1
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
3
|
Vellutini BC, Martín-Durán JM, Børve A, Hejnol A. Combinatorial Wnt signaling landscape during brachiopod anteroposterior patterning. BMC Biol 2024; 22:212. [PMID: 39300453 PMCID: PMC11414264 DOI: 10.1186/s12915-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Wnt signaling pathways play crucial roles in animal development. They establish embryonic axes, specify cell fates, and regulate tissue morphogenesis from the early embryo to organogenesis. It is becoming increasingly recognized that these distinct developmental outcomes depend upon dynamic interactions between multiple ligands, receptors, antagonists, and other pathway modulators, consolidating the view that a combinatorial "code" controls the output of Wnt signaling. However, due to the lack of comprehensive analyses of Wnt components in several animal groups, it remains unclear if specific combinations always give rise to specific outcomes, and if these combinatorial patterns are conserved throughout evolution. RESULTS In this work, we investigate the combinatorial expression of Wnt signaling components during the axial patterning of the brachiopod Terebratalia transversa. We find that T. transversa has a conserved repertoire of ligands, receptors, and antagonists. These genes are expressed throughout embryogenesis but undergo significant upregulation during axial elongation. At this stage, Frizzled domains occupy broad regions across the body while Wnt domains are narrower and distributed in partially overlapping patches; antagonists are mostly restricted to the anterior end. Based on their combinatorial expression, we identify a series of unique transcriptional subregions along the anteroposterior axis that coincide with the different morphological subdivisions of the brachiopod larval body. When comparing these data across the animal phylogeny, we find that the expression of Frizzled genes is relatively conserved, whereas the expression of Wnt genes is more variable. CONCLUSIONS Our results suggest that the differential activation of Wnt signaling pathways may play a role in regionalizing the anteroposterior axis of brachiopod larvae. More generally, our analyses suggest that changes in the receptor context of Wnt ligands may act as a mechanism for the evolution and diversification of the metazoan body axis.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany.
| | - José M Martín-Durán
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, Fogg Building, London, E1 4NS, UK
| | - Aina Børve
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| | - Andreas Hejnol
- Michael Sars Centre, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Department of Biological Sciences, Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
4
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
6
|
Matsumoto S, Kikuchi A. Wnt/β-catenin signaling pathway in liver biology and tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:466-481. [PMID: 38379098 DOI: 10.1007/s11626-024-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway that controls fundamental physiological and pathological processes by regulating cell proliferation and differentiation. The Wnt/β-catenin pathway enables liver homeostasis by inducing differentiation and contributes to liver-specific features such as metabolic zonation and regeneration. In contrast, abnormalities in the Wnt/β-catenin pathway promote the development and progression of hepatocellular carcinoma (HCC). Similarly, hepatoblastoma, the most common childhood liver cancer, is frequently associated with β-catenin mutations, which activate Wnt/β-catenin signaling. HCCs with activation of the Wnt/β-catenin pathway have unique gene expression patterns and pathological and clinical features. Accordingly, they are highly differentiated with retaining hepatocyte-like characteristics and tumorigenic. Activation of the Wnt/β-catenin pathway in HCC also alters the state of immune cells, causing "immune evasion" with inducing resistance to immune checkpoint inhibitors, which have recently become widely used to treat HCC. Activated Wnt/β-catenin signaling exhibits these phenomena in liver tumorigenesis through the expression of downstream target genes, and the molecular basis is still poorly understood. In this review, we describe the physiological roles of Wnt/b-catenin signaling and then discuss their characteristic changes by the abnormal activation of Wnt/b-catenin signaling. Clarification of the mechanism would contribute to the development of therapeutic agents in the future.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Schulte G, Scharf MM, Bous J, Voss JH, Grätz L, Kozielewicz P. Frizzleds act as dynamic pharmacological entities. Trends Pharmacol Sci 2024; 45:419-429. [PMID: 38594145 DOI: 10.1016/j.tips.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
The Frizzled family of transmembrane receptors (FZD1-10) belongs to the class F of G protein-coupled receptors (GPCRs). FZDs bind to and are activated by Wingless/Int1 (WNT) proteins. The WNT/FZD signaling system regulates crucial aspects of developmental biology and stem-cell regulation. Dysregulation of WNT/FZD communication can lead to developmental defects and diseases such as cancer and fibrosis. Recent insight into the activation mechanisms of FZDs has underlined that protein dynamics and conserved microswitches are essential for FZD-mediated information flow and build the basis for targeting these receptors pharmacologically. In this review, we summarize recent advances in our understanding of FZD activation, and how novel concepts merge and collide with existing dogmas in the field.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Magdalena M Scharf
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Julien Bous
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Jan Hendrik Voss
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Lukas Grätz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Pawel Kozielewicz
- Section of Receptor Biology & Signaling, Dept. Physiology & Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
9
|
Li M, Yang J, Wu Y, Ma X. miR-186-5p improves alveolar epithelial barrier function by targeting the wnt5a/β-catenin signaling pathway in sepsis-acute lung injury. Int Immunopharmacol 2024; 131:111864. [PMID: 38484663 DOI: 10.1016/j.intimp.2024.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Alveolar epithelial barrier dysfunction is one of the pathological features of sepsis-acute lung injury(ALI). However, the molecular mechanisms that regulate the function of alveolar epithelial barrier remain unclear. This study aimed to determine the regulatory role of miR-186-5p in alveolar epithelial barrier function in sepsis-ALI and its underlying molecular mechanism. METHODS We established sepsis-ALI models in vivo and in vitro, detected the miR-186-5p and wnt5a/β-catenin expressions, and observed the functional changes of the alveolar epithelial barrier by miR-186-5p overexpression. We used rescue experiments to clarify whether miR-186-5p works through wnt5a/β-catenin. RESULTS miR-186-5p expression was decreased, wnt5a expression was increased, and the wnt5a/β-catenin signaling pathway was activated in mouse lung tissues and A549 cells after inflammatory stimulation. miR-186-5p overexpression resulted in wnt5a/β-catenin signaling pathway inhibition, decreased apoptosis in A549 cells, improved alveolar epithelial barrier function, reduced lung tissue injury in ALI mice, decreased IL-6 and TNF-α levels, and increased claudin4 and ZO-1 expression. Using miRNA-related database prediction and dual-luciferase reporter gene analysis, the targeting relationship between miR-186-5p and wnt5a was determined. The protective effect produced by miR-186-5p overexpression on the alveolar barrier was reversed after the application of the wnt5a/β-catenin activator Licl. CONCLUSION Our experimental data suggest miR-186-5p targets the wnt5a/β-catenin pathway, thereby regulating alveolar epithelial barrier function. Furthermore, both miR-186-5p and wnt5a/β-catenin are potential therapeutic targets that could impact sepsis-ALI.
