1
|
Shi H, Zhang X, Ge P, Meliopoulos V, Freiden P, Livingston B, Schultz-Cherry S, Ross TM. Inactivated influenza virus vaccines expressing COBRA hemagglutinin elicited broadly reactive, long-lived protective antibodies. Hum Vaccin Immunother 2024; 20:2356269. [PMID: 38826029 PMCID: PMC11152115 DOI: 10.1080/21645515.2024.2356269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024] Open
Abstract
The influenza viruses cause seasonal respiratory illness that affect millions of people globally every year. Prophylactic vaccines are the recommended method to prevent the breakout of influenza epidemics. One of the current commercial influenza vaccines consists of inactivated viruses that are selected months prior to the start of a new influenza season. In many seasons, the vaccine effectiveness (VE) of these vaccines can be relatively low. Therefore, there is an urgent need to develop an improved, more universal influenza vaccine (UIV) that can provide broad protection against various drifted strains in all age groups. To meet this need, the computationally optimized broadly reactive antigen (COBRA) methodology was developed to design a hemagglutinin (HA) molecule as a new influenza vaccine. In this study, COBRA HA-based inactivated influenza viruses (IIV) expressing the COBRA HA from H1 or H3 influenza viruses were developed and characterized for the elicitation of immediate and long-term protective immunity in both immunologically naïve or influenza pre-immune animal models. These results were compared to animals vaccinated with IIV vaccines expressing wild-type H1 or H3 HA proteins (WT-IIV). The COBRA-IIV elicited long-lasting broadly reactive antibodies that had hemagglutination-inhibition (HAI) activity against drifted influenza variants.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Xiaojian Zhang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Victoria Meliopoulos
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Pam Freiden
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Brandi Livingston
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- St. Jude Children’s Research Hospital, Department of Host-Microbe Interactions, Memphis, TN, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
2
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sanchez PL, Staats HF, Abraham SN, Ross TM. Mastoparan-7 adjuvanted COBRA H1 and H3 hemagglutinin influenza vaccines. Sci Rep 2024; 14:13800. [PMID: 38877101 PMCID: PMC11178843 DOI: 10.1038/s41598-024-64351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
Adjuvants enhance, prolong, and modulate immune responses by vaccine antigens to maximize protective immunity and enable more effective immunization in the young and elderly. Most adjuvants are formulated with injectable vaccines. However, an intranasal route of vaccination may induce mucosal and systemic immune responses for enhancing protective immunity in individuals and be easier to administer compared to injectable vaccines. In this study, a next generation of broadly-reactive influenza hemagglutinin (HA) vaccines were developed using the Computationally Optimized Broadly Reactive Antigen (COBRA) methodology. These HA vaccines were formulated with Mastoparan 7 (M7-NH2) mast cell degranulating peptide adjuvant and administered intranasally to determine vaccine-induced seroconversion of antibodies against a panel of influenza viruses and protection following infection with H1N1 and H3N2 viruses in mice. Mice vaccinated intranasally with M7-NH2-adjuvanted COBRA HA vaccines had high HAIs against a panel of H1N1 and H3N2 influenza viruses and were protected against both morbidity and mortality, with reduced viral lung titers, following challenge with an H1N1 influenza virus. Additionally, M7-NH2 adjuvanted COBRA HA vaccines induced Th2 skewed immune responses with robust IgG and isotype antibodies in the serum and mucosal lung lavages. Overall, this intranasally delivered M7-NH2 -adjuvanted COBRA HA vaccine provides effective protection against drifted H1N1 and H3N2 viruses.
Collapse
Affiliation(s)
- Pedro L Sanchez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Herman F Staats
- Pathology Department, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University, Duke University Medical Center, Durham, NC, USA
| | - Soman N Abraham
- Pathology Department, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, School of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA.
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
De Meyer A, Meuleman P. Preclinical animal models to evaluate therapeutic antiviral antibodies. Antiviral Res 2024; 225:105843. [PMID: 38548022 DOI: 10.1016/j.antiviral.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Despite the availability of effective preventative vaccines and potent small-molecule antiviral drugs, effective non-toxic prophylactic and therapeutic measures are still lacking for many viruses. The use of monoclonal and polyclonal antibodies in an antiviral context could fill this gap and provide effective virus-specific medical interventions. In order to develop these therapeutic antibodies, preclinical animal models are of utmost importance. Due to the variability in viral pathogenesis, immunity and overall characteristics, the most representative animal model for human viral infection differs between virus species. Therefore, throughout the years researchers sought to find the ideal preclinical animal model for each virus. The most used animal models in preclinical research include rodents (mice, ferrets, …) and non-human primates (macaques, chimpanzee, ….). Currently, antibodies are tested for antiviral efficacy against a variety of viruses including different hepatitis viruses, human immunodeficiency virus (HIV), influenza viruses, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and rabies virus. This review provides an overview of the current knowledge about the preclinical animal models that are used for the evaluation of therapeutic antibodies for the abovementioned viruses.
Collapse
Affiliation(s)
- Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Padykula I, Damodaran L, Young KT, Krunkosky M, Griffin EF, North JF, Neasham PJ, Pliasas VC, Siepker CL, Stanton JB, Howerth EW, Bahl J, Kyriakis CS, Tompkins SM. Pandemic Risk Assessment for Swine Influenza A Virus in Comparative In Vitro and In Vivo Models. Viruses 2024; 16:548. [PMID: 38675891 PMCID: PMC11053818 DOI: 10.3390/v16040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Swine influenza A viruses pose a public health concern as novel and circulating strains occasionally spill over into human hosts, with the potential to cause disease. Crucial to preempting these events is the use of a threat assessment framework for human populations. However, established guidelines do not specify which animal models or in vitro substrates should be used. We completed an assessment of a contemporary swine influenza isolate, A/swine/GA/A27480/2019 (H1N2), using animal models and human cell substrates. Infection studies in vivo revealed high replicative ability and a pathogenic phenotype in the swine host, with replication corresponding to a complementary study performed in swine primary respiratory epithelial cells. However, replication was limited in human primary cell substrates. This contrasted with our findings in the Calu-3 cell line, which demonstrated a replication profile on par with the 2009 pandemic H1N1 virus. These data suggest that the selection of models is important for meaningful risk assessment.
