant growth processes and restoring food resources for geese. In-situ mowing experiments were conducted with varying timings in Carex wet meadows, the primary foraging habitats of geese. Optimal mowing times were identified, and the maximum goose carrying capacity was assessed by comparing Carex growth and nutritional dynamics with goose dietary requirements. The results reveal that mowing effectively slows down the aging process of Carex, and protein content is identified as a critical limiting factor for geese foraging. Different mowing timings extend the suitable foraging period by 11-25 days. Estimates suggest varying carrying capacities with different mowing timings, supporting goose populations ranging from 133 to 2,046 in Changhuchi Lake during wintering. The optimal mowing window is early October, avoiding dates before late September and after late November. Moreover, multiple-stage mowing is recommended to accommodate different wintering stages. The study highlights mowing as a potential habitat restoration approach for goose conservation, effectively mitigating the challenges imposed by phenological mismatch directly and indirectly caused by anthropogenic activities.
Collapse
Affiliation(s)
- Chenxi Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shaoxia Xia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xiubo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Li Wen
- Science and Insights, Department of Climate Change, Energy, the Environment and Water, Parramatta, NSW, 2150, Australia.
| |
Collapse
|
20
|
Mateus NS, Perez-Martinez V, Lavres J, Tissue DT, Choat B. The double-edged sword of potassium and sodium fertilization in xylem embolism resistance of two Eucalyptus species under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5641-5654. [PMID: 38829345 DOI: 10.1093/jxb/erae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Sodium (Na+) is a beneficial element for most plants and may replace potassium (K+) in osmoregulatory process to a certain extent, increasing plant water use efficiency. Thus, understanding coordinated mechanisms underlying the combined use of K+ and Na+ in tree drought tolerance is a key challenge for forestry in dealing with productivity and water limitations. A pot experiment with three ratios of K/Na (K-supplied, partial K replacement by Na, and K-deficient plants) and two water regimes, well-watered (W+) and water-stressed (W-), was conducted on saplings of two Eucalyptus species with contrasting drought sensitivities. We evaluated the point of stomatal closure (Pgs90), xylem water potential at 12, 50, and 88% embolized xylem area (P12, P50, P88), hydraulic safety margin, leaf gas exchange (A, E, gs, and dark respiration), pre-dawn and midday leaf water potential (ΨPD and ΨMD), long-term water use efficiency (WUEL) and total dry mass. Partial K replacement by Na increased leaf gas exchange, WUEL, and total dry mass, while Pgs90, P12, P50, P88, and ΨMD decreased (were more negative), compared with plants exclusively supplied with K and K-deficient plants of both species. Fertilized plants had narrower hydraulic safety margins than K-deficient plants, indicating that these Eucalyptus species adopt the functional adaptive strategy of operating close to their hydraulic limits to maximize carbon uptake while increasing the risk of hydraulic failure under drought stress.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Victoria Perez-Martinez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Jose Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-Based Innovation, Hawkesbury Campus, Western Sydney University, Richmond, NSW, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
21
|
Wood JD, Detto M, Browne M, Kraft NJB, Konings AG, Fisher JB, Quetin GR, Trugman AT, Magney TS, Medeiros CD, Vinod N, Buckley TN, Sack L. The Ecosystem as Super-Organ/ism, Revisited: Scaling Hydraulics to Forests under Climate Change. Integr Comp Biol 2024; 64:424-440. [PMID: 38886119 DOI: 10.1093/icb/icae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth's ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.
Collapse
Affiliation(s)
- Jeffrey D Wood
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Marvin Browne
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, 473 Via Ortega, Stanford, CA 94305, USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA 92866, USA
| | - Gregory R Quetin
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, CA 93106, USA
| | - Troy S Magney
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Camila D Medeiros
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Nidhi Vinod
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Song X, Katabuchi M, Chase JM, Johnson DJ, Zhang W, Deng X, Cao M, Yang J. Drought tolerance and species abundance mediate dry season negative density dependence in a tropical forest. Ecology 2024; 105:e4382. [PMID: 39056489 DOI: 10.1002/ecy.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Conspecific negative density dependence (CNDD) is thought to be a key process in maintaining plant diversity. However, the strength of CNDD is highly variable in space and time as well as among species, and correlates of this variation that might help to understand and explain it remain largely unquantified. Using Bayesian hierarchical models, we took advantage of 10-year seedling monitoring data that were collected annually in every dry and rainy season in a seasonal tropical forest. We quantified the interspecific variation in the strength of CNDD and its temporal variation. We also examined potential correlates of this interspecific and temporal variation, including species functional traits (such as drought-tolerant traits, defense-related traits, and recourse acquisition traits) and species abundances. In the dry season, we found a negative relationship between the density of neighboring conspecific seedlings on seedling survival, while in the rainy season, there was a negative relationship between the density of neighboring conspecific adults on seedling survival. In addition, we found that interspecific variation in CNDD was related to drought-tolerant traits in the dry season but not in the rainy season. Across years, we found that drought-intolerant species suffer less CNDD during the dry seasons that have higher rainfall, whereas drought-tolerant species suffer less CNDD when the dry season has lower rainfall. We also found that rare species suffered stronger CNDD in the dry season. Overall, our study highlights that CNDD is highly variable among species and through time, necessitating a deeper appreciation of the environmental and functional contexts of CNDD and their interactions.
Collapse
Affiliation(s)
- Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Xiaobao Deng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
23
|
Yue X, Zhou H, Cao Y, Liao H, Lu X, Yu Z, Yuan W, Liu Z, Lei Y, Sitch S, Knauer J, Wang H. Large potential of strengthening the land carbon sink in China through anthropogenic interventions. Sci Bull (Beijing) 2024; 69:2622-2631. [PMID: 38955565 DOI: 10.1016/j.scib.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/04/2024]
Abstract
The terrestrial ecosystem in China mitigates 21%-45% of the national contemporary fossil fuel CO2 emissions every year. Maintaining and strengthening the land carbon sink is essential for reaching China's target of carbon neutrality. However, this sink is subject to large uncertainties due to the joint impacts of climate change, air pollution, and human activities. Here, we explore the potential of strengthening land carbon sink in China through anthropogenic interventions, including forestation, ozone reduction, and litter removal, taking advantage of a well-validated dynamic vegetation model and meteorological forcings from 16 climate models. Without anthropogenic interventions, considering Shared Socioeconomic Pathways (SSP) scenarios, the land sink is projected to be 0.26-0.56 Pg C a-1 at 2060, to which climate change contributes 0.06-0.13 Pg C a-1 and CO2 fertilization contributes 0.08-0.44 Pg C a-1 with the stronger effects for higher emission scenarios. With anthropogenic interventions, under a close-to-neutral emission scenario (SSP1-2.6), the land sink becomes 0.47-0.57 Pg C a-1 at 2060, including the contributions of 0.12 Pg C a-1 by conservative forestation, 0.07 Pg C a-1 by ozone pollution control, and 0.06-0.16 Pg C a-1 by 20% litter removal over planted forest. This sink can mitigate 90%-110% of the residue anthropogenic carbon emissions in 2060, providing a solid foundation for the carbon neutrality in China.