Collapse
Affiliation(s)
- Mei Li
- Ningxia Medical University, Yinchuan, China; Department of Critical Care Medicine, Harrison International Peace Hospital, Hengshui, China.
| | - Jing Yang
- Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Yanli Wu
- Ningxia Medical University, Yinchuan, China.
| | - Xigang Ma
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
10
|
Cao G, Hu S, Ning Y, Dou X, Ding C, Wang L, Wang Z, Sang X, Yang Q, Shi J, Hao M, Han X. Traditional Chinese medicine in osteoporosis: from pathogenesis to potential activity. Front Pharmacol 2024; 15:1370900. [PMID: 38628648 PMCID: PMC11019011 DOI: 10.3389/fphar.2024.1370900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis characterized by decreased bone density and mass, is a systemic bone disease with the destruction of microstructure and increase in fragility. Osteoporosis is attributed to multiple causes, including aging, inflammation, diabetes mellitus, and other factors induced by the adverse effects of medications. Without treatment, osteoporosis will further progress and bring great trouble to human life. Due to the various causes, the treatment of osteoporosis is mainly aimed at improving bone metabolism, inhibiting bone resorption, and promoting bone formation. Although the currently approved drugs can reduce the risk of fragility fractures in individuals, a single drug has limitations in terms of safety and effectiveness. By contrast, traditional Chinese medicine (TCM), a characteristic discipline in China, including syndrome differentiation, Chinese medicine prescription, and active ingredients, shows unique advantages in the treatment of osteoporosis and has received attention all over the world. Therefore, this review summarized the pathogenic factors, pathogenesis, therapy limitations, and advantages of TCM, aiming at providing new ideas for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Gang Cao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - ShaoQi Hu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Shi
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
12
|
Banerjee TD, Murugesan SN, Connahs H, Monteiro A. Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns. SCIENCE ADVANCES 2023; 9:eadg3877. [PMID: 37494447 PMCID: PMC10371022 DOI: 10.1126/sciadv.adg3877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Wnt signaling members are involved in the differentiation of cells associated with eyespot and band color patterns on the wings of butterflies, but the identity and spatio-temporal regulation of specific Wnt pathway members remains unclear. Here, we explore the localization and function of Armadillo/β-catenin dependent (canonical) and Armadillo/β-catenin independent (noncanonical) Wnt signaling in eyespot and band development in Bicyclus anynana by localizing Armadillo (Arm), the expression of all eight Wnt ligand and four frizzled receptor transcripts present in the genome of this species and testing the function of some of the ligands and receptors using CRISPR-Cas9. We show that distinct Wnt signaling pathways are essential for eyespot and band patterning in butterflies and are likely interacting to control their active domains.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore - 117557
| | | | - Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore - 117557
| | - Antόnia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore - 117557
- Science Division, Yale-NUS College, Singapore - 138527
| |
Collapse
|
13
|
Kishimoto H, Iwasaki M, Wada K, Horitani K, Tsukamoto O, Kamikubo K, Nomura S, Matsumoto S, Harada T, Motooka D, Okuzaki D, Takashima S, Komuro I, Kikuchi A, Shiojima I. Wnt5a-YAP signaling axis mediates mechanotransduction in cardiac myocytes and contributes to contractile dysfunction induced by pressure overload. iScience 2023; 26:107146. [PMID: 37456848 PMCID: PMC10338234 DOI: 10.1016/j.isci.2023.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Non-canonical Wnt signaling activated by Wnt5a/Wnt11 is required for the second heart field development in mice. However, the pathophysiological role of non-canonical Wnt signaling in the adult heart has not been fully elucidated. Here we show that cardiomyocyte-specific Wnt5a knockout mice exhibit improved systolic function and reduced expression of mechanosensitive genes including Nppb when subjected to pressure overload. In cultured cardiomyocytes, Wnt5a knockdown reduced Nppb upregulation induced by cyclic cell stretch. Upstream analysis revealed that TEAD1, a transcription factor that acts with Hippo pathway co-activator YAP, was downregulated both in vitro and in vivo by Wnt5a knockdown/knockout. YAP nuclear translocation was induced by cell stretch and attenuated by Wnt5a knockdown. Wnt5a knockdown-induced Nppb downregulation during cell stretch was rescued by Hippo inhibition, and the rescue effect was canceled by knockdown of YAP. These results collectively suggest that Wnt5a-YAP signaling axis mediates mechanotransduction in cardiomyocytes and contributes to heart failure progression.
Collapse
Affiliation(s)
- Hiroshi Kishimoto
- Department of Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| | - Masayoshi Iwasaki
- Department of Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| | - Kensaku Wada
- Department of Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| | - Keita Horitani
- Department of Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Kenta Kamikubo
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Takeshi Harada
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Ichiro Shiojima
- Department of Medicine II, Kansai Medical University, Osaka 573-1010, Japan
| |
Collapse
|
14
|
Ordaz-Ramos A, Tellez-Jimenez O, Vazquez-Santillan K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front Cell Dev Biol 2023; 11:1221175. [PMID: 37492224 PMCID: PMC10363614 DOI: 10.3389/fcell.2023.1221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Breast cancer stem cells (BCSCs) represent a distinct subpopulation of cells with the ability to self-renewal and differentiate into phenotypically diverse tumor cells. The involvement of CSC in treatment resistance and cancer recurrence has been well established. Numerous studies have provided compelling evidence that the self-renewal ability of cancer stem cells is tightly regulated by specific signaling pathways, which exert critical roles to maintain an undifferentiated phenotype and prevent the differentiation of CSCs. Signaling pathways such as Wnt/β-catenin, NF-κB, Notch, Hedgehog, TGF-β, and Hippo have been implicated in the promotion of self-renewal of many normal and cancer stem cells. Given the pivotal role of BCSCs in driving breast cancer aggressiveness, targeting self-renewal signaling pathways holds promise as a viable therapeutic strategy for combating this disease. In this review, we will discuss the main signaling pathways involved in the maintenance of the self-renewal ability of BCSC, while also highlighting current strategies employed to disrupt the signaling molecules associated with stemness.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Olivia Tellez-Jimenez
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
| |
Collapse
|
15
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Sadeghi M, Andani MR, Hajian M, Sanei N, Moradi-Hajidavaloo R, Mahvash N, Jafarpour F, Nasr-Esfahani MH. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS One 2023; 18:e0281331. [PMID: 37075045 PMCID: PMC10115261 DOI: 10.1371/journal.pone.0281331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/20/2023] [Indexed: 04/20/2023] Open
Abstract
The specific role of the canonical WNT/β-catenin signaling pathway during the preimplantation development of goat remains unclear. Our objective was to investigate the expression of β-CATENIN, one of the critical components of Wnt signaling pathway, in IVF embryos and compare it with SCNT embryos in goat. In addition, we evaluated the consequence of inhibition of β-catenin using IWR1. Initially, we observed cytoplasmic expression of β-CATENIN in 2 and 8-16 cell stage embryos and membranous expression of β-CATENIN in compact morula and blastocyst stages. Furthermore, while we observed exclusively membranous localization of β-catenin in IVF blastocysts, we observed both membranous and cytoplasmic localization in SCNT blastocysts. We observed that Inhibition of WNT signaling by IWR1 during compact morula to blastocyst transition (from day 4 till day 7 of in vitro culture) increased blastocyst formation rate in both IVF and SCNT embryos. In conclusion, it seems that WNT signaling system has functional role in the preimplantation goat embryos, and inhibition of this pathway during the period of compact morula to blastocyst transition (D4-D7) can improve preimplantation embryonic development.
