1
|
Shen J, Russell DM, DeVivo J, Kunkler F, Baalbaki R, Mentler B, Scholz W, Yu W, Caudillo-Plath L, Sommer E, Ahongshangbam E, Alfaouri D, Almeida J, Amorim A, Beck LJ, Beckmann H, Berntheusel M, Bhattacharyya N, Canagaratna MR, Chassaing A, Cruz-Simbron R, Dada L, Duplissy J, Gordon H, Granzin M, Große Schute L, Heinritzi M, Iyer S, Klebach H, Krüger T, Kürten A, Lampimäki M, Liu L, Lopez B, Martinez M, Morawiec A, Onnela A, Peltola M, Rato P, Reza M, Richter S, Rörup B, Sebastian MK, Simon M, Surdu M, Tamme K, Thakur RC, Tomé A, Tong Y, Top J, Umo NS, Unfer G, Vettikkat L, Weissbacher J, Xenofontos C, Yang B, Zauner-Wieczorek M, Zhang J, Zheng Z, Baltensperger U, Christoudias T, Flagan RC, El Haddad I, Junninen H, Möhler O, Riipinen I, Rohner U, Schobesberger S, Volkamer R, Winkler PM, Hansel A, Lehtipalo K, Donahue NM, Lelieveld J, Harder H, Kulmala M, Worsnop DR, Kirkby J, Curtius J, He XC. New particle formation from isoprene under upper-tropospheric conditions. Nature 2024; 636:115-123. [PMID: 39633196 PMCID: PMC11618072 DOI: 10.1038/s41586-024-08196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024]
Abstract
Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon1,2 and the Atlantic and Pacific oceans3,4. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere5. Here, in experiments performed with the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we report new particle formation initiated by the reaction of hydroxyl radicals with isoprene at upper-tropospheric temperatures of -30 °C and -50 °C. We find that isoprene-oxygenated organic molecules (IP-OOM) nucleate at concentrations found in the upper troposphere, without requiring any more vapours. Moreover, the nucleation rates are enhanced 100-fold by extremely low concentrations of sulfuric acid or iodine oxoacids above 105 cm-3, reaching rates around 30 cm-3 s-1 at acid concentrations of 106 cm-3. Our measurements show that nucleation involves sequential addition of IP-OOM, together with zero or one acid molecule in the embryonic molecular clusters. IP-OOM also drive rapid particle growth at 3-60 nm h-1. We find that rapid nucleation and growth rates persist in the presence of NOx at upper-tropospheric concentrations from lightning. Our laboratory measurements show that isoprene emitted by rainforests may drive rapid new particle formation in extensive regions of the tropical upper troposphere1,2, resulting in tens of thousands of particles per cubic centimetre.
Collapse
Affiliation(s)
- Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
| | - Douglas M Russell
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenna DeVivo
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Felix Kunkler
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Bernhard Mentler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Wiebke Scholz
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Wenjuan Yu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Lucía Caudillo-Plath
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Eva Sommer
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
- Faculty of Physics, University of Vienna, Wien, Austria
| | - Emelda Ahongshangbam
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Dina Alfaouri
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - João Almeida
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
- CENTRA and Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Antonio Amorim
- CENTRA and Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Lisa J Beck
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hannah Beckmann
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Department of Environmental Physics, University of Tartu, Tartu, Estonia
| | - Moritz Berntheusel
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nirvan Bhattacharyya
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Anouck Chassaing
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Romulo Cruz-Simbron
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Lubna Dada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
| | - Hamish Gordon
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Manuel Granzin
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lena Große Schute
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Martin Heinritzi
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Hannah Klebach
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timm Krüger
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Lampimäki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Lu Liu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Brandon Lopez
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Monica Martinez
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Antti Onnela
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Maija Peltola
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Pedro Rato
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Mago Reza
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Sarah Richter
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Milin Kaniyodical Sebastian
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mihnea Surdu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Kalju Tamme
- Department of Environmental Physics, University of Tartu, Tartu, Estonia
| | - Roseline C Thakur
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - António Tomé
- Instituto Dom Luiz (IDL), Universidade da Beira Interior, Covilhã, Portugal
| | - Yandong Tong
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Jens Top
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Nsikanabasi Silas Umo
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gabriela Unfer
- Atmospheric Microphysics Department, Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Lejish Vettikkat
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Jakob Weissbacher
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Christos Xenofontos
- Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Boxing Yang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jiangyi Zhang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Zhensen Zheng
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- IONICON Analytik GmbH, Innsbruck, Austria
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Heikki Junninen
- Department of Environmental Physics, University of Tartu, Tartu, Estonia
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ilona Riipinen
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | | | - Rainer Volkamer
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | | - Armin Hansel
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
- IONICON Analytik GmbH, Innsbruck, Austria
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, Nicosia, Cyprus
| | - Hartwig Harder
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Doug R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Aerodyne Research Inc., Billerica, MA, USA
| | - Jasper Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland.
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.
- Finnish Meteorological Institute, Helsinki, Finland.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Ning A, Li J, Du L, Yang X, Liu J, Yang Z, Zhong J, Saiz-Lopez A, Liu L, Francisco JS, Zhang X. Heterogenous Chemistry of I 2O 3 as a Critical Step in Iodine Cycling. J Am Chem Soc 2024. [PMID: 39546803 DOI: 10.1021/jacs.4c13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Global iodine emissions have been increasing rapidly in recent decades, further influencing the Earth's climate and human health. However, our incomplete understanding of the iodine chemical cycle, especially the fate of higher iodine oxides, introduces substantial uncertainties into atmospheric modeling. I2O3 was previously deemed a "dead end" in iodine chemistry; however, we provide atomic-level evidence that I2O3 can undergo rapid air-water or air-ice interfacial reactions within several picoseconds; these reactions are facilitated by prevalent chemicals on seawater such as amines and halide ions, to produce photolabile reactive iodine species such as HOI and IX (X = I, Br, and Cl). The heterogeneous chemistry of I2O3 leads to the rapid formation of iodate ions (IO3-), which is the predominant soluble iodine and its concentration cannot be well explained by current chemistry. These new loss pathways for atmospheric I2O3 can further explain its absence in field observations and its presence in laboratory experiments; furthermore, these pathways represent a heterogeneous recycling mechanism that can activate the release of reactive iodine from oceans, polar ice/snowpack, or aerosols. Rapid reactive adsorption of I2O3 can also promote the growth of marine aerosols. These findings provide novel insights into iodine geochemical cycling.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Du
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaohua Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhi Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, 119, 28006 Madrid, Spain
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Liu Y, Nie W, Qi X, Li Y, Xu T, Liu C, Ge D, Chen L, Niu G, Wang J, Yang L, Wang L, Zhu C, Wang J, Zhang Y, Liu T, Zha Q, Yan C, Ye C, Zhang G, Hu R, Huang RJ, Chi X, Zhu T, Ding A. The Pivotal Role of Heavy Terpenes and Anthropogenic Interactions in New Particle Formation on the Southeastern Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19748-19761. [PMID: 39327447 PMCID: PMC11542885 DOI: 10.1021/acs.est.4c04112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Aerosol particles originating from the Qinghai-Tibet Plateau (QTP) readily reach the free troposphere, potentially affecting global radiation and climate. Although new particle formation (NPF) is frequently observed at such high altitudes, its precursors and their underlying chemistry remain poorly understood. This study presents direct observational evidence of anthropogenic influences on biogenic NPF on the southeastern QTP, near the Himalayas. The mean particle nucleation rate (J1.7) is 2.6 cm-3 s-1, exceeding the kinetic limit of sulfuric acid (SA) nucleation (mean SA: 2.4 × 105 cm-3). NPF is predominantly driven by highly oxygenated organic molecules (HOMs), possibly facilitated by low SA levels. We identified 1538 ultralow-volatility HOMs driving particle nucleation and 764 extremely low-volatility HOMs powering initial particle growth, with mean total concentrations of 1.5 × 106 and 3.7 × 106 cm-3, respectively. These HOMs are formed by atmospheric oxidation of biogenic precursors, unexpectedly including sesquiterpenes and diterpenes alongside the commonly recognized monoterpenes. Counterintuitively, over half of HOMs are organic nitrates, mainly produced by interacting with anthropogenic NOx via RO2+NO terminations or NO3-initiated oxidations. These findings advance our understanding of NPF mechanisms in this climate-sensitive region and underscore the importance of heavy terpene and NOx-influenced chemistry in assessing anthropogenic-biogenic interactions with climate feedbacks.
Collapse
Affiliation(s)
- Yuliang Liu
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Wei Nie
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Ximeng Qi
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Yuanyuan Li
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Tao Xu
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Chong Liu
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Dafeng Ge
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Liangduo Chen
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Guangdong Niu
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Jinbo Wang
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Liwen Yang
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Lei Wang
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Caijun Zhu
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Jiaping Wang
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Yuxuan Zhang
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Tengyu Liu
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Qiaozhi Zha
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Chao Yan
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Chunxiang Ye
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guoxian Zhang
- Key
Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Renzhi Hu
- Key
Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Ru-Jin Huang
- State
Key Laboratory of Loess Science, Center for Excellence in Quaternary
Science and Global Change, Institute of
Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Xuguang Chi
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| | - Tong Zhu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Aijun Ding
- Joint
International Research Laboratory of Atmospheric and Earth System
Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National
Observation and Research Station for Atmospheric Processes and Environmental
Change in Yangtze River Delta, Nanjing 210023, China
| |
Collapse
|
4
|
Beck CL, Cervantes J, Chiswell S, Greaney AT, Johnson KR, Levitskaia TG, Martin LR, McDaniel G, Noble S, Rakos JM, Riley BJ, Ritzmann A, Tingey JM. Review of iodine behavior from nuclear fuel dissolution to environmental release. RSC Adv 2024; 14:35255-35274. [PMID: 39524081 PMCID: PMC11546904 DOI: 10.1039/d4ra06494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
During nuclear fuel reprocessing, radioiodine, can be released. The speciation of iodine drives its volatility, and partitioning processes are highly variable because they depend on facility operating conditions. Starting from iodine behavior in the fuel and progressing to its behavior in the environment, this review article describes the current understanding of iodine partitioning during aqueous fuel reprocessing. This review outlines knowledge gaps and describes the effects of state-of-the-art reprocessing techniques on iodine speciation and volatility. Whereas many review articles have described iodine behavior during specific reprocessing steps, this review provides a holistic overview of radioiodine, from the forms of iodine in different types of irradiated fuel to the forms of iodine released into the environment. The resultant behavior of radioiodine compared with stable iodine in the environment is also described.
Collapse
Affiliation(s)
- Chelsie L Beck
- Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Juan Cervantes
- Pacific Northwest National Laboratory Richland WA 99354 USA
| | | | | | | | | | | | | | - Stephen Noble
- Savannah River National Laboratory Aiken SC 29831 USA
| | - Jason M Rakos
- Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Brian J Riley
- Pacific Northwest National Laboratory Richland WA 99354 USA
| | | | - Joel M Tingey
- Pacific Northwest National Laboratory Richland WA 99354 USA
| |
Collapse
|
5
|
Jensen AB, Elm J. Massive Assessment of the Geometries of Atmospheric Molecular Clusters. J Chem Theory Comput 2024; 20:8549-8558. [PMID: 39331672 DOI: 10.1021/acs.jctc.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Atmospheric molecular clusters are important for the formation of new aerosol particles in the air. However, current experimental techniques are not able to yield direct insight into the cluster geometries. This implies that to date there is limited information about how accurately the applied computational methods depict the cluster structures. Here we massively benchmark the molecular geometries of atmospheric molecular clusters. We initially assessed how well different DF-MP2 approaches reproduce the geometries of 45 dimer clusters obtained at a high DF-CCSD(T)-F12b/cc-pVDZ-F12 level of theory. Based on the results, we find that the DF-MP2/aug-cc-pVQZ level of theory best resembles the DF-CCSD(T)-F12b/cc-pVDZ-F12 reference level. We subsequently optimized 1283 acid-base cluster structures (up to tetramers) at the DF-MP2/aug-cc-pVQZ level of theory and assessed how more approximate methods reproduce the geometries. Out of the tested semiempirical methods, we find that the newly parametrized atmospheric molecular cluster extended tight binding method (AMC-xTB) is most reliable for locating the correct lowest energy configuration and yields the lowest root mean square deviation (RMSD) compared to the reference level. In addition, we find that the DFT-3c methods show similar performance as the usually employed ωB97X-D/6-31++G(d,p) level of theory at a potentially reduced computational cost. This suggests that these methods could prove to be valuable for large-scale screening of cluster structures in the future.