Collapse
Affiliation(s)
- Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Hao Zhou
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
| | - Yang Cao
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210013, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Xiaofei Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Zhen Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, NUIST, Nanjing 210044, China
| | - Wenping Yuan
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhu Liu
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Yadong Lei
- State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2751, Australia
| | - Huijun Wang
- Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, NUIST, Nanjing 210044, China
| |
Collapse
|
24
|
Hermann M, Wernli H, Röthlisberger M. Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes. Nat Commun 2024; 15:7022. [PMID: 39147789 PMCID: PMC11327300 DOI: 10.1038/s41467-024-51305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Summers with extremely high vapor pressure deficit contribute to crop losses, ecosystem damages, and wildfires. Here, we identify very rare summer vapor pressure deficit extremes globally in reanalysis data and climate model simulations, and quantify the contributions of temperature and atmospheric moisture anomalies to their intensity. The simulations agree with reanalysis data regarding these physical characteristics of historic vapor pressure deficit extremes, and show a +33/+28% increase in their intensity in the northern/southern mid-latitudes over this century. About half of this drastic increase in the magnitude of extreme vapor pressure deficit anomalies is due to climate warming, since this quantity depends exponentially on temperature. Further contributing factors are increasing temperature variability (e.g., in Europe) and the expansion of soil moisture-limited regions. This study shows that to avoid amplified impacts of future vapor pressure deficit extremes, ecosystems and crops must become more resilient not only to an increasing mean vapor pressure deficit, but additionally also to larger seasonal anomalies of this quantity.
Collapse
Affiliation(s)
- Mauro Hermann
- Institute for Atmospheric and Climate Science (IAC), ETH Zürich, CH-8092, Zurich, Switzerland.
- SRF Meteo, Swiss Radio and Television (SRF), CH-8052, Zurich, Switzerland.
| | - Heini Wernli
- Institute for Atmospheric and Climate Science (IAC), ETH Zürich, CH-8092, Zurich, Switzerland
| | - Matthias Röthlisberger
- Institute for Atmospheric and Climate Science (IAC), ETH Zürich, CH-8092, Zurich, Switzerland
- Swiss Mobiliar Insurance, CH-3001, Bern, Switzerland
| |
Collapse
|
25
|
Vukmirović A, Škvorc Ž, Bogdan S, Krstonošić D, Bogdan IK, Karažija T, Bačurin M, Brener M, Sever K. Photosynthetic Response to Phosphorus Fertilization in Drought-Stressed Common Beech and Sessile Oak from Different Provenances. PLANTS (BASEL, SWITZERLAND) 2024; 13:2270. [PMID: 39204706 PMCID: PMC11360473 DOI: 10.3390/plants13162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Increasingly frequent and severe droughts pose significant threats to forest ecosystems, particularly affecting photosynthesis, a crucial physiological process for plant growth and biomass production. This study investigates the impact of phosphorus fertilization on the photosynthesis of common beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). In a common garden experiment, saplings originating from two provenances (wetter KA and drier SB provenances) were exposed to regular watering and drought in interaction with moderate and high phosphorus concentrations in the growing substrate. Results indicated that drought significantly reduced pre-dawn leaf water potential (ΨPD), net photosynthesis (Anet), stomatal conductance (gs) and photosynthetic performance index (PIabs) in both species. Phosphorus fertilization had a negative impact on Anet and PIabs, thus exacerbating the negative impact of drought on photosynthetic efficiency, potentially due to excessive phosphorus absorption by saplings. Provenance differences were notable, with the KA provenance showing better drought resilience. This research highlights the complexity of nutrient-drought interactions and underscores the need for cautious application of fertilization strategies in reforestation efforts under changing climatic conditions.
Collapse
Affiliation(s)
- Antonia Vukmirović
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Saša Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Daniel Krstonošić
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Ida Katičić Bogdan
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Tomislav Karažija
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, HR-10000 Zagreb, Croatia
| | - Marko Bačurin
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Magdalena Brener
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| | - Krunoslav Sever
- Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, HR-10000 Zagreb, Croatia
| |
Collapse
|
26
|
Short Gianotti DJ, McColl KA, Feldman AF, Xu X, Entekhabi D. Two sub-annual timescales and coupling modes for terrestrial water and carbon cycles. GLOBAL CHANGE BIOLOGY 2024; 30:e17463. [PMID: 39120552 DOI: 10.1111/gcb.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) process understanding of plants and water and (b) our projections of long-term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models-two-dimensional linear models-and observation-based data from satellites, eddy covariance towers, weather stations, and machine-learning-derived products to determine the dominant sub-annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics-positively sloped tangent lines to a convex long-term mean-state curve-is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean-state pattern, and hypothesize that this may be due to lack of water-carbon feedbacks at daily scales.
