1
|
He L, Zhang Y, Si K, Yu C, Shang K, Yu Z, Wei Y, Ding C, Sarker S, Chen S. Evidence of an emerging triple-reassortant H3N3 avian influenza virus in China. BMC Genomics 2024; 25:1249. [PMID: 39725881 DOI: 10.1186/s12864-024-11152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
The H3 subtype of avian influenza virus (AIV) stands out as one of the most prevalent subtypes, posing a significant threat to public health. In this study, a novel triple-reassortant H3N3 AIV designated A/chicken/China/16/2023 (H3N3), was isolated from a sick chicken in northern China. The complete genome of the isolate was determined using next-generation sequencing, and the AIV-like particles were confirmed via transmission electron microscopy. Subsequent phylogenetic analyses revealed that HA and NA genes of the H3N3 isolate clustered within the Eurasian lineage of AIVs, exhibiting the closest genetic relationship with other H3N3 AIVs identified in China during 2023. Interestingly, the HA and NA genes of the nove H3N3 isolate were originated from H3N8 and H10N3 AIVs, respectively, and the six internal genes originated from prevalent H9N2 AIVs. These findings indicated the novel H3N3 isolate possesses a complex genetic constellation, likely arising from multiple reassortment events involving H3N8, H9N2, and H10N3 subtype influenza viruses. Additionally, the presence of Q226 and T228 in the HA protein suggests the H3N3 virus preferentially binds to α-2,3-linked sialic acid receptors. The HA cleavage site motif (PEKQTR/GIF) and the absence of E627K and D701N mutations in PB2 protein classify the virus as a characteristic low pathogenicity AIV. However, several mutations in internal genes raise concerns about potential increases in viral resistance, virulence, and transmission in mammalian hosts. Overall, this study provides valuable insights into the molecular and genetic characterization of the emerging triple-reassortant H3N3 AIVs, and continued surveillance of domestic poultry is essential for monitoring the H3N3 subtype evolution and potential spread.
Collapse
Affiliation(s)
- Lei He
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Yuhao Zhang
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Kaixin Si
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471900, China
| | - Ke Shang
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Zuhua Yu
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Ying Wei
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Chunhai Ding
- Shenyang Aiyou Biotechnology Co, Shenyang, 110136, China
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Songbiao Chen
- The Key Lab of Animal Disease and Public Health / Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
| |
Collapse
|
2
|
Zhou Y, Li Y, Chen H, Shu S, Li Z, Sun H, Sun Y, Liu J, Lu L, Pu J. Origin, spread, and interspecies transmission of a dominant genotype of BJ/94 lineage H9N2 avian influenza viruses with increased threat. Virus Evol 2024; 10:veae106. [PMID: 39735714 PMCID: PMC11673197 DOI: 10.1093/ve/veae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/31/2024] Open
Abstract
The H9N2 subtype of avian influenza viruses (AIVs) is widely prevalent in poultry and wild birds globally, with occasional transmission to humans. In comparison to other H9N2 lineages, the BJ/94 lineage has raised more public health concerns; however, its evolutionary dynamics and transmission patterns remain poorly understood. In this study, we demonstrate that over three decades (1994-2023), BJ/94 lineage has undergone substantial expansion in its geographical distribution, interspecies transmission, and viral reassortment with other AIV subtypes, increasing associated public health risks. These changes were primarily driven by the emergence of a dominant genotype G57. In the first decade, G57 emerged in East China and rapidly adapted to chickens and spread across China. Since 2013, the G57 genotype has expanded beyond China into eight other countries and reassorted with various AIV subtypes to form new zoonotic reassortants. Chickens have played a key role in the generation and circulation of the G57 viruses, with ducks and other poultry species likely assuming an increasingly importantly role. Over the past decade, G57 has been more frequently detected in wild birds, mammals, and humans. Additionally, Vietnam has emerged as a new hotspot for the international spread of G57. Our results suggest that the BJ/94 lineage H9N2 virus may continue to overcome geographical and species barriers, with potentially more severe consequences.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yudong Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongzhuang Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, No. 411, Mancheng South Street, Jinfeng District, Yinchuan City, Ningxia Hui Autonomous Region, Yinchuan 750011, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Lu Lu
- Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Edinburgh EH2 59RG, United Kingdom
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Huang J, Ma K, Zhang J, Zhou J, Yi J, Qi W, Liao M. Pathogenicity and transmission of novel highly pathogenic H7N2 variants originating from H7N9 avian influenza viruses in chickens. Virology 2024; 597:110121. [PMID: 38917688 DOI: 10.1016/j.virol.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.
Collapse
Affiliation(s)
- Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Kaixiong Ma
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiahao Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiahui Yi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| | - Ming Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
4
|
Ding S, Zhou J, Xiong J, Du X, Yang W, Huang J, Liu Y, Huang L, Liao M, Zhang J, Qi W. Continued evolution of H10N3 influenza virus with adaptive mutations poses an increased threat to mammals. Virol Sin 2024; 39:546-555. [PMID: 38871182 PMCID: PMC11401466 DOI: 10.1016/j.virs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
The H10 subtype avian influenza virus (AIV) poses an ongoing threat to both birds and humans. Notably, fatal human cases of H10N3 and H10N8 infections have drawn public attention. In 2022, we isolated two H10N3 viruses (A/chicken/Shandong/0101/2022 and A/chicken/Shandong/0603/2022) from diseased chickens in China. Genome analysis revealed that these viruses were genetically associated with human-origin H10N3 virus, with internal genes originating from local H9N2 viruses. Compared to the H10N8 virus (A/chicken/Jiangxi/102/2013), the H10N3 viruses exhibited enhanced thermostability, increased viral release from erythrocytes, and accumulation of hemagglutinin (HA) protein. Additionally, we evaluated the pathogenicity of both H10N3 and H10N8 viruses in mice. We found that viral titers could be detected in the lungs and nasal turbinates of mice infected with the two H10N3 viruses, whereas H10N8 virus titers were detectable in the lungs and brains of mice. Notably, the proportion of double HA Q222R and G228S mutations in H10N3 viruses has increased since 2019. However, the functional roles of the Q222R and G228S double mutations in the HA gene of H10N3 viruses remain unknown and warrant further investigation. Our study highlights the potential public health risk posed by the H10N3 virus. A spillover event of AIV to humans could be a foretaste of a looming pandemic. Therefore, it is imperative to continuously monitor the evolution of the H10N3 influenza virus to ensure targeted prevention and control measures against influenza outbreaks.
Collapse
Affiliation(s)
- Shiping Ding
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jiangtao Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Junlong Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Xiaowen Du
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Wenzhuo Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Jinyu Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Yi Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Lihong Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Jiahao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenbao Qi
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; National Avian Influenza Para-Reference Laboratory, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou, 510642, China; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Wang X, Tang XE, Zheng H, Gao R, Lu X, Yang W, Zhou L, Chen Y, Gu M, Hu J, Liu X, Hu S, Liu K, Liu X. Amino acid mutations PB1-V719M and PA-N444D combined with PB2-627K contribute to the pathogenicity of H7N9 in mice. Vet Res 2024; 55:86. [PMID: 38970119 PMCID: PMC11227215 DOI: 10.1186/s13567-024-01342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.
Collapse
Affiliation(s)
- Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xin-En Tang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Huafen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaolong Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Wenhao Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Le Zhou
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225009, China
| | - Yu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Yang Q, Ji J, Yang J, Zhang Y, Yin H, Dai H, Wang W, Li S. Diversity of genotypes and pathogenicity of H9N2 avian influenza virus derived from wild bird and domestic poultry. Front Microbiol 2024; 15:1402235. [PMID: 38974026 PMCID: PMC11225357 DOI: 10.3389/fmicb.2024.1402235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction The H9N2 subtype is a predominant avian influenza virus (AIV) circulating in Chinese poultry, forming various genotypes (A-W) based on gene segment origins. This study aims to investigate the genotypic distribution and pathogenic characteristics of H9N2 isolates from wild birds and domestic poultry in Yunnan Province, China. Methods Eleven H9N2 strains were isolated from fecal samples of overwintering wild birds and proximate domestic poultry in Yunnan, including four from common cranes (Grus grus), two from bar-headed geese (Anser indicus), and five from domestic poultry (Gallus gallus). Phylogenetic analysis was conducted to determine the genotypes, and representative strains were inoculated into Yunnan mallard ducks to assess pathogenicity. Results Phylogenetic analysis revealed that five isolates from domestic birds and one from a bar-headed goose belong to genotype S, while the remaining five isolates from wild birds belong to genotype A. These bird-derived strains possess deletions in the stalk domain of NA protein and the N166D mutation of HA protein, typical of poultry strains. Genotype S H9N2 demonstrated oropharyngeal shedding, while genotype A H9N2 exhibited cloacal shedding and high viral loads in the duodenum. Both strains caused significant pathological injuries, with genotype S inducing more severe damage to the thymus and spleen, while genotype A caused duodenal muscle layer rupture. Discussion These findings suggest that at least two genotypes of H9N2 are currently circulating in Yunnan, and Yunnan mallard ducks potentially act as intermediaries in interspecies transmission. These insights highlight the importance of analyzing the current epidemiological transmission characteristics of H9N2 among wild and domestic birds in China.