Collapse
Affiliation(s)
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Saha S, Pandiyathuray M. Depletion of iodide in ageing aerosols and the role of humidity: A case study of mixed sodium iodide-malonic acid aerosol. CHEMOSPHERE 2024; 365:143411. [PMID: 39332584 DOI: 10.1016/j.chemosphere.2024.143411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Global sea to air iodine emissions, along with organic emissions and their oxidation products, have increased tremendously. This work presents a comprehensive analysis of the humidity mediated changes in ageing aerosols comprising iodide and water soluble dicarboxylic acid using aerosol micro-Raman spectroscopy. The studies in the model system, sodium iodide-malonic acid mixed aerosols, unveiled the depletion in iodide. Mechanistic insights gleaned through comparative studies conducted under inert (nitrogen) and oxidative (air) atmospheres reveal the iodide depletion occurs possibly via oxidation to molecular iodine. The reaction involves gaseous components, diffusion of which across the particles will be impacted by the physical state of the particles, such as viscosity, which in turn is intricately linked to ambient humidity levels. To this end, studies on the temporal evolution of the reaction at three distinct RHs covering 30-80% revealed the enhanced progression of the reaction with increasing humidity. Given that geographical locations serving as major sources for atmospheric iodine typically experience high humidity, these reactions could emerge as an additional process controlling iodine speciation in ageing aerosols.
Collapse
Affiliation(s)
- Subhamoy Saha
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 095, India.
| | - Mathi Pandiyathuray
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 095, India.
| |
Collapse
|
7
|
Fernandez RP, Berná L, Tomazzeli OG, Mahajan AS, Li Q, Kinnison DE, Wang S, Lamarque JF, Tilmes S, Skov H, Cuevas CA, Saiz-Lopez A. Arctic halogens reduce ozone in the northern mid-latitudes. Proc Natl Acad Sci U S A 2024; 121:e2401975121. [PMID: 39284062 PMCID: PMC11441494 DOI: 10.1073/pnas.2401975121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/08/2024] [Indexed: 10/02/2024] Open
Abstract
While the dominant role of halogens in Arctic ozone loss during spring has been widely studied in the last decades, the impact of sea-ice halogens on surface ozone abundance over the northern hemisphere (NH) mid-latitudes remains unquantified. Here, we use a state-of-the-art global chemistry-climate model including polar halogens (Cl, Br, and I), which reproduces Arctic ozone seasonality, to show that Arctic sea-ice halogens reduce surface ozone in the NH mid-latitudes (47°N to 60°N) by ~11% during spring. This background ozone reduction follows the southward export of ozone-poor and halogen-rich air masses from the Arctic through polar front intrusions toward lower latitudes, reducing the springtime tropospheric ozone column within the NH mid-latitudes by ~4%. Our results also show that the present-day influence of Arctic halogens on surface ozone destruction is comparatively smaller than in preindustrial times driven by changes in the chemical interplay between anthropogenic pollution and natural halogens. We conclude that the impact of Arctic sea-ice halogens on NH mid-latitude ozone abundance should be incorporated into global models to improve the representation of ozone seasonality.
Collapse
Affiliation(s)
- Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- School of Natural Sciences, National University of Cuyo, Mendoza 5501, Argentina
| | - Lucas Berná
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- Atmospheric and Environmental Studies Group, National Technological University, Mendoza 5501, Argentina
| | - Orlando G Tomazzeli
- Institute for Interdisciplinary Science, Argentine National Research Council, Mendoza 5501, Argentina
- School of Natural Sciences, National University of Cuyo, Mendoza 5501, Argentina
| | - Anoop S Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India
| | - Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Douglas E Kinnison
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Siyuan Wang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305
- National Oceanic and Atmospheric Administration, Chemical Sciences Laboratory, Boulder, CO 80305
| | - Jean-François Lamarque
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Simone Tilmes
- Atmospheric Chemistry, Observations & Modelling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301
| | - Henrik Skov
- Department of Environmental Science, iClimate, Aarhus University, Roskilde 4000, Denmark
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid 28006, Spain
| |
Collapse
|
8
|
Li J, Ning A, Liu L, Zhang X. Atmospheric Bases-Enhanced Iodic Acid Nucleation: Altitude-Dependent Characteristics and Molecular Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39252395 DOI: 10.1021/acs.est.4c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Iodic acid (IA), the key driver of marine aerosols, is widely detected within the gas and particle phases in the marine boundary layer (MBL) and even the free troposphere (FT). Although atmospheric bases like dimethylamine (DMA) and ammonia (NH3) can enhance IA particles formation, their different efficiencies and spatial distributions make the dominant base-stabilization mechanisms of forming IA particles unclear. Herein, we investigated the IA-DMA-NH3 nucleation system through quantum chemical calculations at the DLPNO-CCSD(T)/aug-cc-pVTZ(-PP)//ωB97X-D/6-311++G(3df,3pd) + aug-cc-pVTZ-PP level of theory and cluster dynamics simulations. We provide molecular-level evidence that DMA and NH3 can jointly stabilize the IA clusters. The formation rates of IA clusters initially decline before rising from the MBL to the FT, owing to variations in mechanism. In the MBL, IA-DMA nucleation predominates, while the contribution of IA-DMA-NH3 synergistic nucleation cannot be overlooked in polar and NH3-polluted regions. In the lower FT, IA-DMA-NH3 nucleation prevails, whereas in the upper FT, IA-NH3 nucleation dominates. The efficiency of IA-DMA-NH3 nucleation is comparable to that of IA-iodous acid nucleation in the MBL and sulfuric acid-NH3 nucleation in the FT. Hence, the IA-DMA-NH3 mechanism holds promise for revealing the missing sources of tropospheric IA particles.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
Chen BC, Wang KK, Wu HJ. Cation Modulation in AgSbTe 2 Realizes Carrier Optimization, Defect Engineering, and a 7% Single-Leg Thermoelectric Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401723. [PMID: 38711306 DOI: 10.1002/smll.202401723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Indexed: 05/08/2024]
Abstract
AgSbTe2 plays a pivotal role in mid-temperature thermoelectric generators (TEGs). Leveraging the seminal advances in cation manipulation within AgSbTe2, this study demonstrates an enhanced TE power factor (PF = S2σ) of 1.5 mWm-1 K-2 and a peak zT of 1.5 at 583 K in an off-stoichiometric Ag1.04Sb0.96Te2 crystal. The introduction of Ge in place of Ag leads to an increased nH as evidenced by the detection of trace Ge4+ through XPS analysis. Further chemical state analysis reveals the simultaneous presence of Ag+, Sb3+, and Ge4+, elucidating the effect of cation modulations. TEM characterizations validate the presence of superlattice structure, and the linear defects discerned within the AgSbTe2 matrix. Consequently, the lattice thermal conductivity κL is substantially reduced in the Ag1.02Ge0.02Sb0.96Te2 crystal, yielding a peak zT of 1.77 at 623 K. This notable advancement is attributed to the counterbalance achieved between the enhanced PF and the reduced κL, facilitated by cation modulation. Additionally, a single-leg TE device incorporating Ag1.02Ge0.02Sb0.96Te2 demonstrates a conversion efficiency of 7% across a temperature gradient (ΔT) of 350 K. This study corroborates the efficacy of cation modulation through thermodynamic approaches and establishes a relationship between transport properties and the presence of defects.
Collapse
Affiliation(s)
- Bo-Chia Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Kuang-Kuo Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsin-Jay Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
10
|
Huang S, Qiu Z, Zhong J, Wu S, Han X, Hu W, Han Z, Cheng WN, Luo Y, Meng Y, Hu Z, Zhou X, Guo S, Zhu J, Zhao X, Li CC. High-Entropy Transition Metal Phosphorus Trichalcogenides for Rapid Sodium Ion Diffusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405170. [PMID: 38838950 DOI: 10.1002/adma.202405170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials.
Collapse
Affiliation(s)
- Song Huang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zanlin Qiu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiang Zhong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha, 410082, China
| | - Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wing Ni Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuan Meng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zuyang Hu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xuan Zhou
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jian Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha, 410082, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Cheng Chao Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Ning A, Shen J, Zhao B, Wang S, Cai R, Jiang J, Yan C, Fu X, Zhang Y, Li J, Ouyang D, Sun Y, Saiz-Lopez A, Francisco JS, Zhang X. Overlooked significance of iodic acid in new particle formation in the continental atmosphere. Proc Natl Acad Sci U S A 2024; 121:e2404595121. [PMID: 39047040 PMCID: PMC11295062 DOI: 10.1073/pnas.2404595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiewen Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Runlong Cai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Joint International Research Laboratory of Atmospheric and Earth System Science, School of Atmospheric Sciences, Nanjing University, Nanjing210023, China
| | - Xiao Fu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen518055, China
| | - Yunhong Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Daiwei Ouyang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Yisheng Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council, Madrid28006, Spain
| | - Joseph S. Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104-6316
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6316
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
12
|
Engsvang M, Wu H, Elm J. Iodine Clusters in the Atmosphere I: Computational Benchmark and Dimer Formation of Oxyacids and Oxides. ACS OMEGA 2024; 9:31521-31532. [PMID: 39072118 PMCID: PMC11270685 DOI: 10.1021/acsomega.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The contribution of iodine-containing compounds to atmospheric new particle formation is still not fully understood, but iodic acid and iodous acid are thought to be significant contributors. While several quantum chemical studies have been carried out on clusters containing iodine, there is no comprehensive benchmark study quantifying the accuracy of the applied methods. Here, we present the first study in a series that investigate the role of iodine species in atmospheric cluster formation. In this work, we have studied the iodic acid, iodous acid, iodine tetroxide, and iodine pentoxide monomers and their dimers formed with common atmospheric precursors. We have tested the accuracy of commonly applied methods for calculating the geometry of the monomers, thermal corrections of monomers and dimers, the contribution of spin-orbit coupling to monomers and dimers, and finally, the accuracy of the electronic energy correction calculated at different levels of theory. We find that optimizing the structures either at the ωB97X-D3BJ/aug-cc-pVTZ-PP or the M06-2X/aug-cc-pVTZ-PP level achieves the best thermal contribution to the binding free energy. The electronic energy correction can then be calculated at the ZORA-DLPNO-CCSD(T0) level with the SARC-ZORA-TZVPP basis for iodine and ma-ZORA-def2-TZVPP for non-iodine atoms. We applied this methodology to calculate the binding free energies of iodine-containing dimer clusters, where we confirm the qualitative trends observed in previous studies. However, we identify that previous studies overestimate the stability of the clusters by several kcal/mol due to the neglect of relativistic effects. This means that their contributions to the currently studied nucleation pathways of new particle formation are likely overestimated.
Collapse
Affiliation(s)
- Morten Engsvang
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Haide Wu
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Zhao B, Donahue NM, Zhang K, Mao L, Shrivastava M, Ma PL, Shen J, Wang S, Sun J, Gordon H, Tang S, Fast J, Wang M, Gao Y, Yan C, Singh B, Li Z, Huang L, Lou S, Lin G, Wang H, Jiang J, Ding A, Nie W, Qi X, Chi X, Wang L. Global variability in atmospheric new particle formation mechanisms. Nature 2024; 631:98-105. [PMID: 38867037 PMCID: PMC11222162 DOI: 10.1038/s41586-024-07547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China.
- Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kai Zhang
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lizhuo Mao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | | | - Po-Lun Ma
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jiewen Shen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| | - Jian Sun
- National Center for Atmospheric Research, Boulder, CO, USA
| | - Hamish Gordon
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shuaiqi Tang
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jerome Fast
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingyi Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | | | - Zeqi Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Lyuyin Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Sijia Lou
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Guangxing Lin
- Pacific Northwest National Laboratory, Richland, WA, USA
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hailong Wang
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Xuguang Chi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
14
|
de Jonge RW, Xavier C, Olenius T, Elm J, Svenhag C, Hyttinen N, Nieradzik L, Sarnela N, Kristensson A, Petäjä T, Ehn M, Roldin P. Natural Marine Precursors Boost Continental New Particle Formation and Production of Cloud Condensation Nuclei. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10956-10968. [PMID: 38868859 PMCID: PMC11210206 DOI: 10.1021/acs.est.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Marine dimethyl sulfide (DMS) emissions are the dominant source of natural sulfur in the atmosphere. DMS oxidizes to produce low-volatility acids that potentially nucleate to form particles that may grow into climatically important cloud condensation nuclei (CCN). In this work, we utilize the chemistry transport model ADCHEM to demonstrate that DMS emissions are likely to contribute to the majority of CCN during the biological active period (May-August) at three different forest stations in the Nordic countries. DMS increases CCN concentrations by forming nucleation and Aitken mode particles over the ocean and land, which eventually grow into the accumulation mode by condensation of low-volatility organic compounds from continental vegetation. Our findings provide a new understanding of the exchange of marine precursors between the ocean and land, highlighting their influence as one of the dominant sources of CCN particles over the boreal forest.
Collapse
Affiliation(s)
| | - Carlton Xavier
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | - Tinja Olenius
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Carl Svenhag
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
| | - Noora Hyttinen
- Finnish
Meteorological Institute, Kuopio FI-70211, Finland
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Lars Nieradzik
- Department
of Physical Geography and Ecosystem Science, Lund University, Lund SE-22362, Sweden
| | - Nina Sarnela
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Adam Kristensson
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
| | - Tuukka Petäjä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing CN-210023, China
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Pontus Roldin
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Environmental Research Institute IVL, Malmö SE-21119, Sweden
| |
Collapse
|
15
|
Frederiks NC, Johnson CJ. Photochemical Mechanisms in Atmospherically Relevant Iodine Oxide Clusters. J Phys Chem Lett 2024; 15:6306-6314. [PMID: 38856106 DOI: 10.1021/acs.jpclett.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Atmospheric new particle formation events can be driven by iodine oxides or oxoacids via both neutral and ionic mechanisms. Photolysis of new particles likely plays a significant role in their growth mechanisms, but their spectra and photolysis mechanisms remain difficult to characterize. We recorded ultraviolet (UV) photodissociation spectra of (I2O5)0-3(IO3-) clusters, observing loss of an O atom, I2O4, and (I2O5)1,2 in the atmospherically relevant range of 300-340 nm. With increasing cluster size, the intensity of absorption red shifts and generally increases, suggesting particles photolyze more frequently as they grow. Estimates of the rates indicate that even relatively small clusters are likely to undergo photolysis under high-UV conditions. Vibrational spectra identify the covalent moiety I3O8- as the likely chromophore, not IO3-. The I2O5 loss pathway competes with particle growth, while the slower O loss pathway likely produces 3O + 3(cluster) products that could drive subsequent intraparticle chemistry, particularly with co-adsorbed organic or amine species.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Kumar A, Iyer S, Barua S, Brean J, Besic E, Seal P, Dall’Osto M, Beddows DCS, Sarnela N, Jokinen T, Sipilä M, Harrison RM, Rissanen M. Direct Measurements of Covalently Bonded Sulfuric Anhydrides from Gas-Phase Reactions of SO 3 with Acids under Ambient Conditions. J Am Chem Soc 2024; 146:15562-15575. [PMID: 38771742 PMCID: PMC11157540 DOI: 10.1021/jacs.4c04531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Sulfur trioxide (SO3) is an important oxide of sulfur and a key intermediate in the formation of sulfuric acid (H2SO4, SA) in the Earth's atmosphere. This conversion to SA occurs rapidly due to the reaction of SO3 with a water dimer. However, gas-phase SO3 has been measured directly at concentrations that are comparable to that of SA under polluted mega-city conditions, indicating gaps in our current understanding of the sources and fates of SO3. Its reaction with atmospheric acids could be one such fate that can have significant implications for atmospheric chemistry. In the present investigation, laboratory experiments were conducted in a flow reactor to generate a range of previously uncharacterized condensable sulfur-containing reaction products by reacting SO3 with a set of atmospherically relevant inorganic and organic acids at room temperature and atmospheric pressure. Specifically, key inorganic acids known to be responsible for most ambient new particle formation events, iodic acid (HIO3, IA) and SA, are observed to react promptly with SO3 to form iodic sulfuric anhydride (IO3SO3H, ISA) and disulfuric acid (H2S2O7, DSA). Carboxylic sulfuric anhydrides (CSAs) were observed to form by the reaction of SO3 with C2 and C3 monocarboxylic (acetic and propanoic acid) and dicarboxylic (oxalic and malonic acid)-carboxylic acids. The formed products were detected by a nitrate-ion-based chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (NO3--CI-APi-TOF; NO3--CIMS). Quantum chemical methods were used to compute the relevant SO3 reaction rate coefficients, probe the reaction mechanisms, and model the ionization chemistry inherent in the detection of the products by NO3--CIMS. Additionally, we use NO3--CIMS ambient data to report that significant concentrations of SO3 and its acid anhydride reaction products are present under polluted, marine and polar, and volcanic plume conditions. Considering that these regions are rich in the acid precursors studied here, the reported reactions need to be accounted for in the modeling of atmospheric new particle formation.
Collapse
Affiliation(s)
- Avinash Kumar
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Shawon Barua
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - James Brean
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Emin Besic
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Prasenjit Seal
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
| | - Manuel Dall’Osto
- Institute
of Marine Science, Consejo Superior de Investigaciones Científicas
(CSIC), Barcelona 08003, Spain
| | - David C. S. Beddows
- National
Centre for Atmospheric Science, School of Geography, Earth and Environmental
Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Nina Sarnela
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Tuija Jokinen
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
- Climate &
Atmosphere Research Centre (CARE-C), The
Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Roy M. Harrison
- School
of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United
Kingdom
| | - Matti Rissanen
- Aerosol
Physics Laboratory, Physics Unit, Faculty of Engineering and Natural
Sciences, Tampere University, 33720 Tampere, Finland
- Department
of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
| |
Collapse
|
17
|
Rörup B, He XC, Shen J, Baalbaki R, Dada L, Sipilä M, Kirkby J, Kulmala M, Amorim A, Baccarini A, Bell DM, Caudillo-Plath L, Duplissy J, Finkenzeller H, Kürten A, Lamkaddam H, Lee CP, Makhmutov V, Manninen HE, Marie G, Marten R, Mentler B, Onnela A, Philippov M, Scholz CW, Simon M, Stolzenburg D, Tham YJ, Tomé A, Wagner AC, Wang M, Wang D, Wang Y, Weber SK, Zauner-Wieczorek M, Baltensperger U, Curtius J, Donahue NM, El Haddad I, Flagan RC, Hansel A, Möhler O, Petäjä T, Volkamer R, Worsnop D, Lehtipalo K. Temperature, humidity, and ionisation effect of iodine oxoacid nucleation. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:531-546. [PMID: 38764888 PMCID: PMC11097302 DOI: 10.1039/d4ea00013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 05/21/2024]
Abstract
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. In this study, we combined measurements from the CLOUD (Cosmic Leaving OUtdoor Droplets) chamber at CERN and simulations with a kinetic model to investigate the impact of temperature, ionisation, and humidity on iodine oxoacid nucleation. Our findings reveal that ion-induced particle formation rates remain largely unaffected by changes in temperature. However, neutral particle formation rates experience a significant increase when the temperature drops from +10 °C to -10 °C. Running the kinetic model with varying ionisation rates demonstrates that the particle formation rate only increases with a higher ionisation rate when the iodic acid concentration exceeds 1.5 × 107 cm-3, a concentration rarely reached in pristine marine atmospheres. Consequently, our simulations suggest that, despite higher ionisation rates, the charged cluster nucleation pathway of iodic acid is unlikely to be enhanced in the upper troposphere by higher ionisation rates. Instead, the neutral nucleation channel is likely to be the dominant channel in that region. Notably, the iodine oxoacid nucleation mechanism remains unaffected by changes in relative humidity from 2% to 80%. However, under unrealistically dry conditions (below 0.008% RH at +10 °C), iodine oxides (I2O4 and I2O5) significantly enhance formation rates. Therefore, we conclude that iodine oxoacid nucleation is the dominant nucleation mechanism for iodine nucleation in the marine and polar boundary layer atmosphere.
Collapse
Affiliation(s)
- Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
| | - Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Helsinki Institute of Physics, University of Helsinki Helsinki Finland
| | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Mikko Sipilä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Jasper Kirkby
- CERN, European Organisation for Nuclear Research Geneva Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University Nanjing China
| | | | - Andrea Baccarini
- Laboratory of Atmospheric Processes and their Impacts, École polytechnique fédérale de Lausanne Lausanne Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Lucía Caudillo-Plath
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Helsinki Institute of Physics, University of Helsinki Helsinki Finland
| | - Henning Finkenzeller
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Department of Chemistry & CIRES, University of Colorado Boulder Boulder USA
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Chuan Ping Lee
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Vladimir Makhmutov
- Lebedev Physical Institute, Russian Academy of Sciences Moscow Russia
- Moscow Institute of Physics and Technology, National Research University Moscow Russia
| | - Hanna E Manninen
- CERN, European Organisation for Nuclear Research Geneva Switzerland
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Bernhard Mentler
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge UK
| | - Antti Onnela
- CERN, European Organisation for Nuclear Research Geneva Switzerland
| | - Maxim Philippov
- Lebedev Physical Institute, Russian Academy of Sciences Moscow Russia
| | | | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Dominik Stolzenburg
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Institute for Materials Chemistry, TU Wien Vienna Austria
- Faculty of Physics, University of Vienna Vienna Austria
| | - Yee Jun Tham
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- School of Marine Sciences, Sun Yat-sen University Zhuhai China
| | - António Tomé
- IDL-UBI, Universidade da Beira Interior Covilhã Portugal
| | - Andrea C Wagner
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
- Aerosol Physics, Tampere University Tampere Finland
| | - Mingyi Wang
- Department of the Geophysical Sciences, University of Chicago Chicago USA
| | - Dongyu Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing China
| | - Stefan K Weber
- CERN, European Organisation for Nuclear Research Geneva Switzerland
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University Pittsburgh USA
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute Villigen Switzerland
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena USA
| | - Armin Hansel
- Institute for Ion and Applied Physics, University of Innsbruck Innsbruck Austria
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder Boulder USA
| | - Douglas Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki Helsinki Finland
- Finnish Meteorological Institute Helsinki Finland
| |
Collapse
|
18
|
Xavier C, de jonge RW, Jokinen T, Beck L, Sipilä M, Olenius T, Roldin P. Role of Iodine-Assisted Aerosol Particle Formation in Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7314-7324. [PMID: 38626432 PMCID: PMC11064213 DOI: 10.1021/acs.est.3c09103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/18/2024]
Abstract
New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH3 clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.