Collapse
Affiliation(s)
- Marjan Sadeghi
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafiseh Sanei
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nasrin Mahvash
- Department of Biology, Faculty of Science and Technology, ACECR Institute of Higher Education (Isfahan), Isfahan, Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
17
|
Poulsen RC, Jain L, Dalbeth N. Re-thinking osteoarthritis pathogenesis: what can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development. Arthritis Res Ther 2023; 25:59. [PMID: 37046337 PMCID: PMC10100340 DOI: 10.1186/s13075-023-03042-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Efforts to develop effective disease-modifying drugs to treat osteoarthritis have so far proved unsuccessful with a number of promising drug candidates from pre-clinical studies failing to show efficacy in clinical trials. It is therefore timely to re-evaluate our current understanding of osteoarthritis pathogenesis and the similarities and differences in disease development between commonly used pre-clinical mouse models and human patients. There is substantial heterogeneity between patients presenting with osteoarthritis and mounting evidence that the pathways involved in osteoarthritis (e.g. Wnt signalling) differ between patient sub-groups. There is also emerging evidence that the pathways involved in osteoarthritis differ between the STR/ort mouse model (the most extensively studied mouse model of spontaneously occurring osteoarthritis) and injury-induced osteoarthritis mouse models. For instance, while canonical Wnt signalling is upregulated in the synovium and cartilage at an early stage of disease in injury-induced osteoarthritis mouse models, this does not appear to be the case in the STR/ort mouse. Such findings may prove insightful for understanding the heterogeneity in mechanisms involved in osteoarthritis pathogenesis in human disease. However, it is important to recognise that there are differences between mice and humans in osteoarthritis pathogenesis. A much more extensive array of pathological changes are evident in osteoarthritic joints in individual mice with osteoarthritis compared to individual patients. There are also specified differences in the pathways involved in disease development. For instance, although increased TGF-β signalling is implicated in osteoarthritis development in both mouse models of osteoarthritis and human disease, in mice, this is mainly mediated through TGF-β3 whereas in humans, it is through TGF-β1. Studies in other tissues have shown TGF-β1 is more potent than TGF-β3 in inducing the switch to SMAD1/5 signalling that occurs in osteoarthritic cartilage and that TGF-β1 and TGF-β3 have opposing effects on fibrosis. It is therefore possible that the relative contribution of TGF-β signalling to joint pathology in osteoarthritis differs between murine models and humans. Understanding the similarities and differences in osteoarthritis pathogenesis between mouse models and humans is critical for understanding the translational potential of findings from pre-clinical studies.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - Lekha Jain
- Department of Pharmacology & Clinical Pharmacology, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Fuertes G, Del Valle‐Pérez B, Pastor J, Andrades E, Peña R, García de Herreros A, Duñach M. Noncanonical Wnt signaling promotes colon tumor growth, chemoresistance and tumor fibroblast activation. EMBO Rep 2023; 24:e54895. [PMID: 36704936 PMCID: PMC10074097 DOI: 10.15252/embr.202254895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Colon tumors of the mesenchymal subtype have the lowest overall survival. Snail1 is essential for the acquisition of this phenotype, characterized by increased tumor stemness and invasion, and high resistance to chemotherapy. Here, we find that Snail1 expression in colon tumor cells is dependent on an autocrine noncanonical Wnt pathway. Accordingly, depletion of Ror2, the co-receptor for noncanonical Wnts such as Wnt5a, potently decreases Snail1 expression. Wnt5a, Ror2, and Snail1 participate in a self-stimulatory feedback loop since Wnt5a increases its own synthesis in a Ror2- and Snail1-dependent fashion. This Wnt5a/Ror2/Snail1 axis controls tumor invasion, chemoresistance, and formation of tumor spheres. It also stimulates TGFβ synthesis; consequently, tumor cells expressing Snail1 are more efficient in activating cancer-associated fibroblasts than the corresponding controls. Ror2 downmodulation or inhibition of the Wnt5a pathway decreases Snail1 expression in primary colon tumor cells and their ability to form tumors and liver metastases. Finally, the expression of SNAI1, ROR2, and WNT5A correlates in human colon and other tumors. These results identify inhibition of the noncanonical Wnt pathway as a putative colon tumor therapy.
Collapse
Affiliation(s)
- Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de MedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
- Programa de Recerca en CàncerInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat Associada al CSICBarcelonaSpain
| | - Beatriz Del Valle‐Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de MedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
- Programa de Recerca en CàncerInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat Associada al CSICBarcelonaSpain
- Departament de Medicina i Ciències de la VidaUniversitat Pompeu FabraBarcelonaSpain
| | - Javier Pastor
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de MedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
- Programa de Recerca en CàncerInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat Associada al CSICBarcelonaSpain
| | - Evelyn Andrades
- Departament de DermatologiaHospital del MarBarcelonaSpain
- Grup de Malalties Inflamatòries i Neoplàsiques DermatològiquesInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Raúl Peña
- Programa de Recerca en CàncerInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat Associada al CSICBarcelonaSpain
| | - Antonio García de Herreros
- Programa de Recerca en CàncerInstitut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unitat Associada al CSICBarcelonaSpain
- Departament de Medicina i Ciències de la VidaUniversitat Pompeu FabraBarcelonaSpain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de MedicinaUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
19
|
Thakur AK, Miller SE, Liau NPD, Hwang S, Hansen S, de Sousa E Melo F, Sudhamsu J, Hannoush RN. Synthetic Multivalent Disulfide-Constrained Peptide Agonists Potentiate Wnt1/β-Catenin Signaling via LRP6 Coreceptor Clustering. ACS Chem Biol 2023; 18:772-784. [PMID: 36893429 DOI: 10.1021/acschembio.2c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Wnt ligands are critical for tissue homeostasis and form a complex with LRP6 and frizzled coreceptors to initiate Wnt/β-catenin signaling. Yet, how different Wnts achieve various levels of signaling activation through distinct domains on LRP6 remains elusive. Developing tool ligands that target individual LRP6 domains could help elucidate the mechanism of Wnt signaling regulation and uncover pharmacological approaches for pathway modulation. We employed directed evolution of a disulfide constrained peptide (DCP) to identify molecules that bind to the third β-propeller domain of LRP6. The DCPs antagonize Wnt3a while sparing Wnt1 signaling. Using PEG linkers with different geometries, we converted the Wnt3a antagonist DCPs to multivalent molecules that potentiated Wnt1 signaling by clustering the LRP6 coreceptor. The mechanism of potentiation is unique as it occurred only in the presence of extracellular secreted Wnt1 ligand. While all DCPs recognized a similar binding interface on LRP6, they displayed different spatial orientations that influenced their cellular activities. Moreover, structural analyses revealed that the DCPs exhibited new folds that were distinct from the parent DCP framework they were evolved from. The multivalent ligand design principles highlighted in this study provide a path for developing peptide agonists that modulate different branches of cellular Wnt signaling.
Collapse
Affiliation(s)
- Avinash K Thakur
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Stephen E Miller
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Sunhee Hwang
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Simon Hansen
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Felipe de Sousa E Melo
- Department of Molecular Oncology, Genentech, South San Francisco, California 94080, United States
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California 94080, United States
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Hu Q, Chen Y, Deng X, Li Y, Ma X, Zeng J, Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 2023; 159:114252. [PMID: 36641921 DOI: 10.1016/j.biopha.2023.114252] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes. However, due to its complex pathological mechanisms, no effective therapeutic methods (other than ACEIs and ARBs) have been applied, which have been used for many years in clinical practice. Recent studies have shown that emerging therapeutics, including novel target-based pharmacotherapy, cell therapies, and dietary regulation, are leading to new hopes for DN management. This review aims to shed new light on the treatment of DN by describing the important pathological mechanisms of DN and by analysing recent advances in clinical treatment, including drug therapy, cell therapy, and dietary regulation. In pathological mechanisms, RAAS activation, AGE accumulation, and EMT are involved in inflammation, cellular stress, apoptosis, pyroptosis, and autophagy. In pharmacotherapy, several new therapeutics, including SGLT2 inhibitors, GLP-1 agonists, and MRAs, are receiving public attention. In addition, stem cell therapies and dietary regulation are also being emphasized. Herein, we highlight the importance of combining therapy and dietary regulation in the treatment of DN and anticipate more basic research or clinical trials to verify novel strategies.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
21
|
Kot M, Neglur PK, Pietraszewska A, Buzanska L. Boosting Neurogenesis in the Adult Hippocampus Using Antidepressants and Mesenchymal Stem Cells. Cells 2022; 11:cells11203234. [PMID: 36291101 PMCID: PMC9600461 DOI: 10.3390/cells11203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The hippocampus is one of the few privileged regions (neural stem cell niche) of the brain, where neural stem cells differentiate into new neurons throughout adulthood. However, dysregulation of hippocampal neurogenesis with aging, injury, depression and neurodegenerative disease leads to debilitating cognitive impacts. These debilitating symptoms deteriorate the quality of life in the afflicted individuals. Impaired hippocampal neurogenesis is especially difficult to rescue with increasing age and neurodegeneration. However, the potential to boost endogenous Wnt signaling by influencing pathway modulators such as receptors, agonists, and antagonists through drug and cell therapy-based interventions offers hope. Restoration and augmentation of hampered Wnt signaling to facilitate increased hippocampal neurogenesis would serve as an endogenous repair mechanism and contribute to hippocampal structural and functional plasticity. This review focuses on the possible interaction between neurogenesis and Wnt signaling under the control of antidepressants and mesenchymal stem cells (MSCs) to overcome debilitating symptoms caused by age, diseases, or environmental factors such as stress. It will also address some current limitations hindering the direct extrapolation of research from animal models to human application, and the technical challenges associated with the MSCs and their cellular products as potential therapeutic solutions.