Collapse
Affiliation(s)
- Qinhong Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Ji
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Jia Yang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Yongxian Zhang
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongbin Yin
- Animal Disease Inspection and Supervision Institution of Yunnan Province, Kunming, China
| | - Hongyang Dai
- The Management Bureau of Huize Black Necked Crane National Nature Reserve, Qujing, China
| | - Wei Wang
- College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Suhua Li
- College of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
7
|
He Y, Song S, Wu J, Wu J, Zhang L, Sun L, Li Z, Wang X, Kou Z, Liu T. Emergence of Eurasian Avian-Like Swine Influenza A (H1N1) virus in a child in Shandong Province, China. BMC Infect Dis 2024; 24:550. [PMID: 38824508 PMCID: PMC11143696 DOI: 10.1186/s12879-024-09441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.
Collapse
Affiliation(s)
- Yujie He
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Shaoxia Song
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Jie Wu
- Binzhou Center for Disease Prevention and Control, Binzhou, China
| | - Julong Wu
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Lifang Zhang
- Binzhou Center for Disease Prevention and Control, Binzhou, China
| | - Lin Sun
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Zhong Li
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Xianjun Wang
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Zengqiang Kou
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China
| | - Ti Liu
- Shandong Provincial Center for Disease Prevention and Control, Jinan, China.
| |
Collapse
|
8
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
9
|
Yao K, Kang Q, Liu W, Chen D, Wang L, Li S. Chronic exposure to tire rubber-derived contaminant 6PPD-quinone impairs sperm quality and induces the damage of reproductive capacity in male mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134165. [PMID: 38574660 DOI: 10.1016/j.jhazmat.2024.134165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.
Collapse
Affiliation(s)
- Kezhen Yao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Liu
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, China
| | - Danna Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lefeng Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shun Li
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics, Ministry of Education, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
11
|
Sanogo IN, Guinat C, Dellicour S, Diakité MA, Niang M, Koita OA, Camus C, Ducatez M. Genetic insights of H9N2 avian influenza viruses circulating in Mali and phylogeographic patterns in Northern and Western Africa. Virus Evol 2024; 10:veae011. [PMID: 38435712 PMCID: PMC10908551 DOI: 10.1093/ve/veae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/18/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Avian influenza viruses (AIVs) of the H9N2 subtype have become widespread in Western Africa since their first detection in 2017 in Burkina Faso. However, the genetic characteristics and diffusion patterns of the H9N2 virus remain poorly understood in Western Africa, mainly due to limited surveillance activities. In addition, Mali, a country considered to play an important role in the epidemiology of AIVs in the region, lacks more comprehensive data on the genetic characteristics of these viruses, especially the H9N2 subtype. To better understand the genetic characteristics and spatio-temporal dynamics of H9N2 virus within this region, we carried out a comprehensive genetic characterization of H9N2 viruses collected through active surveillance in live bird markets in Mali between 2021 and 2022. We also performed a continuous phylogeographic analysis to unravel the dispersal history of H9N2 lineages between Northern and Western Africa. The identified Malian H9N2 virus belonged to the G1 lineage, similar to viruses circulating in both Western and Northern Africa, and possessed multiple molecular markers associated with an increased potential for zoonotic transmission and virulence. Notably, some Malian strains carried the R-S-N-R motif at their cleavage site, mainly observed in H9N2 strains in Asia. Our continuous phylogeographic analysis revealed a single and significant long-distance lineage dispersal event of the H9N2 virus to Western Africa, likely to have originated from Morocco in 2015, shaping the westward diffusion of the H9N2 virus. Our study highlights the need for long-term surveillance of H9N2 viruses in poultry populations in Western Africa, which is crucial for a better understanding of virus evolution and effective management against potential zoonotic AIV strain emergence.
Collapse
Affiliation(s)
- Idrissa Nonmon Sanogo
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
- Faculté d’Agronomie et de Médecine Animale (FAMA), Université de Ségou, Ségou BP 24, Mali
| | - Claire Guinat
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels B-1050, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven BE-3000, Belgium
| | - Mohamed Adama Diakité
- Service diagnostic et recherche Laboratoire Central Vétérinaire, Bamako BP 2295, Mali
| | - Mamadou Niang
- Food and Agriculture Organization of the United Nations (FAO-UN), Emergency Centre for Transboundary Animal Diseases (ECTAD), Regional Office for Africa (RAF), Accra BP 1628, Ghana
| | - Ousmane A Koita
- Laboratoire de Biologie Moléculaire Appliquée, Faculté des Sciences et Techniques (FAST), University of Sciences, Techniques and Technologies of Bamako (USTTB), Mali Université de Bamako, Bamako E 3206, Mali
| | - Christelle Camus
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| | - Mariette Ducatez
- Interactions Hôtes-Agents Pathogènes (IHAP), UMR 1225, Université de Toulouse, INRAE, ENVT, Toulouse 31076, France
| |
Collapse
|
12
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Tan M, Zeng X, Xie Y, Li X, Liu J, Yang J, Yang L, Wang D. Reported human infections of H9N2 avian influenza virus in China in 2021. Front Public Health 2023; 11:1255969. [PMID: 38155898 PMCID: PMC10753182 DOI: 10.3389/fpubh.2023.1255969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The continued emergence of human infections of H9N2 avian influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, increasing the risk of spillover infections to humans. Since 2013, the number of human cases of H9N2 avian influenza has been increasing continuously, and in 2021, China reported the highest number of human cases, at 25. Methods In this study, we analyzed the age, geographic, temporal, and sex distributions of humans with H9N2 avian influenza in 2021 using data from the National Influenza Center (Beijing, China). We also conducted evolutionary, gene homology, and molecular characterization analyses of the H9N2 AIVs infecting humans. Results Our findings show that children under the age of 12 accounted for 80% of human cases in 2021, and females were more frequently affected than males. More cases occurred in winter than in summer, and most cases were concentrated in southern China. Human-infecting H9N2 viruses showed a high level of genetic homology and belonged to the prevalent G57 genotype. Several additional α2,6-SA-binding sites and sites of mammalian adaptation were also identified in the genomes of human-infecting H9N2 viruses. Discussion Therefore, continuous monitoring of H9N2 AIV and the implementation of further measures to control the H9N2 virus in poultry are essential to reduce the interspecies transmission of the virus.
Collapse
Affiliation(s)
- Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Yiran Xie
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Jiaying Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, China
| |
Collapse
|
14
|
Liang Y. Pathogenicity and virulence of influenza. Virulence 2023; 14:2223057. [PMID: 37339323 DOI: 10.1080/21505594.2023.2223057] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
Influenza viruses, including four major types (A, B, C, and D), can cause mild-to-severe and lethal diseases in humans and animals. Influenza viruses evolve rapidly through antigenic drift (mutation) and shift (reassortment of the segmented viral genome). New variants, strains, and subtypes have emerged frequently, causing epidemic, zoonotic, and pandemic infections, despite currently available vaccines and antiviral drugs. In recent years, avian influenza viruses, such as H5 and H7 subtypes, have caused hundreds to thousands of zoonotic infections in humans with high case fatality rates. The likelihood of these animal influenza viruses acquiring airborne transmission in humans through viral evolution poses great concern for the next pandemic. Severe influenza viral disease is caused by both direct viral cytopathic effects and exacerbated host immune response against high viral loads. Studies have identified various mutations in viral genes that increase viral replication and transmission, alter tissue tropism or species specificity, and evade antivirals or pre-existing immunity. Significant progress has also been made in identifying and characterizing the host components that mediate antiviral responses, pro-viral functions, or immunopathogenesis following influenza viral infections. This review summarizes the current knowledge on viral determinants of influenza virulence and pathogenicity, protective and immunopathogenic aspects of host innate and adaptive immune responses, and antiviral and pro-viral roles of host factors and cellular signalling pathways. Understanding the molecular mechanisms of viral virulence factors and virus-host interactions is critical for the development of preventive and therapeutic measures against influenza diseases.