Collapse
Affiliation(s)
- Carlton Xavier
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | | | - Tuija Jokinen
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
- Climate
& Atmosphere Research Centre (CARE-C), The Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus
| | - Lisa Beck
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt
am Main 60438, Germany
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research (INAR)/Physics, Faculty
of Science, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Tinja Olenius
- Swedish
Meteorological and Hydrological Institute (SMHI), Norrköping SE-60176, Sweden
| | - Pontus Roldin
- Department
of Physics, Lund University, Professorsgatan 1, Lund SE-22363, Sweden
- Swedish
Environmental Research Institute IVL, Malmö SE-21119, Sweden
| |
Collapse
|
19
|
Huang W, Junninen H, Garmash O, Lehtipalo K, Stolzenburg D, Lampilahti JLP, Ezhova E, Schallhart S, Rantala P, Aliaga D, Ahonen L, Sulo J, Quéléver LLJ, Cai R, Alekseychik P, Mazon SB, Yao L, Blichner SM, Zha Q, Mammarella I, Kirkby J, Kerminen VM, Worsnop DR, Kulmala M, Bianchi F. Potential pre-industrial-like new particle formation induced by pure biogenic organic vapors in Finnish peatland. SCIENCE ADVANCES 2024; 10:eadm9191. [PMID: 38569045 PMCID: PMC10990286 DOI: 10.1126/sciadv.adm9191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Pure biogenic new particle formation (NPF) induced by highly oxygenated organic molecules (HOMs) could be an important mechanism for pre-industrial aerosol formation. However, it has not been unambiguously confirmed in the ambient due to the scarcity of truly pristine continental locations in the present-day atmosphere or the lack of chemical characterization of NPF precursors. Here, we report ambient observations of pure biogenic HOM-driven NPF over a peatland in southern Finland. Meteorological decoupling processes formed an "air pocket" (i.e., a very shallow surface layer) at night and favored NPF initiated entirely by biogenic HOM from this peatland, whose atmospheric environment closely resembles that of the pre-industrial era. Our study sheds light on pre-industrial aerosol formation, which represents the baseline for estimating the impact of present and future aerosol on climate, as well as on future NPF, the features of which may revert toward pre-industrial-like conditions due to air pollution mitigation.
Collapse
Affiliation(s)
- Wei Huang
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Heikki Junninen
- Institute of Physics, University of Tartu, Tartu 50411, Estonia
| | - Olga Garmash
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere 33720, Finland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Atmospheric Composition Unit, Finnish Meteorological Institute, Helsinki 00101, Finland
| | | | - Janne L. P. Lampilahti
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Ekaterina Ezhova
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Simon Schallhart
- Atmospheric Composition Unit, Finnish Meteorological Institute, Helsinki 00101, Finland
| | - Pekka Rantala
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Diego Aliaga
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Lauri Ahonen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Juha Sulo
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Lauriane L. J. Quéléver
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Runlong Cai
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Pavel Alekseychik
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Bioeconomy and Environment, Natural Resources Institute Finland, Helsinki 00790, Finland
| | - Stephany B. Mazon
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Lei Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Sara M. Blichner
- Department of Environmental Science, Stockholm University, Stockholm 11418, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm 11418, Sweden
| | - Qiaozhi Zha
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Jasper Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN, the European Organization for Nuclear Research, CH-1211 Geneve 23, Switzerland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Douglas R. Worsnop
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne Research Inc., Billerica, MA 01821, USA
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
20
|
Seki T, Yu CC, Chiang KY, Yu X, Sun S, Bonn M, Nagata Y. Spontaneous Appearance of Triiodide Covering the Topmost Layer of the Iodide Solution Interface Without Photo-Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3830-3837. [PMID: 38353041 PMCID: PMC10902846 DOI: 10.1021/acs.est.3c08243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
21
|
Li D, Huang W, Wang D, Wang M, Thornton JA, Caudillo L, Rörup B, Marten R, Scholz W, Finkenzeller H, Marie G, Baltensperger U, Bell DM, Brasseur Z, Curtius J, Dada L, Duplissy J, Gong X, Hansel A, He XC, Hofbauer V, Junninen H, Krechmer JE, Kürten A, Lamkaddam H, Lehtipalo K, Lopez B, Ma Y, Mahfouz NGA, Manninen HE, Mentler B, Perrier S, Petäjä T, Pfeifer J, Philippov M, Schervish M, Schobesberger S, Shen J, Surdu M, Tomaz S, Volkamer R, Wang X, Weber SK, Welti A, Worsnop DR, Wu Y, Yan C, Zauner-Wieczorek M, Kulmala M, Kirkby J, Donahue NM, George C, El-Haddad I, Bianchi F, Riva M. Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1601-1614. [PMID: 38185880 DOI: 10.1021/acs.est.3c07958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.
Collapse
Affiliation(s)
- Dandan Li
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Wei Huang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Dongyu Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Lucía Caudillo
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Wiebke Scholz
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Henning Finkenzeller
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Zoé Brasseur
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Lubna Dada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Physics (HIP)/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Xianda Gong
- Leibniz Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Armin Hansel
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Victoria Hofbauer
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Heikki Junninen
- Institute of Physics, University of Tartu, Tartu 50090, Estonia
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Brandon Lopez
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, P. R. China
| | - Naser G A Mahfouz
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey 08540, United States
| | - Hanna E Manninen
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Bernhard Mentler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Sebastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Joschka Pfeifer
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Maxim Philippov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Meredith Schervish
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Mihnea Surdu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Sophie Tomaz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xinke Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Stefan K Weber
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - André Welti
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Yusheng Wu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Jasper Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Imad El-Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| |
Collapse
|
22
|
Yang C, Dong H, Chen Y, Xu L, Chen G, Fan X, Wang Y, Tham YJ, Lin Z, Li M, Hong Y, Chen J. New Insights on the Formation of Nucleation Mode Particles in a Coastal City Based on a Machine Learning Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1187-1198. [PMID: 38117945 DOI: 10.1021/acs.est.3c07042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Atmospheric particles have profound implications for the global climate and human health. Among them, ultrafine particles dominate in terms of the number concentration and exhibit enhanced toxic effects as a result of their large total surface area. Therefore, understanding the driving factors behind ultrafine particle behavior is crucial. Machine learning (ML) provides a promising approach for handling complex relationships. In this study, three ML models were constructed on the basis of field observations to simulate the particle number concentration of nucleation mode (PNCN). All three models exhibited robust PNCN reproduction (R2 > 0.80), with the random forest (RF) model excelling on the test data (R2 = 0.89). Multiple methods of feature importance analysis revealed that ultraviolet (UV), H2SO4, low-volatility oxygenated organic molecules (LOOMs), temperature, and O3 were the primary factors influencing PNCN. Bivariate partial dependency plots (PDPs) indicated that during nighttime and overcast conditions, the presence of H2SO4 and LOOMs may play a crucial role in influencing PNCN. Additionally, integrating additional detailed information related to emissions or meteorology would further enhance the model performance. This pilot study shows that ML can be a novel approach for simulating atmospheric pollutants and contributes to a better understanding of the formation and growth mechanisms of nucleation mode particles.
Collapse
Affiliation(s)
- Chen Yang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hesong Dong
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yuping Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lingling Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Gaojie Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaolong Fan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yonghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yee Jun Tham
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, People's Republic of China
| | - Ziyi Lin
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengren Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
23
|
Li Z, Zhao B, Yin D, Wang S, Qiao X, Jiang J, Li Y, Shen J, He Y, Chang X, Li X, Liu Y, Li Y, Liu C, Qi X, Chen L, Chi X, Jiang Y, Li Y, Wu J, Nie W, Ding A. Modeling the Formation of Organic Compounds across Full Volatility Ranges and Their Contribution to Nanoparticle Growth in a Polluted Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1223-1235. [PMID: 38117938 DOI: 10.1021/acs.est.3c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Nanoparticle growth influences atmospheric particles' climatic effects, and it is largely driven by low-volatility organic vapors. However, the magnitude and mechanism of organics' contribution to nanoparticle growth in polluted environments remain unclear because current observations and models cannot capture organics across full volatility ranges or track their formation chemistry. Here, we develop a mechanistic model that characterizes the full volatility spectrum of organic vapors and their contributions to nanoparticle growth by coupling advanced organic oxidation modeling and kinetic gas-particle partitioning. The model is applied to Nanjing, a typical polluted city, and it effectively captures the volatility distribution of low-volatility organics (with saturation vapor concentrations <0.3 μg/m3), thus accurately reproducing growth rates (GRs), with a 4.91% normalized mean bias. Simulations indicate that as particles grow from 4 to 40 nm, the relative fractions of GRs attributable to organics increase from 59 to 86%, with the remaining contribution from H2SO4 and its clusters. Aromatics contribute much to condensable organic vapors (∼37%), especially low-volatility vapors (∼61%), thus contributing the most to GRs (32-46%) as 4-40 nm particles grow. Alkanes also contribute 19-35% of GRs, while biogenic volatile organic compounds contribute minimally (<13%). Our model helps assess the climatic impacts of particles and predict future changes.
Collapse
Affiliation(s)
- Zeqi Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Dejia Yin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yiran Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiewen Shen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yicong He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Xing Chang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
- Laboratory of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
| | - Xiaoxiao Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Li
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
| | - Chong Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| | - Liangduo Chen
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| | - Xuguang Chi
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| | - Yueqi Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yuyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, Nanjing 210023, Jiangsu Province, China
- Jiangsu Provincial Collaborative Innovation Center for Climate Change, Nanjing University, Nanjing 210093, China
| |
Collapse
|
24
|
Zhang R, Ma F, Zhang Y, Chen J, Elm J, He XC, Xie HB. HIO 3-HIO 2-Driven Three-Component Nucleation: Screening Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:649-659. [PMID: 38131199 DOI: 10.1021/acs.est.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Iodine oxoacids (HIO3 and HIO2)-driven nucleation has been suggested to efficiently contribute to new particle formation (NPF) in marine atmospheres. Abundant atmospheric nucleation precursors may further enhance HIO3-HIO2-driven nucleation through various multicomponent nucleation mechanisms. However, the specific enhancing potential (EP) of different precursors remains largely unknown. Herein, the EP-based screening model of precursors and enhancing mechanism of the precursor with the highest EP on HIO3-HIO2 nucleation were investigated. The formation free energies (ΔG), as critical parameters for evaluating EP, were calculated for the dimers of 63 selected precursors with HIO2. Based on the ΔG values, (1) a quantitative structure-activity relationship model was developed for evaluating ΔG of other precursors and (2) atmospheric concentrations of 63 (precursor)1(HIO2)1 dimer clusters were assessed to identify the precursors with the highest EP for HIO3-HIO2-driven nucleation by combining with earlier results for the nucleation with HIO3 as the partner. Methanesulfonic acid (MSA) was found to be one of the precursors with the highest EP. Finally, we found that MSA can effectively enhance HIO3-HIO2 nucleation at atmospheric conditions by studying larger MSA-HIO3-HIO2 clusters. These results augment our current understanding of HIO3-HIO2 and MSA-driven nucleation and may suggest a larger impact of HIO2 in atmospheric aerosol nucleation.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yangjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
25
|
Chamba G, Rissanen M, Barthelmeß T, Saiz-Lopez A, Rose C, Iyer S, Saint-Macary A, Rocco M, Safi K, Deppeler S, Barr N, Harvey M, Engel A, Dunne E, Law CS, Sellegri K. Evidence of nitrate-based nighttime atmospheric nucleation driven by marine microorganisms in the South Pacific. Proc Natl Acad Sci U S A 2023; 120:e2308696120. [PMID: 37991941 PMCID: PMC10691324 DOI: 10.1073/pnas.2308696120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/04/2023] [Indexed: 11/24/2023] Open
Abstract
Our understanding of ocean-cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air-sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.