Collapse
Affiliation(s)
- Ian Padykula
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Lambodhar Damodaran
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Kelsey T. Young
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Madelyn Krunkosky
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Emily F. Griffin
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - James F. North
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Peter J. Neasham
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Vasilis C. Pliasas
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Chris L. Siepker
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - James B. Stanton
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | | | - Justin Bahl
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Constantinos S. Kyriakis
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| |
Collapse
|
6
|
Curran SJ, Griffin EF, Ferreri LM, Kyriakis CS, Howerth EW, Perez DR, Tompkins SM. Swine influenza A virus isolates containing the pandemic H1N1 origin matrix gene elicit greater disease in the murine model. Microbiol Spectr 2024; 12:e0338623. [PMID: 38299860 PMCID: PMC10913740 DOI: 10.1128/spectrum.03386-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.
Collapse
Affiliation(s)
- Shelly J. Curran
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Emily F. Griffin
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Constantinos S. Kyriakis
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - S. Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, Georgia, USA
| |
Collapse
|
7
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
8
|
Brake ME, Russ BP, Gansebom S, Genzer SC, Tansey C, York IA. Effects of Extended-Release Buprenorphine on Mouse Models of Influenza. Comp Med 2023; 73:466-473. [PMID: 38110195 PMCID: PMC10752363 DOI: 10.30802/aalas-cm-23-000049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/18/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Mice are widely used as small animal models for influenza infection and immunization studies because of their susceptibility to many strains of influenza, obvious clinical signs of infection, and ease of handling. Analgesia is rarely used in such studies even if nonstudy effects such as fight wounds, tail injuries, or severe dermatitis would otherwise justify it because of concerns that treatment might have confounding effects on primary study parameters such as the course of infection and/or the serological response to infection. However, analgesia for study-related or -unrelated effects may be desirable for animal welfare purposes. Opioids, such as extended-release buprenorphine, are well-characterized analgesics in mice and may have fewer immune-modulatory effects than other drug classes. In this study, BALB/c and DBA/2 mice were inoculated with influenza virus, and treatment groups received either no analgesics or 2 doses of extended-release buprenorphine 72 h apart. Clinical signs, mortality, and influenza-specific antibody responses were comparable in mice that did or did not receive buprenorphine. We therefore conclude that extended-release buprenorphine can be used to alleviate incidental pain during studies of influenza infection without altering the course of infection or the immune response.
Collapse
Affiliation(s)
- Marie E Brake
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brynnan P Russ
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee; and
| | - Shane Gansebom
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
- Cherokee Nation Operational Solutions, Tulsa, Oklahoma
| | - Sarah C Genzer
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cassandra Tansey
- Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian A York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
9
|
Puente-Massaguer E, Vasilev K, Beyer A, Loganathan M, Francis B, Scherm MJ, Arunkumar GA, González-Domínguez I, Zhu X, Wilson IA, Coughlan L, Sun W, Palese P, Krammer F. Chimeric hemagglutinin split vaccines elicit broadly cross-reactive antibodies and protection against group 2 influenza viruses in mice. SCIENCE ADVANCES 2023; 9:eadi4753. [PMID: 37703367 PMCID: PMC10499326 DOI: 10.1126/sciadv.adi4753] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirill Vasilev
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annika Beyer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin Francis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J. Scherm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Kinetic of the Antibody Response Following AddaVax-Adjuvanted Immunization with Recombinant Influenza Antigens. Vaccines (Basel) 2022; 10:vaccines10081315. [PMID: 36016202 PMCID: PMC9415944 DOI: 10.3390/vaccines10081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Notwithstanding the current SARS-CoV-2 pandemic, influenza virus infection still represents a global health concern in terms of hospitalizations and possible pandemic threats. The objective of next-generation influenza vaccines is not only to increase the breadth of response but also to improve the elicitation of an effective and robust immune response, especially in high-risk populations. To achieve this second objective, the administration of adjuvanted influenza vaccines has been considered. In this regard, the monitoring and characterization of the antibody response associated with the administration of adjuvanted vaccines has been evaluated in this study in order to shed light on the kinetic, magnitude and subclass usage of antibody secreting cells (ASCs) as well as of circulating antigen-specific serum antibodies. Specifically, we utilized the DBA/2J mouse model to assess the kinetic, magnitude and IgG subclass usage of the antibody response following an intramuscular (IM) or intraperitoneal (IP) immunization regimen with AddaVax-adjuvanted bivalent H1N1 and H3N2 computationally optimized broadly reactive antigen (COBRA) influenza recombinant hemagglutinins (rHAs). While the serological evaluation revealed a homogeneous kinetic of the antibody response, the detection of the ASCs through a FluoroSpot platform revealed a different magnitude, subclass usage and kinetic of the antigen-specific IgG secreting cells peaking at day 5 and day 9 following the IP and IM immunization, respectively.