Collapse
Affiliation(s)
- Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
15
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
16
|
Guo Y, Bai X, Liu Z, Liang B, Zheng Y, Dankar S, Ping J. Exploring the alternative virulence determinants PB2 S155N and PA S49Y/D347G that promote mammalian adaptation of the H9N2 avian influenza virus in mice. Vet Res 2023; 54:97. [PMID: 37858267 PMCID: PMC10588254 DOI: 10.1186/s13567-023-01221-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/07/2023] [Indexed: 10/21/2023] Open
Abstract
The occurrence of human infections caused by avian H9N2 influenza viruses has raised concerns regarding the potential for human epidemics and pandemics. The molecular basis of viral adaptation to a new host needs to be further studied. Here, the bases of nucleotides 627 and 701 of PB2 were changed according to the uncoverable purine-to-pyrimidine transversion to block the development of PB2 627K and 701N mutations during serial passaging in mice. The purpose of this experiment was to identify key adaptive mutations in polymerase and NP genes that were obscured by the widely known host range determinants PB2 627K and 701N. Mouse-adapted H9N2 variants were obtained via twelve serial lung-to-lung passages. Sequence analysis showed that the mouse-adapted viruses acquired several mutations within the seven gene segments (PB2, PB1, PA, NP, HA, NA, and NS). One variant isolate with the highest polymerase activity possessed three substitutions, PB2 S155N, PA S49Y and D347G, which contributed to the highly virulent and mouse-adaptative phenotype. Further studies demonstrated that these three mutations resulted in increased polymerase activity, viral transcription and replication in mammalian cells, severe interstitial pneumonia, excessive inflammatory cellular infiltration and increased growth rates in mice. Our results suggest that the substitution of these three amino acid mutations may be an alternative strategy for H9N2 avian influenza viruses to adapt to mammalian hosts. The continued surveillance of zoonotic H9N2 influenza viruses should also include these mammalian adaptation markers as part of our pandemic preparedness efforts.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1V 8M5, Canada
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Research Center of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, Sukhova K, Baillon L, Frise R, Peacock TP, Fodor E, Barclay WS. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun 2023; 14:6135. [PMID: 37816726 PMCID: PMC10564888 DOI: 10.1038/s41467-023-41308-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
Collapse
Affiliation(s)
- Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, UK
| | - Olivia K Platt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
18
|
Gilbertson B, Duncan M, Subbarao K. Role of the viral polymerase during adaptation of influenza A viruses to new hosts. Curr Opin Virol 2023; 62:101363. [PMID: 37672875 DOI: 10.1016/j.coviro.2023.101363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
As a group, influenza-A viruses (IAV) infect a wide range of animal hosts, however, they are constrained to infecting selected host species by species-specific interactions between the host and virus, that are required for efficient replication of the viral RNA genome. When IAV cross the species barrier, they acquire mutations in the viral genome to enable interactions with the new host factors, or to compensate for their loss. The viral polymerase genes polymerase basic 1, polymerase basic 2, and polymerase-acidic are important sites of host adaptation. In this review, we discuss why the viral polymerase is so vital to the process of host adaptation, look at some of the known viral mutations, and host factors involved in adaptation, particularly of avian IAV to mammalian hosts.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Melanie Duncan
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Guan L, Babujee L, Browning VL, Presler R, Pattinson D, Nguyen HLK, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Continued Circulation of Highly Pathogenic H5 Influenza Viruses in Vietnamese Live Bird Markets in 2018-2021. Viruses 2023; 15:1596. [PMID: 37515281 PMCID: PMC10384249 DOI: 10.3390/v15071596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
We isolated 77 highly pathogenic avian influenza viruses during routine surveillance in live poultry markets in northern provinces of Vietnam from 2018 to 2021. These viruses are of the H5N6 subtype and belong to HA clades 2.3.4.4g and 2.3.4.4h. Interestingly, we did not detect viruses of clade 2.3.4.4b, which in recent years have dominated in different parts of the world. The viruses isolated in this current study do not encode major determinants of mammalian adaptation (e.g., PB2-E627K or PB1-D701N) but possess amino acid substitutions that may affect viral receptor-binding, replication, or the responses to human antiviral factors. Several of the highly pathogenic H5N6 virus samples contained other influenza viruses, providing an opportunity for reassortment. Collectively, our study demonstrates that the highly pathogenic H5 viruses circulating in Vietnam in 2018-2021 were different from those in other parts of the world, and that the Vietnamese H5 viruses continue to evolve through mutations and reassortment.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Victoria L. Browning
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Hang Le Khanh Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Vu Mai Phuong Hoang
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (H.L.K.N.); (V.M.P.H.); (M.Q.L.)
| | - Harm van Bakel
- Department of Genetics and Genomic Services, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (L.G.); (L.B.); (V.L.B.); (R.P.); (D.P.)
- Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research (UTOPIA) Center, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
Yang H, Dong Y, Bian Y, Huo C, Zhu C, Qin T, Chen S, Peng D, Liu X. The synergistic effect of residues 32T and 550L in the PA protein of H5 subtype avian influenza virus contributes to viral pathogenicity in mice. PLoS Pathog 2023; 19:e1011489. [PMID: 37399196 DOI: 10.1371/journal.ppat.1011489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
The avian influenza virus (AIV) PA protein contributes to viral replication and pathogenicity; however, its interaction with innate immunity is not well understood. Here, we report that the H5 subtype AIV PA protein strongly suppresses host antiviral defense by interacting with and degrading a key protein in interferon (IFN) signaling, Janus kinase 1 (JAK1). Specifically, the AIV PA protein catalyzes the K48-linked polyubiquitination and degradation of JAK1 at lysine residue 249. Importantly, the AIV PA protein harboring 32T/550L degrades both avian and mammalian JAK1, while the AIV PA protein with residues 32M/550I degrades avian JAK1 only. Furthermore, the residues 32T/550L in PA protein confer optimum polymerase activity and AIV growth in mammalian cells. Notably, the replication and virulence of the AIV PA T32M/L550I mutant are attenuated in infected mice. Collectively, these data reveal an interference role for H5 subtype AIV PA protein in host innate immunity, which can be targeted for the development of specific and effective anti-influenza therapeutics.
Collapse
Affiliation(s)
- Hui Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yurui Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenzhi Huo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuncheng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Guo Y, Sun T, Bai X, Liang B, Deng L, Zheng Y, Yu M, Li Y, Ping J. Comprehensive analysis of the key amino acid substitutions in the polymerase and NP of avian influenza virus that enhance polymerase activity and affect adaptation to mammalian hosts. Vet Microbiol 2023; 282:109760. [PMID: 37120967 DOI: 10.1016/j.vetmic.2023.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Accumulation of adaptive mutations in the polymerase and NP genes is crucial for the adaptation of avian influenza A viruses (IAV) to a new host. Here, we identified residues in the polymerase and NP proteins for which the percentages were substantially different between avian and human influenza viruses, to screen for key mammalian adaptive markers. The top 10 human virus-like residues in each gene segment were then selected for analysis of polymerase activity. Our research revealed that the PA-M311I and PA-A343S mutations increased the polymerase activity among the 40 individual mutations that augmented viral transcription and genomic replication, leading to increased virus yields, pro-inflammatory cytokine/chemokine levels and pathogenicity in mice. We also investigated the accumulative mutations in multiple polymerase genes and discovered that a combination of PB2-E120D/V227I, PB1-K52R/L212V/R486K/V709I, PA-R204K/M311I, and NP-E18D/R65K (hereafter referred to as the ten-sites joint mutations) has been identified to generate the highest polymerase activity, which can to some extent make up for the highest polymerase activity caused by the PB2-627 K mutation. When the ten-sites joint mutations co-occur with 627 K, the polymerase activity was further enhanced, potentially resulting in a virus with an improved phenotype that can infect a broader range of hosts, including mammals. This could lead to a greater public health concern than the current epidemic, highlighting that continuous surveillance of the variations of these sites is utmost important.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebing Bai
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Liang
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lulu Deng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqing Zheng
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengqi Yu
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinjing Li
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health and Food Safety & Jiangsu Engineering Laboratory of Animal Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Guan L, Zhong G, Fan S, Plisch EM, Presler R, Gu C, Babujee L, Pattinson D, Le Khanh Nguyen H, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 2023; 15:1093. [PMID: 37243179 PMCID: PMC10223276 DOI: 10.3390/v15051093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Erin M. Plisch
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | | | | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo, Pandemic Preparedness, Tokyo 108-8639, Japan
| |
Collapse
|
23
|
Chen M, Lyu Y, Wu F, Zhang Y, Li H, Wang R, Liu Y, Yang X, Zhou L, Zhang M, Tong Q, Sun H, Pu J, Liu J, Sun Y. Increased public health threat of avian-origin H3N2 influenza virus caused by its evolution in dogs. eLife 2023; 12:e83470. [PMID: 37021778 PMCID: PMC10147381 DOI: 10.7554/elife.83470] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/05/2023] [Indexed: 04/07/2023] Open
Abstract
Influenza A viruses in animal reservoirs repeatedly cross species barriers to infect humans. Dogs are the closest companion animals to humans, but the role of dogs in the ecology of influenza viruses is unclear. H3N2 avian influenza viruses were transmitted to dogs around 2006 and have formed stable lineages. The long-term epidemic of avian-origin H3N2 virus in canines offers the best models to investigate the effect of dogs on the evolution of influenza viruses. Here, we carried out a systematic and comparative identification of the biological characteristics of H3N2 canine influenza viruses (CIVs) isolated worldwide over 10 years. We found that, during adaptation in dogs, H3N2 CIVs became able to recognize the human-like SAα2,6-Gal receptor, showed gradually increased hemagglutination (HA) acid stability and replication ability in human airway epithelial cells, and acquired a 100% transmission rate via respiratory droplets in a ferret model. We also found that human populations lack immunity to H3N2 CIVs, and even preexisting immunity derived from the present human seasonal influenza viruses cannot provide protection against H3N2 CIVs. Our results showed that canines may serve as intermediates for the adaptation of avian influenza viruses to humans. Continuous surveillance coordinated with risk assessment for CIVs is necessary.
