1
|
Letafati A, Fakhr SSH, Najafabadi AQ, Karami N, Karami H. Marburg Virus Disease: A Narrative Review. Health Sci Rep 2025; 8:e70669. [PMID: 40330770 PMCID: PMC12053247 DOI: 10.1002/hsr2.70669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Background and Aims Given the recent deadly outbreaks of the Marburg virus (MARV), in early 2023 in Tanzania and Equatorial Guinea, and the most recent one in Rwanda in 2024, there has been renewed attention across Africa on the threat posed by the re-emergence of MARV as a growing concern for public health. Therefore, it needs to provide a comprehensive overview of the virus and its related infections, encompassing virus classification, historical outbreaks, transmission dynamics, the intricate interface between the virus and its hosts, the methods of diagnosis, core prevention strategies, and current therapeutic options, to better understand the virus and the disease characteristics in responding to future outbreaks. Methods For this review, four scientific online databases, including PubMed, Google Scholar, Scopus, and Web of Science were thoroughly searched for peer-reviewed journal papers (original, case reports/series, and review studies) published in English language using the following keywords: Filovirus, Marburg virus, Marburg Haemorrhagic Fever, Marburg virus disease, and Marburg virus outbreak. Results MARV shares similarities with its close cousin -the Ebola virus [EBOV]-in terms of viral characteristics and most clinical features. These two viruses are of animal origin and primarily spread to humans through infected bats (both direct and indirect close contact), which serve as the common natural host reservoirs. The potential for interhuman transmission, coupled with the ability to cross borders of endemic regions combined with the absence of a licensed vaccine and effective treatment, have made MARV a significant threat to human health. This virus is clinically characterized by a range of symptoms and organ dysfunctions. The disease is often fatal in a significant proportion of infected individuals. This viral infection is diagnosed by various diagnostic tools, prevented mainly through personal protective measures, and treated usually with clinical management and supportive care. Conclusion The outbreaks of MARV are continuously threaten public health; therefore, the world must be alert and well-prepared. For MVD, taking precautions along with investing in research and preparedness at regional, national, and global levels is of crucial importance and should be prioritized.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public HealthTehran University of Medical Sciences (TUMS)TehranIran
| | | | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Negin Karami
- Department of Nursing, Faculty of NursingAlborz University of Medical SciencesKarajIran
| | - Hassan Karami
- Department of Virology, Faculty of Public HealthTehran University of Medical Sciences (TUMS)TehranIran
| |
Collapse
|
2
|
Yurkina DM, Shcherbakov KA, Romanova EA, Tvorogova AV, Feoktistov AM, Georgiev GP, Yashin DV, Sashchenko LP. Shortened PGLYRP1 Peptides Regulate Antitumor Activity of Cytotoxic Lymphocytes via TREM-1 Receptor: From Biology to Bioinformatics. Int J Mol Sci 2025; 26:4069. [PMID: 40362307 PMCID: PMC12071940 DOI: 10.3390/ijms26094069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The pro-inflammatory immune response plays an important role in protecting the body from pathogens and tumors. In this study, we were able to identify three peptides of the innate immunity protein PGLYRP1 (Tag7) that could regulate the activity of the TREM-1 receptor. TREM-1 receptor activation on monocytes triggers the appearance of antitumor lymphocytes. All three peptides studied (17.0, N9, and N15) bind with the TREM-1 receptor with the Kds 1.32 ± 0.2 nM, 9.66 ± 0.5 nM, and 7.43 ± 0.4 nM, respectively. An N9 peptide inhibiting the activity of the receptor was identified in addition to two peptides (N9 and N15) that jointly trigger the activation of the receptor. The conducted molecular docking study revealed amino acid residues (Ile57, Ile58, Glu106, Ser108, Leu110, Tyr116, Pro118, Pro119, Arg130, and Val 132), necessary for various functions of peptides, providing important knowledge for understanding the mechanism of activation of this receptor that can also serve as a basis for the development of therapeutic drugs to regulate its activity in the treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Daria M. Yurkina
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Kirill A. Shcherbakov
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Elena A. Romanova
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Anna V. Tvorogova
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Alexey M. Feoktistov
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
- Institute of Molecular Biology (RAS), 119334 Moscow, Russia
| | - Georgii P. Georgiev
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Denis V. Yashin
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Lidia P. Sashchenko
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| |
Collapse
|
3
|
Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H, Wang G. Differential immunoregulation by human surfactant protein A variants determines severity of SARS-CoV-2-induced lung disease. Front Immunol 2025; 16:1462278. [PMID: 40242753 PMCID: PMC12000003 DOI: 10.3389/fimmu.2025.1462278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes (SFTPA1 and SFTPA2) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A2, 6A4) and SP-A2 (variants 1A0, 1A3). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo. Methods Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A2 (6A2), hACE2/6A4 (6A4), hACE2/1A0 (1A0), and hACE2/1A3 (1A3), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 103 PFU SARS-CoV-2 or MEM medium (Sham). Results Infected KO and 1A0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A0, and 6A2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88, Stat3, IL-18, and Jak2 in the lungs of KO and 1A0 mice. However, Mapk1 was significantly downregulated in 6A2 versus 1A0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6, and IL-1β were comparatively higher in the lungs and sera of KO and 1A0 mice with the highest mortality rate. Furthermore, we observed the complexity of COVID-19, such as the difference between lung and systemic immune response to viral infection and of viral load and mortality among SP-A variants in this model. Conclusion These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
Collapse
Affiliation(s)
- Ikechukwu B. Jacob
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Akinkunmi O. Lawal
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Salma S. Mahmoud
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Emerson M. Kopsack
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Erin S. Reynolds
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Qinghe Meng
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Paul T. Massa
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Neurology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Saravanan Thangamani
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Hongpeng Jia
- Department of Surgery, Johns-Hopkins University, Baltimore, MD, United States
| | - Guirong Wang
- Department of Surgery, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Siddig EE, Ndembi N, Ahmed A, Muvunyi CM. Immunogenicity, Pathogenesis, and Host's Immuno-Responses to Marburg Virus Infection. Pathogens 2025; 14:323. [PMID: 40333058 PMCID: PMC12030746 DOI: 10.3390/pathogens14040323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 05/09/2025] Open
Abstract
Due to the sudden emergence and burnout nature of Marburg virus (MARV) outbreaks, little is known about MARV's pathogenicity and immunogenicity. These gaps in knowledge are limiting our understanding of the disease and the implementation of cost-effective prevention and control measures including case management through safe and effective therapeutic modalities. Therefore, this review aims to synthesize and summarize evidence about pathogenicity, immunogenicity, and virulence in humans towards MARV. Upon infection, MARV rapidly disseminates throughout various tissues, provoking severe cellular injury, particularly in lymphatic organs, the liver, kidneys, and the gastrointestinal tract. The virus takes advantage of host cells by avoiding immune responses, mainly by disrupting the function of dendritic cells and blocking the signaling pathways for interferon. As a result, patients experience profound immune dysregulation characterized by early lymphocyte depletion and a shift towards pro-inflammatory cytokine release, resulting in a cytokine storm that can lead to hemorrhagic septic shock. Additionally, adaptive immune responses, including antibody production, are impaired, further complicating recovery and increasing susceptibility to severe disease outcomes. Understanding these intricate host-pathogen interactions is critical for developing effective therapeutic strategies and vaccines against MARV. Continuing research is essential to explain the mechanisms of immune evasion and to identify potential intervention points for improving patient outcomes.
Collapse
Affiliation(s)
- Emmanuel Edwar Siddig
- Rwanda Biomedical Center (RBC), Kigali KG 644 St, Rwanda;
- The Africa Centres for Disease Control and Prevention (Africa CDC), Ring Road, 16/17, Haile Garment Lafto Square, Addis Ababa P.O. Box 3243, Ethiopia
| | - Nicaise Ndembi
- The International Vaccine Institute (IVI), Africa Regional Office (IARO), Kigali KN 78 St, Rwanda
| | - Ayman Ahmed
- Rwanda Biomedical Center (RBC), Kigali KG 644 St, Rwanda;
- Pan-Africa One Health Institute (PAOHI), Kigali KG 203 St, Rwanda
| | | |
Collapse
|
5
|
Colmenares MT, Matos ADO, Dantas PHS, Neto JRDC, Neves BJ, Gardinassi LGA, Silva-Sales M, Sales-Campos H. TREM-1 as a Potential Coreceptor in Norovirus Pathogenesis: Insights from Transcriptomic Analysis and Molecular Docking. ACS OMEGA 2025; 10:4881-4895. [PMID: 39959083 PMCID: PMC11822722 DOI: 10.1021/acsomega.4c10220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Norovirus (NoV) is a major cause of acute diarrheal disease in humans. However, due to complications in cultivating this virus, bioinformatics aids in elucidating the virus-host relationship. One of the molecules that has been associated with the burden of viral diseases is TREM-1, mainly due to its role in amplifying the inflammatory response. Thus, we hypothesized that TREM-1 may be involved in NoV infection. Analysis of public transcriptomic data sets showed an increased expression of Trem1 and Trem3 during murine NoV (MNoV) infection. Then, molecular docking was performed between murine TREM-1 and the P domain of the MNoV VP1 protein. The viral antigenic segment C'-D' was recognized by the murine TREM-1 CDR1 region. Subsequently, based on phylogenetic criteria, NoV VP1 proteins from the GII.4 genotype sequenced in different years (1987, 2010, 2012, 2014, 2016, and 2019) were modeled. Using docking and molecular dynamics simulations, a stable interaction was observed between the human TREM-1 Ig-like domain and the conserved S and P segments of the NoV VP1 protein. Notably, this interaction was conserved over the years and was mainly dictated by the TREM-1 CDR3 region. Also, coexpression between Trem1 with genes involved in apoptosis and pyroptosis pathways was surveyed during viral infection by MNoV. It was found that Trem1 is primarily expressed with genes from the pyroptosis pathway. These simulations strongly suggest the involvement of TREM-1 in NoV pathogenesis and its potential contribution as a coreceptor.