Collapse
|
11
|
AboulFotouh K, Uno N, Xu H, Moon C, Sahakijpijarn S, Christensen DJ, Davenport GJ, Cano C, Ross TM, Williams Iii RO, Cui Z. Formulation of dry powders of vaccines containing MF59 or AddaVax by Thin-Film Freeze-Drying: Towards a dry powder universal flu vaccine. Int J Pharm 2022; 624:122021. [PMID: 35842082 DOI: 10.1016/j.ijpharm.2022.122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
MF59® is an oil-in-water (O/W) nanoemulsion-based vaccine adjuvant that is often used in seasonal and pandemic influenza vaccines. We explored the feasibility of developing dry powders of vaccines adjuvanted with MF59 or AddaVax™, a preclinical grade equivalent of MF59 with the same composition and droplet size as MF59, by thin-film freeze-drying (TFFD). Liquid AddaVax alone was successfully converted to a dry powder by TFFD using trehalose as a stabilizing agent while maintaining the droplet size distribution of AddaVax after it was reconstituted. TFFD was then applied to convert liquid AddaVax-adjuvanted vaccines containing either a model antigen (e.g., ovalbumin) or mono-, bi-, and tri-valent recombinant hemagglutinin (rHA) protein-based H1 and/or H3 (universal) influenza vaccine candidates, as well as the MF59-containing Fluad® Quadrivalent influenza vaccine to dry powders. Both antigens and stabilizing agents affected the physical properties of the vaccines (e.g., mean particle size and particle size distribution) after the vaccines were subjected to TFFD. Importantly, the integrity and hemagglutination activity of the rHA antigens did not significantly change and the immunogenicity of reconstituted influenza vaccine candidates was maintained when evaluated in a mouse model. The vaccine dry powder was not sensitive to repeated freezing-and-thawing, in contrast to its liquid counterpart. It is concluded that TFFD can be applied to convert liquid vaccines containing MF59 or AddaVax to dry powders while maintaining the immunogenicity of the vaccines. Ultimately, TFFD technology may be used to prepare dry powders of multivalent universal influenza vaccines.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Naoko Uno
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chaeho Moon
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sawittree Sahakijpijarn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX 76107, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30605, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Robert O Williams Iii
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Mergaert AM, Denny MF, Kingstad-Bakke B, Bawadekar M, Bashar SJ, Warner TF, Suresh M, Shelef MA. Peptidylarginine Deiminase 2 in Murine Antiviral and Autoimmune Antibody Responses. J Immunol Res 2022; 2022:5258221. [PMID: 35083342 PMCID: PMC8786467 DOI: 10.1155/2022/5258221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022] Open
Abstract
The peptidylarginine deiminases (PADs) and the citrullinated proteins that they generate have key roles in innate immunity and rheumatoid arthritis, an inflammatory arthritis with antibodies that target citrullinated proteins. However, the importance of PADs, particularly PAD2, in the adaptive immune response, both normal and pathogenic, is newly emerging. In this study, we evaluated a requirement for PAD2 in the antibody response in collagen-induced arthritis (CIA), a T and B cell-driven murine model of rheumatoid arthritis, and in the protective antibody response to murine influenza infection. Using PAD2-/- and PAD2+/+ mice on the DBA/1J background, we found that PAD2 is required for maximal anti-collagen antibody levels, but not collagen-specific plasma cell numbers, T cell activation or polarization, or arthritis severity in CIA. Also, we found that PAD2 is required not just for normal levels of persistent hemagglutination inhibiting antibodies but also for full protection from lethal influenza rechallenge. Together, these data provide evidence for a novel modest requirement for PAD2 in a normal antiviral antibody response and in an abnormal autoantibody response in inflammatory arthritis.
Collapse
Affiliation(s)
- Aisha M. Mergaert
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael F. Denny
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Mandar Bawadekar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - S. Janna Bashar
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas F. Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Marulasiddappa Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Miriam A. Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
13
|
van Liempd S, Cabrera D, Pilzner C, Kollmus H, Schughart K, Falcón-Pérez JM. Impaired beta-oxidation increases vulnerability to influenza A infection. J Biol Chem 2021; 297:101298. [PMID: 34637789 PMCID: PMC8564733 DOI: 10.1016/j.jbc.2021.101298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography–coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality.
Collapse
Affiliation(s)
| | - Diana Cabrera
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, Hannover, Germany; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Juan M Falcón-Pérez
- Metabolomics Platform CIC bioGUNE-BRTA, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
14
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. FluB-RAM and FluB-RANS: Genome Rearrangement as Safe and Efficacious Live Attenuated Influenza B Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9080897. [PMID: 34452022 PMCID: PMC8402576 DOI: 10.3390/vaccines9080897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza B virus (IBV) is considered a major respiratory pathogen responsible for seasonal respiratory disease in humans, particularly severe in children and the elderly. Seasonal influenza vaccination is considered the most efficient strategy to prevent and control IBV infections. Live attenuated influenza virus vaccines (LAIVs) are thought to induce both humoral and cellular immune responses by mimicking a natural infection, but their effectiveness has recently come into question. Thus, the opportunity exists to find alternative approaches to improve overall influenza vaccine effectiveness. Two alternative IBV backbones were developed with rearranged genomes, rearranged M (FluB-RAM) and a rearranged NS (FluB-RANS). Both rearranged viruses showed temperature sensitivity in vitro compared with the WT type B/Bris strain, were genetically stable over multiple passages in embryonated chicken eggs and were attenuated in vivo in mice. In a prime-boost regime in naïve mice, both rearranged viruses induced antibodies against HA with hemagglutination inhibition titers considered of protective value. In addition, antibodies against NA and NP were readily detected with potential protective value. Upon lethal IBV challenge, mice previously vaccinated with either FluB-RAM or FluB-RANS were completely protected against clinical disease and mortality. In conclusion, genome re-arrangement renders efficacious LAIV candidates to protect mice against IBV.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
| | - D. Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.J.); (A.J.); (R.N.); (D.H.D.)
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (S.C.-G.); (C.J.C.); (G.G.); (J.-S.M.); (D.S.R.)
- Correspondence: ; Tel.: +1-(706)-542-5506
| |
Collapse
|
15
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
16
|
Development of a Novel Live Attenuated Influenza A Virus Vaccine Encoding the IgA-Inducing Protein. Vaccines (Basel) 2021; 9:vaccines9070703. [PMID: 34198994 PMCID: PMC8310050 DOI: 10.3390/vaccines9070703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Live attenuated influenza virus (LAIV) vaccines elicit a combination of systemic and mucosal immunity by mimicking a natural infection. To further enhance protective mucosal responses, we incorporated the gene encoding the IgA-inducing protein (IGIP) into the LAIV genomes of the cold-adapted A/Leningrad/134/17/57 (H2N2) strain (caLen) and the experimental attenuated backbone A/turkey/Ohio/313053/04 (H3N2) (OH/04att). Incorporation of IGIP into the caLen background led to a virus that grew poorly in prototypical substrates. In contrast, IGIP in the OH/04att background (IGIP-H1att) virus grew to titers comparable to the isogenic backbone H1att (H1N1) without IGIP. IGIP-H1att- and H1caLen-vaccinated mice were protected against lethal challenge with a homologous virus. The IGIP-H1att vaccine generated robust serum HAI responses in naïve mice against the homologous virus, equal or better than those obtained with the H1caLen vaccine. Analyses of IgG and IgA responses using a protein microarray revealed qualitative differences in humoral and mucosal responses between vaccine groups. Overall, serum and bronchoalveolar lavage samples from the IGIP-H1att group showed trends towards increased stimulation of IgG and IgA responses compared to H1caLen samples. In summary, the introduction of genes encoding immunomodulatory functions into a candidate LAIV can serve as natural adjuvants to improve overall vaccine safety and efficacy.