Collapse
Affiliation(s)
- Marta Kot
- Correspondence: ; Tel.: +48-22-60-86-563
| | | | | | | |
Collapse
|
22
|
Ideno H, Imaizumi K, Shimada H, Sanosaka T, Nemoto A, Kohyama J, Okano H. Human PSCs determine the competency of cerebral organoid differentiation via FGF signaling and epigenetic mechanisms. iScience 2022; 25:105140. [PMID: 36185382 PMCID: PMC9523398 DOI: 10.1016/j.isci.2022.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/06/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hirosato Ideno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| | - Hiroko Shimada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akisa Nemoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Corresponding author
| |
Collapse
|
23
|
Zhong C, Wang Y, Liu C, Jiang Y, Kang L. A Novel Single-Nucleotide Polymorphism in WNT4 Promoter Affects Its Transcription and Response to FSH in Chicken Follicles. Genes (Basel) 2022; 13:genes13101774. [PMID: 36292659 PMCID: PMC9602048 DOI: 10.3390/genes13101774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The signaling pathway of the wingless-type mouse mammary tumor virus integration site (Wnt) plays an important role in ovarian and follicular development. In our previous study, WNT4 was shown to be involved in the selection and development of chicken follicles by upregulating the expression of follicle-stimulating hormone receptors (FSHR), stimulating the proliferation of follicular granulosa cells, and increasing the secretion of steroidal hormones. FSH also stimulates the expression of WNT4. To further explore the molecular mechanism by which FSH upregulates WNT4 and characterize the cis-elements regulating WNT4 transcription, in this study, we determined the critical regulatory regions affecting chicken WNT4 transcription. We then identified a single-nucleotide polymorphism (SNP) in this region, and finally analyzed the associations of the SNP with chicken production traits. The results showed that the 5′ regulatory region from −3354 to −2689 of WNT4 had the strongest activity and greatest response to FSH stimulation, and we identified one SNP site in this segment, −3015 (G > C), as affecting the binding of NFAT5 (nuclear factor of activated T cells 5) and respones to FSH stimulation. When G was replaced with C at this site, it eliminated the NFAT5 binding. The mRNA level of WNT4 in small yellow follicles of chickens with genotype GG was significantly higher than that of the other two genotypes. Moreover, this locus was found to be significantly associated with comb length in hens. Individuals with the genotype CC had longer combs. Collectively, these data suggested that SNP−3015 (G > C) is involved in the regulation of WNT4 gene expression by responding FSH and affecting the binding of NFAT5 and that it is associated with chicken comb length. The current results provide a reference for further revealing the response mechanism between WNT and FSH.
Collapse
Affiliation(s)
- Conghao Zhong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yiya Wang
- College of Life Science, Qilu Normal University, Jinan 250200, China
| | - Cuiping Liu
- Qishan Animal Husbandry and Veterinary Station, Zhaoyuan 265413, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: ; Tel.: +86-538-8241593
| |
Collapse
|
24
|
Zhang J, Tong Y, Liu Y, Lin M, Xiao Y, Liu C. Mechanical loading attenuated negative effects of nucleotide analogue reverse-transcriptase inhibitor TDF on bone repair via Wnt/β-catenin pathway. Bone 2022; 161:116449. [PMID: 35605959 DOI: 10.1016/j.bone.2022.116449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022]
Abstract
The nucleotide analog reverse-transcriptase inhibitor, tenofovir disoproxil fumarate (TDF), is widely used to treat hepatitis B virus (HBV) and human immunodeficiency virus infection (HIV). However, long-term TDF usage is associated with an increased incidence of bone loss, osteoporosis, fractures, and other adverse reactions. We investigated the effect of chronic TDF use on bone homeostasis and defect repair in mice. In vitro, TDF inhibited osteogenic differentiation and mineralization in MC3T3-E1 cells. In vivo, 8-week-old C57BL/6 female mice were treated with TDF for 38 days to simulate chronic medication. Four-point bending test and μCT showed reduced bone biomechanical properties and microarchitecture in long bones. To investigate the effects of TDF on bone defect repair, we utilized a bilateral tibial monocortical defect model. μCT showed that TDF reduced new bone mineral tissue and bone mineral density (BMD) in the defect. To verify whether mechanical stimulation may be a useful treatment to counteract the negative bone effects of TDF, controlled dynamic mechanical loading was applied to the whole tibia during the matrix deposition phase on post-surgery days (PSDs) 5 to 8. Second harmonic generation (SHG) of collagen fibers and μCT showed that the reduction of new bone volume and bone mineral density caused by TDF was reversed by mechanical loading in the defect. Immunofluorescent deep tissue imaging showed that chronic TDF treatment reduced the number of osteogenic cells and the volume of new vessels. In addition, chronic TDF treatment inhibited the expressions of periostin and β-catenin, but increased the expression of sclerostin. Both negative effects were reversed by mechanical loading. Our study provides strong evidence that chronic use of TDF exerts direct and inhibitory impacts on bone repair, but appropriate mechanical loading could reverse these adverse effects.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yanrong Tong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Minmin Lin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yao Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Abstract
Sclerostin is most recognized for its role in controlling bone formation but is also expressed in the heart, aorta, coronary, and peripheral arteries. This review summarizes research on sclerostin's role in cardiovascular disease. Rodent studies have found sclerostin to be expressed at sites of arterial calcification. In contrast, aortic sclerostin was reported to be downregulated in a mouse model of abdominal aortic aneurysm, and transgenic upregulation or administration of sclerostin was found to prevent abdominal aortic aneurysm and atherosclerosis formation. Sclerostin deficiency was reported to stimulate cardiac rupture in one rodent model. In humans, 7 of 11 studies reported a significant association between high serum sclerostin and high carotid intima media thickness. Ten of 15 studies reported a significant association between high serum sclerostin and severe arterial calcification. Twelve of 14 studies reported a significant association between high serum sclerostin and high arterial stiffness or atherosclerosis severity. Four of 9 studies reported a significant association between high serum sclerostin and high risk of cardiovascular events. A meta-analysis of randomized controlled trials suggested that administration of the sclerostin blocking antibody romosozumab did not significantly increase the risk of major adverse cardiovascular events (risk ratio, 1.14 [95% CI, 0.83-1.57]; P=0.54) or cardiovascular death (risk ratio, 0.92 [95% CI, 0.53-1.59]; P=0.71). Human genetic studies reported variants predisposing to low arterial sclerostin expression were associated with a high risk of cardiovascular events. Overall, past research suggests a cardiovascular protective role of sclerostin but findings have been inconsistent, possibly due to variations in study design, the unique populations and models studied, and the heterogeneous methods used.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.G., S.T.), James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine J.G.' S.T.), James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry (J.G., S.T.), James Cook University, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine J.G.' S.T.), James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Queensland, Australia (J.G.)