Collapse
Affiliation(s)
- Mike Telemaco
Contreras Colmenares
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
| | - Amanda de Oliveira Matos
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
| | - Pedro Henrique
dos Santos Dantas
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
| | - José Rodrigues Do Carmo Neto
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
| | - Bruno Júnior Neves
- Laboratório
de Quimioinformática, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | | | - Marcelle Silva-Sales
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
- Laboratório
de Quimioinformática, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Helioswilton Sales-Campos
- Laboratório
de Imunologia de Mucosas e Imunoinformática, Instituto de Patologia
Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-170, Brazil
| |
Collapse
|
6
|
Yang W, Li L, Li G, Li X, Liu H, Han X, Wang Y, Sun Y, Wei Y, Gao B, Zhao G, Sun L, Li M. Blocking CCL3-mediated neutrophil recruitment into the brain alleviates immunopathology following severe enterovirus 71 infection. iScience 2024; 27:111388. [PMID: 39660056 PMCID: PMC11629326 DOI: 10.1016/j.isci.2024.111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammatory cells infiltration in the cerebrospinal fluid is a hallmark of severe enterovirus 71 (EV71) infection, but which type of immune cells are critical for severe EV71 infection remains unclear. Here, we observe that both neutrophils and macrophages are increased in the brains of patients and mice with severe EV71 infection, and the depletion of neutrophils but not macrophages results in a marked enhancement of survival of EV71-infected mice. Furthermore, CCR1/3 may play an important role in CCL3 facilitating the accumulation of neutrophils in the brains of patients. Inhibition of CCL3 by anti-CCL3 antibodies or selected miRNAs significantly reduces the neutrophils infiltration in brains and the mortality of EV71-infected mice. Collectively, CCL3-mediated neutrophils recruitment into the brain contributes to the severe immunopathology of EV71 infection, which provides a potential diagnostic and therapeutic target for EV71 infection.
Collapse
Affiliation(s)
- Wenxian Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Li
- You’an Hospital, Capital Medical University, Beijing, Fengtai 100069, China
| | - Guanlin Li
- Associate Chief Technician, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, China
| | - Xiuhui Li
- You’an Hospital, Capital Medical University, Beijing, Fengtai 100069, China
| | - Hongyan Liu
- Shenyang Infectious Diseases Hospital, Shenyang, Liaoning Province, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yali Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yuwei Wei
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Bo Gao
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
7
|
Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H, Wang G. Differential Immunoregulation by Human Surfactant Protein A Variants Determines Severity of SARS-CoV-2-induced Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612497. [PMID: 39314485 PMCID: PMC11418998 DOI: 10.1101/2024.09.11.612497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes ( SFTPA1 and SFTPA2 ) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A 2 , 6A 4 ) and SP-A2 (variants 1A 0 , 1A 3 ). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo . Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A 2 (6A 2 ), hACE2/6A 4 (6A 4 ), hACE2/1A 0 (1A 0 ), and hACE2/1A 3 (1A 3 ), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 10 3 PFU SARS-CoV-2 or saline (Sham). Infected KO and 1A 0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A 0 , and 6A 2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88 , Stat3 , IL-18 , and Jak2 in the lungs of KO and 1A 0 mice. However, Mapk1 was significantly downregulated in 6A 2 versus 1A 0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6 and IL-1β were comparatively higher in the lungs and sera of KO and 1A 0 mice with the highest mortality rate. These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
Collapse
|
8
|
Guito JC, Arnold CE, Schuh AJ, Amman BR, Sealy TK, Spengler JR, Harmon JR, Coleman-McCray JD, Sanchez-Lockhart M, Palacios GF, Towner JS, Prescott JB. Peripheral immune responses to filoviruses in a reservoir versus spillover hosts reveal transcriptional correlates of disease. Front Immunol 2024; 14:1306501. [PMID: 38259437 PMCID: PMC10800976 DOI: 10.3389/fimmu.2023.1306501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Several filoviruses, including Marburg virus (MARV), cause severe disease in humans and nonhuman primates (NHPs). However, the Egyptian rousette bat (ERB, Rousettus aegyptiacus), the only known MARV reservoir, shows no overt illness upon natural or experimental infection, which, like other bat hosts of zoonoses, is due to well-adapted, likely species-specific immune features. Despite advances in understanding reservoir immune responses to filoviruses, ERB peripheral blood responses to MARV and how they compare to those of diseased filovirus-infected spillover hosts remain ill-defined. We thus conducted a longitudinal analysis of ERB blood gene responses during acute MARV infection. These data were then contrasted with a compilation of published primate blood response studies to elucidate gene correlates of filovirus protection versus disease. Our work expands on previous findings in MARV-infected ERBs by supporting both host resistance and disease tolerance mechanisms, offers insight into the peripheral immunocellular repertoire during infection, and provides the most direct known cross-examination between reservoir and spillover hosts of the most prevalently-regulated response genes, pathways and activities associated with differences in filovirus pathogenesis and pathogenicity.
Collapse
Affiliation(s)
- Jonathan C. Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Catherine E. Arnold
- Biological Defense Research Directorate, Naval Medical Research Center, Frederick, MD, United States
- RD-CBR, Research and Development Directorate, Chemical and Biological Technologies Directorate, Research Center of Excellence, Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Amy J. Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joann D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Gustavo F. Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan S. Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joseph B. Prescott
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
9
|
Gibot S, Lafon T, Jacquin L, Lefevre B, Kimmoun A, Guillaumot A, Losser MR, Douplat M, Argaud L, De Ciancio G, Jolly L, Touly N, Derive M, Malaplate C, Luc A, Baumann C, François B. Soluble TREM-1 plasma concentration predicts poor outcome in COVID-19 patients. Intensive Care Med Exp 2023; 11:51. [PMID: 37574520 PMCID: PMC10423708 DOI: 10.1186/s40635-023-00532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND The immuno-receptor Triggering Expressed on Myeloid cells-1 (TREM-1) is activated during bacterial infectious diseases, where it amplifies the inflammatory response. Small studies suggest that TREM-1 could be involved in viral infections, including COVID-19. We here aim to decipher whether plasma concentration of the soluble form of TREM-1 (sTREM-1) could predict the outcome of hospitalized COVID-19 patients. METHODS We conducted a multicentre prospective observational study in 3 university hospitals in France. Consecutive hospitalized patients with confirmed infection with SARS-CoV-2 were enrolled. Plasma concentration of sTREM-1 was measured on admission and then at days 4, 6, 8, 14, 21, and 28 in patients admitted into an ICU (ICU cohort: ICUC) or 3 times a week for patients hospitalized in a medical ward (Conventional Cohort: ConvC). Clinical and biological data were prospectively recorded and patients were followed-up for 90 days. For medical ward patients, the outcome was deemed complicated in case of requirement of increased oxygen supply > 5 L/min, transfer to an ICU, or death. For Intensive Care Unit (ICU) patients, complicated outcome was defined by death in the ICU. RESULTS Plasma concentration of sTREM-1 at inclusion was higher in ICU patients (n = 269) than in medical ward patients (n = 562) (224 pg/mL (IQR 144-320) vs 147 pg/mL (76-249), p < 0.0001), and higher in patients with a complicated outcome in both cohorts: 178 (94-300) vs 135 pg/mL (70-220), p < 0.0001 in the ward patients, and 342 (288-532) vs 206 pg/mL (134-291), p < 0.0001 in the ICU patients. Elevated sTREM-1 baseline concentration was an independent predictor of complicated outcomes (Hazard Ratio (HR) = 1.5 (1.1-2.1), p = 0.02 in ward patients; HR = 3.8 (1.8-8.0), p = 0.0003 in ICU patients). An sTREM-1 plasma concentration of 224 pg/mL had a sensitivity of 42%, and a specificity of 76% in the ConvC for complicated outcome. In the ICUC, a 287 pg/mL cutoff had a sensitivity of 78%, and a specificity of 74% for death. The sTREM-1 concentrations increased over time in the ConvC patients with a complicated outcome (p = 0.017), but not in the ICUC patients. CONCLUSIONS In COVID-19 patients, plasma concentration of sTREM-1 is an independent predictor of the outcome, although its positive and negative likelihood ratio are not good enough to guide clinical decision as a standalone marker.
Collapse
Affiliation(s)
- Sébastien Gibot
- Médecine Intensive et Réanimation, Hôpital Central, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France.