Collapse
Affiliation(s)
- Daniel J Short Gianotti
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kaighin A McColl
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- John A Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Andrew F Feldman
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Earth System Science Interdisciplinary Center, University of Maryland, Greenbelt, Maryland, USA
| | - Xiangtao Xu
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Dara Entekhabi
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Vicente-Serrano SM, Juez C, Potopová V, Boincean B, Murphy C, Domínguez-Castro F, Eklundh L, Peña-Angulo D, Noguera I, Jin H, Conradt T, Garcia-Herrera R, Garrido-Perez JM, Barriopedro D, Gutiérrez JM, Iturbide M, Lorenzo-Lacruz J, Kenawy AE. Drought risk in Moldova under global warming and possible crop adaptation strategies. Ann N Y Acad Sci 2024; 1538:144-161. [PMID: 39086254 DOI: 10.1111/nyas.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
This study analyzes the relationship between drought processes and crop yields in Moldova, together with the effects of possible future climate change on crops. The severity of drought is analyzed over time in Moldova using the Standard Precipitation Index, the Standardized Precipitation Evapotranspiration Index, and their relationship with crop yields. In addition, rainfall variability and its relationship with crop yields are examined using spectral analysis and squared wavelet coherence. Observed station data (1950-2020 and 1850-2020), ERA5 reanalysis data (1950-2020), and climate model simulations (period 1970-2100) are used. Crop yield data (maize, sunflower, grape), data from experimental plots (wheat), and the Enhanced Vegetation Index from Moderate Resolution Imaging Spectroradiometer satellites were also used. Results show that although the severity of meteorological droughts has decreased in the last 170 years, the impact of precipitation deficits on different crop yields has increased, concurrent with a sharp increase in temperature, which negatively affected crop yields. Annual crops are now more vulnerable to natural rainfall variability and, in years characterized by rainfall deficits, the possibility of reductions in crop yield increases due to sharp increases in temperature. Projections reveal a pessimistic outlook in the absence of adaptation, highlighting the urgency of developing new agricultural management strategies.
Collapse
Affiliation(s)
- Sergio M Vicente-Serrano
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Carmelo Juez
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Vera Potopová
- Department of Agroecology and Crop Production Czech Republic, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Boris Boincean
- Selectia Research Institute of Field Crops, Balti, Moldova
| | - Conor Murphy
- Irish Climate Analysis and Research UnitS (ICARUS), Department of Geography, Maynooth University, Maynooth, Ireland
| | - Fernando Domínguez-Castro
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
| | - Lars Eklundh
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | | | - Ivan Noguera
- Centre of Ecology and Hydrology (CEH), Wallingford, UK
| | - Hongxiao Jin
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Tobias Conradt
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Ricardo Garcia-Herrera
- Departamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Manuel Garrido-Perez
- Departamento de Ciencias de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - David Barriopedro
- Instituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas-Universidad Complutense de Madrid, Madrid, Spain
| | - Jose M Gutiérrez
- Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas (IFCA-CSIC), Santander, Spain
| | - Maialen Iturbide
- Instituto de Física de Cantabria, Consejo Superior de Investigaciones Científicas (IFCA-CSIC), Santander, Spain
| | - Jorge Lorenzo-Lacruz
- Department of Human Sciences, Area of Physical Geography, University of La Rioja, Logroño, Spain
| | - Ahmed El Kenawy
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain
- Department of Geography, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Keiser L, Dollet B, Marmottant P. Embolism propagation in Adiantum leaves and in a biomimetic system with constrictions. J R Soc Interface 2024; 21:20240103. [PMID: 39140327 PMCID: PMC11323083 DOI: 10.1098/rsif.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024] Open
Abstract
Drought poses a significant threat to forest survival worldwide by potentially generating air bubbles that obstruct sap transport within plants' hydraulic systems. However, the detailed mechanism of air entry and propagation at the scale of the veins remains elusive. Building upon a biomimetic model of leaf which we developed, we propose a direct comparison of the air embolism propagation in Adiantum (maidenhair fern) leaves, presented in Brodribb et al. (Brodribb TJ, Bienaimé D, Marmottant P. 2016 Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 4865-4869 (doi:10.1073/pnas.1522569113)) and in our biomimetic leaves. In particular, we evidence that the jerky dynamics of the embolism propagation observed in Adiantum leaves can be recovered through the introduction of micrometric constrictions in the section of our biomimetic veins, mimicking the nanopores present in the bordered pit membranes in real leaves. We show that the intermittency in the propagation can be retrieved by a simple model coupling the variations of pressure induced by the constrictions and the variations of the volume of the compliant microchannels. Our study marks a step with the design of a biomimetic leaf that reproduces particular aspects of embolism propagation in real leaves, using a minimal set of controllable and readily tunable components. This biomimetic leaf constitutes a promising physical analogue and sets the stage for future enhancements to fully embody the unique physical features of embolizing real leaves.
Collapse
|
29
|
Moss WE, Crausbay SD, Rangwala I, Wason JW, Trauernicht C, Stevens-Rumann CS, Sala A, Rottler CM, Pederson GT, Miller BW, Magness DR, Littell JS, Frelich LE, Frazier AG, Davis KT, Coop JD, Cartwright JM, Booth RK. Drought as an emergent driver of ecological transformation in the twenty-first century. Bioscience 2024; 74:524-538. [PMID: 39872081 PMCID: PMC11770345 DOI: 10.1093/biosci/biae050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 05/02/2024] [Indexed: 01/29/2025] Open
Abstract
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought's impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly or through drought's interactions with factors such as land management, biotic interactions, and other disturbances. We emphasize how interactions among mechanisms can inhibit postdrought recovery and can shift trajectories toward alternate states. Providing a holistic picture of how drought initiates long-term change supports the development of risk assessments, predictive models, and management strategies, enhancing preparedness for a complex and growing challenge.