Collapse
|
17
|
Nguyen TQ, Rollon R, Choi YK. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021; 13:1011. [PMID: 34071367 PMCID: PMC8228315 DOI: 10.3390/v13061011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model-including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates-for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.
Collapse
Affiliation(s)
- Thi-Quyen Nguyen
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea; (T.-Q.N.); (R.R.)
- Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
18
|
Spruit CM, Nemanichvili N, Okamatsu M, Takematsu H, Boons GJ, de Vries RP. N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses 2021; 13:815. [PMID: 34062844 PMCID: PMC8147317 DOI: 10.3390/v13050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in influenza virus infection is the binding of hemagglutinin to sialic acid-containing glycans present on the cell surface. Over 50 different sialic acid modifications are known, of which N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the two main species. Animal models with α2,6 linked Neu5Ac in the upper respiratory tract, similar to humans, are preferred to enable and mimic infection with unadapted human influenza A viruses. Animal models that are currently most often used to study human influenza are mice and ferrets. Additionally, guinea pigs, cotton rats, Syrian hamsters, tree shrews, domestic swine, and non-human primates (macaques and marmosets) are discussed. The presence of NeuGc and the distribution of sialic acid linkages in the most commonly used models is summarized and experimentally determined. We also evaluated the role of Neu5Gc in infection using Neu5Gc binding viruses and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH)-/- knockout mice, which lack Neu5Gc and concluded that Neu5Gc is unlikely to be a decoy receptor. This article provides a base for choosing an appropriate animal model. Although mice are one of the most favored models, they are hardly naturally susceptible to infection with human influenza viruses, possibly because they express mainly α2,3 linked sialic acids with both Neu5Ac and Neu5Gc modifications. We suggest using ferrets, which resemble humans closely in the sialic acid content, both in the linkages and the lack of Neu5Gc, lung organization, susceptibility, and disease pathogenesis.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| | - Nikoloz Nemanichvili
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan;
| | - Hiromu Takematsu
- Department of Molecular Cell Biology, Faculty of Medical Technology, Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake 470-1192, Aichi, Japan;
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (C.M.S.); (G.-J.B.)
| |
Collapse
|
19
|
Characterization of Novel Cross-Reactive Influenza B Virus Hemagglutinin Head Specific Antibodies That Lack Hemagglutination Inhibition Activity. J Virol 2020; 94:JVI.01185-20. [PMID: 32907980 DOI: 10.1128/jvi.01185-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Humoral immune responses to influenza virus vaccines in elderly individuals are poorly adapted toward new antigenically drifted influenza virus strains. Instead, older individuals respond in an original antigenic sin fashion and produce much more cross-reactive but less potent antibodies. Here, we investigated four influenza B virus hemagglutinin (HA) head specific, hemagglutination inhibition-inactive monoclonal antibodies (MAbs) from elderly individuals. We found that they were broadly reactive within the B/Victoria/2/1987-like lineage, and two were highly cross-reactive with B/Yamagata/16/1988-like lineage viruses. The MAbs were found to be neutralizing, to utilize Fc effector functions, and to be protective against lethal viral challenge in a mouse model. In order to identify residues on the influenza B virus hemagglutinin interacting with the MAbs, we generated escape mutant viruses. Interestingly, escape from these MAbs led to numerous HA mutations within the head domain, including in the defined antigenic sites. We observed that each individual escape mutant virus was able to avoid neutralization by its respective MAb along with other MAbs in the panel, although in many cases binding activity was maintained. Point mutant viruses indicated that K90 is critical for the neutralization of two MAbs, while escape from the other two MAbs required a combination of mutations in the hemagglutinin. Three of four escape mutant viruses had increased lethality in the DBA2/J mouse model. Our work indicates that these cross-reactive antibodies have the potential to cause antigenic drift in the viral population by driving mutations that increase virus fitness. However, binding activity and cross-neutralization were maintained by a majority of antibodies in the panel, suggesting that this drift may not lead to escape from antibody-mediated protection.IMPORTANCE Understanding the immune response that older individuals mount to influenza virus vaccination and infection is critical in order to design better vaccines for this age group. Here, we show that older individuals make broadly neutralizing antibodies that have no hemagglutination-inhibiting activity and are less potent than strain-specific antibodies. These antibodies could drive viral escape from neutralization but did not result in escape from binding. Given their different mechanisms of action, they might retain protective activity even against escape variants.
Collapse
|
20
|
Cardenas-Garcia S, Caceres CJ, Rajao D, Perez DR. Reverse genetics for influenza B viruses and recent advances in vaccine development. Curr Opin Virol 2020; 44:191-202. [PMID: 33254031 PMCID: PMC8693393 DOI: 10.1016/j.coviro.2020.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Influenza B virus is a respiratory pathogen that affects more severely the pediatric and elderly populations. There are two lineages of influenza B virus that seem to have differential predilection for age groups. Both lineages can co-circulate during the influenza season however one is usually more prominent than the other depending on the season. There are no defined indicators to predict which lineage will dominate in any given season. In recent years, the addition of viruses from both lineages to the seasonal influenza vaccine formulation has improved vaccine protection, although quadrivalent vaccines are not available worldwide. Reverse genetics has facilitated advancements in the field of vaccine development against influenza B virus. Different strategies have been explored showing promising results that could potentially lead to the development broadly protective influenza B virus vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| | - C Joaquin Caceres
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniela Rajao
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, 953 College Station Rd, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
Rao GK, Prell RA, Laing ST, Burleson SCM, Nguyen A, McBride JM, Zhang C, Sheinson D, Halpern WG. In Vivo Assessment of Antibody-Dependent Enhancement of Influenza B Infection. Toxicol Sci 2020; 169:409-421. [PMID: 30796434 DOI: 10.1093/toxsci/kfz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A theoretical safety concern proposed in the influenza literature is that therapeutic antiviral antibodies could have the potential for antibody-dependent enhancement (ADE) of infection and disease. ADE may occur when virus-specific antibodies at subtherapeutic, nonneutralizing concentrations facilitate virus uptake and, in some cases, enhance replication, which can lead to an exacerbation of virus-mediated disease. Alternatively, ADE may occur due to antibody-dependent complement activation exacerbating virus-mediated disease in the absence of increased replication. As a result of this theoretical safety concern, safety assessment of anti-influenza antibodies may include an in vivo evaluation of ADE of infection and/or disease. These studies were conducted to investigate the potential of MHAB5553A, a broadly specific, neutralizing therapeutic anti-influenza B antibody, to elicit ADE of infection and disease in mouse models of influenza B infection. In parallel studies, female DBA/2J mice were infected with either influenza B/Victoria/504/2000 or influenza B/Brisbane/60/2008 representing distinct lineages. Assessment of ADE was based on an integration of results from multiple endpoints, including infectious lung viral titers and genomes, body weight, mortality, lung weight, and histopathology. In these studies, the high dose of 15 mg/kg MHAB5553A resulted in substantial attenuation of influenza pneumonia, with more modest effects at 1.5 mg/kg; whereas MHAB5553A treatment at 0.15 or 0.015 mg/kg was generally comparable to vehicle-treated controls. Our results demonstrate that MHAB5553A across a broad range of doses did not enhance primary influenza B infection or disease in this model, and represent a nonclinical de-risking of the ADE potential with this antibody.