Collapse
Affiliation(s)
- Mingyue Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Yanli Lyu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- Veterinary Teaching Hospital, China Agricultural UniversityBeijingChina
| | - Fan Wu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- Veterinary Teaching Hospital, China Agricultural UniversityBeijingChina
| | - Ying Zhang
- Department of Laboratory Medicine, the First Medical Centre, Chinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Hongkui Li
- Liaoning Agricultural Development Service CenterShenyangChina
| | - Rui Wang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Yang Liu
- Veterinary Teaching Hospital, China Agricultural UniversityBeijingChina
| | - Xinyu Yang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Liwei Zhou
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- Veterinary Teaching Hospital, China Agricultural UniversityBeijingChina
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, University of GeorgiaAthensUnited States
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases and Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Yin Y, Liu Y, Fen J, Liu K, Qin T, Chen S, Peng D, Liu X. Characterization of an H7N9 Influenza Virus Isolated from Camels in Inner Mongolia, China. Microbiol Spectr 2023; 11:e0179822. [PMID: 36809036 PMCID: PMC10100662 DOI: 10.1128/spectrum.01798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
The H7N9 subtype of influenza virus can infect birds and humans, causing great losses in the poultry industry and threatening public health worldwide. However, H7N9 infection in other mammals has not been reported yet. In the present study, one H7N9 subtype influenza virus, A/camel/Inner Mongolia/XL/2020 (XL), was isolated from the nasal swabs of camels in Inner Mongolia, China, in 2020. Sequence analyses revealed that the hemagglutinin cleavage site of the XL virus was ELPKGR/GLF, which is a low-pathogenicity molecular characteristic. The XL virus had similar mammalian adaptations to human-originated H7N9 viruses, such as the polymerase basic protein 2 (PB2) Glu-to-Lys mutation at position 627 (E627K) mutation, but differed from avian-originated H7N9 viruses. The XL virus showed a higher SA-α2,6-Gal receptor-binding affinity and better mammalian cell replication than the avian H7N9 virus. Moreover, the XL virus had weak pathogenicity in chickens, with an intravenous pathogenicity index of 0.01, and intermediate virulence in mice, with a median lethal dose of 4.8. The XL virus replicated well and caused clear infiltration of inflammatory cells and increased inflammatory cytokines in the lungs of mice. Our data constitute the first evidence that the low-pathogenicity H7N9 influenza virus can infect camels and therefore poses a high risk to public health. IMPORTANCE H5 subtype avian influenza viruses can cause serious diseases in poultry and wild birds. On rare occasions, viruses can cause cross-species transmission to mammalian species, including humans, pigs, horses, canines, seals, and minks. The H7N9 subtype of the influenza virus can also infect both birds and humans. However, viral infection in other mammalian species has not been reported yet. In this study, we found that the H7N9 virus could infect camels. Notably, the H7N9 virus from camels had mammalian adaption molecular markers, including altered receptor-binding activity on the hemagglutinin protein and an E627K mutation on the polymerase basic protein 2 protein. Our findings indicated that the potential risk of camel-origin H7N9 virus to public health is of great concern.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Juan Fen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, China
- International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
25
|
Du R, Cui Q, Chen Z, Zhao X, Lin X, Rong L. Revisiting influenza A virus life cycle from a perspective of genome balance. Virol Sin 2023; 38:1-8. [PMID: 36309307 PMCID: PMC10006207 DOI: 10.1016/j.virs.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.
Collapse
Affiliation(s)
- Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China
| | - Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiujuan Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaojing Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| |
Collapse
|
26
|
Continued evolution of the Eurasian avian-like H1N1 swine influenza viruses in China. SCIENCE CHINA. LIFE SCIENCES 2023; 66:269-282. [PMID: 36219302 DOI: 10.1007/s11427-022-2208-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022]
Abstract
Animal influenza viruses continue to pose a threat to human public health. The Eurasian avian-like H1N1 (EA H1N1) viruses are widespread in pigs throughout Europe and China and have caused human infections in several countries, indicating their pandemic potential. To carefully monitor the evolution of the EA H1N1 viruses in nature, we collected nasal swabs from 103,110 pigs in 22 provinces in China between October 2013 and December 2019, and isolated 855 EA H1N1 viruses. Genomic analysis of 319 representative viruses revealed that these EA H1N1 viruses formed eight different genotypes through reassortment with viruses of other lineages circulating in humans and pigs, and two of these genotypes (G4 and G5) were widely distributed in pigs. Animal studies indicated that some strains have become highly pathogenic in mice and highly transmissible in ferrets via respiratory droplets. Moreover, two-thirds of the EA H1N1 viruses reacted poorly with ferret serum antibodies induced by the currently used H1N1 human influenza vaccine, suggesting that existing immunity may not prevent the transmission of the EA H1N1 viruses in humans. Our study reveals the evolution and pandemic potential of EA H1N1 viruses and provides important insights for future pandemic preparedness.
Collapse
|
27
|
Zhang Y, Shi J, Cui P, Zhang Y, Chen Y, Hou Y, Liu L, Jiang Y, Guan Y, Chen H, Kong H, Deng G. Genetic analysis and biological characterization of H10N3 influenza A viruses isolated in China from 2014 to 2021. J Med Virol 2023; 95:e28476. [PMID: 36609855 DOI: 10.1002/jmv.28476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The H10 subtypes of avian influenza viruses pose a continual threat to the poultry industry and human health. The sporadic spillover of H10 subtypes viruses from poultry to humans is represented by the H10N8 human cases in 2013 and the recent H10N3 human infection in 2021. However, the genesis and characteristics of the recent reassortment H10N3 viruses have not been systemically investigated. In this study, we characterized 20 H10N3 viruses isolated in live poultry markets during routine nationwide surveillance in China from 2014 to 2021. The viruses in the recent reassortant genotype acquired their hemagglutinin (HA) and neuraminidase (NA) genes from the duck H10 viruses and H7N3 viruses, respectively, whereas the internal genes were derived from chicken H9N2 viruses as early as 2019. Receptor-binding analysis indicated that two of the tested H10N3 viruses had a higher affinity for human-type receptors than for avian-type receptors, highlighting the potential risk of avian-to-human transmission. Animal studies showed that only viruses belonging to the recent reassortant genotype were pathogenic in mice; two tested viruses transmitted via direct contact and one virus transmitted by respiratory droplets in guinea pigs, though with limited efficiency. These findings emphasize the need for enhanced surveillance of H10N3 viruses.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yujie Hou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Huihui Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, China
| |
Collapse
|
28
|
Genetic Characterization and Pathogenesis of Avian Influenza Virus H3N8 Isolated from Chinese pond heron in China in 2021. Viruses 2023; 15:v15020383. [PMID: 36851597 PMCID: PMC9966531 DOI: 10.3390/v15020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
In October 2021, a wild bird-origin H3N8 influenza virus-A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8)-was isolated from Chinese pond heron in China. Phylogenetic and molecular analyses were performed to characterize the genetic origin of the H3N8 strain. Phylogenetic analysis revealed that eight gene segments of this avian influenza virus H3N8 belong to Eurasian lineages. HA gene clustered with avian influenza viruses is circulating in poultry in southern China. The NA gene possibly originated from wild ducks in South Korea and has the highest homology (99.3%) with A/Wild duck/South Korea/KNU2020-104/2020 (H3N8), while other internal genes have a complex and wide range of origins. The HA cleavage site is PEKQTR↓GLF with one basic amino acid, Q226 and T228 at HA preferentially bind to the alpha-2,3-linked sialic acid receptor, non-deletion of the stalk region in the NA gene and no mutations at E627K and D701N of the PB2 protein, indicating that isolate A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) was a typical avian influenza with low pathogenicity. However, there are some mutations that may increase pathogenicity and transmission in mammals, such as N30D, T215A of M1 protein, and P42S of NS1 protein. In animal studies, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) replicates inefficiently in the mouse lung and does not adapt well to the mammalian host. Overall, A/Chinese pond heron/Jiangxi 5-1/2021 (H3N8) is a novel wild bird-origin H3N8 influenza virus reassortant from influenza viruses of poultry and wild birds. This wild bird-origin avian influenza virus is associated with wild birds along the East Asian-Australasian flyway. Therefore, surveillance of avian influenza viruses in wild birds should be strengthened to assess their mutation and pandemic risk in advance.