- Service de Médecine Intensive et Réanimation, Hôpital Central, 29 Avenue de Lattre de Tassigny, 54035, Nancy Cedex, France.
| | - Thomas Lafon
- Emergency Department, Limoges University Hospital Center, 87000, Limoges, France
- Inserm CIC 1435, Limoges University Hospital Center, 87000, Limoges, France
| | - Laurent Jacquin
- Emergency Department, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003, Lyon, France
| | - Benjamin Lefevre
- Service des Maladies Infectieuses et Tropicales, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Antoine Kimmoun
- Médecine Intensive et Réanimation, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Anne Guillaumot
- Département de Pneumologie, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Marie-Reine Losser
- Réanimation Chirurgicale, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Marion Douplat
- Emergency Department, Hospices Civils de Lyon, Hôpital Lyon Sud Pierre Benite, 69000, Lyon, France
| | - Laurent Argaud
- Service de Médecine Intensive-Réanimation, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69003, Lyon, France
| | - Guillaume De Ciancio
- Département de Cardiologie, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Lucie Jolly
- Inotrem Sa, Faculté de Médecine de Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Nina Touly
- Inotrem Sa, Faculté de Médecine de Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Marc Derive
- Inotrem Sa, Faculté de Médecine de Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Catherine Malaplate
- Laboratoire de Biochimie, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
- Centre de Ressources Biologiques Lorraine, CHRU Nancy, Hôpital Brabois, 54500, Vandoeuvre-Les-Nancy, France
| | - Amandine Luc
- Unité de Méthodologie, Data Management et Statistiques, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Cédric Baumann
- Unité de Méthodologie, Data Management et Statistiques, Hôpital Brabois, Université de Lorraine, CHRU-Nancy, 54500, Vandoeuvre-Les-Nancy, France
| | - Bruno François
- Réanimation Polyvalente et Inserm CIC-1435 & UMR-1092, CHU Limoges, 87000, Limoges, France
| |
Collapse
|
10
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
11
|
François B, Lambden S, Garaud JJ, Derive M, Grouin JM, Asfar P, Darreau C, Mira JP, Quenot JP, Lemarié J, Mercier E, Lacherade JC, Vinsonneau C, Fivez T, Helms J, Badie J, Levy M, Cuvier V, Salcedo-Magguilli M, Laszlo-Pouvreau AL, Laterre PF, Gibot S, ESSENTIAL investigators. Evaluation of the efficacy and safety of TREM-1 inhibition with nangibotide in patients with COVID-19 receiving respiratory support: the ESSENTIAL randomised, double-blind trial. EClinicalMedicine 2023; 60:102013. [PMID: 37350989 PMCID: PMC10231876 DOI: 10.1016/j.eclinm.2023.102013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023] Open
Abstract
Background Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18-75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02-3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96-4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18-23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78-36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding The study was sponsored by Inotrem SA.
Collapse
Affiliation(s)
- Bruno François
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CHU Dupuytren, Limoges, France
| | - Simon Lambden
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Inotrem SA, Paris, France
| | | | | | | | - Pierre Asfar
- Department of Intensive Care, CHU d’Angers, France
| | | | - Jean-Paul Mira
- Department of Intensive Care, Groupe Hospitalier Cochin, Paris, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, Burgundy University Hospital, Dijon, France
| | | | - Emmanuelle Mercier
- Department of Intensive Care, CHRU Tours Hôpital Bretonneau, Tours, France
| | - Jean-Claude Lacherade
- Department of Intensive Care, Centre Hospitalier Départemental de Vendée, La Roche-Sur-Yon, France
| | | | - Tom Fivez
- Department of Intensive Care, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Julie Helms
- Department of Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine and Inserm UMR 1260, RNM, FMTS, Strasbourg, France
| | - Julio Badie
- Department of Intensive Care, Hôpital Nord Franche-Comté, Trevenans, France
| | - Mitchell Levy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | | | | | | | | | - Sébastien Gibot
- Intensive Care Unit, Centre Hospitalier Regional Universitaire (CHRU), 54000 Nancy, France
| | - ESSENTIAL investigators
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CHU Dupuytren, Limoges, France
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Inotrem SA, Paris, France
- Université de Rouen, 76821 Mont Saint-Aignan, France
- Department of Intensive Care, CHU d’Angers, France
- Department of Intensive Care, CHU Le Mans, France
- Department of Intensive Care, Groupe Hospitalier Cochin, Paris, France
- Department of Intensive Care, Burgundy University Hospital, Dijon, France
- Department of Intensive Care, Hôtel Dieu, Nantes, France
- Department of Intensive Care, CHRU Tours Hôpital Bretonneau, Tours, France
- Department of Intensive Care, Centre Hospitalier Départemental de Vendée, La Roche-Sur-Yon, France
- Department of Intensive Care, Centre Hospitalier de Béthune, France
- Department of Intensive Care, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine and Inserm UMR 1260, RNM, FMTS, Strasbourg, France
- Department of Intensive Care, Hôpital Nord Franche-Comté, Trevenans, France
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
- Department of Critical Care Medicine, CHR Mons-Hainaut, Mons, Belgium
- Intensive Care Unit, Centre Hospitalier Regional Universitaire (CHRU), 54000 Nancy, France
| |
Collapse
|
12
|
Santos CNO, Magalhães LS, Fonseca ABDL, Bispo AJB, Porto RLS, Alves JC, Dos Santos CA, de Carvalho JV, da Silva AM, Teixeira MM, de Almeida RP, Dos Santos PL, de Jesus AR. Association between genetic variants in TREM1, CXCL10, IL4, CXCL8 and TLR7 genes with the occurrence of congenital Zika syndrome and severe microcephaly. Sci Rep 2023; 13:3466. [PMID: 36859461 PMCID: PMC9975867 DOI: 10.1038/s41598-023-30342-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Congenital Zika syndrome (CZS) is a cluster of malformations induced by Zika virus (ZIKV) infection and the underline mechanisms involved in its occurrence are yet not fully understood. Along with epidemiological and environmental factors, the genetic host factors are suggested as important to the CZS occurrence and development, however, few studies have evaluated this. This study enrolled a total of 245 individuals in a case-control association study compound a cohort of high specific interest constituted by 75 mothers who had delivered CZS infants, their 76 infants, and 47 mothers that had delivered healthy infants, and their 47 infants. Sixteen single-nucleotide polymorphisms on TREM1, CXCL10, IL4, CXCL8, TLR3, TLR7, IFNR1, CXCR1, IL10, CCR2 and CCR5 genes were genotyped to investigate their association as risk factors to CZS. The results show an association between C allele at TREM1 rs2234246 and C allele at IL4 rs224325 in mothers infected with ZIKV during pregnancy, with the increased susceptibility to CZS occurrence in their infants and the SNP CXCL8 rs4073 and the G allele at CXCL10 rs4508917 with presence of CZS microcephaly in the infants. Furthermore, the T allele at CXCL8 rs4073 and TRL7 rs179008 SNPs were associated with the severity of microcephaly in children with CZS. These results suggest that these polymorphisms in genes of innate immune responses addressed here are associated to increased risk of occurrence and severity of CZS in pregnant mothers infected with ZIKV and their CZS infants.
Collapse
Affiliation(s)
- Camilla Natália Oliveira Santos
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil.
| | - Lucas Sousa Magalhães
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
- Sector of Parasitology and Pathology, Biological and Health Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | | | | | | | - Juliana Cardoso Alves
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
| | | | | | - Angela Maria da Silva
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
- Department of Medicine of University Hospital, Federal University of Sergipe, Aracaju, Brazil
| | | | - Roque Pacheco de Almeida
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
- Department of Medicine of University Hospital, Federal University of Sergipe, Aracaju, Brazil
| | - Priscila Lima Dos Santos
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro de Jesus
- Immunology and Molecular Biology Laboratory and Graduate Program in Health Sciences, University Hospital of Federal University of Sergipe, Aracaju, Brazil
- Department of Medicine of University Hospital, Federal University of Sergipe, Aracaju, Brazil
| |
Collapse
|
13
|
Ruiz-Pacheco JA, Muñoz-Medina EJ, Castillo-Díaz LA, Chacón-Salinas R, Escobar-Gutiérrez A. Dengue Virus Increases the Expression of TREM-1 and CD10 on Human Neutrophils. Viral Immunol 2023; 36:176-185. [PMID: 36811498 DOI: 10.1089/vim.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Every year, dengue is responsible for 400 million infections worldwide. Inflammation is related to the development of severe forms of dengue. Neutrophils are a heterogeneous cell population with a key role in the immune response. During viral infection, neutrophils are mainly recruited to the infection site; however, their excessive activation is linked to deleterious results. During dengue infection, neutrophils are involved in the pathogenesis through neutrophils extracellular traps production, tumor necrosis factor-alpha, and interleukin-8 secretion. However, other molecules regulate the neutrophil role during viral infection. TREM-1 is expressed on neutrophils and its activation is related to increased production of inflammatory mediators. CD10 is expressed on mature neutrophils and has been associated with the regulation of neutrophil migration and immunosuppression. However, the role of both molecules during viral infection is limited, particularly during dengue infection. Here, we report for the first time that DENV-2 can significantly increase TREM-1 and CD10 expression as well as sTREM-1 production in cultured human neutrophils. Furthermore, we observed that treatment with granulocyte-macrophage colony stimulating factor, a molecule mostly produced in severe cases of dengue, is capable of inducing the overexpression of TREM-1 and CD10 on human neutrophils. These results suggest the participation of neutrophil CD10 and TREM-1 in the pathogenesis of dengue infection.