Collapse
Affiliation(s)
- Guillaume Chamba
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, Clermont-FerrandF-63000, France
| | - Matti Rissanen
- Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, University of Tampere, Tampere33720, Finland
- Chemistry Department, Molecular Research Unit, University of Helsinki, Helsinki00014, Finland
| | - Theresa Barthelmeß
- Research Center for Marine Geosciences, Helmholtz Centre for Ocean Research Kiel, Kiel24105, Germany
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, Consejo Superior de Investigaciones Científicas, Madrid28006, Spain
| | - Clémence Rose
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, Clermont-FerrandF-63000, France
| | - Siddharth Iyer
- Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, University of Tampere, Tampere33720, Finland
| | - Alexia Saint-Macary
- National Institute of Water and Atmospheric Research, Wellington6021, New Zealand
- Department of Marine Sciences, University of Otago, Dunedin9016, New Zealand
| | - Manon Rocco
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, Clermont-FerrandF-63000, France
| | - Karl Safi
- National Institute of Water and Atmospheric Research, Hamilton3216, New Zealand
| | - Stacy Deppeler
- National Institute of Water and Atmospheric Research, Wellington6021, New Zealand
| | - Neill Barr
- National Institute of Water and Atmospheric Research, Wellington6021, New Zealand
| | - Mike Harvey
- National Institute of Water and Atmospheric Research, Wellington6021, New Zealand
| | - Anja Engel
- Research Center for Marine Geosciences, Helmholtz Centre for Ocean Research Kiel, Kiel24105, Germany
| | - Erin Dunne
- Commonwealth Scientific and Industrial Research Organisation Environment, AspendaleVIC3195, Australia
| | - Cliff S. Law
- National Institute of Water and Atmospheric Research, Wellington6021, New Zealand
- Department of Marine Sciences, University of Otago, Dunedin9016, New Zealand
| | - Karine Sellegri
- Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, Clermont-FerrandF-63000, France
| |
Collapse
|
26
|
Kolesnikov A, Krishnamoorthy A, Nomura KI, Wu Z, Abernathy DL, Huq A, Granroth GE, Christe KO, Haiges R, Kalia RK, Nakano A, Vashishta P. Inelastic Neutron Scattering Study of Phonon Density of States of Iodine Oxides and First-Principles Calculations. J Phys Chem Lett 2023; 14:10080-10087. [PMID: 37917420 PMCID: PMC10641886 DOI: 10.1021/acs.jpclett.3c02357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.
Collapse
Affiliation(s)
- Alexander
I. Kolesnikov
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Aravind Krishnamoorthy
- J.
Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Ken-ichi Nomura
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Zhongqing Wu
- School
of Earth and Space Sciences, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Douglas L. Abernathy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Ashfia Huq
- Sandia
National Laboratories, Livermore, California 94551, United States
| | - Garrett E. Granroth
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831-6473, United States
| | - Karl O. Christe
- Loker Research
Institute and Department of Chemistry, University
of Southern California, Los Angeles, California 90089-1661, United States
| | - Ralf Haiges
- Loker Research
Institute and Department of Chemistry, University
of Southern California, Los Angeles, California 90089-1661, United States
| | - Rajiv K. Kalia
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Aiichiro Nakano
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| | - Priya Vashishta
- Collaboratory
for Advanced Computing and Simulations, Department of Chemical Engineering
& Materials Science, Department of Physics & Astronomy, and
Department of Computer Science, University
of Southern California, Los Angeles, California 90089-0242, United States
| |
Collapse
|
27
|
Wu N, Ning A, Liu L, Zu H, Liang D, Zhang X. Methanesulfonic acid and iodous acid nucleation: a novel mechanism for marine aerosols. Phys Chem Chem Phys 2023. [PMID: 37323049 DOI: 10.1039/d3cp01198d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
By seeding clouds, new particle formation (NPF) has a substantial impact on radiation balance, bio-geochemical cycles and global climate. Over oceans, both methanesulfonic acid (CH3S(O)2OH, MSA) and iodous acid (HIO2) have been reported to be closely associated with NPF events; however, much less is known about whether they can jointly nucleate to form nanoclusters. Hence, quantum chemical calculations and Atmospheric Cluster Dynamics Code (ACDC) simulations were performed to investigate the novel mechanism of MSA-HIO2 binary nucleation. The results indicate that MSA and HIO2 can form stable clusters via multiple interactions including hydrogen bonds, halogen bonds, and electrostatic forces between ion pairs after proton transfer, which are more diverse than those in MSA-iodic acid (HIO3) and MSA-dimethylamine (DMA) clusters. Interestingly, HIO2 can be protonated by MSA exhibiting base-like behavior, but it differs from base nucleation precursors by self-nucleation rather than solely binding to MSA. Due to the greater stability of MSA-HIO2 clusters, the formation rate of MSA-HIO2 clusters can be even higher than that of MSA-DMA clusters, suggesting that MSA-HIO2 nucleation is a non-negligible source of marine NPF. This work proposes a novel mechanism of MSA-HIO2 binary nucleation for marine aerosols and provides deeper insights into the distinctive nucleation characteristics of HIO2, which can help in constructing a more comprehensive sulfur- and iodine-bearing nucleation model for marine NPF.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Haotian Zu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Danli Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
28
|
Ning A, Zhong J, Li L, Li H, Liu J, Liu L, Liang Y, Li J, Zhang X, Francisco JS, He H. Chemical Implications of Rapid Reactive Absorption of I 2O 4 at the Air-Water Interface. J Am Chem Soc 2023; 145:10817-10825. [PMID: 37133920 DOI: 10.1021/jacs.3c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Marine aerosol formation involving iodine-bearing species significantly affects the global climate and radiation balance. Although recent studies outline the critical role of iodine oxide in nucleation, much less is known about its contribution to aerosol growth. This paper presents molecular-level evidence that the air-water interfacial reaction of I2O4 mediated by potent atmospheric chemicals, such as sulfuric acid (H2SO4) and amines [e.g., dimethylamine (DMA) and trimethylamine (TMA)], can occur rapidly on a picosecond time scale by Born-Oppenheimer molecular dynamics simulations. The interfacial water bridges the reactants while facilitating the DMA-mediated proton transfer and stabilizing the ionic products of H2SO4-involved reactions. The identified heterogeneous mechanisms exhibit the dual contribution to aerosol growth: (i) the ionic products (e.g., IO3-, DMAH+, TMAH+, and HSO4-) formed by reactive adsorption possess less volatility than the reactants and (ii) these ions, such as alkylammonium salts (e.g., DMAH+), are also highly hydrophilic, further facilitating hygroscopic growth. This investigation enhances not only our understanding of heterogeneous iodine chemistry but also the impact of iodine oxide on aerosol growth. Also, these findings can bridge the gap between the abundance of I2O4 in the laboratory and its absence in field-collected aerosols and provide an explanation for the missing source of IO3-, HSO4-, and DMAH+ in marine aerosols.
Collapse
Affiliation(s)
- An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Liwen Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Liang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
29
|
Ma F, Xie HB, Zhang R, Su L, Jiang Q, Tang W, Chen J, Engsvang M, Elm J, He XC. Enhancement of Atmospheric Nucleation Precursors on Iodic Acid-Induced Nucleation: Predictive Model and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6944-6954. [PMID: 37083433 PMCID: PMC10157892 DOI: 10.1021/acs.est.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iodic acid (IA) has recently been recognized as a key driver for new particle formation (NPF) in marine atmospheres. However, the knowledge of which atmospheric vapors can enhance IA-induced NPF remains limited. The unique halogen bond (XB)-forming capacity of IA makes it difficult to evaluate the enhancing potential (EP) of target compounds on IA-induced NPF based on widely studied sulfuric acid systems. Herein, we employed a three-step procedure to evaluate the EP of potential atmospheric nucleation precursors on IA-induced NPF. First, we evaluated the EP of 63 precursors by simulating the formation free energies (ΔG) of the IA-containing dimer clusters. Among all dimer clusters, 44 contained XBs, demonstrating that XBs are frequently formed. Based on the calculated ΔG values, a quantitative structure-activity relationship model was developed for evaluating the EP of other precursors. Second, amines and O/S-atom-containing acids were found to have high EP, with diethylamine (DEA) yielding the highest potential to enhance IA-induced nucleation by combining both the calculated ΔG and atmospheric concentration of considered 63 precursors. Finally, by studying larger (IA)1-3(DEA)1-3 clusters, we found that the IA-DEA system with merely 0.1 ppt (2.5×106 cm-3) DEA yields comparable nucleation rates to that of the IA-iodous acid system.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Morten Engsvang
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
- Finnish Meteorological Institute, Helsinki 00560, Finland
| |
Collapse
|
30
|
Liu L, Li S, Zu H, Zhang X. Unexpectedly significant stabilizing mechanism of iodous acid on iodic acid nucleation under different atmospheric conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:159832. [PMID: 36404466 DOI: 10.1016/j.scitotenv.2022.159832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Iodous acid (HIO2) has been shown to play a stabilizing role in the nucleation of iodic acid (HIO3) (He et al., 2021). However, the stabilization effect and specific stabilizing mechanism of HIO2 on HIO3 nucleation under different atmospheric conditions remain unclear. Therefore, we studied these two issues under different temperatures and nucleation precursor concentrations using density functional theory combined with the Atmospheric Cluster Dynamics Code. We found that HIO2 can form clusters with HIO3 via strong hydrogen bonds, halogen bonds, and proton-transfer, substantially enhancing the stability of HIO3 clusters and decreasing the energy barrier of HIO3-based cluster formation at different temperatures and nucleation precursor concentrations. The particle formation rate and cluster concentrations of HIO3-HIO2 nucleation were negatively correlated with temperature and positively correlated with HIO2 concentration. The enhancements by HIO2 on the particle formation rate and cluster concentration of HIO3 nucleation were positively correlated with temperature and HIO2 concentration. Interestingly, even at a low HIO2 concentration (1.0 × 105 molecules cm-3), the enhancement on the particle formation rate and cluster concentration of HIO3 nucleation by HIO2 were both unexpectedly up to 4.1 × 104-fold at 283 K. Therefore, HIO3-HIO2 nucleation can be extremely rapid in cold regions, and the enhancement by HIO2 can be significant, especially in warm regions even at relatively high HIO2 concentrations.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuning Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; National Supercomputer Center in Tianjin, Tianjin 300451, China
| | - Haotian Zu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
31
|
Mondal K, Rajakumar B. Kinetics of IO radicals with C1, C2 aliphatic alcohols in tropospherically relevant conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22590-22605. [PMID: 36303003 DOI: 10.1007/s11356-022-23494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Kinetics of the reaction of IO radicals with methanol (MeOH) and ethanol (EtOH) were experimentally studied in the gas phase using pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS). IO radicals were produced in situ at the reaction zone by photolysing a mixture of precursors (CH3I + O3 + N2) at 248 nm and thereby electronically excited at 445.04 nm. The rate coefficients for the reactions of (IO + MeOH) and (IO + EtOH) were measured at a total pressure of 60 Torr/N2 in the range of 258-360 K. At room temperature, the experimental rate coefficients of the title reactions were measured to be [Formula: see text] and [Formula: see text]. Dependencies of the kinetics with photolysis laser fluence and experimental pressures were verified. Effects of pressure over the kinetic behaviour of the studied systems were observed to be insignificant within the statistical uncertainties when studied in the range of ~ 30-150 Torr/N2, whereas a minor and linear fluence dependency was observed within the studied limit. From the measured kinetic parameters, the atmospheric lifetimes of MeOH and EtOH were calculated in the tropospherically relevant conditions regarding their reactions with important atmospheric oxidants like Cl atom, OH and IO radicals. To complement experimental results, kinetics and thermochemistry for the title reactions were investigated theoretically via canonical variational transition state (CVT) theory in combination with small curvature tunnelling (SCT) corrections with a dual-level Interpolated Single Point Energy (ISPE) approach at the CCSD(T)/def2-QZVPP//M06-2X/def2-TZVPP level of theory/basis set in the temperatures between 200 and 400 K. Good degree of agreement was encountered between experimentally measured and theoretically calculated rate coefficients. This article also discusses the thermochemical parameters and kinetic branching ratios (BRs) of all the pathways involved in the title reactions.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
32
|
Jones MR, Chance R, Dadic R, Hannula HR, May R, Ward M, Carpenter LJ. Environmental iodine speciation quantification in seawater and snow using ion exchange chromatography and UV spectrophotometric detection. Anal Chim Acta 2023; 1239:340700. [PMID: 36628710 DOI: 10.1016/j.aca.2022.340700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The behaviour and distribution of iodine in the environment are of significant interest in a range of scientific disciplines, from health, as iodine is an essential element for humans and animals, to climate and air quality, to geochemistry. Aquatic environments are the reservoir for iodine, where it exists in low concentrations as iodide, iodate and dissolved organic iodine and in which it undergoes redox reactions. The current measurement techniques for iodine species are typically time-consuming, subject to relatively poor precision and require specialist instrumentation including those that require mercury as an electrode. We present a new method for measuring iodine species, that is tailored towards lower dissolved organic carbon waters, such as seawater, rainwater and snow, using ion exchange chromatography (IC) with direct ultra-violet spectrophotometric detection of iodide and without the need for sample pre-concentration. Simple chemical amendments to the sample allow for the quantification of both iodate and dissolved organic iodine in addition to iodide. The developed IC method, which takes 16 min, was applied to contrasting samples that encompass a wide range of aqueous environments, from Arctic sea-ice snow (low concentrations) to coastal seawater (complex sample matrix). Linear calibrations are demonstrated for all matrices, using gravimetrically prepared potassium iodide standards. The detection limit for the iodide ion is 0.12 nM based on the standard deviation of the blank, while sample reproducibility is typically <2% at >8 nM and ∼4% at <8 nM. Since there is no environmental certified reference material for iodine species, the measurements made on seawater samples using this IC method were compared to those obtained using established analytical techniques; iodide voltammetry and iodate spectrophotometry. We calculated recoveries of 102 ± 16% (n = 107) for iodide and 116 ± 9% (n = 103) for iodate, the latter difference may be due to an underestimation of iodate by the spectrophotometric method. We further compared a chemical oxidation and reduction of the sample to an ultra-violet digestion to establish the total dissolved iodine content, the average recovery following chemical amendments was 98 ± 4% (n = 92). The new method represents a simple, efficient, green, precise and sensitive method for measuring dissolved speciated iodine in complex matrices.