Collapse
Affiliation(s)
- Wynne E Moss
- Conservation Science Partners, Truckee, California, United States
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Shelley D Crausbay
- Conservation Science Partners, Truckee, California, United States
- USDA Forest Service, Fort Collins, Colorado, United States
| | - Imtiaz Rangwala
- North Central Climate Adaptation Science Center and with the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States
| | - Jay W Wason
- School of Forest Resources at the University of Maine, Orono, Maine, United States
| | - Clay Trauernicht
- Department of Natural Resources and Environmental Management at the University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States
| | - Camille S Stevens-Rumann
- Colorado Forest Restoration Institute in the Forest and Rangeland Stewardship Department at Colorado State University in Fort Collins, Colorado, United States
| | - Anna Sala
- Division of Biological Sciences at the University of Montana, Missoula, Montana, United States
| | - Caitlin M Rottler
- South Central Climate Adaptation Science Center, University of Oklahoma, Norman, Oklahoma, United States
| | - Gregory T Pederson
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Brian W Miller
- U.S. Geological Survey, North Central Climate Adaptation Science Center, Boulder, Colorado, United States
| | - Dawn R Magness
- U.S. Fish and Wildlife Service, Kenai National Wildlife Refuge, Soldotna, Alaska, United States
| | - Jeremy S Littell
- U.S. Geological Survey, Alaska Climate Adaptation Science Center, Anchorage, Alaska, United States
| | - Lee E Frelich
- Department of Forest Resources at the University of Minnesota, Saint Paul, Minnesota, United States
| | - Abby G Frazier
- Graduate School of Geography at Clark University, Worcester, Massachusetts, United States
| | - Kimberley T Davis
- Department of Ecosystem and Conservation Sciences at the University of Montana, Missoula, Montana, United States
- Missoula Fire Sciences Laboratory, Rocky Mountain Research Station of the USDA Forest Service, Missoula, Montana, United States
| | - Jonathan D Coop
- Clark School of Environment and Sustainability, Western Colorado University, Gunnison, Colorado, United States
| | - Jennifer M Cartwright
- U.S. Geological Survey, Southeast Climate Adaptation Science Center, Raleigh, North Carolina, United States
| | - Robert K Booth
- Earth and Environmental Science Department at Lehigh University, Bethlehem, Pennsylvania, United States
| |
Collapse
|
30
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
31
|
Jaozandry CC, Leban JM, Legout A, van der Heijden G, Santenoise P, Nourrisson G, Saint-André L. Advances in assessing Ca, K, and Mn translocation in oak tree stems ( Quercus spp.). Heliyon 2024; 10:e32627. [PMID: 39040374 PMCID: PMC11261777 DOI: 10.1016/j.heliyon.2024.e32627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
As a part of the biogeochemical cycle, nutrient translocation plays an important role in enhancing the capacity of perennial plants to grow in nutrient-poor soils. Although leaf translocation has been extensively studied, nutrient translocation between wood rings has received considerably less attention, primarily because of methodological constraints. This study aimed to (i) evaluate the effects of different drying techniques on Ca, K, and Mn concentrations, (ii) calibrate a semi-quantitative method for obtaining ring-to-ring nutrient concentrations along wood cores, and (iii) develop a complete calculation chain for nutrient translocation. Three pairs of cores per tree were extracted from nine oaks, and three drying methods-103 °C, 65 °C, and freeze-drying-were applied to each core pair. For each core pair, the first core was analyzed using ITRAX. The second core was analyzed using ICP-OES following the mineralization of a 20 mg wood sample. Ca, K, and Mn concentrations and wood density were not affected by the drying methods (p > 0.05 for Ca, K, and Mn). After upscaling at the stand level, the total translocation was 10.8 ± 5.5 kg ha-1, 14.8 ± 11.4 kg ha-1, and 2.6 ± 0.9 kg ha-1 for Ca, K, and Mn, respectively, after 45 growing years. The total Ca, K, and Mn translocation showed a strong tree effect, partly explained by tree diameter. The study findings suggest that similar measurements can be performed on all wood cores sampled in previous studies and stored after air-drying. These results provide a reference for future analyses of Ca, K, and Mn translocations in different species from wide geographic areas.
Collapse
Affiliation(s)
| | | | | | | | - Philippe Santenoise
- INRAE, UR 1138 BEF, 54280, Champenoux, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | | | | |
Collapse
|
32
|
Ziegler C, Cochard H, Stahl C, Foltzer L, Gérard B, Goret JY, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4128-4147. [PMID: 38613495 DOI: 10.1093/jxb/erae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration tolerance and avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and maintenance, or even increases in soluble sugar concentrations, potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, indicating that dehydration avoidance is an effective drought-survival strategy linked to the 'fast-slow' continuum of plant performance at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.
Collapse
Affiliation(s)
- Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Louis Foltzer
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Bastien Gérard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Jean-Yves Goret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
- AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, 34000 Montpellier, France
| | - Pascale Maillard
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, 54000 Nancy, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, 97310 Kourou, France
| |
Collapse
|
33
|
Suissa JS, Barkoff N, Watkins JE. Extreme functional specialization of fertile leaves in a widespread fern species and its implications on the evolution of reproductive dimorphism. Ecol Evol 2024; 14:e11552. [PMID: 38952657 PMCID: PMC11214101 DOI: 10.1002/ece3.11552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Resource allocation theory posits that organisms distribute limited resources across functions to maximize their overall fitness. In plants, the allocation of resources among maintenance, reproduction, and growth influences short-term economics and long-term evolutionary processes, especially during resource scarcity. The evolution of specialized structures to divide labor between reproduction and growth can create a feedback loop where selection can act on individual organs, further increasing specializaton and resource allocation. Ferns exhibit diverse reproductive strategies, including dimorphism, where leaves can either be sterile (only for photosynthesis) or fertile (for spore dispersal). This dimorphism is similar to processes in seed plants (e.g., the production of fertile flowers and sterile leaves), and presents an opportunity to investigate divergent resource allocation between reproductive and vegetative functions in specialized organs. Here, we conducted anatomical and hydraulic analyses on Onoclea sensibilis L., a widespread dimorphic fern species, to reveal significant structural and hydraulic divergences between fertile and sterile leaves. Fertile fronds invest less in hydraulic architecture, with nearly 1.5 times fewer water-conducting cells and a nearly 0.5 times less drought-resistant xylem compared to sterile fronds. This comes at the increased relative investment in structural support, which may help facilitate spore dispersal. These findings suggest that specialization in ferns-in the form of reproductive dimorphism-can enable independent selection pressures on each leaf type, potentially optimizing spore dispersal in fertile fronds and photosynthetic efficiency in sterile fronds. Overall, our study sheds light on the evolutionary implications of functional specialization and highlights the importance of reproductive strategies in shaping plant fitness and evolution.
Collapse
Affiliation(s)
- Jacob S. Suissa
- Department of Ecology and Evolutionary BiologyUniversity of Tennessee KnoxvilleKnoxvilleTennesseeUSA
| | - Noah Barkoff
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | | |
Collapse
|
34
|
Pan L, Hogan JA, Song X, Zhang W, Zhou H, Chen Z, Yang J, Cao M. Intraspecific variation in Janzen-Connell effect is mediated by stress and plant-soil feedbacks. Ecol Evol 2024; 14:e11614. [PMID: 38952650 PMCID: PMC11214871 DOI: 10.1002/ece3.11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
Janzen-Connell (JC) effects, hypothesized to be partially driven by negative plant-soil feedbacks (PSFs), are considered to be a key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defenses to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change.