Collapse
Affiliation(s)
- Juan A Ruiz-Pacheco
- Investigador por México, División de Investigación Quirúrgica, Centro de Investigaciones Biomédicas de Occidente, IMSS, Guadalajara, México
| | - E José Muñoz-Medina
- División de Laboratorios de Vigilancia e Investigación Epidemiológica, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Luis A Castillo-Díaz
- División de Ciencias Biológicas y de la Salud, Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo, México
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, Ciudad de México, México
| | - Alejandro Escobar-Gutiérrez
- Coordinación de Investigaciones Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos, "Dr. Manuel Martínez Báez," Secretaría de Salud, Ciudad de México, México
| |
Collapse
|
14
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
15
|
Yamaguchi R, Sakamoto A, Yamaguchi R, Haraguchi M, Narahara S, Sugiuchi H, Yamaguch Y. IL-23 production in human macrophages is regulated negatively by tumor necrosis factor α-induced protein 3 and positively by specificity protein 1 after stimulation of the toll-like receptor 7/8 signaling pathway. Heliyon 2022; 8:e08887. [PMID: 35198762 PMCID: PMC8850731 DOI: 10.1016/j.heliyon.2022.e08887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/07/2021] [Accepted: 01/30/2022] [Indexed: 11/19/2022] Open
Abstract
The IL-23/IL-17 axis plays an important role in the development of autoimmune diseases, but the mechanism regulating IL-23 production is mainly unknown. We investigated how TNFAIP3 and Sp1 affect IL-23 production by human macrophages after exposure to resiquimod, a TLR7/8 agonist. IL-23 production was significantly upregulated by resiquimod but only slightly by LPS (a TLR4 agonist). Interestingly, IL-23 levels were significantly attenuated after sequential stimulation with LPS and resiquimod, but IL-12p40 and IL-18 levels were not. TLR4-related factors induced by LPS may regulate IL-23 expression via TLR7/8 signaling. LPS significantly enhanced TNFAIP3 and IRAK-M levels but reduced Sp1 levels. After exposure to resiquimod, RNA interference of TNFAIP3 upregulated IL-23 significantly more than siRNA transfection of IRAK-M did. In contrast, knockdown of Sp1 by RNA interference significantly attenuated IL-23 production. Transfection with siRNA for TNFAIP3 enhanced IL-23 expression significantly. After stimulation with resiquimod, GW7647—an agonist for PPARα (an inducer of NADHP oxidase)—and siRNA for UCP2 (a negative regulator of mitochondrial ROS generation) enhanced TNFAIP3 and reduced IL-23. siRNA for p22phox and gp91phox slightly increased Sp1 levels. However, after exposure to resiquimod siRNA-mediated knockout of DUOX1/2 significantly enhanced Sp1 and IL-23 levels, and decreased TNFα-dependent COX-2 expression. Concomitantly, TNFAIP3 levels was attenuated by DUOX1/2 siRNA. TNFAIP3 and Sp1 levels are reciprocally regulated through ROS generation. In conclusion, after stimulation of the TLR7/8 signaling pathway IL-23 production in human macrophages is regulated negatively by TNFAIP3.
Collapse
Affiliation(s)
- Rui Yamaguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Arisa Sakamoto
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Reona Yamaguchi
- Department of Neuroscience, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-konoe-cho Sakyo-ku Kyoto 606-8501, Japan
| | - Misa Haraguchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Shinji Narahara
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Hiroyuki Sugiuchi
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
| | - Yasuo Yamaguch
- Graduate School of Medical Science, Kumamoto Health Science University, Kitaku Izumi-machi 325, Kumamoto 861-5598, Japan
- Corresponding author.
| |
Collapse
|
16
|
Li J, Yang S, Liu S, Chen Y, Liu H, Su Y, Liu R, Cui Y, Song Y, Teng Y, Wang T. Transcriptomic Profiling Reveals a Role for TREM-1 Activation in Enterovirus D68 Infection-Induced Proinflammatory Responses. Front Immunol 2021; 12:749618. [PMID: 34887856 PMCID: PMC8650217 DOI: 10.3389/fimmu.2021.749618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Increasing cases related to the pathogenicity of Enterovirus D68 (EV-D68) have made it a growing worldwide public health concern, especially due to increased severe respiratory illness and acute flaccid myelitis (AFM) in children. There are currently no vaccines or medicines to prevent or treat EV-D68 infections. Herein, we performed genome-wide transcriptional profiling of EV-D68-infected human rhabdomyosarcoma (RD) cells to investigate host-pathogen interplay. RNA sequencing and subsequent experiments revealed that EV-D68 infection induced a profound transcriptional dysregulation of host genes, causing significantly elevated inflammatory responses and altered antiviral immune responses. In particular, triggering receptor expressed on myeloid cells 1 (TREM-1) is involved in highly activated TREM-1 signaling processes, acting as an important mediator in EV-D68 infection, and it is related to upregulation of interleukin 8 (IL-8), IL-6, IL-12p70, IL-1β, and tumor necrosis factor alpha (TNF-α). Further results demonstrated that NF-κB p65 was essential for EV-D68-induced TREM-1 upregulation. Moreover, inhibition of the TREM1 signaling pathway by the specific inhibitor LP17 dampened activation of the p38 mitogen-activated protein kinase (MAPK) signaling cascade, suggesting that TREM-1 mainly transmits activation signals to phosphorylate p38 MAPK. Interestingly, treatment with LP17 to inhibit TREM-1 inhibited viral replication and infection. These findings imply the pathogenic mechanisms of EV-D68 and provide critical insight into therapeutic intervention in enterovirus diseases.
Collapse
Affiliation(s)
- Jinyu Li
- School of Life Sciences, Tianjin University, Tianjin, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Sihua Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yulu Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongyun Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yazhi Su
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China.,Institute of Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, China
| |
Collapse
|
17
|
Downs I, Johnson JC, Rossi F, Dyer D, Saunders DL, Twenhafel NA, Esham HL, Pratt WD, Trefry J, Zumbrun E, Facemire PR, Johnston SC, Tompkins EL, Jansen NK, Honko A, Cardile AP. Natural History of Aerosol-Induced Ebola Virus Disease in Rhesus Macaques. Viruses 2021; 13:v13112297. [PMID: 34835103 PMCID: PMC8619410 DOI: 10.3390/v13112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.
Collapse
Affiliation(s)
- Isaac Downs
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Correspondence: ; Tel.: +1-301-619-0369
| | - Joshua C. Johnson
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Moderna, Inc., Cambridge, MA 02139, USA
| | - Franco Rossi
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David Dyer
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - David L. Saunders
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nancy A. Twenhafel
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Heather L. Esham
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - William D. Pratt
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - John Trefry
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Elizabeth Zumbrun
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Paul R. Facemire
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Sara C. Johnston
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Erin L. Tompkins
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Nathan K. Jansen
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| | - Anna Honko
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
- Investigator at National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony P. Cardile
- US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; (J.C.J.); (F.R.); (D.D.); (D.L.S.); (N.A.T.); (H.L.E.); (W.D.P.); (J.T.); (E.Z.); (P.R.F.); (S.C.J.); (E.L.T.); (N.K.J.); (A.H.); (A.P.C.)
| |
Collapse
|
18
|
Maroney KJ, Pinski AN, Marzi A, Messaoudi I. Transcriptional Analysis of Infection With Early or Late Isolates From the 2013-2016 West Africa Ebola Virus Epidemic Does Not Suggest Attenuated Pathogenicity as a Result of Genetic Variation. Front Microbiol 2021; 12:714817. [PMID: 34484156 PMCID: PMC8415004 DOI: 10.3389/fmicb.2021.714817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The 2013-2016 West Africa Ebola virus (EBOV) epidemic caused by the EBOV-Makona isolate is the largest and longest recorded to date. It incurred over 28,000 infections and ∼11,000 deaths. Early in this epidemic, several mutations in viral glycoprotein (A82V), nucleoprotein (R111C), and polymerase L (D759G) emerged and stabilized. In vitro studies of these new EBOV-Makona isolates showed enhanced fitness and viral replication capacity. However, in vivo studies in mice and rhesus macaques did not provide any evidence of enhanced viral fitness or shedding. Infection with late isolates carrying or early isolates lacking (early) these mutations resulted in uniformly lethal disease in nonhuman primates (NHPs), albeit with slightly delayed kinetics with late isolates. The recent report of a possible reemergence of EBOV from a persistent infection in a survivor of the epidemic highlights the urgency for understanding the impact of genetic variation on EBOV pathogenesis. However, potential molecular differences in host responses remain unknown. To address this gap in knowledge, we conducted the first comparative analysis of the host responses to lethal infection with EBOV-Mayinga and EBOV-Makona isolates using bivariate, longitudinal, regression, and discrimination transcriptomic analyses. Our analysis shows a conserved core of differentially expressed genes (DEGs) involved in antiviral defense, immune cell activation, and inflammatory processes in response to EBOV-Makona and EBOV-Mayinga infections. Additionally, EBOV-Makona and EBOV-Mayinga infections could be discriminated based on the expression pattern of a small subset of genes. Transcriptional responses to EBOV-Makona isolates that emerged later during the epidemic, specifically those from Mali and Liberia, lacked signatures of profound lymphopenia and excessive inflammation seen following infection with EBOV-Mayinga and early EBOV-Makona isolate C07. Overall, these findings provide novel insight into the mechanisms underlying the lower case fatality rate (CFR) observed with EBOV-Makona compared to EBOV-Mayinga.