Collapse
Affiliation(s)
- Matthew R Jones
- Wolfson Atmospheric Chemistry Laboratory, University of York, York, YO10 5DD, UK.
| | - Rosie Chance
- Wolfson Atmospheric Chemistry Laboratory, University of York, York, YO10 5DD, UK
| | - Ruzica Dadic
- Victoria University of Wellington, Antarctic Research Centre, Wellington, 6140, New Zealand; WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
| | - Henna-Reetta Hannula
- Finnish Meteorological Institute, Space and Earth Observation Centre, 00101, Helsinki, Finland
| | - Rebecca May
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK
| | - Martyn Ward
- Wolfson Atmospheric Chemistry Laboratory, University of York, York, YO10 5DD, UK
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratory, University of York, York, YO10 5DD, UK
| |
Collapse
|
33
|
Frederiks NC, Heaney DD, Kreinbihl JJ, Johnson CJ. The Competition between Hydrogen, Halogen, and Covalent Bonding in Atmospherically Relevant Ammonium Iodate Clusters. J Am Chem Soc 2023; 145:1165-1175. [PMID: 36595580 DOI: 10.1021/jacs.2c10841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Iodine-containing clusters are expected to be central to new particle formation (NPF) events in polar and midlatitude coastal regions. Iodine oxoacids and iodine oxides are observed in newly formed clusters, and in more polluted midlatitude settings, theoretical studies suggest ammonia may increase growth rates. Structural information was obtained via infrared (IR) spectroscopy and quantum chemical calculations for a series of clusters containing ammonia, iodic acid, and iodine pentoxide. Structures for five of the smallest cationic clusters present in the mass spectrum were identified, and four of the structures were found to preferentially form halogen and/or covalent bonds over hydrogen bonds. Ammonia is important in proton transfer from iodic acid components and also provides a scaffold to template the formation of a halogen and covalent bonded backbone. The calculations executed for the two largest clusters studied suggested the formation of a covalent I3O8- anion within the clusters.
Collapse
Affiliation(s)
- Nicoline C Frederiks
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Danika D Heaney
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - John J Kreinbihl
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, New York11794, United States
| |
Collapse
|
34
|
The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source. Nat Chem 2023; 15:129-135. [PMID: 36376388 PMCID: PMC9836935 DOI: 10.1038/s41557-022-01067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2O → HIO3 + HOI + (1)O2. The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.
Collapse
|
35
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
36
|
Tang B, Li Z. Mechanisms of Reactions between HOI and HY (Y = Cl, Br, I) on a Water Nanodroplet Surface. J Phys Chem A 2022; 126:8028-8036. [PMID: 36260343 DOI: 10.1021/acs.jpca.2c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iodine chemistry has a broad range of implications for atmospheric processes including new particle formation. Hypoiodous acid (HOI) is a major iodine reservoir species. Its heterogeneous recycling in marine aerosols influences the lifetime of ozone in the troposphere. One important step of such recycling is the reaction between HOI and HY (Y = Cl, Br, I). In this article, we employ ab initio molecular dynamics (AIMD) and quantum chemistry to investigate these reactions at the surface of atmospheric aerosols. Di-halogen (XY) can be formed in a picosecond time scale, with the formation of a loop structure connected by hydrogen and halogen bonds. The photolysis of XY at the surface of an aerosol is faster than in the gas phase. In addition to the formation of di-halogen, a new pathway to forming a [H2O···I···OH2]+ complex by the direct or indirect proton transition is identified. Results presented in this study deepen our understanding of the faster iodine-heterogeneous recycling at the surface of aerosols.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
37
|
Zhang R, Xie HB, Ma F, Chen J, Iyer S, Simon M, Heinritzi M, Shen J, Tham YJ, Kurtén T, Worsnop DR, Kirkby J, Curtius J, Sipilä M, Kulmala M, He XC. Critical Role of Iodous Acid in Neutral Iodine Oxoacid Nucleation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14166-14177. [PMID: 36126141 PMCID: PMC9536010 DOI: 10.1021/acs.est.2c04328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleation of neutral iodine particles has recently been found to involve both iodic acid (HIO3) and iodous acid (HIO2). However, the precise role of HIO2 in iodine oxoacid nucleation remains unclear. Herein, we probe such a role by investigating the cluster formation mechanisms and kinetics of (HIO3)m(HIO2)n (m = 0-4, n = 0-4) clusters with quantum chemical calculations and atmospheric cluster dynamics modeling. When compared with HIO3, we find that HIO2 binds more strongly with HIO3 and also more strongly with HIO2. After accounting for ambient vapor concentrations, the fastest nucleation rate is predicted for mixed HIO3-HIO2 clusters rather than for pure HIO3 or HIO2 ones. Our calculations reveal that the strong binding results from HIO2 exhibiting a base behavior (accepting a proton from HIO3) and forming stronger halogen bonds. Moreover, the binding energies of (HIO3)m(HIO2)n clusters show a far more tolerant choice of growth paths when compared with the strict stoichiometry required for sulfuric acid-base nucleation. Our predicted cluster formation rates and dimer concentrations are acceptably consistent with those measured by the Cosmic Leaving Outdoor Droplets (CLOUD) experiment. This study suggests that HIO2 could facilitate the nucleation of other acids beyond HIO3 in regions where base vapors such as ammonia or amines are scarce.
Collapse
Affiliation(s)
- Rongjie Zhang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- . Phone: +86-411-84707251
| | - Fangfang Ma
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (Ministry
of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Siddharth Iyer
- Aerosol
Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Mario Simon
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Martin Heinritzi
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Jiali Shen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yee Jun Tham
- School
of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Douglas R. Worsnop
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne
Research, Inc., Billerica, Massachusetts 01821, United States
| | - Jasper Kirkby
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN,
the European Organization for Nuclear Research, CH-1211 Geneva 23, Switzerland
| | - Joachim Curtius
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, Beijing 100029, China
| | - Xu-Cheng He
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
38
|
Shen J, Scholz W, He XC, Zhou P, Marie G, Wang M, Marten R, Surdu M, Rörup B, Baalbaki R, Amorim A, Ataei F, Bell DM, Bertozzi B, Brasseur Z, Caudillo L, Chen D, Chu B, Dada L, Duplissy J, Finkenzeller H, Granzin M, Guida R, Heinritzi M, Hofbauer V, Iyer S, Kemppainen D, Kong W, Krechmer JE, Kürten A, Lamkaddam H, Lee CP, Lopez B, Mahfouz NGA, Manninen HE, Massabò D, Mauldin RL, Mentler B, Müller T, Pfeifer J, Philippov M, Piedehierro AA, Roldin P, Schobesberger S, Simon M, Stolzenburg D, Tham YJ, Tomé A, Umo NS, Wang D, Wang Y, Weber SK, Welti A, Wollesen de Jonge R, Wu Y, Zauner-Wieczorek M, Zust F, Baltensperger U, Curtius J, Flagan RC, Hansel A, Möhler O, Petäjä T, Volkamer R, Kulmala M, Lehtipalo K, Rissanen M, Kirkby J, El-Haddad I, Bianchi F, Sipilä M, Donahue NM, Worsnop DR. High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13931-13944. [PMID: 36137236 PMCID: PMC9535848 DOI: 10.1021/acs.est.2c05154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4 from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4 production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.