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Rodney A Prell
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | - Steven T Laing
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| | | | | | | | | | - Daniel Sheinson
- Biostatistics, Genentech, Inc., South San Francisco, California 94080
| | - Wendy G Halpern
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
22
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
23
|
Martinez-Sobrido L, Blanco-Lobo P, Rodriguez L, Fitzgerald T, Zhang H, Nguyen P, Anderson CS, Holden-Wiltse J, Bandyopadhyay S, Nogales A, DeDiego ML, Wasik BR, Miller BL, Henry C, Wilson PC, Sangster MY, Treanor JJ, Topham DJ, Byrd-Leotis L, Steinhauer DA, Cummings RD, Luczo JM, Tompkins SM, Sakamoto K, Jones CA, Steel J, Lowen AC, Danzy S, Tao H, Fink AL, Klein SL, Wohlgemuth N, Fenstermacher KJ, el Najjar F, Pekosz A, Sauer L, Lewis MK, Shaw-Saliba K, Rothman RE, Liu ZY, Chen KF, Parrish CR, Voorhees IEH, Kawaoka Y, Neumann G, Chiba S, Fan S, Hatta M, Kong H, Zhong G, Wang G, Uccellini MB, García-Sastre A, Perez DR, Ferreri LM, Herfst S, Richard M, Fouchier R, Burke D, Pattinson D, Smith DJ, Meliopoulos V, Freiden P, Livingston B, Sharp B, Cherry S, Dib JC, Yang G, Russell CJ, Barman S, Webby RJ, Krauss S, Danner A, Woodard K, Peiris M, Perera RAPM, Chan MCW, Govorkova EA, Marathe BM, Pascua PNQ, Smith G, Li YT, Thomas PG, Schultz-Cherry S. Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathog 2020; 16:e1008409. [PMID: 32287326 PMCID: PMC7182277 DOI: 10.1371/journal.ppat.1008409] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/24/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023] Open
Abstract
The continual emergence of novel influenza A strains from non-human hosts requires constant vigilance and the need for ongoing research to identify strains that may pose a human public health risk. Since 1999, canine H3 influenza A viruses (CIVs) have caused many thousands or millions of respiratory infections in dogs in the United States. While no human infections with CIVs have been reported to date, these viruses could pose a zoonotic risk. In these studies, the National Institutes of Allergy and Infectious Diseases (NIAID) Centers of Excellence for Influenza Research and Surveillance (CEIRS) network collaboratively demonstrated that CIVs replicated in some primary human cells and transmitted effectively in mammalian models. While people born after 1970 had little or no pre-existing humoral immunity against CIVs, the viruses were sensitive to existing antivirals and we identified a panel of H3 cross-reactive human monoclonal antibodies (hmAbs) that could have prophylactic and/or therapeutic value. Our data predict these CIVs posed a low risk to humans. Importantly, we showed that the CEIRS network could work together to provide basic research information important for characterizing emerging influenza viruses, although there were valuable lessons learned.
Collapse
MESH Headings
- Animals
- Communicable Diseases, Emerging/transmission
- Communicable Diseases, Emerging/veterinary
- Communicable Diseases, Emerging/virology
- Dog Diseases/transmission
- Dog Diseases/virology
- Dogs
- Ferrets
- Guinea Pigs
- Humans
- Influenza A Virus, H3N2 Subtype/classification
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/isolation & purification
- Influenza A Virus, H3N8 Subtype/classification
- Influenza A Virus, H3N8 Subtype/genetics
- Influenza A Virus, H3N8 Subtype/isolation & purification
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/isolation & purification
- Influenza, Human/transmission
- Influenza, Human/virology
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- United States
- Zoonoses/transmission
- Zoonoses/virology
Collapse
Affiliation(s)
- Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Theresa Fitzgerald
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Hanyuan Zhang
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Phuong Nguyen
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Christopher S. Anderson
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Sanjukta Bandyopadhyay
- Department of Biostatistics and Computational Biology and Clinical and Translational Science Institute, University of Rochester, Rochester, New York, United States of America
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Marta L. DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Brian R. Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Benjamin L. Miller
- Department of Dermatology, University of Rochester, Rochester, New York, United States of America
- Materials Science Program, University of Rochester, Rochester, New York, United States of America
| | - Carole Henry
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Patrick C. Wilson
- The Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - John J. Treanor
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, United States of America
| | - Lauren Byrd-Leotis
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Steinhauer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D. Cummings
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Beth Israel Deaconess Medical Center, Department of Surgery and Harvard Medical School Center for Glycoscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jasmina M. Luczo
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen M. Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, University of Georgia, Athens, Georgia, United States of America
| | - Cheryl A. Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hui Tao
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicholas Wohlgemuth
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Katherine J. Fenstermacher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Farah el Najjar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lauren Sauer
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitra K. Lewis
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhen-Ying Liu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taiwan
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Ian E. H. Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Masato Hatta
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison. Madison, Wisconsin, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Melissa B. Uccellini
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Daniel R. Perez
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Lucas M. Ferreri
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Sander Herfst
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Ron Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - David Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David Pattinson
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sean Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Juan Carlos Dib
- Tropical Health Foundation, Santa Marta, Magdalena, Colombia
| | - Guohua Yang
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Karlie Woodard
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - R. A. P. M. Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - M. C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Republic of China
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Philippe N. Q. Pascua
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Gavin Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
24
|
Rijal P, Wang BB, Tan TK, Schimanski L, Janesch P, Dong T, McCauley JW, Daniels RS, Townsend AR, Huang KYA. Broadly Inhibiting Antineuraminidase Monoclonal Antibodies Induced by Trivalent Influenza Vaccine and H7N9 Infection in Humans. J Virol 2020; 94:e01182-19. [PMID: 31748388 PMCID: PMC6997757 DOI: 10.1128/jvi.01182-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 01/24/2023] Open
Abstract