| |
Collapse
|
26
|
Wang Q, Tang H, Luo X, Chen J, Zhang X, Li X, Li Y, Chen Y, Xu Y, Han S. Immune-Associated Gene Signatures Serve as a Promising Biomarker of Immunotherapeutic Prognosis for Renal Clear Cell Carcinoma. Front Immunol 2022; 13:890150. [PMID: 35686121 PMCID: PMC9171405 DOI: 10.3389/fimmu.2022.890150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
As the most common type of renal cell carcinoma (RCC), the renal clear cell carcinoma (ccRCC) is highly malignant and insensitive to chemotherapy or radiotherapy. Although systemic immunotherapies have been successfully applied to ccRCC in recent years, screening for patients who can benefit most from these therapies is still essential and challenging due to immunological heterogeneity of ccRCC patients. To this end, we implemented a series of deep investigation on the expression and clinic data of ccRCC from The Cancer Genome Atlas (TCGA) International Consortium for Cancer Genomics (ICGC). We identified a total of 946 immune-related genes that were differentially expressed. Among them, five independent genes, including SHC1, WNT5A, NRP1, TGFA, and IL4R, were significantly associated with survival and used to construct the immune-related prognostic differential gene signature (IRPDGs). Then the ccRCC patients were categorized into high-risk and low-risk subgroups based on the median risk score of the IRPDGs. IRPDGs subgroups displays distinct genomic and immunological characteristics. Known immunotherapy-related genes show different mutation burden, wherein the mutation rate of VHL was higher than 40% in the two IRPDGs subgroups, and SETD2 and BAP1 mutations differed most between two groups with higher frequency in the high-risk subgroup. Moreover, IRPDGs subgroups had different abundance in tumor-infiltrating immune cells (TIICs) with distinct immunotherapy efficacy. Plasma cells, regulatory cells (Tregs), follicular helper T cells (Tfh), and M0 macrophages were enriched in the high-risk group with a higher tumor immune dysfunction and rejection (TIDE) score. In contrast, the low-risk group had abundant M1 macrophages, mast cell resting and dendritic cell resting infiltrates with lower TIDE score and benefited more from immune checkpoint inhibitors (ICI) treatment. Compared with other biomarkers, such as TIDE and tumor inflammatory signatures (TIS), IRPDGs demonstrated to be a better biomarker for assessing the prognosis of ccRCC and the efficacy of ICI treatment with the promise in screening precise patients for specific immunotherapies.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanmin Tang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuehui Luo
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesen Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuetong Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
27
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
28
|
Wang Y, Xu H, Wang J, Yi H, Song Y. Extracellular Vesicles in the Pathogenesis, Treatment, and Diagnosis of Spinal Cord Injury: A Mini-Review. Curr Stem Cell Res Ther 2022; 17:317-327. [PMID: 35352667 DOI: 10.2174/1574888x17666220330005937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benefiting from in-depth research into stem cells, extracellular vesicles (EVs), which are byproducts of cells and membrane-wrapped microvesicles (30-120 nm) containing lipids, proteins, and nucleic acids, may cast light on the research and development of therapeutics capable of improving the neurological recovery of spinal cord injury (SCI) animals. However, the mechanistic modes of action for EVs in alleviating the lesion size of SCI remain to be solved, thus presenting a tremendous gap existing in translation from the laboratory to the clinic. OBJECTIVE The purpose of this minireview was to cover a wide range of basic views on EVs involved in SCI treatment, including the effects of EVs on the pathogenesis, treatment, and diagnosis of spinal cord injury. METHODS We searched databases (i.e., PubMed, Web of Science, Scopus, Medline, and EMBASE) and acquired all accessible articles published in the English language within five years. Studies reporting laboratory applications of EVs in the treatment of SCI were included and screened to include studies presenting relevant molecular mechanisms. RESULTS This review first summarized the basic role of EVs in cell communication, cell death, inflammatory cascades, scar formation, neuronal regrowth, and angiogenesis after SCI, thereby providing insights into neuroprotection and consolidated theories for future clinical application of EVs. CONCLUSION EVs participate in an extremely wide range of cell activities, play a critical role in cell communication centring neurons, and are considered potential therapies and biomarkers for SCI. miRNAs are the most abundant nucleic acids shipped by EVs and effluent cytokines, and they may represent important messengers of EVs and important factors in SCI treatment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hualiang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Wang
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107, YanJiang Road, Haizhu District, Guangzhou, China
| | - Yancheng Song
- Department of Orthopaedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University; No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
29
|
González-Quintanilla D, Abásolo N, Astudillo P. Wnt Signaling in Periodontal Disease. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.763308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a multifactorial and chronic condition associated with the formation of a dysbiotic biofilm, leading to a pro-inflammatory environment that can modulate cell signaling. The Wnt pathway plays fundamental roles during homeostasis and disease, and emerging evidence suggests its involvement in the maintenance of the periodontium and the development of periodontitis. Here, we summarize the role of the Wnt/β-catenin and non-canonical Wnt signaling pathways in periodontitis. The accumulated data suggests specific roles for each branch of the Wnt pathway. Wnt5a emerges as a critical player promoting periodontal ligament remodeling and impairing regenerative responses modulated by the Wnt/β-catenin pathway, such as alveolar bone formation. Collectively, the evidence suggests that achieving a proper balance between the Wnt/β-catenin and non-canonical pathways, rather than their independent modulation, might contribute to controlling the progression and severity of the periodontal disease.
Collapse
|
30
|
Astudillo P. An emergent Wnt5a/YAP/TAZ regulatory circuit and its possible role in cancer. Semin Cell Dev Biol 2021; 125:45-54. [PMID: 34764023 DOI: 10.1016/j.semcdb.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Wnt5a is a ligand that plays several roles in development, homeostasis, and disease. A growing body of evidence indicates that Wnt5a is involved in cancer progression. Despite extensive research in this field, our knowledge about how Wnt5a is precisely involved in cancer is still incomplete. It is usually thought that certain combinations of Frizzled receptors and co-receptors might explain the observed effects of Wnt5a either as a tumor suppressor or by promoting migration and invasion. While accepting this 'receptor context' model, this review proposes that Wnt5a is integrated within a larger regulatory circuit involving β-catenin, YAP/TAZ, and LATS1/2. Remarkably, WNT5A and YAP1 are transcriptionally regulated by the Hippo and Wnt pathways, respectively, and might form a regulatory circuit acting through LATS kinases and secreted Wnt/β-catenin inhibitors, including Wnt5a itself. Therefore, understanding the precise role of Wnt5a and YAP in cancer requires a systems biology perspective.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Neuhaus J, Weimann A, Berndt-Paetz M. Immunocytochemical Analysis of Endogenous Frizzled-(Co-)Receptor Interactions and Rapid Wnt Pathway Activation in Mammalian Cells. Int J Mol Sci 2021; 22:12057. [PMID: 34769487 PMCID: PMC8584856 DOI: 10.3390/ijms222112057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
The differential activation of Wnt pathways (canonical: Wnt/β-catenin; non-canonical: planar cell polarity (PCP), Wnt/Ca2+) depends on the cell-specific availability and regulation of Wnt receptors, called Frizzled (FZD). FZDs selectively recruit co-receptors to activate various downstream effectors. We established a proximity ligation assay (PLA) for the detection of endogenous FZD-co-receptor interactions and analyzed time-dependent Wnt pathway activation in cultured cells. Prostate cancer cells (PC-3) stimulated by Wnt ligands (Wnt5A, Wnt10B) were analyzed by Cy3-PLA for the co-localization of FZD6 and co-receptors (canonical: LRP6, non-canonical: ROR1) at the single-cell level. Downstream effector activation was assayed by immunocytochemistry. PLA allowed the specific (siRNA-verified) detection of FZD6-LRP6 and FZD6-ROR1 complexes as highly fluorescent spots. Incubation with Wnt10B led to increased FZD6-LRP6 interactions after 2 to 4 min and resulted in nuclear accumulation of β-catenin within 5 min. Wnt5A stimulation resulted in a higher number of FZD6-ROR1 complexes after 2 min. Elevated levels of phosphorylated myosin phosphatase target 1 suggested subsequent Wnt/PCP activation in PC-3. This is the first study demonstrating time-dependent interactions of endogenous Wnt (co-)receptors followed by rapid Wnt/β-catenin and Wnt/PCP activation in PC-3. In conclusion, the PLA could uncover novel signatures of Wnt receptor activation in mammalian cells and may provide new insights into involved signaling routes.