Collapse
Affiliation(s)
- Libing Pan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- University of Chinese Academy of SciencesBeijingChina
| | - J. Aaron Hogan
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Huaze Zhou
- Mengla Institute of ConservationXishuangbanna Administration of Nature ReservesMenglaChina
| | - Zhonglin Chen
- Mengla Institute of ConservationXishuangbanna Administration of Nature ReservesMenglaChina
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| |
Collapse
|
35
|
Konings AG, Rao K, McCormick EL, Trugman AT, Williams AP, Diffenbaugh NS, Yebra M, Zhao M. Tree species explain only half of explained spatial variability in plant water sensitivity. GLOBAL CHANGE BIOLOGY 2024; 30:e17425. [PMID: 39005206 DOI: 10.1111/gcb.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
Spatiotemporal patterns of plant water uptake, loss, and storage exert a first-order control on photosynthesis and evapotranspiration. Many studies of plant responses to water stress have focused on differences between species because of their different stomatal closure, xylem conductance, and root traits. However, several other ecohydrological factors are also relevant, including soil hydraulics, topographically driven redistribution of water, plant adaptation to local climatic variations, and changes in vegetation density. Here, we seek to understand the relative importance of the dominant species for regional-scale variations in woody plant responses to water stress. We map plant water sensitivity (PWS) based on the response of remotely sensed live fuel moisture content to variations in hydrometeorology using an auto-regressive model. Live fuel moisture content dynamics are informative of PWS because they directly reflect vegetation water content and therefore patterns of plant water uptake and evapotranspiration. The PWS is studied using 21,455 wooded locations containing U.S. Forest Service Forest Inventory and Analysis plots across the western United States, where species cover is known and where a single species is locally dominant. Using a species-specific mean PWS value explains 23% of observed PWS variability. By contrast, a random forest driven by mean vegetation density, mean climate, soil properties, and topographic descriptors explains 43% of observed PWS variability. Thus, the dominant species explains only 53% (23% compared to 43%) of explainable variations in PWS. Mean climate and mean NDVI also exert significant influence on PWS. Our results suggest that studies of differences between species should explicitly consider the environments (climate, soil, topography) in which observations for each species are made, and whether those environments are representative of the entire species range.
Collapse
Affiliation(s)
- Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Krishna Rao
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Watershed, Inc., San Francisco, California, USA
| | - Erica L McCormick
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Noah S Diffenbaugh
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Marta Yebra
- Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory, Australia
- School of Engineering, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Meng Zhao
- Department of Earth and Spatial Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
36
|
Zeng WH, Zhu SD, Luo YH, Shi W, Wang YQ, Cao KF. Aboveground biomass stocks of species-rich natural forests in southern China are influenced by stand structural attributes, species richness and precipitation. PLANT DIVERSITY 2024; 46:530-536. [PMID: 39280971 PMCID: PMC11390628 DOI: 10.1016/j.pld.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 09/18/2024]
Abstract
Forests, the largest terrestrial carbon sinks, play an important role in carbon sequestration and climate change mitigation. Although forest attributes and environmental factors have been shown to impact aboveground biomass, their influence on biomass stocks in species-rich forests in southern China, a biodiversity hotspot, has rarely been investigated. In this study, we characterized the effects of environmental factors, forest structure, and species diversity on aboveground biomass stocks of 30 plots (1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi, China. Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions. Furthermore, we found that aboveground biomass was positively correlated with stand age, mean annual precipitation, elevation, structural attributes and species richness, although not with species evenness. When we compared stands with the same basal area, we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height. These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China. Notably, many natural forests in southern China are not fully stocked. Therefore, their continued growth will increase their carbon storage over time.
Collapse
Affiliation(s)
- Wen-Hao Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Shi-Dan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Ying-Hua Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Wei Shi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Huaxi College Town, Gui'an District, Guiyang 550025, China
| | - Yong-Qiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Yaffar D, Lugli LF, Wong MY, Norby RJ, Addo-Danso SD, Arnaud M, Cordeiro AL, Dietterich LH, Diaz-Toribio MH, Lee MY, Ghimire OP, Smith-Martin CM, Toro L, Andersen K, McCulloch LA, Meier IC, Powers JS, Sanchez-Julia M, Soper FM, Cusack DF. Tropical root responses to global changes: A synthesis. GLOBAL CHANGE BIOLOGY 2024; 30:e17420. [PMID: 39044411 DOI: 10.1111/gcb.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
Tropical ecosystems face escalating global change. These shifts can disrupt tropical forests' carbon (C) balance and impact root dynamics. Since roots perform essential functions such as resource acquisition and tissue protection, root responses can inform about the strategies and vulnerabilities of ecosystems facing present and future global changes. However, root trait dynamics are poorly understood, especially in tropical ecosystems. We analyzed existing research on tropical root responses to key global change drivers: warming, drought, flooding, cyclones, nitrogen (N) deposition, elevated (e) CO2, and fires. Based on tree species- and community-level literature, we obtained 266 root trait observations from 93 studies across 24 tropical countries. We found differences in the proportion of root responsiveness to global change among different global change drivers but not among root categories. In particular, we observed that tropical root systems responded to warming and eCO2 by increasing root biomass in species-scale studies. Drought increased the root: shoot ratio with no change in root biomass, indicating a decline in aboveground biomass. Despite N deposition being the most studied global change driver, it had some of the most variable effects on root characteristics, with few predictable responses. Episodic disturbances such as cyclones, fires, and flooding consistently resulted in a change in root trait expressions, with cyclones and fires increasing root production, potentially due to shifts in plant community and nutrient inputs, while flooding changed plant regulatory metabolisms due to low oxygen conditions. The data available to date clearly show that tropical forest root characteristics and dynamics are responding to global change, although in ways that are not always predictable. This synthesis indicates the need for replicated studies across root characteristics at species and community scales under different global change factors.