The majority of antibodies induced by influenza neuraminidase (NA), like those against hemagglutinin (HA), are relatively specific to viruses isolated within a limited time window, as seen in serological studies and the analysis of many murine monoclonal antibodies (MAbs). We report three broadly reactive human MAbs targeting N1 NA. Two were isolated from a young adult vaccinated with trivalent influenza vaccine (TIV), which inhibited N1 NA from viruses isolated from humans over a period of a hundred years. The third antibody, isolated from a child with acute mild H7N9 infection, inhibited both group 1 N1 and group 2 N9 NAs. In addition, the antibodies cross-inhibited the N1 NAs of highly pathogenic avian H5N1 influenza viruses. These antibodies are protective in prophylaxis against seasonal H1N1 viruses in mice. This study demonstrates that human antibodies to N1 NA with exceptional cross-reactivity can be recalled by vaccination and highlights the importance of standardizing the NA antigen in seasonal vaccines to offer optimal protection.IMPORTANCE Antibodies to the influenza virus NA can provide protection against influenza disease. Analysis of human antibodies to NA lags behind that of antibodies to HA. We show that human monoclonal antibodies against NA induced by vaccination and infection can be very broadly reactive, with the ability to inhibit a wide spectrum of N1 NAs on viruses isolated between 1918 and 2018. This suggests that antibodies to NA may be a useful therapy and that the efficacy of influenza vaccines could be enhanced by ensuring the appropriate content of NA antigen.
Collapse
Affiliation(s)
- Pramila Rijal
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bei Bei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lisa Schimanski
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philipp Janesch
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Rodney S Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Alain R Townsend
- Center for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kuan-Ying A Huang
- Division of Infectious Diseases, Department of Paediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
25
|
Oliva J, Mettier J, Sedano L, Delverdier M, Bourgès-Abella N, Hause B, Loupias J, Pardo I, Bleuart C, Bordignon PJ, Meunier E, Le Goffic R, Meyer G, Ducatez MF. Murine Model for the Study of Influenza D Virus. J Virol 2020; 94:e01662-19. [PMID: 31776281 PMCID: PMC6997775 DOI: 10.1128/jvi.01662-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
A novel genus within the Orthomyxoviridae family was identified in the United States and named influenza D virus (IDV). Bovines have been proposed to be the primary host, and three main viral lineages (D/OK-like, D/660-like, and D/Japan-like) have been described. Experimental infections had previously been performed in swine, ferrets, calves, and guinea pigs in order to study IDV pathogenesis. We developed a murine experimental model to facilitate the study of IDV pathogenesis and the immune response. DBA/2 mice were inoculated with 105 50% tissue culture infective dose (TCID50) of D/bovine/France/5920/2014 (D/OK-like). No clinical signs or weight loss were observed. Viral replication was observed mainly in the upper respiratory tract (nasal turbinates) but also in the lower respiratory tract of infected mice, with a peak at 4 days postinfection. Moreover, the virus was also detected in the intestines. All infected mice seroconverted by 14 days postinfection. Transcriptomic analyses demonstrated that IDV induced the activation of proinflammatory genes, such as gamma interferon (IFN-γ) and CCL2. Inoculation of NF-κB-luciferase and Ifnar1-/- mice demonstrated that IDV induced mild inflammation and that a type I interferon response was not necessary in IDV clearance. Adaptation of IDV by serial passages in mice was not sufficient to induce disease or increased pathogenesis. Taken together, present data and comparisons with the calf model show that our mouse model allows for the study of IDV replication and fitness (before selected viruses may be inoculated on calves) and also of the immune response.IMPORTANCE Influenza D virus (IDV), a new genus of Orthomyxoviridae family, presents a large host range and a worldwide circulation. The pathogenicity of this virus has been studied in the calf model. The mouse model is frequently used to enable a first assessment of a pathogen's fitness, replication, and pathogenesis for influenza A and B viruses. We showed that DBA/2 mice are a relevant in vivo model for the study of IDV replication. This model will allow for rapid IDV fitness and replication evaluation and will enable phenotypic comparisons between isolated viruses. It will also allow for a better understanding of the immune response induced after IDV infection.
Collapse
Affiliation(s)
- J Oliva
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J Mettier
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - L Sedano
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - M Delverdier
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - B Hause
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - J Loupias
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - I Pardo
- Université de Toulouse, ENVT, Toulouse, France
| | - C Bleuart
- Université de Toulouse, ENVT, Toulouse, France
| | - P J Bordignon
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - E Meunier
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - R Le Goffic
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - G Meyer
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - M F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
26
|
Ivan FX, Kwoh CK. Rule-based meta-analysis reveals the major role of PB2 in influencing influenza A virus virulence in mice. BMC Genomics 2019; 20:973. [PMID: 31874643 PMCID: PMC6929465 DOI: 10.1186/s12864-019-6295-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Influenza A virus (IAV) poses threats to human health and life. Many individual studies have been carried out in mice to uncover the viral factors responsible for the virulence of IAV infections. Nonetheless, a single study may not provide enough confident about virulence factors, hence combining several studies for a meta-analysis is desired to provide better views. For this, we documented more than 500 records of IAV infections in mice, whose viral proteins could be retrieved and the mouse lethal dose 50 or alternatively, weight loss and/or survival data, was/were available for virulence classification. Results IAV virulence models were learned from various datasets containing aligned IAV proteins and the corresponding two virulence classes (avirulent and virulent) or three virulence classes (low, intermediate and high virulence). Three proven rule-based learning approaches, i.e., OneR, JRip and PART, and additionally random forest were used for modelling. PART models achieved the best performance, with moderate average model accuracies ranged from 65.0 to 84.4% and from 54.0 to 66.6% for the two-class and three-class problems, respectively. PART models were comparable to or even better than random forest models and should be preferred based on the Occam’s razor principle. Interestingly, the average accuracy of the models was improved when host information was taken into account. For model interpretation, we observed that although many sites in HA were highly correlated with virulence, PART models based on sites in PB2 could compete against and were often better than PART models based on sites in HA. Moreover, PART had a high preference to include sites in PB2 when models were learned from datasets containing the concatenated alignments of all IAV proteins. Several sites with a known contribution to virulence were found as the top protein sites, and site pairs that may synergistically influence virulence were also uncovered. Conclusion Modelling IAV virulence is a challenging problem. Rule-based models generated using viral proteins are useful for its advantage in interpretation, but only achieve moderate performance. Development of more advanced approaches that learn models from features extracted from both viral and host proteins shall be considered for future works.