Collapse
Affiliation(s)
| | | | - Mandy Berndt-Paetz
- Department of Urology, Research Laboratories, University of Leipzig, 04109 Leipzig, Germany; (J.N.); (A.W.)
| |
Collapse
|
32
|
Bell IJ, Horn MS, Van Raay TJ. Bridging the gap between non-canonical and canonical Wnt signaling through Vangl2. Semin Cell Dev Biol 2021; 125:37-44. [PMID: 34736823 DOI: 10.1016/j.semcdb.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Non-canonical Wnt signaling (encompassing Wnt/PCP and WntCa2+) has a dual identity in the literature. One stream of research investigates its role in antagonizing canonical Wnt/β-catenin signaling in cancer, typically through Ca2+, while the other stream investigates its effect on polarity in development, typically through Vangl2. Rarely do these topics intersect or overlap. What has become clear is that Wnt5a can mobilize intracellular calcium stores to inhibit Wnt/β-catenin in cancer cells but there is no evidence that Vangl2 is involved in this process. Conversely, Wnt5a can independently activate Vangl2 to affect polarity and migration but the role of calcium in this process is also limited. Further, Vangl2 has also been implicated in inhibiting Wnt/β-catenin signaling in development. The consensus is that a cell can differentiate between canonical and non-canonical Wnt signaling when presented with a choice, always choosing non-canonical at the expense of canonical Wnt signaling. However, these are rare events in vivo. Given the shared resources between non-canonical and canonical Wnt signaling it is perplexing that there is not more in vivo evidence for cross talk between these two pathways. In this review we discuss the intersection of non-canonical Wnt, with a focus on Wnt/PCP, and Wnt/β-catenin signaling in an attempt to shed some light on pathways that rarely meet at a crossroads in vivo.
Collapse
Affiliation(s)
- Ian James Bell
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Matthew Sheldon Horn
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1
| | - Terence John Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
33
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
35
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
36
|
Chow H, Sun JK, Hart RP, Cheng KK, Hung CHL, Lau T, Kwan K. Low-Density Lipoprotein Receptor-Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004993. [PMID: 34180138 PMCID: PMC8373092 DOI: 10.1002/advs.202004993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Indexed: 05/07/2023]
Abstract
Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes. The Wnt-LRP6 mediated mTOR-AKT axis is essential for sustaining glucose metabolism. In its absence, Wnt switches to activate the LRP6-independent Ca2+ -PKC-NFAT axis, resulting in a transcription network that favors glutamine and branched chain amino acids (BCAAs) catabolism over glucose metabolism. Exhaustion of these raw materials essential for neurotransmitter biosynthesis and recycling results in compromised synaptic, cognitive, and memory functions; priming for early changes that are frequently found in LOAD. The authors also highlight that intranasal supplementation of glutamine and BCAAs is effective in preserving neuronal integrity and brain functions, proposing a nutrient-based method for delaying cognitive and memory decline when LRP6 cell surface levels and functions are suboptimal.
Collapse
Affiliation(s)
- Hei‐Man Chow
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Jacquelyne Ka‐Li Sun
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Ronald P. Hart
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJ08854USA
| | - Kenneth King‐Yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic University999077Hong Kong
| | - Clara H. L. Hung
- The University Research Facility in Life SciencesThe Hong Kong Polytechnic University999077Hong Kong
| | - Tsun‐Ming Lau
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Kin‐Ming Kwan
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| |
Collapse
|
37
|
Zhong Q, Zhao Y, Ye F, Xiao Z, Huang G, Xu M, Zhang Y, Zhan X, Sun K, Wang Z, Cheng S, Feng S, Zhao X, Zhang J, Lu P, Xu W, Zhou Q, Ma D. Cryo-EM structure of human Wntless in complex with Wnt3a. Nat Commun 2021; 12:4541. [PMID: 34315898 PMCID: PMC8316347 DOI: 10.1038/s41467-021-24731-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Wntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.
Collapse
Affiliation(s)
- Qing Zhong
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanyu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fangfei Ye
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zaiyu Xiao
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Meng Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shanshan Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Xiuxiu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Jizhong Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Dan Ma
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
38
|
Rhen T, Even Z, Brenner A, Lodewyk A, Das D, Singh S, Simmons R. Evolutionary Turnover in Wnt Gene Expression but Conservation of Wnt Signaling during Ovary Determination in a TSD Reptile. Sex Dev 2021; 15:47-68. [PMID: 34280932 DOI: 10.1159/000516973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/01/2021] [Indexed: 11/19/2022] Open
Abstract
Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.
Collapse
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zachary Even
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alaina Brenner
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Alexandra Lodewyk
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Sunil Singh
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | - Rebecca Simmons
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
39
|
Billings SE, Myers NM, Quiruz L, Cheng AG. Opposing effects of Wnt/β-catenin signaling on epithelial and mesenchymal cell fate in the developing cochlea. Development 2021; 148:268974. [PMID: 34061174 PMCID: PMC8217710 DOI: 10.1242/dev.199091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via β-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner. Summary: The developing cochlea comprises spatially and lineally distinct populations of epithelial and mesenchymal cells. This study shows the opposing effects of aberrant Wnt/β-catenin signaling on cell fates of cochlear epithelial and mesenchymal cells.