Collapse
Affiliation(s)
- Kevin J Maroney
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Amanda N Pinski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, United States
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.,Center for Virus Research, University of California, Irvine, Irvine, CA, United States.,Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Bundibugyo ebolavirus Survival Is Associated with Early Activation of Adaptive Immunity and Reduced Myeloid-Derived Suppressor Cell Signaling. mBio 2021; 12:e0151721. [PMID: 34372693 PMCID: PMC8406165 DOI: 10.1128/mbio.01517-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebolaviruses Bundibugyo virus (BDBV) and Ebola virus (EBOV) cause fatal hemorrhagic disease in humans and nonhuman primates. While the host response to EBOV is well characterized, less is known about BDBV infection. Moreover, immune signatures that mediate natural protection against all ebolaviruses remain poorly defined. To explore these knowledge gaps, we transcriptionally profiled BDBV-infected rhesus macaques, a disease model that results in incomplete lethality. This approach enabled us to identify prognostic indicators. As expected, survival (∼60%) correlated with reduced clinical pathology and circulating infectious virus, although peak viral RNA loads were not significantly different between surviving and nonsurviving macaques. Survivors had higher anti-BDBV antibody titers and transcriptionally derived cytotoxic T cell-, memory B cell-, and plasma cell-type quantities, demonstrating activation of adaptive immunity. Conversely, a poor prognosis was associated with lack of an appropriate adaptive response, sustained innate immune signaling, and higher expression of myeloid-derived suppressor cell (MDSC)-related transcripts (S100A8, S100A9, CEBPB, PTGS2, CXCR1, and LILRA3). MDSCs are potent immunosuppressors of cellular and humoral immunity, and therefore, they represent a potential therapeutic target. Circulating plasminogen activator inhibitor 1 (PAI-1) and tissue plasminogen activator (tPA) levels were also elevated in nonsurvivors and in survivors exhibiting severe illness, emphasizing the importance of maintaining coagulation homeostasis to control disease progression.
Collapse
|
20
|
Fontoura MA, Rocha RF, Marques RE. Neutrophil Recruitment and Participation in Severe Diseases Caused by Flavivirus Infection. Life (Basel) 2021; 11:717. [PMID: 34357089 PMCID: PMC8304117 DOI: 10.3390/life11070717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils are first-line responders to infections and are recruited to target tissues through the action of chemoattractant molecules, such as chemokines. Neutrophils are crucial for the control of bacterial and fungal infections, but their role in the context of viral infections has been understudied. Flaviviruses are important human viral pathogens transmitted by arthropods. Infection with a flavivirus may result in a variety of complex disease manifestations, including hemorrhagic fever, encephalitis or congenital malformations. Our understanding of flaviviral diseases is incomplete, and so is the role of neutrophils in such diseases. Here we present a comprehensive overview on the participation of neutrophils in severe disease forms evolving from flavivirus infection, focusing on the role of chemokines and their receptors as main drivers of neutrophil function. Neutrophil activation during viral infection was shown to interfere in viral replication through effector functions, but the resulting inflammation is significant and may be detrimental to the host. For congenital infections in humans, neutrophil recruitment mediated by CXCL8 would be catastrophic. Evidence suggests that control of neutrophil recruitment to flavivirus-infected tissues may reduce immunopathology in experimental models and patients, with minimal loss to viral clearance. Further investigation on the roles of neutrophils in flaviviral infections may reveal unappreciated functions of this leukocyte population while increasing our understanding of flaviviral disease pathogenesis in its multiple forms.
Collapse
Affiliation(s)
- Marina Alves Fontoura
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Cellular and Structural Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Rebeca Fróes Rocha
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory—LNBio, Brazilian Center for Research in Energy and Materials—CNPEM, Campinas 13083-100, Brazil; (M.A.F.); (R.F.R.)
| |
Collapse
|
21
|
Singh H, Rai V, Nooti SK, Agrawal DK. Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates. Expert Opin Ther Pat 2021; 31:549-561. [PMID: 33507843 DOI: 10.1080/13543776.2021.1883587] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Triggering receptors expressed on myeloid cells (TREMs) are inflammatory amplifiers with defined pathophysiological role in various infectious diseases, acute and chronic aseptic inflammations, and a variety of cancers, depicting TREMs as prominent therapeutic targets.Areas covered: Herein, updates from 2015 to 2020 are discussed to divulge the TREM ligands, as well as their peptide blockers, claimed to modulate their expression. The article also presents different strategies employed during the last five years to block interactions between TREMs and their ligands to treat various disease conditions by modulating their expression and activity.Expert opinion: There has been significant progress in the discovery of novel ligands and modulators of TREMs in the last five years that mainly revolved around the function of TREM molecules. A few peptides showed encouraging results to modulate the expression and activity of TREMs in preclinical studies, and these peptides are currently under clinical investigation. Based on the findings so far in several careful studies, we expect novel therapeutics in the near future which could have the ability to treat various disease conditions associated with TREM expression.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Sunil K Nooti
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| |
Collapse
|
22
|
Rogers KJ, Shtanko O, Stunz LL, Mallinger LN, Arkee T, Schmidt ME, Bohan D, Brunton B, White JM, Varga SM, Butler NS, Bishop GA, Maury W. Frontline Science: CD40 signaling restricts RNA virus replication in Mϕs, leading to rapid innate immune control of acute virus infection. J Leukoc Biol 2021; 109:309-325. [PMID: 32441445 PMCID: PMC7774454 DOI: 10.1002/jlb.4hi0420-285rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023] Open
Abstract
Many acute viral infections target tissue Mϕs, yet the mechanisms of Mϕ-mediated control of viruses are poorly understood. Here, we report that CD40 expressed by peritoneal Mϕs restricts early infection of a broad range of RNA viruses. Loss of CD40 expression enhanced virus replication as early as 12-24 h of infection and, conversely, stimulation of CD40 signaling with an agonistic Ab blocked infection. With peritoneal cell populations infected with the filovirus, wild-type (WT) Ebola virus (EBOV), or a BSL2 model virus, recombinant vesicular stomatitis virus encoding Ebola virus glycoprotein (rVSV/EBOV GP), we examined the mechanism conferring protection. Here, we demonstrate that restricted virus replication in Mϕs required CD154/CD40 interactions that stimulated IL-12 production through TRAF6-dependent signaling. In turn, IL-12 production resulted in IFN-γ production, which induced proinflammatory polarization of Mϕs, protecting the cells from infection. These CD40-dependent events protected mice against virus challenge. CD40-/- mice were exquisitely sensitive to intraperitoneal challenge with a dose of rVSV/EBOV GP that was sublethal to CD40+/+ mice, exhibiting viremia within 12 h of infection and rapidly succumbing to infection. This study identifies a previously unappreciated role for Mϕ-intrinsic CD40 signaling in controlling acute virus infection.
Collapse
Affiliation(s)
- Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Laura L. Stunz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Laura N. Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Tina Arkee
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Megan E. Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Dana Bohan
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, VA, United States
| | - Steve M. Varga
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Noah S. Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Gail A. Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
23
|
Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB, Mukherjee N, Sellers BA, Tran N, Bauer MR, Adams GC, Adams R, Rinn JL, Melé M, Schaffner SF, Nolan GP, Barnes KG, Hensley LE, McIlwain DR, Shalek AK, Sabeti PC, Bennett RS. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics. Cell 2020; 183:1383-1401.e19. [PMID: 33159858 PMCID: PMC7707107 DOI: 10.1016/j.cell.2020.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nadine M Khoury
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siddharth S Raju
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc H Wadsworth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan R Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Zach B Bjornson
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew R Bauer
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia 08034, Spain
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - David R McIlwain
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
24
|
Greenberg A, Huber BR, Liu DX, Logue JP, Hischak AMW, Hart RJ, Abbott M, Isic N, Hisada YM, Mackman N, Bennett RS, Hensley LE, Connor JH, Crossland NA. Quantification of Viral and Host Biomarkers in the Liver of Rhesus Macaques: A Longitudinal Study of Zaire Ebolavirus Strain Kikwit (EBOV/Kik). THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1449-1460. [PMID: 32275904 PMCID: PMC7322367 DOI: 10.1016/j.ajpath.2020.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/21/2022]
Abstract
Zaire ebolavirus (EBOV) causes Ebola virus disease (EVD), which carries a fatality rate between 25% and 90% in humans. Liver pathology is a hallmark of terminal EVD; however, little is known about temporal disease progression. We used multiplexed fluorescent immunohistochemistry and in situ hybridization in combination with whole slide imaging and image analysis (IA) to quantitatively characterize temporospatial signatures of viral and host factors as related to EBOV pathogenesis. Eighteen rhesus monkeys euthanized between 3 and 8 days post-infection, and 3 uninfected controls were enrolled in this study. Compared with semiquantitative histomorphologic ordinal scoring, quantitative IA detected subtle and progressive features of early and terminal EVD that was not feasible with routine approaches. Sinusoidal macrophages were the earliest cells to respond to infection, expressing proinflammatory cytokine interleukin 6 (IL6) mRNA, which was subsequently also observed in fibrovascular compartments. The mRNA of interferon-stimulated gene-15 (ISG-15), also known as ISG15 ubiquitin like modifier (ISG15), was observed early, with a progressive and ubiquitous hybridization signature involving mesenchymal and epithelial compartments. ISG-15 mRNA was prominent near infected cells, but not in infected cells, supporting the hypothesis that bystander cells produce a robust interferon gene response. This study contributes to our current understanding of early EVD progression and illustrates the value that digital pathology and quantitative IA serve in infectious disease research.