Collapse
|
29
|
Liu T, Huang Y, Xie S, Xu L, Chen J, Qi W, Liao M, Jia W. A Characterization and an Evolutionary and a Pathogenicity Analysis of Reassortment H3N2 Avian Influenza Virus in South China in 2019-2020. Viruses 2022; 14:v14112574. [PMID: 36423183 PMCID: PMC9692712 DOI: 10.3390/v14112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Seasonal H3N2 influenza virus has always been a potential threat to public health. The reassortment of the human and avian H3N2 influenza viruses has resulted in major influenza outbreaks, which have seriously damaged human life and health. To assess the possible threat of the H3N2 avian influenza virus to human health, we performed whole-genome sequencing and genetic evolution analyses on 10 H3N2 field strains isolated from different hosts and regions in 2019-2020 and selected representative strains for pathogenicity tests on mice. According to the results, the internal gene cassettes of nine strains had not only undergone reassortment with the H1, H2, H4, H6, and H7 subtypes, which circulate in poultry and mammals, but also with H10N8, which circulates in wild birds in the natural environment. Three reassorted strains were found to be pathogenic to mice, of these one strain harboring MP from H10N8 showed a stronger virulence in mice. This study indicates that reassorted H3N2 AIVs may cross the host barrier to infect mammals and humans, thereby, necessitating persistent surveillance of H3N2 AIVs.
Collapse
Affiliation(s)
- Tengfei Liu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Huang
- Center for Animal Disease Control and Prevention, Dongguan 523128, China
| | - Shumin Xie
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhong Chen
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-13826409229
| |
Collapse
|
30
|
Yao Z, Zheng H, Xiong J, Ma L, Gui R, Zhu G, Li Y, Yang G, Chen G, Zhang J, Chen Q. Genetic and Pathogenic Characterization of Avian Influenza Virus in Migratory Birds between 2015 and 2019 in Central China. Microbiol Spectr 2022; 10:e0165222. [PMID: 35862978 PMCID: PMC9431584 DOI: 10.1128/spectrum.01652-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Active surveillance of avian influenza virus (AIV) in wetlands and lakes is important for exploring the gene pool in wild birds. Through active surveillance from 2015 through 2019, 10,900 samples from wild birds in central China were collected, and 89 AIVs were isolated, including 2 subtypes of highly pathogenic AIV and 12 of low-pathogenic AIV; H9N2 and H6Ny were the dominant subtypes. Phylogenetic analysis of the isolates demonstrated that extensive intersubtype reassortments and frequent intercontinental gene exchange occurred in AIVs. AIV gene segments persistently circulated in several migration seasons, but interseasonal persistence of the whole genome was rare. The whole genomes of one H6N6 and polymerase basic 2 (PB2), polymerase acidic (PA), hemagglutinin (HA), neuraminidase (NA), M, and nonstructural (NS) genes of one H9N2 virus were found to be of poultry origin, suggesting a spillover of AIVs from poultry to wild birds. Importantly, one H9N2 virus only bound to human-type receptor, and one H1N1, four H6, and seven H9N2 viruses possessed dual receptor-binding capacity. Nineteen of 20 representative viruses tested could replicate in the lungs of mice without preadaptation, which poses a clear threat of infection in humans. Together, our study highlights the need for intensive AIV surveillance. IMPORTANCE Influenza virus surveillance in wild birds plays an important role in the early recognition and control of the virus. However, the AIV gene pool in wild birds in central China along the East Asian-Australasian flyway has not been well studied. Here, we conducted a 5-year AIV active surveillance in this region. Our data revealed the long-term circulation and prevalence of AIVs in wild birds in central China, and we observed that intercontinental gene exchange of AIVs is more frequent and continuous than previously thought. Spillover events from poultry to wild bird were observed in H6 and H9 viruses. In addition, in 20 representative viruses, 12 viruses could bind human-type receptors, and 19 viruses could replicate in mice without preadaption. Our work highlights the potential threat of wild bird AIVs to public health.
Collapse
Affiliation(s)
- Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huabin Zheng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiasong Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gui
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gongliang Zhu
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Yong Li
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guoxiang Yang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Guang Chen
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Jun Zhang
- The Monitoring Center of Wildlife Diseases and Resource of Hubei Province, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
31
|
Effect of the Interaction between Viral PB2 and Host SphK1 on H9N2 AIV Replication in Mammals. Viruses 2022; 14:v14071585. [PMID: 35891566 PMCID: PMC9322132 DOI: 10.3390/v14071585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
The H9N2 avian influenza virus (AIV) is currently widespread worldwide, posing a severe threat to the poultry industry and public health. Reassortment is an important way for influenza viruses to adapt to a new host. In 2007, the PB2 gene of H9N2 AIV in China was reassorted, and the DK1-like lineage replaced the F/98-like lineage, forming a dominant genotype of G57. This genotype and its reassortants (such as H7N9, H10N8 and H5N6) showed higher mammalian adaptation, and caused increased human infections. However, the adaptive mechanisms of the DK1-like lineage PB2 gene remain unclear. Here, we confirmed that the PB2 lineage of the H9N2 AIV currently prevalent in China still belongs to the DK1-like lineage and, compared with the previously predominant F/98-like lineage, the DK1-like lineage PB2 gene significantly enhances H9N2 AIV to mammalian adaptation. Through transcriptomic analysis and qRT–PCR and western blot experiments, we identified a host factor, sphingosine kinase 1 (SphK1), that is closely related to viral replication. SphK1 inhibits the replication of DK1-like PB2 gene H9N2 AIV, but the ability of SphK1 protein to bind DK1-like PB2 protein is weaker than that of F/98-like PB2 protein, which may contribute to H9N2 AIV containing the DK1-like PB2 gene to escape the inhibitory effect of host factor SphK1 for efficient infection. This study broadens our understanding of the adaptive evolution of H9N2 AIV and highlights the necessity to pay close attention to the AIV that contains the adaptive PB2 protein in animals and humans.
Collapse
|
32
|
He WT, Hou X, Zhao J, Sun J, He H, Si W, Wang J, Jiang Z, Yan Z, Xing G, Lu M, Suchard MA, Ji X, Gong W, He B, Li J, Lemey P, Guo D, Tu C, Holmes EC, Shi M, Su S. Virome characterization of game animals in China reveals a spectrum of emerging pathogens. Cell 2022; 185:1117-1129.e8. [PMID: 35298912 PMCID: PMC9942426 DOI: 10.1016/j.cell.2022.02.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 12/27/2022]
Abstract
Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Xin Hou
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.,These authors contributed equally
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.,These authors contributed equally
| | - Jiumeng Sun
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijian He
- Agricultural College, Jinhua Polytechnic, Jinhua 320017, China
| | - Wei Si
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiwen Jiang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Xing
- MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou 310058, China
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, the United States
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven 3000, Belgium
| | - Deyin Guo
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130062, China
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Senior authors,Correspondence: Shuo Su (); Mang Shi (); and Edward C. Holmes ()
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Murakami J, Shibata A, Neumann G, Imai M, Watanabe T, Kawaoka Y. Characterization of H9N2 Avian Influenza Viruses Isolated from Poultry Products in a Mouse Model. Viruses 2022; 14:v14040728. [PMID: 35458458 PMCID: PMC9032349 DOI: 10.3390/v14040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Low pathogenic H9N2 avian influenza viruses have spread in wild birds and poultry worldwide. Recently, the number of human cases of H9N2 virus infection has increased in China and other countries, heightening pandemic concerns. In Japan, H9N2 viruses are not yet enzootic; however, avian influenza viruses, including H5N1, H7N9, H5N6, and H9N2, have been repeatedly detected in raw poultry meat carried by international flight passengers from Asian countries to Japan. Although H9N2 virus-contaminated poultry products intercepted by the animal quarantine service at the Japan border have been characterized in chickens and ducks, the biological properties of those H9N2 viruses in mammals remain unclear. Here, we characterized the biological features of two H9N2 virus isolates [A/chicken/Japan/AQ-HE28-50/2016 (Ck/HE28-50) and A/chicken/Japan/AQ-HE28-57/2016 (Ck/HE28-57)] in a mouse model. We found that these H9N2 viruses replicate well in the respiratory tract of infected mice without adaptation, and that Ck/HE28-57 caused body weight loss in the infected mice. Our results indicate that H9N2 avian influenza viruses isolated from raw chicken meat products illegally brought to Japan can potentially infect and cause disease in mammals.