Collapse
Affiliation(s)
- Fransiskus Xaverius Ivan
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Chee Keong Kwoh
- Biomedical Informatics Lab, School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
27
|
Stauft CB, Yang C, Coleman JR, Boltz D, Chin C, Kushnir A, Mueller S. Live-attenuated H1N1 influenza vaccine candidate displays potent efficacy in mice and ferrets. PLoS One 2019; 14:e0223784. [PMID: 31609986 PMCID: PMC6791556 DOI: 10.1371/journal.pone.0223784] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022] Open
Abstract
Currently, influenza vaccine manufacturers need to produce 1-5 x 107 PFU of each vaccine strain to fill one dose of the current live-attenuated-influenza-vaccine (LAIV). To make a single dose of inactivated vaccine (15 ug of each hemagglutinin), the equivalent of 1010 PFU of each vaccine strains need to be grown. This high dose requirement is a major drawback for manufacturing as well as rapidly sourcing sufficient doses during a pandemic. Using our computer-aided vaccine platform Synthetic Attenuated Virus Engineering (SAVE), we created a vaccine candidate against pandemic H1N1 A/CA/07/2009 (CodaVax-H1N1) with robust efficacy in mice and ferrets, and is protective at a much lower dose than the current LAIV. CodaVax-H1N1 is currently in Phase I/II clinical trials. The hemagglutinin (HA) and neuraminidase (NA) gene segments of A/California/07/2009 (H1N1) (CA07) were "de-optimized" and a LAIV was generated ex silico using DNA synthesis. In DBA/2 mice, vaccination at a very low dose (100 or approximately 1 PFU) with CodaVax-H1N1 prevented disease after lethal challenge with wild-type H1N1. In BALB/c mice, as little as 103 PFU was protective against lethal challenge with mouse-adapted H1N1. In ferrets, CodaVax-H1N1 was more potent compared to currently licensed LAIV and still effective at a low dose of 103 PFU at preventing replication of challenge virus.
Collapse
Affiliation(s)
| | - Chen Yang
- Codagenix, Inc., Farmingdale, New York, United States of America
| | | | - David Boltz
- Life Sciences Group, IIT Research Institute, Chicago, Illinois, United States of America
| | - Chiahsuan Chin
- Codagenix, Inc., Farmingdale, New York, United States of America
| | - Anna Kushnir
- Codagenix, Inc., Farmingdale, New York, United States of America
| | - Steffen Mueller
- Codagenix, Inc., Farmingdale, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Boonyarattanasoonthorn T, Elewa YHA, Tag-El-Din-Hassan HT, Morimatsu M, Agui T. Profiling of cellular immune responses to Mycoplasma pulmonis infection in C57BL/6 and DBA/2 mice. INFECTION GENETICS AND EVOLUTION 2019; 73:55-65. [PMID: 31026602 DOI: 10.1016/j.meegid.2019.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 11/26/2022]
Abstract
Mycoplasma infections cause respiratory tract damages and atypical pneumonia, resulting in serious problems in humans and animals worldwide. It is well known that laboratory inbred mouse strains show various susceptibility to Mycoplasma pulmonis (M. pulmonis) infection, which causes murine respiratory mycoplasmosis. In this study, we aimed to demonstrate the difference in cellular immune responses between resistant strain, C57BL/6NCrSlc (B6) and susceptible strain, DBA/2CrSlc (D2) after challenging M. pulmonis infection. D2 mice showed higher amount of bacterial proliferation in lung, higher pulmonary infiltration of immune cells such as neutrophils, macrophages, and lymphocytes, and higher levels of interleukin (IL)-1β, IL-6, IL-17A, and tumor necrosis factor-α in bronchoalveolar lavage fluid than did B6 mice. The results of this study suggest that D2 mice are more susceptible than B6 mice to M. pulmonis infection due to a hyper-immune inflammatory response.
Collapse
Affiliation(s)
- Tussapon Boonyarattanasoonthorn
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hassan T Tag-El-Din-Hassan
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Poultry Production Department, Mansoura University, Mansoura 35516, Egypt
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Agui
- Laboratory of Laboratory Animal Science and Medicine, Department of Applied Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| |
Collapse
|
29
|
Eisfeld AJ, Gasper DJ, Suresh M, Kawaoka Y. C57BL/6J and C57BL/6NJ Mice Are Differentially Susceptible to Inflammation-Associated Disease Caused by Influenza A Virus. Front Microbiol 2019; 9:3307. [PMID: 30713529 PMCID: PMC6346684 DOI: 10.3389/fmicb.2018.03307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses cause seasonal epidemics and sporadic pandemics, and are a major burden on human health. To develop better countermeasures and improve influenza disease outcomes, a clearer understanding of influenza pathogenesis is necessary. Host genetic factors have emerged as potential regulators of human influenza disease susceptibility, and in the mouse model, genetic background has been clearly linked to influenza pathogenicity. Here, we show that C57BL/6J mice are significantly more susceptible to disease caused by a 2009 pandemic H1N1 virus, an H7N9 virus, and a highly pathogenic H5N1 influenza virus compared to the closely related substrain, C57BL/6NJ. Mechanistically, influenza virus infection in C57BL/6J mice results in earlier presentation of edema, increased immune cell infiltration, higher levels of inflammatory cytokines, greater tissue damage, and delayed activation of regenerative processes in infected lung tissues compared to C57BL/6NJ mice. These differences are not dependent on virus replication levels. Six genes with known coding region differences between C57BL/6J and C57BL/6NJ strains exhibit increased transcript levels in influenza virus-infected mouse lungs, suggesting potential contributions to regulation of disease susceptibility. This work uncovers a previously unappreciated difference in disease susceptibility between the closely related C57BL/6J and C57BL/6NJ mice, which may be exploited in future studies to identify host factors and/or specific genetic elements that regulate host-dependent inflammatory mechanisms involved in influenza virus pathogenicity.