Collapse
Affiliation(s)
- Alexandra Greenberg
- Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts
| | - Bertrand R Huber
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts
| | - David X Liu
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - James P Logue
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Amanda M W Hischak
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Randy J Hart
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Maureen Abbott
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Nejra Isic
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Yohei M Hisada
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard S Bennett
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility, National Institute for Allergy and Infectious Diseases (NIAID), Frederick, Maryland
| | - John H Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
25
|
François B, Wittebole X, Ferrer R, Mira JP, Dugernier T, Gibot S, Derive M, Olivier A, Cuvier V, Witte S, Pickkers P, Vandenhende F, Garaud JJ, Sánchez M, Salcedo-Magguilli M, Laterre PF. Nangibotide in patients with septic shock: a Phase 2a randomized controlled clinical trial. Intensive Care Med 2020; 46:1425-1437. [PMID: 32468087 DOI: 10.1007/s00134-020-06109-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Nangibotide is a specific TREM-1 inhibitor that tempered deleterious host-pathogens interactions, restored vascular function, and improved survival, in animal septic shock models. This study evaluated the safety and pharmacokinetics of nangibotide and its effects on clinical and pharmacodynamic parameters in septic shock patients. METHODS This was a multicenter randomized, double-blind, two-stage study. Patients received either continuous infusion of nangibotide (0.3, 1.0, or 3.0 mg/kg/h) or placebo. Treatment began < 24 h after shock onset and continued for up to 5 days. Safety primary outcomes were adverse events (AEs), whether serious or not, and death. Exploratory endpoints evaluated nangibotide effects on pharmacodynamics, organ function, and mortality, and were analyzed according to baseline sTREM-1 concentrations. RESULTS Forty-nine patients were randomized. All treatment emergent AEs (TEAEs) were collected until Day 28. No significant differences were observed in TEAEs between treatment groups. No drug withdrawal linked to TEAE nor appearance of anti-drug antibodies were reported. Nangibotide pharmacokinetics appeared to be dose-proportional and clearance was dose-independent. Nangibotide did not significantly affect pharmacodynamic markers. Decrease in SOFA score LS mean change (± SE) from baseline to Day 5 in pooled nangibotide groups versus placebo was - 0.7 (± 0.85) in the randomized population and - 1.5 (± 1.12) in patients with high baseline plasma sTREM-1 concentrations (non-significant). This pattern was similar to organ support end points. CONCLUSION No significant increases in TEAEs were detected in nangibotide-treated patients versus placebo. These results encourage further evaluation of nangibotide and further exploration of plasma sTREM-1 concentrations as a predictive efficacy biomarker.
Collapse
Affiliation(s)
- Bruno François
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CRICS-TRIGGERSEP Network, CHU Limoges, Limoges, France.
| | - Xavier Wittebole
- Department of Critical Care Medicine, St Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Ricard Ferrer
- ICU Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | - Sébastien Gibot
- Medical ICU Department, Hospital Central, CHU Nancy, Nancy, France.,Inserm U1116, Nancy Medical Faculty, Lorraine University, Nancy , France
| | | | | | | | | | - Peter Pickkers
- ICU Department, Radboudumc Hospital, Nijmegen, The Netherlands
| | | | | | - Miguel Sánchez
- ICU Department, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Pierre-François Laterre
- Department of Critical Care Medicine, St Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
26
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
27
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
28
|
de Oliveira Matos A, Dos Santos Dantas PH, Figueira Marques Silva-Sales M, Sales-Campos H. The role of the triggering receptor expressed on myeloid cells-1 (TREM-1) in non-bacterial infections. Crit Rev Microbiol 2020; 46:237-252. [PMID: 32326783 DOI: 10.1080/1040841x.2020.1751060] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is a receptor of the innate immune system, expressed mostly by myeloid cells and primarily associated with pro- inflammatory responses. Although the exact nature of its ligands has not yet been fully elucidated, many microorganisms or danger signals have been proposed as inducers of its activation or the secretion of sTREM-1, the soluble form with putative anti-inflammatory effects. In the course of the 20 years since its first description, several studies have investigated the involvement of TREM-1 in bacterial infections. However, the number of studies describing the role of TREM-1 in fungal, viral and parasite-associated infections has only increased in the last few years, showing a diverse contribution of the receptor in these scenarios, with beneficial or detrimental activities depending on the context. Therefore, this review aims to discuss how TREM-1 may influence viral, fungal and parasitic infection outcomes, highlighting its potential as a therapeutic target and biomarker for diagnosis and prognosis of non-bacterial infectious diseases.
Collapse
|
29
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
30
|
TREM-1 activation is a potential key regulator in driving severe pathogenesis of enterovirus A71 infection. Sci Rep 2020; 10:3810. [PMID: 32123257 PMCID: PMC7052206 DOI: 10.1038/s41598-020-60761-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/06/2020] [Indexed: 11/08/2022] Open
Abstract
Hand, foot and mouth disease (HFMD), caused by enterovirus A71 (EV-A71), presents mild to severe disease, and sometimes fatal neurological and respiratory manifestations. However, reasons for the severe pathogenesis remain undefined. To investigate this, infection and viral kinetics of EV-A71 isolates from clinical disease (mild, moderate and severe) from Sarawak, Malaysia, were characterised in human rhabdomyosarcoma (RD), neuroblastoma (SH-SY5Y) and peripheral blood mononuclear cells (PBMCs). High resolution transcriptomics was used to decipher EV-A71-host interactions in PBMCs. Ingenuity analyses revealed similar pathways triggered by all EV-A71 isolates, although the extent of activation varied. Importantly, several pathways were found to be specific to the severe isolate, including triggering receptor expressed on myeloid cells 1 (TREM-1) signalling. Depletion of TREM-1 in EV-A71-infected PBMCs with peptide LP17 resulted in decreased levels of pro-inflammatory genes for the moderate and severe isolates. Mechanistically, this is the first report describing the transcriptome profiles during EV-A71 infections in primary human cells, and the potential involvement of TREM-1 in the severe disease pathogenesis, thus providing new insights for future treatment targets.
Collapse
|
31
|
Price A, Okumura A, Haddock E, Feldmann F, Meade-White K, Sharma P, Artami M, Lipkin WI, Threadgill DW, Feldmann H, Rasmussen AL. Transcriptional Correlates of Tolerance and Lethality in Mice Predict Ebola Virus Disease Patient Outcomes. Cell Rep 2020; 30:1702-1713.e6. [PMID: 32049004 PMCID: PMC11062563 DOI: 10.1016/j.celrep.2020.01.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Host response to infection is a major determinant of disease severity in Ebola virus disease (EVD), but gene expression programs associated with outcome are poorly characterized. Collaborative Cross (CC) mice develop strain-dependent EVD phenotypes of differential severity, ranging from tolerance to lethality. We screen 10 CC lines and identify clinical, virologic, and transcriptomic features that distinguish tolerant from lethal outcomes. Tolerance is associated with tightly regulated induction of immune and inflammatory responses shortly following infection, as well as reduced inflammatory macrophages and increased antigen-presenting cells, B-1 cells, and γδ T cells. Lethal disease is characterized by suppressed early gene expression and reduced lymphocytes, followed by uncontrolled inflammatory signaling, leading to death. We apply machine learning to predict outcomes with 99% accuracy in mice using transcriptomic profiles. This signature predicts outcomes in a cohort of EVD patients from western Africa with 75% accuracy, demonstrating potential clinical utility.