Collapse
Affiliation(s)
- Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
| | - Akihiro Shibata
- Exotic Disease Inspection Division, Laboratory Department, Animal Quarantine Service, Ministry of Agriculture, Forestry and Fisheries, Tokoname 479-0881, Japan;
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
| | - Tokiko Watanabe
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Center for Infectious Disease and Education and Research (CiDER), Osaka University, Suita 565-0871, Japan
- Correspondence: (T.W.); (Y.K.)
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; (J.M.); (M.I.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, USA;
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (T.W.); (Y.K.)
| |
Collapse
|
34
|
Zhang X, Li Y, Jin S, Wang T, Sun W, Zhang Y, Li F, Zhao M, Sun L, Hu X, Feng N, Xie Y, Zhao Y, Yang S, Xia X, Gao Y. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound Emerg Dis 2022; 69:669-684. [PMID: 33566453 DOI: 10.1111/tbed.14033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
H9N2 influenza virus has been reported worldwide for several decades, and it has evolved into multiple genotypes among domestic poultry. However, the study involving ecology and evolution of low pathogenic avian influenza virus H9N2 in wild birds in China is limited. Here, we carried out surveillance of avian influenza virus H9N2 in wild birds along with the East Asian-Australian migratory flyway in China in 2017. To estimate the prevalence of H9N2 avian virus in wild birds, information on exposure of wild bird populations to H9N2 viruses using serology, in addition to virology, would greatly improve monitoring capabilities. In this study, we also present serological data of H9N2 among wild birds in China during 2013-2016. We report the identification of poultry-derived H9N2 isolates from asymptomatic infected multispecies wild birds such as Common kestrel (Falco tinnunculus), Northern goshawk (Accipiter gentilis), Little owl (Athene noctua) and Ring-necked Pheasant (Phasianus colchicus) in North China in June 2017. Phylogenetic analysis demonstrated that Tianjin H9N2 isolates belong to the G81 and carry internal genes highly homologous to human H10N8 and H7N9. The isolates could directly infect mice without adaptation but were restricted to replicate in the respiratory system. Glycan-binding preference analyses suggested that the H9N2 isolates have acquired a binding affinity for the human-like receptor. Notably, results from transmission experiment in guinea pigs and ferrets demonstrated the wild birds-derived H9N2 influenza virus exhibits efficient transmission phenotypes in mammalian models via respiratory droplets. Our results indicate that the H9N2 AIVs continued to circulate extensively in wild bird populations and migratory birds play an important role in the spread and genetic diversification of H9N2 AIVs. The pandemic potential of H9N2 viruses demonstrated by aerosol transmission in mammalian models via respiratory droplets highlights the importance of monitoring influenza viruses in these hosts.
Collapse
Affiliation(s)
- Xinghai Zhang
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuanguo Li
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Song Jin
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Yiming Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Fangxu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Menglin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Leiyun Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xinyu Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
| | - Xianzhu Xia
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
35
|
Duong BT, Bal J, Sung HW, Yeo SJ, Park H. Molecular Analysis of the Avian H7 Influenza Viruses Circulating in South Korea during 2018-2019: Evolutionary Significance and Associated Zoonotic Threats. Viruses 2021; 13:v13112260. [PMID: 34835066 PMCID: PMC8623559 DOI: 10.3390/v13112260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Avian influenza virus (AIV) subtypes H5 and H7, possessing the ability to mutate spontaneously from low pathogenic (LP) to highly pathogenic (HP) variants, are major concerns for enormous socio-economic losses in the poultry industry, as well as for fatal human infections. Through antigenic drift and shift, genetic reassortments of the genotypes pose serious threats of increased virulence and pathogenicity leading to potential pandemics. In this study, we isolated the H7-subtype AIVs circulating in the Republic of Korea during 2018–2019, and perform detailed molecular analysis to study their circulation, evolution, and possible emergence as a zoonotic threat. Phylogenetic and nucleotide sequence analyses of these isolates revealed their distribution into two distinct clusters, with the HA gene sharing the highest nucleotide identity with either the A/common teal/Shanghai/CM1216/2017, isolated from wild birds in Shanghai, China, or the A/duck/Shimane/2014, isolated from Japan. Mutations were found in HA (S138A (H3 numbering)), M1 (N30D and T215A), NS1 (P42S), PB2 (L89V), and PA (H266R and F277S) proteins—the mutations had previously been reported to be related to mammalian adaptation and changes in the virulence of AIVs. Taken together, the results firmly put forth the demand for routine surveillance of AIVs in wild birds to prevent possible pandemics arising from reassortant AIVs.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
| | - Jyotiranjan Bal
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon-si 24341, Korea
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538, Korea; (B.T.D.); (J.B.)
- Correspondence: (H.W.S.); (S.-J.Y.); (H.P.)
| |
Collapse
|
36
|
Waters K, Gao C, Ykema M, Han L, Voth L, Tao YJ, Wan XF. Triple reassortment increases compatibility among viral ribonucleoprotein genes of contemporary avian and human influenza A viruses. PLoS Pathog 2021; 17:e1009962. [PMID: 34618879 PMCID: PMC8525756 DOI: 10.1371/journal.ppat.1009962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
Compatibility among the influenza A virus (IAV) ribonucleoprotein (RNP) genes affects viral replication efficiency and can limit the emergence of novel reassortants, including those with potential pandemic risks. In this study, we determined the polymerase activities of 2,451 RNP reassortants among three seasonal and eight enzootic IAVs by using a minigenome assay. Results showed that the 2009 H1N1 RNP are more compatible with the tested enzootic RNP than seasonal H3N2 RNP and that triple reassortment increased such compatibility. The RNP reassortants among 2009 H1N1, canine H3N8, and avian H4N6 IAVs had the highest polymerase activities. Residues in the RNA binding motifs and the contact regions among RNP proteins affected polymerase activities. Our data indicates that compatibility among seasonal and enzootic RNPs are selective, and enzoosis of multiple strains in the animal-human interface can facilitate emergence of an RNP with increased replication efficiency in mammals, including humans.
Collapse
Affiliation(s)
- Kaitlyn Waters
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Cheng Gao
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | - Matthew Ykema
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Lei Han
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
| | - Lynden Voth
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Yizhi Jane Tao
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Xiu-Feng Wan
- Missouri University Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi, United States of America
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
37
|
Yang F, Xiao Y, Liu F, Yao H, Wu N, Wu H. Molecular characterization and antigenic analysis of reassortant H9N2 subtype avian influenza viruses in Eastern China in 2016. Virus Res 2021; 306:198577. [PMID: 34560182 DOI: 10.1016/j.virusres.2021.198577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
H9N2 avian influenza viruses (AIVs) can cause respiratory symptoms and decrease the egg production. Additionally, H9N2 AIVs can provide internal genes for reassortment with other subtypes. During the monitoring of live poultry markets in 2016, a total of 32 (32/179, 17.88%) H9N2 AIVs were isolated from poultry in Eastern China, and seven representative strains were selected based on the isolation time, isolation location and sequence homology for further characterization. Phylogenetic analysis of hemagglutinin and neuraminidase showed that these H9N2 AIVs clustered into the Y280 sublineage. And the phylogenetic trees of six internal genes showed that the source of these gene fragments was more abundant, suggesting that extensive reassortment has occurred in these H9N2 viruses. Molecular analysis showed that multiple specific amino acid mutations occurred that increased H9N2 AIVs' infectivity, transmissibility, and affinity to mammals, including Q226L and Q227M in hemagglutinin, E627K in polymerase basic protein 2 (PB2), L13P in polymerase basic protein 1 (PB1), and A70V and S409N in polymerase acidic protein (PA). Pathogenicity tests in mice showed these H9N2 AIVs could replicate in lungs and exhibited slight to moderate virulence. The continuous circulation of these H9N2 viruses suggests the necessity for persistent surveillance of the H9N2 AIVs in poultry.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, Zhejiang, China.