Collapse
Affiliation(s)
- Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina M Myers
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lee Quiruz
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Expression pattern of WNT5A among Egyptian patients with psoriasis treated with platelet-rich plasma versus conventional therapy: Toward a better understanding of the disease. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Hernandez-Pacheco N, Vijverberg SJ, Herrera-Luis E, Li J, Sio YY, Granell R, Corrales A, Maroteau C, Lethem R, Perez-Garcia J, Farzan N, Repnik K, Gorenjak M, Soares P, Karimi L, Schieck M, Pérez-Méndez L, Berce V, Tavendale R, Eng C, Sardon O, Kull I, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Burchard EG, Kabesch M, Hawcutt DB, Melén E, Potočnik U, Chew FT, Tantisira KG, Turner S, Palmer CN, Flores C, Pino-Yanes M, Maitland-van der Zee AH. Genome-wide association study of asthma exacerbations despite inhaled corticosteroid use. Eur Respir J 2021; 57:2003388. [PMID: 33303529 PMCID: PMC8122045 DOI: 10.1183/13993003.03388-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Substantial variability in response to asthma treatment with inhaled corticosteroids (ICS) has been described among individuals and populations, suggesting the contribution of genetic factors. Nonetheless, only a few genes have been identified to date. We aimed to identify genetic variants associated with asthma exacerbations despite ICS use in European children and young adults and to validate the findings in non-Europeans. Moreover, we explored whether a gene-set enrichment analysis could suggest potential novel asthma therapies. METHODS A genome-wide association study (GWAS) of asthma exacerbations was tested in 2681 children of European descent treated with ICS from eight studies. Suggestive association signals were followed up for replication in 538 European asthma patients. Further evaluation was performed in 1773 non-Europeans. Variants revealed by published GWAS were assessed for replication. Additionally, gene-set enrichment analysis focused on drugs was performed. RESULTS 10 independent variants were associated with asthma exacerbations despite ICS treatment in the discovery phase (p≤5×10-6). Of those, one variant at the CACNA2D3-WNT5A locus was nominally replicated in Europeans (rs67026078; p=0.010), but this was not validated in non-European populations. Five other genes associated with ICS response in previous studies were replicated. Additionally, an enrichment of associations in genes regulated by trichostatin A treatment was found. CONCLUSIONS The intergenic region of CACNA2D3 and WNT5A was revealed as a novel locus for asthma exacerbations despite ICS treatment in European populations. Genes associated were related to trichostatin A, suggesting that this drug could regulate the molecular mechanisms involved in treatment response.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Susanne J Vijverberg
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Dept of Paediatric Respiratory Medicine and Allergy, Emma's Children Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Herrera-Luis
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Jiang Li
- The Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Yie Sio
- Dept of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Cyrielle Maroteau
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Javier Perez-Garcia
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Niloufar Farzan
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Breathomix B.V., El Reeuwijk, The Netherlands
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Patricia Soares
- Academic Dept of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK
- Escola Nacional de Saúde Pública, Lisboa, Portugal
| | - Leila Karimi
- Dept of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maximilian Schieck
- Dept of Paediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
- Dept of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Pérez-Méndez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept of Clinic Epidemiology and Biostatistics, Research Unit, Hospital Universitario N.S. de Candelaria, Gerencia de Atención Primaria, Santa Cruz de Tenerife, Spain
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Dept of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Celeste Eng
- Dept of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Olaia Sardon
- Division of Paediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Dept of Paediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Inger Kull
- Dept of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Somnath Mukhopadhyay
- Academic Dept of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Munir Pirmohamed
- Dept of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Katia M C Verhamme
- Dept of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esteban G Burchard
- Dept of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Dept of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Kabesch
- Dept of Paediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Daniel B Hawcutt
- Dept of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Alder Hey Children's Hospital, Liverpool, UK
| | - Erik Melén
- Dept of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Fook Tim Chew
- Dept of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kelan G Tantisira
- The Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, UK
| | - Colin N Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- These authors contributed equally to this work
| | - Anke H Maitland-van der Zee
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Dept of Paediatric Respiratory Medicine and Allergy, Emma's Children Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- These authors contributed equally to this work
| |
Collapse
|
42
|
van Vliet AC, Lee J, van der Poel M, Mason MRJ, Noordermeer JN, Fradkin LG, Tannemaat MR, Malessy MJA, Verhaagen J, De Winter F. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury. PLoS One 2021; 16:e0249748. [PMID: 33848304 PMCID: PMC8043392 DOI: 10.1371/journal.pone.0249748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Arie C. van Vliet
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jinhui Lee
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marlijn van der Poel
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Matthew R. J. Mason
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Martijn R. Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. A. Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Astudillo P. Analysis in silico of the functional interaction between WNT5A and YAP/TEAD signaling in cancer. PeerJ 2021; 9:e10869. [PMID: 33643710 PMCID: PMC7896511 DOI: 10.7717/peerj.10869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
To date, most data regarding the crosstalk between the Wnt signaling pathway and the YAP/TAZ transcriptional coactivators focuses on the Wnt/β-catenin branch of the pathway. In contrast, the relationship between the non-canonical Wnt pathway and YAP/TAZ remains significantly less explored. Wnt5a is usually regarded as a prototypical non-canonical Wnt ligand, and its expression has been related to cancer progression. On the other hand, YAP/TAZ transcriptional coactivators act in concert with TEAD transcription factors to control gene expression. Although one article has shown previously that WNT5A is a YAP/TEAD target gene, there is a need for further evidence supporting this regulatory relationship, because a possible YAP/Wnt5a regulatory circuit might have profound implications for cancer biology. This article analyzes publicly available ChIP-Seq, gene expression, and protein expression data to explore this relationship, and shows that WNT5A might be a YAP/TEAD target gene in several contexts. Moreover, Wnt5a and YAP expression are significantly correlated in specific cancer types, suggesting that the crosstalk between YAP/TAZ and the Wnt pathway is more intricate than previously thought.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
44
|
Wu Z, Huang S, Zheng X, Gu S, Xu Q, Gong Y, Zhang J, Fu B, Tang L. Regulatory long non-coding RNAs of hepatic stellate cells in liver fibrosis (Review). Exp Ther Med 2021; 21:351. [PMID: 33732324 PMCID: PMC7903415 DOI: 10.3892/etm.2021.9782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis (LF) is a continuous wound healing process caused by numerous chronic hepatic diseases and poses a major threat to human health. Activation of hepatic stellate cells (HSCs) is a critical event in the development of hepatic fibrosis. Long non-coding RNAs (lncRNAs) that are involved in HSC activation, participate in the development of LF and are likely to be therapeutic targets for LF. In the present review, the cellular signaling pathways of LF with respect to HSCs were discussed. In particular, this present review highlighted the current knowledge on the role of lncRNAs in activating or inhibiting LF, revealing lncRNAs that are likely to be biomarkers or therapeutic targets for LF. Additional studies should be performed to elucidate the potential of lncRNAs in the diagnosis and prognosis of LF and to provide novel therapeutic approaches for the reversion of LF.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shunmei Huang
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaoqin Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yiwen Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiaying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Bin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lingling Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
45
|
Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol Cell Biochem 2021; 476:2219-2232. [PMID: 33566231 DOI: 10.1007/s11010-021-04086-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/27/2021] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has become a major global public health issue in the twenty-first century and its incidence has increased each year. Wnt signaling pathways are a set of multi-downstream signaling pathways activated by the binding of Wnt ligands to membrane protein receptors. Wnt signaling pathways regulate protein expression and play important roles in protecting the body's normal physiological metabolism. This review describes Wnt signaling pathways, and then aims to reveal how Wnt signaling pathways participate in the occurrence and development of T2DM. We found that Wnt/c-Jun N-terminal kinase signaling was closely associated with insulin resistance, inflammatory response, and pancreatic β-cell and endothelial dysfunction. β-catenin/transcription factor 7-like 2 (TCF7L2)-mediated and calcineurin/nuclear factor of activated T cells-mediated target genes were involved in insulin synthesis and secretion, insulin degradation, pancreatic β-cell growth and regeneration, and functional application of pancreatic β-cells. In addition, polymorphisms in the TCF7L2 gene could increase risk of T2DM according to previous and the most current results, and the T allele of its variants was a more adverse factor for abnormal pancreatic β-cell function and impaired glucose tolerance in patients with T2DM. These findings indicate a strong correlation between Wnt signaling pathways and T2DM, particularly in terms of pancreatic islet dysfunction and insulin resistance, and new therapeutic targets for T2DM may be identified.
Collapse
|
46
|
Xing F, Liu Y, Dong R, Cheng Y. miR-374 improves cerebral ischemia reperfusion injury by targeting Wnt5a. Exp Anim 2021; 70:126-136. [PMID: 33116025 PMCID: PMC7887619 DOI: 10.1538/expanim.20-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
To date, studies have demonstrated the potential functions of microRNAs in cerebral ischemia reperfusion (IR) injury. Herein, we established a middle cerebral artery occlusion (MCAO) model in rats and then subjected them to reperfusion to explore the role of microRNA-374 (miR-374) in cerebral IR injury. After reperfusion, the endogenous miR-374 level decreased, and the expression of its target gene, Wnt5a, increased in brain tissues. Intracerebral pretreatment of miR-374 agomir attenuated cerebral damage induced by IR, including neurobehavioral deficits, infarction, cerebral edema and blood-brain barrier disruption. Moreover, rats pretreated with miR-374 agomir showed a remarkable decrease in apoptotic neurons, which was further confirmed by reduced BAX expression as well as increased BCL-2 and BCL-XL expression. A dual-luciferase reporter assay substantiated that Wnt5a was the target gene of miR-374. miR-374 might protect against brain injury by downregulating Wnt5a in rats after IR. Thus, our study provided a novel mechanism of cerebral IR injury from the perspective of miRNA regulation.