Collapse
Affiliation(s)
- Adam Price
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Atsushi Okumura
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA; Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Pryanka Sharma
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Methinee Artami
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Angela L Rasmussen
- Center for Infection and Immunity, Columbia Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
32
|
TREM-1 Protects HIV-1-Infected Macrophages from Apoptosis through Maintenance of Mitochondrial Function. mBio 2019; 10:mBio.02638-19. [PMID: 31719184 PMCID: PMC6851287 DOI: 10.1128/mbio.02638-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major challenge to human immunodeficiency virus (HIV) treatment is the development of strategies that lead to viral eradication. A roadblock to accomplishing this goal is the lack of an approach that would safely eliminate HIV from all resting/latent reservoirs, including macrophages. Macrophages are a key part of the innate immune system and are responsible for recognizing invading microbes and sending appropriate signals to other immune cells. Here, we found that HIV induces the upregulation of the protein TREM1 (triggering receptor expressed on myeloid cells 1), which signals an increase in the expression of antiapoptotic proteins, thus promoting survival of HIV-infected macrophages. Macrophages are a reservoir for latent human immunodeficiency type 1 (HIV) infection and a barrier to HIV eradication. In contrast to CD4+ T cells, macrophages are resistant to the cytopathic effects of acute HIV infection. Emerging data suggest a role for TREM1 (triggering receptor expressed on myeloid cells 1) in this resistance to HIV-mediated cytopathogenesis. Here, we show that upon HIV infection, macrophages increase the expression of BCL2, BCLXL, TREM1, mitofusin 1 (MFN1), and MFN2 and the translocation of BCL2L11 (BIM) to the mitochondria and decrease the expression of BCL2-associated agonist of cell death (BAD) and BAX while maintaining a 95% survival rate over 28 days. The HIV proteins Tat and gp120 and the GU-rich single-stranded RNA (ssRNA) (RNA40) from the HIV long terminal repeat region (and a natural Toll-like receptor 8 [TLR8] agonist) induced similar effects. TREM1 silencing in HIV-infected macrophages led to decreased expression of BCL2, BCLXL, MFN1, and MFN2 and increased expression of BAD and BAX. This correlated with a significant increase in apoptosis mediated by a disruption of the mitochondrial membrane potential (Δψm), leading to the release of cytochrome c and caspase 9 cleavage. Exposure of TREM1-silenced macrophages to Tat, gp120, or RNA40 similarly resulted in the disruption of Δψm, cytochrome c release, caspase 9 cleavage, and apoptosis. Thus, our findings identify a mechanism whereby HIV promotes macrophage survival through TREM1-dependent upregulation of BCL2 family proteins and mitofusins that inhibits BCL2L11-mediated disruption of Δψm and subsequent apoptosis. These findings indicate that TREM1 can be a useful target for elimination of the HIV reservoir in macrophages.
Collapse
|
33
|
HIV and HCV augments inflammatory responses through increased TREM-1 expression and signaling in Kupffer and Myeloid cells. PLoS Pathog 2019; 15:e1007883. [PMID: 31260499 PMCID: PMC6625740 DOI: 10.1371/journal.ppat.1007883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/12/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic infection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) affects an estimated 35 million and 75 million individuals worldwide, respectively. These viruses induce persistent inflammation which often drives the development or progression of organ-specific diseases and even cancer including Hepatocellular Carcinoma (HCC). In this study, we sought to examine inflammatory responses following HIV or HCV stimulation of macrophages or Kupffer cells (KCs), that may contribute to virus mediated inflammation and subsequent liver disease. KCs are liver-resident macrophages and reports have provided evidence that HIV can stimulate and infect them. In order to characterize HIV-intrinsic innate immune responses that may occur in the liver, we performed microarray analyses on KCs following HIV stimulation. Our data demonstrate that KCs upregulate several innate immune signaling pathways involved in inflammation, myeloid cell maturation, stellate cell activation, and Triggering Receptor Expressed on Myeloid cells 1 (TREM1) signaling. TREM1 is a member of the immunoglobulin superfamily of receptors and it is reported to be involved in systemic inflammatory responses due to its ability to amplify activation of host defense signaling pathways. Our data demonstrate that stimulation of KCs with HIV or HCV induces the upregulation of TREM1. Additionally, HIV viral proteins can upregulate expression of TREM1 mRNA through NF-кB signaling. Furthermore, activation of the TREM1 signaling pathway, with a targeted agonist, increased HIV or HCV-mediated inflammatory responses in macrophages due to enhanced activation of the ERK1/2 signaling cascade. Silencing TREM1 dampened inflammatory immune responses elicited by HIV or HCV stimulation. Finally, HIV and HCV infected patients exhibit higher expression and frequency of TREM1 and CD68 positive cells. Taken together, TREM1 induction by HIV contributes to chronic inflammation in the liver and targeting TREM1 signaling may be a therapeutic option to minimize HIV induced chronic inflammation. Although HIV antiviral therapy has limited the progression to AIDS in infected patients, there is still significant morbidity and mortality from HIV-driven diseases due to sustained inflammation. In this study, we sought to elucidate how HIV and HCV could impact inflammation in the liver and cause progressive liver disease that can eventually lead to cirrhosis and liver cancer. We found that HIV upregulates the inflammatory response amplifier, TREM1, in primary Kupffer Cells (KCs) that are liver-resident macrophages. Enhanced TREM1 expression subsequently is involved in augmented immune responses triggered by HIV or HCV. Additionally, our data demonstrates that blocking TREM1 expression reduces inflammatory responses mediated by HIV or HCV stimulation. Ultimately, our understanding of this mechanism may yield additional therapeutic strategies to help infected patients and give insight into inflammation driven liver cancer.
Collapse
|
34
|
Ploquin A, Zhou Y, Sullivan NJ. Ebola Immunity: Gaining a Winning Position in Lightning Chess. THE JOURNAL OF IMMUNOLOGY 2019; 201:833-842. [PMID: 30038036 DOI: 10.4049/jimmunol.1700827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 05/05/2018] [Indexed: 12/13/2022]
Abstract
Zaire ebolavirus (EBOV), one of five species in the genus Ebolavirus, is the causative agent of the hemorrhagic fever disease epidemic that claimed more than 11,000 lives from 2014 to 2016 in West Africa. The combination of EBOV's ability to disseminate broadly and rapidly within the host and its high pathogenicity pose unique challenges to the human immune system postinfection. Potential transmission from apparently healthy EBOV survivors reported in the recent epidemic raises questions about EBOV persistence and immune surveillance mechanisms. Clinical, virological, and immunological data collected since the West Africa epidemic have greatly enhanced our knowledge of host-virus interactions. However, critical knowledge gaps remain in our understanding of what is necessary for an effective host immune response for protection against, or for clearance of, EBOV infection. This review provides an overview of immune responses against EBOV and discusses those associated with the success or failure to control EBOV infection.
Collapse
Affiliation(s)
- Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
35
|
Muñoz-Fontela C, McElroy AK. Ebola Virus Disease in Humans: Pathophysiology and Immunity. Curr Top Microbiol Immunol 2019; 411:141-169. [PMID: 28653186 PMCID: PMC7122202 DOI: 10.1007/82_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses of the Ebolavirus genus cause sporadic epidemics of severe and systemic febrile disease that are fueled by human-to-human transmission. Despite the notoriety of ebolaviruses, particularly Ebola virus (EBOV), as prominent viral hemorrhagic fever agents, and the international concern regarding Ebola virus disease (EVD) outbreaks, very little is known about the pathophysiology of EVD in humans and, in particular, about the human immune correlates of survival and immune memory. This lack of basic knowledge about physiological characteristics of EVD is probably attributable to the dearth of clinical and laboratory data gathered from past outbreaks. The unprecedented magnitude of the EVD epidemic that occurred in West Africa from 2013 to 2016 has allowed, for the first time, evaluation of clinical, epidemiological, and immunological parameters in a significant number of patients using state-of-the-art laboratory equipment. This review will summarize the data from the literature regarding human pathophysiologic and immunologic responses to filoviral infection.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Laboratory of Emerging Viruses, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.
| | - Anita K McElroy
- Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
36
|
Larsen NK, Reilly MJ, Thankam FG, Fitzgibbons RJ, Agrawal DK. Novel understanding of high mobility group box-1 in the immunopathogenesis of incisional hernias. Expert Rev Clin Immunol 2019; 15:791-800. [PMID: 30987468 DOI: 10.1080/1744666x.2019.1608822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Incisional hernias (IH) arise as a complication of patients undergoing laparotomy. Current literature has assessed the role of extracellular matrix (ECM) disorganization, alterations in type I and type III collagen, matrix metalloproteinases, and tissue inhibitors of metalloproteases on IH. However, there is limited information on the underlying molecular mechanisms that lead to ECM disorganization. Areas covered: We critically reviewed the literature surrounding IH and ECM disorganization and offer a novel pathway that may be the underlying mechanism resulting in ECM disorganization and the immunopathogenesis of IH. Expert opinion: High mobility group box-1 (HMGB-1), a damage-associated molecular pattern, plays an important role in the sterile inflammatory pathway and has been linked to ECM disorganization and the triggering of the NLRP3 inflammasome. Further research to investigate the role of HMGB-1 in the molecular pathogenesis of IH would be critical in identifying novel therapeutic targets in the management of IH formation.
Collapse
Affiliation(s)
- Nicholas K Larsen
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Matthew J Reilly
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Finosh G Thankam
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Robert J Fitzgibbons
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Devendra K Agrawal
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| |
Collapse
|
37
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
38
|
Forrester JV. Ebola virus and persistent chronic infection: when does replication cease? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S39. [PMID: 30613614 DOI: 10.21037/atm.2018.09.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.,Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
39
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
40
|
Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. J Virol 2018. [PMID: 29514907 DOI: 10.1128/jvi.00363-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.