Collapse
Affiliation(s)
- Jiali Shen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Wiebke Scholz
- Institute
of Ion Physics and Applied Physics, University
of Innsbruck, 6020 Innsbruck, Austria
| | - Xu-Cheng He
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Putian Zhou
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Guillaume Marie
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Mingyi Wang
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ruby Marten
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Mihnea Surdu
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Birte Rörup
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Rima Baalbaki
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Antonio Amorim
- CENTRA
and Faculdade de Ciências da Universidade de Lisboa, 1749-016 Campo
Grande, Lisboa, Portugal
| | - Farnoush Ataei
- Leibniz
Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - David M. Bell
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Barbara Bertozzi
- Institute
of Meteorology and Climate Research, Karlsruhe
Institute of Technology, 76344 Karlsruhe, Germany
| | - Zoé Brasseur
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lucía Caudillo
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Dexian Chen
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Biwu Chu
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Lubna Dada
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Jonathan Duplissy
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Helsinki
Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Henning Finkenzeller
- Department
of Chemistry and Cooperative Institute for Research in the Environmental
Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Manuel Granzin
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Roberto Guida
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva
23, Switzerland
| | - Martin Heinritzi
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Victoria Hofbauer
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Siddharth Iyer
- Aerosol Physics
Laboratory, Physics Unit, Faculty of Engineering
and Natural Sciences, Tampere University, 33014 Tampere, Finland
| | - Deniz Kemppainen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Weimeng Kong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Andreas Kürten
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Houssni Lamkaddam
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Chuan Ping Lee
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Brandon Lopez
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Naser G. A. Mahfouz
- Atmospheric and Oceanic Sciences, Princeton
University, Princeton, New Jersey 08540, United States
| | - Hanna E. Manninen
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva
23, Switzerland
| | - Dario Massabò
- Department
of Physics, University of Genoa & INFN, 16146 Genoa, Italy
| | - Roy L. Mauldin
- Department of Chemistry, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Bernhard Mentler
- Institute
of Ion Physics and Applied Physics, University
of Innsbruck, 6020 Innsbruck, Austria
| | - Tatjana Müller
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Joschka Pfeifer
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva
23, Switzerland
| | - Maxim Philippov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ana A. Piedehierro
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Pontus Roldin
- Division of Nuclear Physics, Lund University, 22100 Lund, Sweden
| | | | - Mario Simon
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Dominik Stolzenburg
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yee Jun Tham
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- School of Marine Sciences, Sun Yat-sen
University, 519082 Zhuhai, China
| | - António Tomé
- Institute Infante Dom Luíz, University
of Beira Interior, 6200-001 Covilhã, Portugal
| | - Nsikanabasi Silas Umo
- Institute
of Meteorology and Climate Research, Karlsruhe
Institute of Technology, 76344 Karlsruhe, Germany
| | - Dongyu Wang
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Yonghong Wang
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Stefan K. Weber
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva
23, Switzerland
| | - André Welti
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | | | - Yusheng Wu
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Marcel Zauner-Wieczorek
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Felix Zust
- Institute
of Ion Physics and Applied Physics, University
of Innsbruck, 6020 Innsbruck, Austria
| | - Urs Baltensperger
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Joachim Curtius
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Richard C. Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Armin Hansel
- Institute
of Ion Physics and Applied Physics, University
of Innsbruck, 6020 Innsbruck, Austria
| | - Ottmar Möhler
- Institute
of Meteorology and Climate Research, Karlsruhe
Institute of Technology, 76344 Karlsruhe, Germany
| | - Tuukka Petäjä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Rainer Volkamer
- Department
of Chemistry and Cooperative Institute for Research in the Environmental
Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Markku Kulmala
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Helsinki
Institute of Physics, University of Helsinki, 00014 Helsinki, Finland
- Joint
International Research Laboratory of Atmospheric and Earth System
Sciences, School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China
- Aerosol and Haze Laboratory, Beijing Advanced Innovation
Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Katrianne Lehtipalo
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Matti Rissanen
- Aerosol Physics
Laboratory, Physics Unit, Faculty of Engineering
and Natural Sciences, Tampere University, 33014 Tampere, Finland
| | - Jasper Kirkby
- Institute
for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- CERN, the European Organization for Nuclear Research, CH-1211 Geneva
23, Switzerland
| | - Imad El-Haddad
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, CH-5232 Villigen, Switzerland
| | - Federico Bianchi
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Mikko Sipilä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Neil M. Donahue
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemistry, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Douglas R. Worsnop
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Aerodyne Research, Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
39
|
Wang L, Yan J, Saiz-Lopez A, Jiang B, Yue F, Yu X, Xie Z. Mixing state and distribution of iodine-containing particles in Arctic Ocean during summertime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155030. [PMID: 35390390 DOI: 10.1016/j.scitotenv.2022.155030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Iodine chemistry plays a key role in ozone destruction and new aerosol formation in the marine boundary layer (MBL), especially in polar regions. We investigated iodine-containing particles (0.2-2 μm) in the Arctic Ocean using a ship-based single particle aerosol mass spectrometer from July to August 2017. Seven main particle types were identified: dust, biomass combustion particles, sea salt, organic S, aromatics, hydrocarbon-like compounds, and amines. The number fraction of iodine-containing particles was higher inside the Arctic Circle (>65°N) than outside (55-65°N). According to the air mass back trajectories, the latitudinal distribution of iodine-containing particles can be mainly attributed to iodine emissions from the sea ice edge region. Diurnal trends were found, especially during the second half of cruise, with peak iodine-containing particle number fractions during low-light conditions and relatively low number fractions at midday. These results imply that solar radiation plays a significant role in modulating particulate iodine in the Arctic atmosphere.
Collapse
Affiliation(s)
- Longquan Wang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinpei Yan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Bei Jiang
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiawei Yu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
40
|
Abstract
The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a "catalyst" for nucleation and subsequent new particle production in marine air.
Collapse
|
41
|
Cai R, Yin R, Yan C, Yang D, Deng C, Dada L, Kangasluoma J, Kontkanen J, Halonen R, Ma Y, Zhang X, Paasonen P, Petäjä T, Kerminen VM, Liu Y, Bianchi F, Zheng J, Wang L, Hao J, Smith JN, Donahue NM, Kulmala M, Worsnop DR, Jiang J. The missing base molecules in atmospheric acid-base nucleation. Natl Sci Rev 2022; 9:nwac137. [PMID: 36196118 PMCID: PMC9522409 DOI: 10.1093/nsr/nwac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Transformation of low-volatility gaseous precursors to new particles affects aerosol number concentration, cloud formation and hence the climate. The clustering of acid and base molecules is a major mechanism driving fast nucleation and initial growth of new particles in the atmosphere. However, the acid–base cluster composition, measured using state-of-the-art mass spectrometers, cannot explain the measured high formation rate of new particles. Here we present strong evidence for the existence of base molecules such as amines in the smallest atmospheric sulfuric acid clusters prior to their detection by mass spectrometers. We demonstrate that forming (H2SO4)1(amine)1 is the rate-limiting step in atmospheric H2SO4-amine nucleation and the uptake of (H2SO4)1(amine)1 is a major pathway for the initial growth of H2SO4 clusters. The proposed mechanism is very consistent with measured new particle formation in urban Beijing, in which dimethylamine is the key base for H2SO4 nucleation while other bases such as ammonia may contribute to the growth of larger clusters. Our findings further underline the fact that strong amines, even at low concentrations and when undetected in the smallest clusters, can be crucial to particle formation in the planetary boundary layer.
Collapse
Affiliation(s)
- Runlong Cai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing , 100084 , China
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing , 100084 , China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing , 100029 , China
| | - Dongsen Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology , Nanjing , 210044 , China
| | - Chenjuan Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing , 100084 , China
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute , Villigen , 5232 , Switzerland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Jenni Kontkanen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Roope Halonen
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University , 135 Yaguan Road , Tianjin , 300350 , China
| | - Yan Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology , Nanjing , 210044 , China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology , Beijing , 100081 , China
| | - Pauli Paasonen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing , 100029 , China
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology , Nanjing , 210044 , China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , Shanghai , 200433 , China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing , 100084 , China
| | - James N Smith
- Chemistry Department, University of California , Irvine , CA 92697 , USA
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University , Pittsburgh , PA 15213 , USA
- Department of Chemistry, Carnegie Mellon University , Pittsburgh , PA 15213 , USA
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki , Helsinki , 00014 , Finland
- Aerodyne Research Inc., Billerica , MA , MA 01821 , USA
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing , 100084 , China
| |
Collapse
|
42
|
FoxO3 restricts liver regeneration by suppressing the proliferation of hepatocytes. NPJ Regen Med 2022; 7:33. [PMID: 35750775 PMCID: PMC9232540 DOI: 10.1038/s41536-022-00227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Upon injury, the liver is capable of substantial regeneration from the original tissue until an appropriate functional size. The underlying mechanisms controlling the liver regeneration processes are not well elucidated. Previous studies have proposed that the transcription factor FoxO3 is involved in various liver diseases, but its exact role in the regulation of liver regeneration remains largely unclear. To directly test the detailed role of FoxO3 in liver regeneration, both a constitutive Albumin-Cre driver line and adeno-associated virus serotype 8 (AAV8)-Tbg-Cre (AAV-Cre)-injected adult FoxO3fl/fl mice were subjected to 70% partial hepatectomy (PH). Our data demonstrate that FoxO3 deletion accelerates liver regeneration primarily by limiting polyploidization and promoting the proliferation of hepatocytes during liver regeneration. RNA-seq analysis indicates that FoxO3 deficiency greatly alters the expression of gene sets associated with cell proliferation and apoptosis during liver regeneration. Chromatin immunoprecipitation-PCR (ChIP-PCR) and luciferase reporter assays reveal that FoxO3 promotes the expression of Nox4 but suppresses the expression of Nr4a1 in hepatocytes. AAV8 virus-mediated overexpression of Nox4 and knockdown of Nr4a1 significantly suppressed hepatocyte proliferation and liver regeneration in FoxO3-deficient mice. We demonstrate that FoxO3 negatively controls hepatocyte proliferation through Nox4 upregulation and Nr4a1 downregulation, thereby ensuring appropriate functional regeneration of the liver. Our findings provide novel mechanistic insight into the therapeutic mechanisms of FoxO3 in liver damage and repair.
Collapse
|
43
|
Zhang Y, Li D, Ma Y, Dubois C, Wang X, Perrier S, Chen H, Wang H, Jing S, Lu Y, Lou S, Yan C, Nie W, Chen J, Huang C, George C, Riva M. Field Detection of Highly Oxygenated Organic Molecules in Shanghai by Chemical Ionization-Orbitrap. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7608-7617. [PMID: 35594417 DOI: 10.1021/acs.est.1c08346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Secondary organic aerosol, formed through atmospheric oxidation processes, plays an important role in affecting climate and human health. In this study, we conducted a comprehensive campaign in the megacity of Shanghai during the 2019 International Import Expo (EXPO), with the first deployment of a chemical ionization─Orbitrap mass spectrometer for ambient measurements. With the ultrahigh mass resolving power of the Orbitrap mass analyzer (up to 140,000 Th/Th) and capability in dealing with massive spectral data sets by positive matrix factorization, we were able to identify the major gas-phase oxidation processes leading to the formation of oxygenated organic molecules (OOM) in Shanghai. Nine main factors from three independent sub-range analysis were identified. More than 90% of OOM are of anthropogenic origin and >60% are nitrogen-containing molecules, mainly dominated by the RO2 + NO and/or NO3 chemistry. The emission control during the EXPO showed that even though the restriction was effectual in significantly lowering the primary pollutants (20-70% decrease), the secondary oxidation products responded less effectively (14% decrease), or even increased (50 to >200%) due to the enhancement of ozone and the lowered condensation sink, indicating the importance of a stricter multi-pollutant coordinated strategy in primary and secondary pollution mitigation.
Collapse
Affiliation(s)
- Yanjun Zhang
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Dandan Li
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Clement Dubois
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Xinke Wang
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Sebastien Perrier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yiqun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province 210093, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Christian George
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| | - Matthieu Riva
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France
| |
Collapse
|
44
|
Zhang S, Li S, Ning A, Liu L, Zhang X. Iodous acid - a more efficient nucleation precursor than iodic acid. Phys Chem Chem Phys 2022; 24:13651-13660. [PMID: 35611676 DOI: 10.1039/d2cp00302c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodous acid (HIO2), a vital iodine oxyacid, potentially plays an important role in the formation of new particles in marine areas (He et al., Science, 2021, 371, 589-595). However, the nucleation mechanism of HIO2 is still poorly understood. Herein, the self-nucleation of HIO2 under different atmospheric conditions is investigated by a combination of quantum chemical calculations and the Atmospheric Cluster Dynamics Code (ACDC) simulations. The results indicate that HIO2 can form relatively stable molecular clusters through hydrogen bonds and halogen bonds, and the self-nucleation of HIO2 proceeds by sequential addition of HIO2 or HIO2-based small clusters. Besides, in order to better illustrate the role of HIO2 in new particle formation (NPF) in marine areas, we compare its nucleation properties with those of iodic acid (HIO3), a significant iodine-containing nucleation precursor in marine regions. We find that the cluster formation rate of the self-nucleation of HIO2 is higher than that of the self-nucleation of HIO3 although [HIO2] is lower than [HIO3], which indicates that the HIO2 molecule is a more efficient nucleation precursor than the HIO3 molecule. Therefore, the self-nucleation of HIO2 could become one of the most important sources for NPF in marine areas, which could provide potential theoretical evidence for explaining the intensive NPF events observed in these areas.