Collapse
Affiliation(s)
- Fangyuan Xing
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Yongrong Liu
- Department of Ultrasound, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ruifang Dong
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| | - Ye Cheng
- Department of Neurology, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei 061000, People's Republic of China
| |
Collapse
|
47
|
Deconvolution of WNT-induced Frizzled conformational dynamics with fluorescent biosensors. Biosens Bioelectron 2020; 177:112948. [PMID: 33486136 DOI: 10.1016/j.bios.2020.112948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
The G protein-coupled receptors Frizzled1-10 (FZD1-10) act as molecular checkpoints mediating intracellular signaling induced by 19 mammalian, secreted Wingless/Int-1 lipoglycoproteins (WNTs). Despite the vital roles of these signaling components in health and disease, our knowledge about WNT/FZD selectivity, and the mechanisms of receptor activation and intracellular signal propagation by individual ligand/receptor pairs is limited due to the current lack of suitable biophysical techniques. Here, we developed fluorescence-based biosensors that detect WNT-induced FZD conformational changes in living cells in order to assess WNT action via FZDs at the most proximal level, i.e. the receptor conformation. By testing a panel of recombinant ligands on conformational biosensors representing all four homology clusters of FZDs, we discover yet unappreciated selectivities of WNTs to their receptors and, surprisingly, identify distinct ligand-induced receptor conformations. Furthermore, we demonstrate that FZDs can undergo conformational changes upon WNT binding without being dependent on the WNT co-receptors LRP5/6. This sensor toolbox provides an advanced platform for a thorough investigation of the 190 possible WNT/FZD pairings and for future screening campaigns targeting synthetic FZD ligands. Furthermore, our findings shed new light on the complexity of the WNT/FZD signaling system and have substantial implications for our understanding of fundamental biological processes including embryonal development and tumorigenesis.
Collapse
|
48
|
Luo J, Liu L, Shen J, Zhou N, Feng Y, Zhang N, Sun Q, Zhu Y. miR‑576‑5p promotes epithelial‑to‑mesenchymal transition in colorectal cancer by targeting the Wnt5a‑mediated Wnt/β‑catenin signaling pathway. Mol Med Rep 2020; 23:94. [PMID: 33300054 PMCID: PMC7723166 DOI: 10.3892/mmr.2020.11733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of malignancy and the third most commonly diagnosed form of cancer worldwide, ranking as the fourth leading cause of cancer‑associated mortality. MicroRNA (miR)‑576‑5p has been reported to be highly expressed in patients with CRC; however, its biological role remains unclear. The present study aimed therefore to investigate the biological role and underlying mechanism of miR‑576‑5p in CRC cell line SW480. The viability of SW480 cells following transfection with miR‑576‑5p mimic or inhibitor was analyzed using MTT assay. Wound healing and Transwell assays were performed to determine the cell migratory and invasive abilities, respectively. A dual luciferase reporter assay was used to verify the predicted binding site between miR‑576‑5p and Wnt5a. Reverse transcription‑quantitative PCR and western blotting were used to analyze the expression levels of miR‑576‑5p, E‑cadherin, N‑cadherin, vimentin, Snail1, Wnt5a, β‑catenin, c‑myc, cyclin D1 and p/t‑c‑Jun. Using bioinformatics analysis, high expression of miR‑576‑5p was found not only in tumor tissues, compared with the normal tissue, but also in CRC cells, compared with NCM460 cells. Furthermore, the inhibition of miR‑576‑5p expression significantly decreased the cell viability and the migratory and invasive abilities of SW480 cells, and suppressed the epithelial‑to‑mesenchymal transition (EMT). In addition, miR‑576‑5p could interact with Wnt5a and regulate the expression level of Wnt5a in order to influence the activity of Wnt/β‑catenin signaling. The results from rescue experiments further demonstrated that the effect of miR‑576‑5p overexpression on cell metastasis and EMT was reversed by Wnt5a overexpression or treatment with XAV‑939, which is an inhibitor of the Wnt/β‑catenin signaling pathway. In conclusion, the findings from the present study suggested that inhibition of miR‑576‑5p may suppress SW480 cell metastasis and EMT by targeting Wnt5a and regulating the Wnt5a‑mediated Wnt/β‑catenin signaling pathway, providing a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Jialin Luo
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Luying Liu
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jinwen Shen
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Ning Zhou
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yanru Feng
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Na Zhang
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Quanquan Sun
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yuan Zhu
- Institute of Cancer and Basic Medicine of Chinese Academy of Sciences; Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences; Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
49
|
Abdullahi D, Ahmad Annuar A, Sanusi J. Improved spinal cord gray matter morphology induced by Spirulina platensis following spinal cord injury in rat models. Ultrastruct Pathol 2020; 44:359-371. [PMID: 32686973 DOI: 10.1080/01913123.2020.1792597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Despite intense preclinical research focusing on developing potential strategies of mitigating spinal cord injury (SCI), SCI still results in permanent, debilitating symptoms for which there are currently no effective pharmacological interventions to improve the recovery of the fine ultrastructure of the spinal cord. Spirulina platensis is thought to have potential neuroprotective effects. We have previously demonstrated its protective potential on the lesioned corticospinal tracts and behavioral recovery. In this study, spirulina, known for its neuroprotective properties was used to further explore its protective effects on spinal cord gray matter ultrastructural. Twenty-four Sprague-Dawley rats were used and divided into sham group (laminectomy without SCI), control group (SCI without S. platensis), and S. platensis group (SCI + 180 mg/kg S. platensis). All animals were anesthetized via intramuscular injection. A partial crush injury was induced at the level of T12. The rats were humanely sacrificed for 28 days postinjury for ultrastructural study. There were significant mean differences with respect to pairwise comparisons between the ultrastructural grading score of neuronal perikarya of control and the S. platensis following injury at day 28, which correlates with the functional locomotor recovery at this timepoint in our previous study. The group supplemented with spirulina, thus, revealed a better improvement in the fine ultrastructure of the spinal cord gray matter when compared to the control group thereby suggesting neuroprotective potentials of spirulina in mitigating the effects of spinal cord injury and inducing functional recovery.
Collapse
Affiliation(s)
- Dauda Abdullahi
- Department of Anatomy, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia.,Department of Anatomy, College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi , Bauchi, Nigeria
| | - Azlina Ahmad Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Junedah Sanusi
- Department of Anatomy, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Wang HN, Huang YC, Ni GX. Mechanotransduction of stem cells for tendon repair. World J Stem Cells 2020; 12:952-965. [PMID: 33033557 PMCID: PMC7524696 DOI: 10.4252/wjsc.v12.i9.952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tendon is a mechanosensitive tissue that transmits force from muscle to bone. Physiological loading contributes to maintaining the homeostasis and adaptation of tendon, but aberrant loading may lead to injury or failed repair. It is shown that stem cells respond to mechanical loading and play an essential role in both acute and chronic injuries, as well as in tendon repair. In the process of mechanotransduction, mechanical loading is detected by mechanosensors that regulate cell differentiation and proliferation via several signaling pathways. In order to better understand the stem-cell response to mechanical stimulation and the potential mechanism of the tendon repair process, in this review, we summarize the source and role of endogenous and exogenous stem cells active in tendon repair, describe the mechanical response of stem cells, and finally, highlight the mechanotransduction process and underlying signaling pathways.
Collapse
Affiliation(s)
- Hao-Nan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|