Collapse
|
41
|
Han L, Fu L, Peng Y, Zhang A. Triggering Receptor Expressed on Myeloid Cells-1 Signaling: Protective and Pathogenic Roles on Streptococcal Toxic-Shock-Like Syndrome Caused by Streptococcus suis. Front Immunol 2018; 9:577. [PMID: 29619033 PMCID: PMC5871666 DOI: 10.3389/fimmu.2018.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis infections can cause septic shock, which is referred to as streptococcal toxic-shock-like syndrome (STSLS). The disease is characterized by a severe inflammatory response, multiple organ failure, and high mortality. However, no superantigen that is responsible for toxic shock syndrome was detected in S. suis, indicating that the mechanism underlying STSLS is different and remains to be elucidated. Triggering receptor expressed on myeloid cells-1 (TREM-1), belonging to the Ig superfamily, is an activating receptor expressed on myeloid cells, and has been recognized as a critical immunomodulator in several inflammatory diseases of both infectious and non-infectious etiologies. In this review, we discuss the current understanding of the immunoregulatory functions of TREM-1 on acute infectious diseases and then highlight the crucial roles of TREM-1 on the development of STSLS.
Collapse
Affiliation(s)
- Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lei Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| | - Yongbo Peng
- Institute for Medical Biology, Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Naumenko V, Turk M, Jenne CN, Kim SJ. Neutrophils in viral infection. Cell Tissue Res 2018; 371:505-516. [PMID: 29327081 DOI: 10.1007/s00441-017-2763-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Neutrophils are the first wave of recruited immune cells to sites of injury or infection and are crucial players in controlling bacterial and fungal infections. Although the role of neutrophils during bacterial or fungal infections is well understood, their impact on antiviral immunity is much less studied. Furthermore, neutrophil function in tumor pathogenesis and cancer treatment has recently received much attention, particularly within the context of oncolytic virus infection where neutrophils produce antitumor cytokines and enhance oncolysis. In this review, multiple functions of neutrophils in viral infections and immunity are discussed. Understanding the role of neutrophils during viral infection may provide insight into the pathogenesis of virus infections and the outcome of virus-based therapies.
Collapse
Affiliation(s)
- Victor Naumenko
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada.,National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russia
| | - Madison Turk
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 2C26, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| | - Seok-Joo Kim
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 4C49, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
43
|
Raggi F, Pelassa S, Pierobon D, Penco F, Gattorno M, Novelli F, Eva A, Varesio L, Giovarelli M, Bosco MC. Regulation of Human Macrophage M1-M2 Polarization Balance by Hypoxia and the Triggering Receptor Expressed on Myeloid Cells-1. Front Immunol 2017; 8:1097. [PMID: 28936211 PMCID: PMC5594076 DOI: 10.3389/fimmu.2017.01097] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages (Mf) are a heterogeneous population of tissue-resident professional phagocytes and a major component of the leukocyte infiltrate at sites of inflammation, infection, and tumor growth. They can undergo diverse forms of activation in response to environmental factors, polarizing into specialized functional subsets. A common hallmark of the pathologic environment is represented by hypoxia. The impact of hypoxia on human Mf polarization has not been fully established. The objective of this study was to elucidate the effects of a hypoxic environment reflecting that occurring in vivo in diseased tissues on the ability of human Mf to polarize into classically activated (proinflammatory M1) and alternatively activated (anti-inflammatory M2) subsets. We present data showing that hypoxia hinders Mf polarization toward the M1 phenotype by decreasing the expression of T cell costimulatory molecules and chemokine homing receptors and the production of proinflammatory, Th1-priming cytokines typical of classical activation, while promoting their acquisition of phenotypic and secretory features of alternative activation. Furthermore, we identify the triggering receptor expressed on myeloid cells (TREM)-1, a member of the Ig-like immunoregulatory receptor family, as a hypoxia-inducible gene in Mf and demonstrate that its engagement by an agonist Ab reverses the M2-polarizing effect of hypoxia imparting a M1-skewed phenotype to Mf. Finally, we provide evidence that Mf infiltrating the inflamed hypoxic joints of children affected by oligoarticular juvenile idiopatic arthritis express high surface levels of TREM-1 associated with predominant M1 polarization and suggest the potential of this molecule in driving M1 proinflammatory reprogramming in the hypoxic synovial environment.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Pierobon
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Federica Penco
- Pediatria II, Department of Pediatrics, Giannina Gaslini Institute, University of Genoa, Genoa, Italy
| | - Marco Gattorno
- Pediatria II, Department of Pediatrics, Giannina Gaslini Institute, University of Genoa, Genoa, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| | - Mirella Giovarelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Center for Experimental Research and Medical Studies (CERMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
44
|
|
45
|
Lüdtke A, Ruibal P, Wozniak DM, Pallasch E, Wurr S, Bockholt S, Gómez-Medina S, Qiu X, Kobinger GP, Rodríguez E, Günther S, Krasemann S, Idoyaga J, Oestereich L, Muñoz-Fontela C. Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Sci Rep 2017; 7:43776. [PMID: 28256637 PMCID: PMC5335601 DOI: 10.1038/srep43776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
Ebola virus (EBOV) causes severe systemic disease in humans and non-human primates characterized by high levels of viremia and virus titers in peripheral organs. The natural portals of virus entry are the mucosal surfaces and the skin where macrophages and dendritic cells (DCs) are primary EBOV targets. Due to the migratory properties of DCs, EBOV infection of these cells has been proposed as a necessary step for virus dissemination via draining lymph nodes and blood. Here we utilize chimeric mice with competent hematopoietic-driven immunity, to show that EBOV primarily infects CD11b+ DCs in non-lymphoid and lymphoid tissues, but spares the main cross-presenting CD103+ DC subset. Furthermore, depletion of CD8 and CD4 T cells resulted in loss of early control of virus replication, viremia and fatal Ebola virus disease (EVD). Thus, our findings point out at T cell function as a key determinant of EVD progress and outcome.
Collapse
Affiliation(s)
- Anja Lüdtke
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Martinistrasse 52 20251 Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Paula Ruibal
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Martinistrasse 52 20251 Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - David M Wozniak
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Elisa Pallasch
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Stephanie Wurr
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Sabrina Bockholt
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Sergio Gómez-Medina
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Martinistrasse 52 20251 Hamburg, Germany
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Gary P Kobinger
- Department of Microbiology, Immunology &Infectious Diseases, Université Laval, Quebec City, Canada
| | - Estefanía Rodríguez
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Martinistrasse 52 20251 Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa Oestereich
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| | - César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute For Experimental Virology, Martinistrasse 52 20251 Hamburg, Germany.,Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Germany
| |
Collapse
|
46
|
HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1. Sci Rep 2017; 7:42028. [PMID: 28181540 PMCID: PMC5299418 DOI: 10.1038/srep42028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools.
Collapse
|
47
|
Abstract
Ebolaviruses cause severe, often fatal hemorrhagic fever in Central, East, and West Africa. Until recently, they have been viewed as rare but highly pathogenic infections with regional, but limited, global public health impact. This view has changed with the emergence of the first epidemic of Ebola hemorrhagic fever in West Africa. In this chapter we provide an introduction of the pathogenesis of ebolaviruses as well as a description of clinical disease features. We also describe the current animal models used in ebolavirus research, detailing each model's unique strengths and weaknesses. We focus on Ebola virus representing the type species Zaire ebolavirus of the genus Ebolavirus, as most work relates to this pathogen.
Collapse
Affiliation(s)
- Veronica Vine
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
48
|
Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus Res 2016; 228:124-133. [PMID: 27923601 DOI: 10.1016/j.virusres.2016.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/09/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) are the most abundant cells in the context of innate immunity; they are one of the first cells to arrive at the site of viral infection constituting the first line of defense in response to invading pathogens. Indeed, neutrophils are provided with several defense mechanisms including release of cytokines, cytotoxic granules and the last recently described neutrophil extracellular traps (NETs). The main components of NETs are DNA, granular antimicrobial peptides, and nuclear and cytoplasmic proteins, that together play an important role in the innate immune response. While NETs were first described as a mechanism against bacteria and fungi, recently, several studies are beginning to elucidate how NETs are involved in the host antiviral response and the prominent characteristics of this new mechanism are discussed in the present review.
Collapse
Affiliation(s)
- Juan Manuel Agraz-Cibrian
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.
| | - Diana M Giraldo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Fafutis-Morris Mary
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
49
|
Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 2016; 12:1239-1249. [PMID: 27266327 PMCID: PMC5158012 DOI: 10.1080/1744666x.2016.1196138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The events in the cellular and molecular signaling triggered during inflammation mitigate tissue healing. The metabolic check-point control mediated by 5'-adenosine monophosphate-activated protein kinase (AMPK) is crucial for switching the cells into an activated state capable of mediating inflammatory events. The cell metabolism involved in the inflammatory response represents a potential therapeutic target for the pharmacologic management of inflammation. Areas covered: In this article, a critical review is presented on triggering receptor expressed on myeloid cell (TREM) receptors and their role in the inflammatory responses, as well as homeostasis between different TREM molecules and their regulation. Additionally, we discussed the relationship between TREM and AMPK to identify novel targets to limit the inflammatory response. Literature search was carried out from the National Library of Medicine's Medline database (using PubMed as the search engine) and Google Scholar and identified relevant studies up to 30 March 2016 using inflammation, TREM, AMPK, as the key words. Expert commentary: The prevention of phenotype switching of immune cells during inflammation by targeting AMPK and TREM-1 could be beneficial for developing novel management strategies for inflammation and associated complications.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
50
|
Affiliation(s)
- Angela L. Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington 98109;
| |
Collapse
|