| |
Collapse
|
38
|
Cáceres CJ, Rajao DS, Perez DR. Airborne Transmission of Avian Origin H9N2 Influenza A Viruses in Mammals. Viruses 2021; 13:v13101919. [PMID: 34696349 PMCID: PMC8540072 DOI: 10.3390/v13101919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Influenza A viruses (IAV) are widespread viruses affecting avian and mammalian species worldwide. IAVs from avian species can be transmitted to mammals including humans and, thus, they are of inherent pandemic concern. Most of the efforts to understand the pathogenicity and transmission of avian origin IAVs have been focused on H5 and H7 subtypes due to their highly pathogenic phenotype in poultry. However, IAV of the H9 subtype, which circulate endemically in poultry flocks in some regions of the world, have also been associated with cases of zoonotic infections. In this review, we discuss the mammalian transmission of H9N2 and the molecular factors that are thought relevant for this spillover, focusing on the HA segment. Additionally, we discuss factors that have been associated with the ability of these viruses to transmit through the respiratory route in mammalian species. The summarized information shows that minimal amino acid changes in the HA and/or the combination of H9N2 surface genes with internal genes of human influenza viruses are enough for the generation of H9N2 viruses with the ability to transmit via aerosol.
Collapse
|
39
|
Yeo SJ, Hoang VT, Duong TB, Nguyen NM, Tuong HT, Azam M, Sung HW, Park H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2021; 65:1-16. [PMID: 34438407 DOI: 10.1159/000517057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/29/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.
Collapse
Affiliation(s)
- Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Republic of Korea,
| | - Vui Thi Hoang
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Tuan Bao Duong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Ngoc Minh Nguyen
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Hien Thi Tuong
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Mudsser Azam
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, Zoonosis Research Center, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
40
|
Identification and molecular characterization of H9N2 viruses carrying multiple mammalian adaptation markers in resident birds in central-western wetlands in India. INFECTION GENETICS AND EVOLUTION 2021; 94:105005. [PMID: 34293481 DOI: 10.1016/j.meegid.2021.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
We report here a targeted risk-based study to investigate the presence of influenza A viruses at the migratory-wild-domestic bird interface across the major wetlands of central India's Maharashtra state during the winter migration season. The H9N2 viruses have been isolated and confirmed in 3.86% (33/854) of the fecal samples of resident birds. To investigate the genetic pools of H9N2 circulating in resident birds, we sequenced two isolates of H9N2 from distant wetlands. Sequence and phylogenetic analyses have shown that these viruses are triple reassortants, with HA, NA, NP, and M genes belonging to G1 sub-lineage (A/quail/Hong Kong/G1/1997), PB2, PB1, and NS genes originating from the prototype Eurasian lineage (A/mallard/France/090360/2009) and PA gene deriving from Y439/Korean-like (A/duck/Hong Kong/Y439/97) sub-lineage. It was confirmed not only that four of their gene segments had a high genetic association with the zoonotic H9N2 virus, A/Human/India/TCM2581/2019, but also that they had many molecular markers associated with mammalian adaptation and enhanced virulence in mammals including the unique multiple basic amino acids, KSKR↓GLF at the HA cleavage site, and analog N-and O-glycosylation patterns on HA with that of the zoonotic H9N2 virus. Furthermore, future experiments would be to characterize these isolates biologically to address the public health concern. Importantly, due to the identification of these viruses at a strategic geographical location in India (a major stop-over point in the Central Asian flyway), these novel viruses also pose a possible threat to be exported to other regions via migratory/resident birds. Consequently, systematic investigation and active monitoring are a prerequisite for identifying and preventing the spread of viruses of zoonotic potential by enforcing strict biosecurity measures.
Collapse
|
41
|
Sun H, Liu J, Xiao Y, Duan Y, Yang J, Chen Y, Yu Y, Li H, Zhao Y, Pu J, Sun Y, Liu J, Sun H. Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology 2021; 561:28-35. [PMID: 34139638 DOI: 10.1016/j.virol.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.
Collapse
Affiliation(s)
- Haoran Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Yuhong Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yu Chen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yinghui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
42
|
Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J Virol 2021; 95:JVI.01578-20. [PMID: 33731452 PMCID: PMC8139711 DOI: 10.1128/jvi.01578-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
H9N2 Avian influenza virus (AIV) is regarded as a principal donor of viral genes through reassortment to co-circulating influenza viruses that can result in zoonotic reassortants. Whether H9N2 virus can maintain sustained evolutionary impact on such reassortants is unclear. Since 2013, avian H7N9 virus had caused five sequential human epidemics in China; the fifth wave in 2016-2017 was by far the largest but the mechanistic explanation behind the scale of infection is not clear. Here, we found that, just prior to the fifth H7N9 virus epidemic, H9N2 viruses had phylogenetically mutated into new sub-clades, changed antigenicity and increased its prevalence in chickens vaccinated with existing H9N2 vaccines. In turn, the new H9N2 virus sub-clades of PB2 and PA genes, housing mammalian adaptive mutations, were reassorted into co-circulating H7N9 virus to create a novel dominant H7N9 virus genotype that was responsible for the fifth H7N9 virus epidemic. H9N2-derived PB2 and PA genes in H7N9 virus conferred enhanced polymerase activity in human cells at 33°C and 37°C, and increased viral replication in the upper and lower respiratory tracts of infected mice which could account for the sharp increase in human cases of H7N9 virus infection in the 2016-2017 epidemic. The role of H9N2 virus in the continual mutation of H7N9 virus highlights the public health significance of H9N2 virus in the generation of variant reassortants of increasing zoonotic potential.IMPORTANCEAvian H9N2 influenza virus, although primarily restricted to chicken populations, is a major threat to human public health by acting as a donor of variant viral genes through reassortment to co-circulating influenza viruses. We established that the high prevalence of evolving H9N2 virus in vaccinated flocks played a key role, as donor of new sub-clade PB2 and PA genes in the generation of a dominant H7N9 virus genotype (G72) with enhanced infectivity in humans during the 2016-2017 N7N9 virus epidemic. Our findings emphasize that the ongoing evolution of prevalent H9N2 virus in chickens is an important source, via reassortment, of mammalian adaptive genes for other influenza virus subtypes. Thus, close monitoring of prevalence and variants of H9N2 virus in chicken flocks is necessary in the detection of zoonotic mutations.
Collapse
|
43
|
Wang S, Li N, Jin S, Zhang R, Xu T. Polymerase acidic subunit of H9N2 polymerase complex induces cell apoptosis by binding to PDCD 7 in A549 cells. Virol J 2021; 18:75. [PMID: 33849599 PMCID: PMC8045253 DOI: 10.1186/s12985-021-01547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background H9N2 influenza virus, a subtype of influenza A virus, can spread across different species and induce the respiratory infectious disease in humans, leading to a severe public health risk and a huge economic loss to poultry production. Increasing studies have shown that polymerase acidic (PA) subunit of RNA polymerase in ribonucleoproteins complex of H9N2 virus involves in crossing the host species barriers, the replication and airborne transmission of H9N2 virus. Methods Here, to further investigate the role of PA subunit during the infection of H9N2 influenza virus, we employed mass spectrometry (MS) to search the potential binding proteins of PA subunit of H9N2 virus. Our MS results showed that programmed cell death protein 7 (PDCD7) is a binding target of PA subunit. Co-immunoprecipitation and pull-down assays further confirmed the interaction between PDCD7 and PA subunit. Overexpression of PA subunit in A549 lung cells greatly increased the levels of PDCD7 in the nuclear and induced cell death assayed by MTT assay. Results Flow cytometry analysis and Western blot results showed that PA subunit overexpression significantly increased the expression of pro-apoptotic protein, bax and caspase 3, and induced cell apoptosis. However, knockout of PDCD7 effectively attenuated the effects of PA overexpression in cell apoptosis. Conclusions In conclusion, the PA subunit of H9N2 virus bind with PDCD7 and regulated cell apoptosis, which provide new insights in the role of PA subunit during H9N2 influenza virus infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01547-7.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Na Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Shugang Jin
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China.