Collapse
Affiliation(s)
- Daniela Yaffar
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michelle Y Wong
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Shalom D Addo-Danso
- Forest and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana
| | - Marie Arnaud
- Sorbonne Université, CNRS, INRAE, Institute of Ecology and Environmental Sciences (IEES), Paris, France
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Milton H Diaz-Toribio
- Jardín Botánico Francisco Javier Clavijero, Instituto de Ecología, A.C. Xalapa, Veracruz, Mexico
| | - Ming Y Lee
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Om Prakash Ghimire
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Laura Toro
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, Missouri, USA
| | - Kelly Andersen
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Lindsay A McCulloch
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Ina C Meier
- Functional Forest Ecology, University of Hamburg, Hamburg, Germany
| | - Jennifer S Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Fiona M Soper
- Department of Biology and Bieler School of Environment, McGill University, Montreal, Qubec, Canada
| | - Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| |
Collapse
|
38
|
Aun MA, Farnese F, Loram-Lourenço L, de Abreu IMPG, Silva BRA, Freitas JCE, Filho VMA, Silva FG, Franco AC, Hammond WM, Cochard H, Menezes-Silva PE. Evidence of combined flower thermal and drought vulnerabilities portends reproductive failure under hotter-drought conditions. PLANT, CELL & ENVIRONMENT 2024; 47:1971-1986. [PMID: 38372066 DOI: 10.1111/pce.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; ΨTLP) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs. Importantly, the higher ΨTLP of flowers also resulted in narrow turgor safety margins (TSM). Moreover, compared to leaves, the cuticle of flowers had an overall higher thermal vulnerability, which also resulted in low leakage safety margins (LSM). As a result, the combination of low TSMs and LSMs may have negative impacts on reproduction success since they strongly influenced the time to turgor loss under simulated hotter-drought conditions. Overall, our results improve the knowledge of unexplored aspects of flower structure and function and highlight likely threats to successful plant reproduction in a warmer and drier world.
Collapse
Affiliation(s)
- Marina Alves Aun
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fernanda Farnese
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Lucas Loram-Lourenço
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | | | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Augusto Cesar Franco
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - William M Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | |
Collapse
|
39
|
Erlichman A, Sandell L, Otto SP, Aitken SN, Ronce O. Planting long-lived trees in a warming climate: Theory shows the importance of stage-dependent climatic tolerance. Evol Appl 2024; 17:e13711. [PMID: 38894979 PMCID: PMC11183180 DOI: 10.1111/eva.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024] Open
Abstract
Climate change poses a particular threat to long-lived trees, which may not adapt or migrate fast enough to keep up with rising temperatures. Assisted gene flow could facilitate adaptation of populations to future climates by using managed translocation of seeds from a warmer location (provenance) within the current range of a species. Finding the provenance that will perform best in terms of survival or growth is complicated by a trade-off. Because trees face a rapidly changing climate during their long lives, the alleles that confer optimal performance may vary across their lifespan. For instance, trees from warmer provenances could be well adapted as adults but suffer from colder temperatures while juvenile. Here we use a stage-structured model, using both analytical predictions and numerical simulations, to determine which provenance would maximize the survival of a cohort of long-lived trees in a changing climate. We parameterize our simulations using empirically estimated demographic transition matrices for 20 long-lived tree species. Unable to find reliable quantitative estimates of how climatic tolerance changes across stages in these same species, we varied this parameter to study its effect. Both our mathematical model and simulations predict that the best provenance depends strongly on how fast the climate changes and also how climatic tolerance varies across the lifespan of a tree. We thus call for increased empirical efforts to measure how climate tolerance changes over life in long-lived species, as our model suggests that it should strongly influence the best provenance for assisted gene flow.
Collapse
Affiliation(s)
- Adèle Erlichman
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Linnea Sandell
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Organismal BiologyUppsala UniversityUppsalaSweden
- Department of Urban and Rural DevelopmentSwedish University of AgricultureUppsalaSweden
| | - Sarah P. Otto
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sally N. Aitken
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ophélie Ronce
- ISEM, Univ Montpellier, CNRS, IRDMontpellierFrance
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
40
|
West AG, Atkins K, van Blerk JJ, Skelton RP. Assessing vulnerability to embolism and hydraulic safety margins in reed-like Restionaceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:633-646. [PMID: 38588329 DOI: 10.1111/plb.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
The African Restionaceae (Poales), the dominant graminoid layer in the megadiverse Cape Floristic Region of South Africa, are distributed across a wide range of moisture availability, yet currently there is very little known about the underlying hydraulics of this group. We tested two methods for measuring culm vulnerability to embolism, the optical and pneumatic methods, in three species of Cannomois ranging in habitat from semi-riparian (Cannomois virgata) to dryland (Cannomois parviflora and C. congesta). Estimates of culm xylem vulnerability were coupled with measures of turgor loss point (ΨTLP) and minimum field water potential (ΨMD) to assess hydraulic safety margins. The optical and pneumatic methods produced similar estimates of P50, but differed for P12 and P88. All three species were quite vulnerable to embolism, with P50 of -1.9 MPa (C. virgata), -2.3 MPa (C. congesta), and -2.4 MPa (C. parviflora). Estimates of P50, ΨTLP and ΨMD aligned with habitat moisture stress, with highest values found in the semi-riparian C. virgata. Consistent differences in P50, ΨMD and ΨTLP between species resulted in consistent hydraulic safety margins across species of 0.96 ± 0.1 MPa between ΨMD and P50, with onset of embolism occurring 0.43 ± 0.04 MPa after ΨTLP for all three species. Our study demonstrates that restio occupancy of dry environments involves more than the evolution of highly resistant xylem, suggesting that other aspects of water relations are key to understanding trait-environment relationships in this group.