Collapse
Affiliation(s)
- Shaobing Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Shuning Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China. .,National Supercomputer Center in Tianjin, Tianjin, 300451, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
45
|
Gómez Martín JC, Lewis TR, James AD, Saiz-Lopez A, Plane JMC. Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid. J Am Chem Soc 2022; 144:9240-9253. [PMID: 35604404 PMCID: PMC9164234 DOI: 10.1021/jacs.1c12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Iodine chemistry
is an important driver of new particle formation
in the marine and polar boundary layers. There are, however, conflicting
views about how iodine gas-to-particle conversion proceeds. Laboratory
studies indicate that the photooxidation of iodine produces iodine
oxides (IxOy), which are well-known particle precursors. By contrast, nitrate
anion chemical ionization mass spectrometry (CIMS) observations in
field and environmental chamber studies have been interpreted as evidence
of a dominant role of iodic acid (HIO3) in iodine-driven
particle formation. Here, we report flow tube laboratory experiments
that solve these discrepancies by showing that both IxOy and HIO3 are involved in atmospheric new particle formation. I2Oy molecules (y = 2,
3, and 4) react with nitrate core ions to generate mass spectra similar
to those obtained by CIMS, including the iodate anion. Iodine pentoxide
(I2O5) produced by photolysis of higher-order
IxOy is hydrolyzed,
likely by the water dimer, to yield HIO3, which also contributes
to the iodate anion signal. We estimate that ∼50% of the iodate
anion signals observed by nitrate CIMS under atmospheric water vapor
concentrations originate from I2Oy. Under such conditions, iodine-containing clusters and particles
are formed by aggregation of I2Oy and HIO3, while under dry laboratory conditions,
particle formation is driven exclusively by I2Oy. An updated mechanism for iodine gas-to-particle
conversion is provided. Furthermore, we propose that a key iodine
reservoir species such as iodine nitrate, which we observe as a product
of the reaction between iodine oxides and the nitrate anion, can also
be detected by CIMS in the atmosphere.
Collapse
Affiliation(s)
| | - Thomas R Lewis
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain.,School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | | | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain
| | - John M C Plane
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
46
|
Wang M, Xiao M, Bertozzi B, Marie G, Rörup B, Schulze B, Bardakov R, He XC, Shen J, Scholz W, Marten R, Dada L, Baalbaki R, Lopez B, Lamkaddam H, Manninen HE, Amorim A, Ataei F, Bogert P, Brasseur Z, Caudillo L, De Menezes LP, Duplissy J, Ekman AML, Finkenzeller H, Carracedo LG, Granzin M, Guida R, Heinritzi M, Hofbauer V, Höhler K, Korhonen K, Krechmer JE, Kürten A, Lehtipalo K, Mahfouz NGA, Makhmutov V, Massabò D, Mathot S, Mauldin RL, Mentler B, Müller T, Onnela A, Petäjä T, Philippov M, Piedehierro AA, Pozzer A, Ranjithkumar A, Schervish M, Schobesberger S, Simon M, Stozhkov Y, Tomé A, Umo NS, Vogel F, Wagner R, Wang DS, Weber SK, Welti A, Wu Y, Zauner-Wieczorek M, Sipilä M, Winkler PM, Hansel A, Baltensperger U, Kulmala M, Flagan RC, Curtius J, Riipinen I, Gordon H, Lelieveld J, El-Haddad I, Volkamer R, Worsnop DR, Christoudias T, Kirkby J, Möhler O, Donahue NM. Synergistic HNO 3-H 2SO 4-NH 3 upper tropospheric particle formation. Nature 2022; 605:483-489. [PMID: 35585346 PMCID: PMC9117139 DOI: 10.1038/s41586-022-04605-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)1-4. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region5,6. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles-comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO3-H2SO4-NH3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
Collapse
Affiliation(s)
- Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mao Xiao
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Barbara Bertozzi
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Birte Rörup
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Benjamin Schulze
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Roman Bardakov
- Department of Meteorology, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Jiali Shen
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Wiebke Scholz
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Lubna Dada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland.,Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Rima Baalbaki
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Brandon Lopez
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Hanna E Manninen
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - António Amorim
- CENTRA and Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisbon, Portugal
| | - Farnoush Ataei
- Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Pia Bogert
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Zoé Brasseur
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Lucía Caudillo
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland.,Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland
| | - Annica M L Ekman
- Department of Meteorology, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Henning Finkenzeller
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO, USA
| | | | - Manuel Granzin
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roberto Guida
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Martin Heinritzi
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria Hofbauer
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kristina Höhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kimmo Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland.,Finnish Meteorological Institute, Helsinki, Finland
| | - Naser G A Mahfouz
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| | - Vladimir Makhmutov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (National Research University), Moscow, Russia
| | - Dario Massabò
- Department of Physics, University of Genoa & INFN, Genoa, Italy
| | - Serge Mathot
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Roy L Mauldin
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Bernhard Mentler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Müller
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.,Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Antti Onnela
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Maxim Philippov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | | | - Andrea Pozzer
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Meredith Schervish
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Mario Simon
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yuri Stozhkov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - António Tomé
- Institute Infante Dom Luíz, University of Beira Interior, Covilhã, Portugal
| | - Nsikanabasi Silas Umo
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Franziska Vogel
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Robert Wagner
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dongyu S Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Stefan K Weber
- CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - André Welti
- Finnish Meteorological Institute, Helsinki, Finland
| | - Yusheng Wu
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mikko Sipilä
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Paul M Winkler
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Armin Hansel
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria.,Ionicon Analytik Ges.m.b.H., Innsbruck, Austria
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland.,Helsinki Institute of Physics, University of Helsinki, Helsinki, Finland.,Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, China.,Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ilona Riipinen
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.,Department of Environmental Science (ACES), Stockholm University, Stockholm, Sweden
| | - Hamish Gordon
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA.,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Imad El-Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland.,Aerodyne Research, Inc., Billerica, MA, USA
| | | | - Jasper Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.,CERN, the European Organization for Nuclear Research, Geneva, Switzerland
| | - Ottmar Möhler
- Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. .,Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Liu L, Guo S, Zhao Z, Li H. Free Energy Prediction of Ion-Induced Nucleation of Aqueous Aerosols. J Phys Chem A 2022; 126:2407-2416. [PMID: 35333053 DOI: 10.1021/acs.jpca.1c09787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-induced nucleation (IIN) is thought to be an important nucleation pathway of atmospheric aerosols. We present a combined polarizable molecular dynamics (MD) simulation and the classic ion-induced nucleation theory (IINT) approach to predict the free energy profiles of the ion-induced nucleation of aqueous aerosols in a qualitative or semiquantitative way. The dependence of both cluster structure and thermodynamic properties on cluster sizes and ion species is also systemically studied. It is confirmed the ions can significantly enhance the cluster stability, and thereby increase the nucleation rate. The ability of the common atmospheric ions to enhance the nucleation rate follows the order SO42- > H3O+ > NH4+ > NO3-, coinciding with the order of their solvation free energies. Therefore, the solvation energy can be employed as a rough index for evaluating the INN ability. Overall, the consistency between the present predictions and previous experimental and theoretical observations demonstrates the combination of MD simulation and the IINT appears to be a promising approach for exploring the IIN process and understanding the microscopic mechanism of atmospheric-related ions.
Collapse
Affiliation(s)
- Liyuan Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaoxun Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zheng Zhao
- National Engineering Research Center for Rare Earth, GRINM Group Corporation Limited, Beijing 100088, P. R. China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
48
|
Mitoxantrone modulates a heparan sulfate-spike complex to inhibit SARS-CoV-2 infection. Sci Rep 2022; 12:6294. [PMID: 35440680 PMCID: PMC9016215 DOI: 10.1038/s41598-022-10293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Spike-mediated entry of SARS-CoV-2 into human airway epithelial cells is an attractive therapeutic target for COVID-19. In addition to protein receptors, the SARS-CoV-2 spike (S) protein also interacts with heparan sulfate, a negatively charged glycosaminoglycan (GAG) attached to certain membrane proteins on the cell surface. This interaction facilitates the engagement of spike with a downstream receptor to promote viral entry. Here, we show that Mitoxantrone, an FDA-approved topoisomerase inhibitor, targets a heparan sulfate-spike complex to compromise the fusogenic function of spike in viral entry. As a single agent, Mitoxantrone inhibits the infection of an authentic SARS-CoV-2 strain in a cell-based model and in human lung EpiAirway 3D tissues. Gene expression profiling supports the plasma membrane as a major target of Mitoxantrone but also underscores an undesired activity targeting nucleosome dynamics. We propose that Mitoxantrone analogs bearing similar heparan sulfate-binding activities but with reduced affinity for DNA topoisomerases may offer an alternative therapy to overcome breakthrough infections in the post-vaccine era.
Collapse
|
49
|
Liang Y, Rong H, Liu L, Zhang S, Zhang X, Xu W. Gas-phase catalytic hydration of I 2O 5 in the polluted coastal regions: Reaction mechanisms and atmospheric implications. J Environ Sci (China) 2022; 114:412-421. [PMID: 35459504 DOI: 10.1016/j.jes.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Marine aerosols play an important role in the global aerosol system. In polluted coastal regions, ultra-fine particles have been recognized to be related to iodine-containing species and is more serious due to the impact of atmospheric pollutants. Many previous studies have identified iodine pentoxide (I2O5, IP) to be the key species in new particles formation (NPF) in marine regions, but the role of IP in the polluted coastal atmosphere is far to be fully understood. Considering the high humidity and concentrations of pollutants in the polluted coastal regions, the gas-phase hydration of IP catalyzed by sulfuric acid (SA), nitric acid (NA), dimethylamine (DMA), and ammonia (A) have been investigated at DLPNO-CCSD(T)//ωB97X-D/aug-cc-pVTZ + aug-cc-pVTZ-PP with ECP28MDF (for iodine) level of theory. The results show that the hydration of IP involves a significant energy barrier of 22.33 kcal/mol, while the pollutants SA, NA, DMA, and A all could catalyze the hydration of IP. Especially, with SA and DMA as catalysts, the hydration reactions of IP present extremely low barriers and high rate constants. It is suggested that IP is unstable under the catalysis of SA and DMA to generate iodic acid, which is the key component in NPF in marine regions. Thus, the catalytic hydration of IP is very likely to trigger the formation of iodine-containing particles. Our research provides a clear picture of the catalytic hydration of IP as well as theoretical guidance for NPF in the polluted coastal atmosphere.
Collapse
Affiliation(s)
- Yan Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Rong
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaobing Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiuhui Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenguo Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
50
|
Corella JP, Maffezzoli N, Spolaor A, Vallelonga P, Cuevas CA, Scoto F, Müller J, Vinther B, Kjær HA, Cozzi G, Edwards R, Barbante C, Saiz-Lopez A. Climate changes modulated the history of Arctic iodine during the Last Glacial Cycle. Nat Commun 2022; 13:88. [PMID: 35013214 PMCID: PMC8748508 DOI: 10.1038/s41467-021-27642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Iodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.
Collapse
Affiliation(s)
- Juan Pablo Corella
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
- CIEMAT, Environmental Department, Av. Complutense 40, 28040, Madrid, Spain.
| | - Niccolo Maffezzoli
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Andrea Spolaor
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Paul Vallelonga
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Federico Scoto
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
- Institute of Atmospheric Sciences and Climate, ISAC-CNR, S.P Lecce-Monteroni km1.2, 73100, Lecce, Italy
| | - Juliane Müller
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Am Alten Hafen 26, 27568, Bremerhaven, Germany
- MARUM Research Faculty, University of Bremen, Leobener Strasse 8, 28359, Bremen, Germany
| | - Bo Vinther
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Helle A Kjær
- Physics of Ice Climate and Earth, Niels Bohr Institute, University of Copenhagen, Tagensvej 16, Copenhagen N, 2200, Denmark
| | - Giulio Cozzi
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Ross Edwards
- Physics and Astronomy, Curtin University, Kent St, Bentley, WA, 6102, Australia
- Department of Civil and Environmental Engineering, UW-Madison, Madison, WI, 53706, USA
| | - Carlo Barbante
- Institute of Polar Sciences, CNR- ISP, Via Torino 155, 30172, Venice, Italy
- Ca' Foscari University of Venice, Department of Environmental Sciences, Informatics and Statistics, Via Torino 155, 30172, Venice, Italy
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|