| |
Collapse
|
44
|
Xu G, Wang F, Li Q, Bing G, Xie S, Sun S, Bian Z, Sun H, Feng Y, Peng X, Jiang H, Zhu L, Fan X, Qin Y, Ding J. Mutations in PB2 and HA enhanced pathogenicity of H4N6 avian influenza virus in mice. J Gen Virol 2021; 101:910-920. [PMID: 31081750 DOI: 10.1099/jgv.0.001192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The H4 subtype avian influenza virus (AIV) continues to circulate in both wild birds and poultry, and occasionally infects mammals (e.g. pigs). H4-specific antibodies have also been detected in poultry farm workers, which suggests that H4 AIV poses a potential threat to public health. However, the molecular mechanism by which H4 AIVs could gain adaptation to mammals and whether this has occurred remain largely unknown. To better understand this mechanism, an avirulent H4N6 strain (A/mallard/Beijing/21/2011, BJ21) was serially passaged in mice and mutations were characterized after passaging. A virulent mouse-adapted strain was generated after 12 passages, which was tentatively designated BJ21-MA. The BJ21-MA strain replicated more efficiently than the parental BJ21, both in vivo and in vitro. Molecular analysis of BJ21-MA identified four mutations, located in proteins PB2 (E158K and E627K) and HA (L331I and G453R, H3 numbering). Further studies showed that the introduction of E158K and/or E627K substitutions into PB2 significantly increased polymerase activity, which led to the enhanced replication and virulence of BJ21-MA. Although individual L331I or G453R substitutions in HA did not change the pathogenicity of BJ21 in mice, both mutations significantly enhanced virulence. In conclusion, our data presented in this study demonstrate that avian H4 virus can adapt to mammals by point mutations in PB2 or HA, which consequently poses a potential threat to public health.
Collapse
Affiliation(s)
- Guanlong Xu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Fang Wang
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Qiuchen Li
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China.,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018 Shandong, PR China
| | - Guoxia Bing
- China Animal Disease Control Center, Beijing 100125, PR China
| | - Shijie Xie
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Shijing Sun
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Zengjie Bian
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - HaoJie Sun
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yu Feng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xiaowei Peng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Hui Jiang
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Liangquan Zhu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xuezheng Fan
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yuming Qin
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Jiabo Ding
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing 100081, PR China
| |
Collapse
|
45
|
Trinh TTT, Duong BT, Nguyen ATV, Tuong HT, Hoang VT, Than DD, Nam S, Sung HW, Yun KJ, Yeo SJ, Park H. Emergence of Novel Reassortant H1N1 Avian Influenza Viruses in Korean Wild Ducks in 2018 and 2019. Viruses 2020; 13:v13010030. [PMID: 33375376 PMCID: PMC7823676 DOI: 10.3390/v13010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus subtype H1N1 has caused global pandemics like the “Spanish flu” in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018–2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1)) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1)). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRS↓GLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Anh Thi Viet Nguyen
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Hien Thi Tuong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Vui Thi Hoang
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - Duong Duc Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
| | - SunJeong Nam
- Division of EcoScience, Ewha University, Seoul 03760, Korea;
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea;
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea;
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Correspondence: (S.-J.Y.); (H.P.)
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 570-749, Korea; (T.-T.T.T.); (B.T.D.); (A.T.V.N.); (H.T.T.); (V.T.H.); (D.D.T.)
- Correspondence: (S.-J.Y.); (H.P.)
| |
Collapse
|
46
|
PA Mutations Inherited during Viral Evolution Act Cooperatively To Increase Replication of Contemporary H5N1 Influenza Virus with an Expanded Host Range. J Virol 2020; 95:JVI.01582-20. [PMID: 33028722 PMCID: PMC7737735 DOI: 10.1128/jvi.01582-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and have caused the highest number of human H5N1 influenza cases worldwide, presenting a serious global public health threat. These viruses may have the greatest evolutionary potential for adaptation from avian hosts to human hosts. Using a comprehensive phylogenetic approach, we identified several novel clade 2.2.1 virus polymerase mutations that increased viral replication in vitro in human cells and in vivo in mice. These mutations were in the polymerase PA subunit and acted cooperatively with the E627K mutation in the PB2 polymerase subunit to provide higher replication in contemporary clade 2.2.1.2 viruses than in ancestral clade 2.2.1 viruses. These data indicated that ongoing clade 2.2.1 dissemination in the field has driven PA mutations to modify viral replication to enable host range expansion, with a higher public health risk for humans. Adaptive mutations and/or reassortments in avian influenza virus polymerase subunits PA, PB1, and PB2 are one of the major factors enabling the virus to overcome the species barrier to infect humans. The majority of human adaptation polymerase mutations have been identified in PB2; fewer adaptation mutations have been characterized in PA and PB1. Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and generally carry the human adaptation PB2-E627K substitution during their dissemination in nature. In this study, we identified other human adaptation polymerase mutations by analyzing phylogeny-associated PA mutations that H5N1 clade 2.2.1 viruses have accumulated during their evolution in the field. This analysis identified several PA mutations that produced increased replication by contemporary clade 2.2.1.2 viruses in vitro in human cells and in vivo in mice compared to ancestral clade 2.2.1 viruses. The PA mutations acted cooperatively to increase viral polymerase activity and replication in both avian and human cells, with the effect being more prominent in human cells at 33°C than at 37°C. These results indicated that PA mutations have a role in establishing contemporary clade 2.2.1.2 virus infections in poultry and in adaptation to infect mammals. Our study provided data on the mechanism for PA mutations to accumulate during avian influenza virus evolution and extend the viral host range. IMPORTANCE Clade 2.2.1 avian influenza viruses (H5N1) are unique to Egypt and have caused the highest number of human H5N1 influenza cases worldwide, presenting a serious global public health threat. These viruses may have the greatest evolutionary potential for adaptation from avian hosts to human hosts. Using a comprehensive phylogenetic approach, we identified several novel clade 2.2.1 virus polymerase mutations that increased viral replication in vitro in human cells and in vivo in mice. These mutations were in the polymerase PA subunit and acted cooperatively with the E627K mutation in the PB2 polymerase subunit to provide higher replication in contemporary clade 2.2.1.2 viruses than in ancestral clade 2.2.1 viruses. These data indicated that ongoing clade 2.2.1 dissemination in the field has driven PA mutations to modify viral replication to enable host range expansion, with a higher public health risk for humans.
Collapse
|
47
|
Epidemiology and Genotypic Diversity of Eurasian Avian-Like H1N1 Swine Influenza Viruses in China. Virol Sin 2020; 36:43-51. [PMID: 32638231 DOI: 10.1007/s12250-020-00257-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/10/2020] [Indexed: 10/23/2022] Open
Abstract
Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) outside European countries was first detected in Hong Kong Special Administrative Region (Hong Kong, SAR) of China in 2001. Afterwards, EA H1N1 SIVs have become predominant in pig population in this country. However, the epidemiology and genotypic diversity of EA H1N1 SIVs in China are still unknown. Here, we collected the EA H1N1 SIVs sequences from China between 2001 and 2018 and analyzed the epidemic and phylogenic features, and key molecular markers of these EA H1N1 SIVs. Our results showed that EA H1N1 SIVs distributed in nineteen provinces/municipalities of China. After a long-time evolution and transmission, EA H1N1 SIVs were continuously reassorted with other co-circulated influenza viruses, including 2009 pandemic H1N1 (A(H1N1)pdm09), and triple reassortment H1N2 (TR H1N2) influenza viruses, generated 11 genotypes. Genotype 3 and 5, both of which were the reassortments among EA H1N1, A(H1N1)pdm09 and TR H1N2 viruses with different origins of M genes, have become predominant in pig population. Furthermore, key molecular signatures were identified in EA H1N1 SIVs. Our study has drawn a genotypic diversity image of EA H1N1 viruses, and could help to evaluate the potential risk of EA H1N1 for pandemic preparedness and response.
Collapse
|
48
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
49
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
50
|
A D200N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus. Vet Microbiol 2020; 245:108669. [PMID: 32456831 DOI: 10.1016/j.vetmic.2020.108669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/20/2022]
Abstract
Influenza virus hemagglutinin (HA) plays an important role in viral antigenicity, replication and host range. However, few amino acid positions in HA were reported to play multiple functions in both viral antigenicity and replication. In the present study, through analyzing the amino acid sequences of H9N2 avian influenza viruses (AIVs) isolated from China, we identified a multi-functional substitution of D200N in HA1 protein. Firstly, the substitution of D200N changed the antigenicity of H9N2 AIVs. Secondly, the D200N increased the HA cleavage efficiency and reduced acid and thermal stability of HA protein, which triggered viral-endosomal membrane fusion whereby promoted the release of viral genome into the host cytoplasm. Finally, residue 200-N increased the replication of H9N2 viruses in both chicken embryo fibroblast (CEF) cells and chicken embryonated eggs. In summary, the D200N substitution is a newly identified antigenicity and replication determinant of H9N2 AIVs, which should be paid more attention during surveillance.
Collapse
|