Collapse
Affiliation(s)
- A G West
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - K Atkins
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - J J van Blerk
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - R P Skelton
- Fynbos Node, South African Environmental Observation Network, Newlands, South Africa
- Department of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
41
|
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Čada V, Cavin L, Claessens H, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Martinez Del Castillo E, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayatov M, Petritan AM, Petritan IC, Popa I, Roibu CC, Rubio-Cuadrado Á, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, van der Maaten-Theunissen M, van der Maaten E, Weigel R, Wilmking M, Zlatanov T, Rammig A, Zang CS. Identifying drivers of non-stationary climate-growth relationships of European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173321. [PMID: 38782287 DOI: 10.1016/j.scitotenv.2024.173321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Collapse
Affiliation(s)
- Christopher Leifsson
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Allan Buras
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Claudia Baittinger
- The National Museum of Denmark, Environmental Archaeology and Materials Science, I.C. Modewegs Vej 11, DK - 2800 Kgs. Lyngby, Denmark
| | - Banzragch Bat-Enerel
- Plant Ecology, University of Goettingen, 37073 Goettingen, Germany; Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | | | - Franco Biondi
- DendroLab, Dept. of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Branko Stajić
- University of Belgrade, Faculty of Forestry, Belgrade, Serbia
| | - Marius Budeanu
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Hugues Claessens
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin de Luis
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Choimaa Dulamsuren
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | - Balázs Garamszegi
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Grabner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Hartl
- Nature Rings - Environmental Research & Education, 55118 Mainz, Germany
| | - Weiwei Huang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | - Florian Knutzen
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
| | - Jürgen Kreyling
- University of Greifswald, Experimental Plant Ecology, Soldmannstraße 15, 17498 Greifswald, Germany
| | - Alexander Land
- University of Hohenheim, Institute of Biology (190a), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Nicolas Latte
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | - Luis A Longares
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | | | - Annette Menzel
- Technical University of Munich, TUM School of Life Sciences, Ecoclimatology, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Renzo Motta
- Department of Agricoltural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lena Muffler-Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paola Nola
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
| | - Momchil Panayatov
- University of Forestry, Dendrology Department, Forest Faculty, Sofia, Bulgaria
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Transilvania University of Braşov, Braşov, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania; Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | - Cǎtǎlin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Universitatii street, no. 13, Suceava RO720229, Romania
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miloš Rydval
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Tobias Scharnweber
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE), CSIC, Avda. Montañana 1005, 50080 Zaragoza, Spain
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Elvin Toromani
- Department of Forestry, Agricultural University Tirana, Tirana, Albania
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | | | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | - Robert Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Martin Wilmking
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Anja Rammig
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian S Zang
- Weihenstephan-Triesdorf University of Applied Sciences, Department of Forestry, Hans-Carl-v.-Carlowitz-Platz 3, 85354 Freising, Germany
| |
Collapse
|
42
|
Lofgren L, Nguyen NH, Kennedy P, Pérez-Pazos E, Fletcher J, Liao HL, Wang H, Zhang K, Ruytinx J, Smith AH, Ke YH, Cotter HVT, Engwall E, Hameed KM, Vilgalys R, Branco S. Suillus: an emerging model for the study of ectomycorrhizal ecology and evolution. THE NEW PHYTOLOGIST 2024; 242:1448-1475. [PMID: 38581203 PMCID: PMC11045321 DOI: 10.1111/nph.19700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.
Collapse
Affiliation(s)
- Lotus Lofgren
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Nhu H. Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawai‘i at Māno, 3190 Maile Way, Honolulu, HI 96822, USA
| | - Peter Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Eduardo Pérez-Pazos
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1475 Gortner Ave, Saint Paul, MN 55108, USA
| | - Jessica Fletcher
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Haihua Wang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
- Department of Soil, Water and Ecosystem Sciences, University of Florida, 1692 McCarty Dr, Room 2181, Building A, Gainesville, FL 32611, USA
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Rd Quincy, FL 3235, USA
| | - Joske Ruytinx
- Research Group of Microbiology and Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium, USA
| | - Alexander H. Smith
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| | - Yi-Hong Ke
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - H. Van T. Cotter
- University of North Carolina at Chapel Hill Herbarium, 120 South Road, Chapel Hill, NC 27599, USA
| | - Eiona Engwall
- Department of Biology, University of North Carolina at Chapel Hill, 120 South Road, Chapel Hill, NC 27599, USA
| | - Khalid M. Hameed
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, 130 Science Dr., Durham, NC 27708, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver 1151 Arapahoe St, SI 2071, Denver, CO 80204, USA
| |
Collapse
|
43
|
Wittemann M, Mujawamariya M, Ntirugulirwa B, Uwizeye FK, Zibera E, Manzi OJL, Nsabimana D, Wallin G, Uddling J. Plasticity and implications of water-use traits in contrasting tropical tree species under climate change. PHYSIOLOGIA PLANTARUM 2024; 176:e14326. [PMID: 38708565 DOI: 10.1111/ppl.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.
Collapse
Affiliation(s)
- Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Myriam Mujawamariya
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Bonaventure Ntirugulirwa
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Agriculture and Animal Resources Development Board (RAB), Kigali, Rwanda
- Rwanda Forestry Authority, Muhanga, Rwanda
| | - Felicien K Uwizeye
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Olivier Jean Leonce Manzi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Integrated Polytechnic Regional College-Kitabi, Rwanda Polytechnic, Huye, Rwanda
| | - Donat Nsabimana
- School of Forestry and Biodiversity and Biological Sciences, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Tang W, Liu X, Liang X, Liu H, Yu K, He P, McAdam S, Zhao H, Ye Q. Hydraulic vulnerability difference between branches and roots increases with environmental aridity. Oecologia 2024; 205:177-190. [PMID: 38772916 DOI: 10.1007/s00442-024-05562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
The vulnerability of plant xylem to embolism can be described as the water potential at which xylem conductivity is lost by 50% (P50). According to the traditional hypothesis of hydraulic vulnerability segmentation, the difference in vulnerability to embolism between branches and roots is positive (P50 root-branch > 0). It is not clear whether this occurs broadly across species or how segmentation might vary across aridity gradients. We compiled hydraulic and anatomical datasets from branches and roots across 104 woody species (including new measurements from 10 species) in four biomes to investigate the relationships between P50 root-branch and environmental factors associated with aridity. We found a positive P50 root-branch relationship across species, and evidence that P50 root-branch increases with aridity. Branch xylem hydraulic conductivity transitioned from more efficient (e.g., wider conduit, higher hydraulic conductivity) to safer (e.g., narrower conduit, more negative P50) in response to the increase of aridity, while root xylem hydraulic conductivity remained unchanged across aridity gradients. Our results demonstrate that the hydraulic vulnerability difference between branches and roots is more positive in species from arid regions, largely driven by modifications to branch traits.
Collapse
Affiliation(s)
- Weize Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaorong Liu
- Sichuan University of Arts and Science, Tashi Road 519, Dazhou, 635000, China
| | - Xingyun Liang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Kailiang Yu
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Pengcheng He
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Scott McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Han Zhao
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, No. 723, Xingke Road, Tianhe District, Guangzhou, 510650, China.
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
45
|
Ač A, Jansen MAK, Grace J, Urban O. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem-climate interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1769-1781. [PMID: 38314642 DOI: 10.1111/pce.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.
Collapse
Affiliation(s)
- Alexander Ač
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - John Grace
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Otmar Urban
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
46
|
Sterck FJ, Song Y, Poorter L. Drought- and heat-induced mortality of conifer trees is explained by leaf and growth legacies. SCIENCE ADVANCES 2024; 10:eadl4800. [PMID: 38608026 PMCID: PMC11014445 DOI: 10.1126/sciadv.adl4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
An increased frequency and severity of droughts and heat waves have resulted in increased tree mortality and forest dieback across the world, but underlying mechanisms are poorly understood. We used a common garden experiment with 20 conifer tree species to quantify mortality after three consecutive hot, dry summers and tested whether mortality could be explained by putative underlying mechanisms, such as stem hydraulics and legacies affected by leaf life span and stem growth responses to previous droughts. Mortality varied from 0 to 79% across species and was not affected by hydraulic traits. Mortality increased with species' leaf life span probably because leaf damage caused crown dieback and contributed to carbon depletion and bark beetle damage. Mortality also increased with lower growth resilience, which may exacerbate the contribution of carbon depletion and bark beetle sensitivity to tree mortality. Our study highlights how ecological legacies at different time scales can explain tree mortality in response to hot, dry periods and climate change.
Collapse
Affiliation(s)
- Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - Yanjun Song
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164-4236, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| |
Collapse
|
47
|
Tonet V, Brodribb T, Bourbia I. Variation in xylem vulnerability to cavitation shapes the photosynthetic legacy of drought. PLANT, CELL & ENVIRONMENT 2024; 47:1160-1170. [PMID: 38108586 DOI: 10.1111/pce.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Increased drought conditions impact tree health, negatively disrupting plant water transport which, in turn, affects plant growth and survival. Persistent drought legacy effects have been documented in many diverse ecosystems, yet we still lack a mechanistic understanding of the physiological processes limiting tree recovery after drought. Tackling this question, we exposed saplings of a common Australian evergreen tree (Eucalyptus viminalis) to a cycle of drought and rewatering, seeking evidence for a link between the spread of xylem cavitation within the crown and the degree of photosynthetic recovery postdrought. Individual leaves experiencing >35% vein cavitation quickly died but this did not translate to a rapid overall canopy damage. Rather, whole canopies showed a gradual decline in mean postdrought gas exchange rates as water stress increased. This gradual loss of canopy function postdrought was due to a significant variation in cavitation vulnerability of leaves within canopies leading to diversity in the capacity of leaves within a single crown to recover function after drought. These results from the evergreen E. viminalis emphasise the importance of within-crown variation in xylem vulnerability as a central character regulating the dynamics of canopy death and the severity of drought legacy through time.
Collapse
Affiliation(s)
- Vanessa Tonet
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
- School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Timothy Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Ibrahim Bourbia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
48
|
Tumber-Dávila SJ, Lucey T, Boose ER, Laflower D, León-Sáenz A, Wilson BT, MacLean MG, Thompson JR. Hurricanes pose a substantial risk to New England forest carbon stocks. GLOBAL CHANGE BIOLOGY 2024; 30:e17259. [PMID: 38655624 DOI: 10.1111/gcb.17259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Nature-based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%-9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year-1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7- and 24.8-fold increase in the extent of high-severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision-makers relying on forests as a NCS.
Collapse
Affiliation(s)
- Shersingh Joseph Tumber-Dávila
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
- Department of Environmental Studies, Dartmouth College, Hanover, New Hampshire, USA
| | - Taylor Lucey
- Department of Environmental Conservation, UMASS Amherst, Amherst, Massachusetts, USA
| | - Emery R Boose
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
| | - Danelle Laflower
- Harvard Forest, Harvard University, Petersham, Massachusetts, USA
| | | | - Barry T Wilson
- Northern Research Station, USDA Forest Service, Saint Paul, Minnesota, USA
| | - Meghan Graham MacLean
- Department of Environmental Conservation, UMASS Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
49
|
Andriantelomanana T, Améglio T, Delzon S, Cochard H, Herbette S. Unpacking the point of no return under drought in poplar: insight from stem diameter variation. THE NEW PHYTOLOGIST 2024; 242:466-478. [PMID: 38406847 DOI: 10.1111/nph.19615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.
Collapse
Affiliation(s)
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Sylvain Delzon
- Université Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Stephane Herbette
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| |
Collapse
|
50
|
Puchi PF, Dalmonech D, Vangi E, Battipaglia G, Tognetti R, Collalti A. Contrasting patterns of water use efficiency and annual radial growth among European beech forests along the Italian peninsula. Sci Rep 2024; 14:6526. [PMID: 38499662 PMCID: PMC11350120 DOI: 10.1038/s41598-024-57293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Tree mortality and forest dieback episodes are increasing due to drought and heat stress. Nevertheless, a comprehensive understanding of mechanisms enabling trees to withstand and survive droughts remains lacking. Our study investigated basal area increment (BAI), and δ13C-derived intrinsic water-use-efficiency (iWUE), to elucidate beech resilience across four healthy stands in Italy with varying climates and soil water availability. Additionally, fist-order autocorrelation (AR1) analysis was performed to detect early warning signals for potential tree dieback risks during extreme drought events. Results reveal a negative link between BAI and vapour pressure deficit (VPD), especially in southern latitudes. After the 2003 drought, BAI decreased at the northern site, with an increase in δ13C and iWUE, indicating conservative water-use. Conversely, the southern sites showed increased BAI and iWUE, likely influenced by rising CO2 and improved water availability. In contrast, the central site sustained higher transpiration rates due to higher soil water holding capacity (SWHC). Despite varied responses, most sites exhibited reduced resilience to future extreme events, indicated by increased AR1. Temperature significantly affected beech iWUE and BAI in northern Italy, while VPD strongly influenced the southern latitudes. The observed increase in BAI and iWUE in southern regions might be attributed to an acclimation response.
Collapse
Affiliation(s)
- Paulina F Puchi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy.
- Institute of Bioeconomy, Italian National Research Council (CNR-IBE), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy.
| | - Daniela Dalmonech
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Elia Vangi
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania 'L. Vanvitelli', Caserta, Italy
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | - Alessio Collalti
- Forest Modelling Lab., Institute for Agriculture and Forestry Systems in the Mediterranean, National Research Council of Italy (CNR-ISAFOM), Via Madonna Alta 128, 06128, Perugia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|