Collapse
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - David J Gasper
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - M Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States.,Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Nicol MQ, Campbell GM, Shaw DJ, Dransfield I, Ligertwood Y, Beard PM, Nash AA, Dutia BM. Lack of IFNγ signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology 2019; 526:155-164. [PMID: 30390564 PMCID: PMC6286381 DOI: 10.1016/j.virol.2018.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
IFNγ is a key regulator of inflammatory responses but its role in influenza A virus (IAV) pathogenesis is unclear. Our studies show that infection of mice lacking the IFNγ receptor (IFNγR-/-) at a dose which caused severe disease in wild type 129 Sv/Ev (WT) mice resulted in milder clinical symptoms and significantly lower lung virus titers by 6 days post-infection (dpi). Viral spread was reduced in IFNγR-/- lungs at 2 and 4 dpi. Levels of inflammatory cytokines and chemokines were lower in IFNγR-/- mice at 2 dpi and there was less infiltration of monocyte/macrophage lineage cells than in WT mice. There was no difference in CD4+ and CD8+ T cells and alveolar macrophages in the bronchoalveolar lavage fluid (BALF) at 2 and 4 dpi but by 4 dpi IFNγR-/- mice had significantly higher percentages of neutrophils. Our data strongly suggest that IAV can use the inflammatory response to promote viral spread.
Collapse
Affiliation(s)
- Marlynne Q Nicol
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Gillian M Campbell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Darren J Shaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, EH16 4TL, United Kingdom
| | - Yvonne Ligertwood
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Philippa M Beard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom; The Pirbright Institute, Ash Road, Woking GU24 0NF, United Kingdom
| | - Anthony A Nash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom
| | - Bernadette M Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, United Kingdom.
| |
Collapse
|
31
|
Amanat F, Meade P, Strohmeier S, Krammer F. Cross-reactive antibodies binding to H4 hemagglutinin protect against a lethal H4N6 influenza virus challenge in the mouse model. Emerg Microbes Infect 2019; 8:155-168. [PMID: 30866770 PMCID: PMC6455122 DOI: 10.1080/22221751.2018.1564369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
Influenza viruses of the H4 subtype are widespread in wild birds, circulate in domestic poultry, readily infect mammals, and tolerate the insertion of a polybasic cleavage site. In addition, serological evidence suggests that humans working with poultry are exposed to these viruses. While H4 viruses are not of immediate pandemic concern, there is a lack of knowledge regarding their antigenicity. In order to study viruses of the H4 subtype, we generated and characterized a panel of antibodies that bind a wide variety of H4 hemagglutinins from avian and swine isolates of both the Eurasian and North American lineage. We further characterized these antibodies using novel recombinant H4N6 viruses that were found to be lethal in DBA/2J mice. Non-neutralizing antibodies, which had activity in an antibody dependent cell-mediated cytotoxicity reporter assay in vitro, protected mice against challenge in vivo, highlighting the importance of effector functions. Our data suggest a high degree of antigenic conservation of the H4 hemagglutinin.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Alternative Strategy for a Quadrivalent Live Attenuated Influenza Virus Vaccine. J Virol 2018; 92:JVI.01025-18. [PMID: 30135124 PMCID: PMC6189493 DOI: 10.1128/jvi.01025-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza viruses infect 1 billion people worldwide and are associated with ∼500,000 deaths annually. In addition, the never-ending emergence of zoonotic influenza viruses associated with lethal human infections and of pandemic concern calls for the development of better vaccines and/or vaccination strategies against influenza virus. Regardless of the strategy, novel influenza virus vaccines must aim at providing protection against both seasonal influenza A and B viruses. In this study, we tested an alternative quadrivalent live attenuated influenza virus vaccine (QIV) formulation whose individual components have been previously shown to provide protection. We demonstrate in proof-of principle studies in mice that the QIV provides effective protection against lethal challenge with either influenza A or B virus. Influenza virus infections continue to pose a major public health threat worldwide associated with seasonal epidemics and sporadic pandemics. Vaccination is considered the first line of defense against influenza. Live attenuated influenza virus vaccines (LAIVs) may provide superior responses compared to inactivated vaccines because the former can better elicit a combination of humoral and cellular responses by mimicking a natural infection. Unfortunately, during the 2013–2014, 2014–2015, and 2015–2016 seasons, concerns emerged about the effectiveness of the only LAIV approved in the United States that prevented the Advisory Committee on Immunization Practices (ACIP) from recommending its use. Such drawbacks open up the opportunity for alternative LAIV strategies that could overcome such concerns. Previously, we developed a combined strategy of temperature-sensitive mutations in the PB2 and PB1 segments and an epitope tag in the C terminus of PB1 that effectively attenuates influenza A viruses of avian and mammalian origin. More recently, we adopted a similar strategy for influenza B viruses. The resulting attenuated (att) influenza A and B viruses were safe, immunogenic, and protective against lethal influenza virus challenge in a variety of animal models. In this report, we provide evidence of the potential use of our att strategy in a quadrivalent LAIV (QIV) formulation carrying H3N2 and H1N1 influenza A virus subtype viruses and two antigenic lineages of influenza B viruses. In naive DBA/2J mice, two doses of the QIV elicited hemagglutination inhibition (HI) responses with HI titers of ≥40 and effectively protected against lethal challenge with prototypical pandemic H1N1 influenza A and influenza B virus strains. IMPORTANCE Seasonal influenza viruses infect 1 billion people worldwide and are associated with ∼500,000 deaths annually. In addition, the never-ending emergence of zoonotic influenza viruses associated with lethal human infections and of pandemic concern calls for the development of better vaccines and/or vaccination strategies against influenza virus. Regardless of the strategy, novel influenza virus vaccines must aim at providing protection against both seasonal influenza A and B viruses. In this study, we tested an alternative quadrivalent live attenuated influenza virus vaccine (QIV) formulation whose individual components have been previously shown to provide protection. We demonstrate in proof-of principle studies in mice that the QIV provides effective protection against lethal challenge with either influenza A or B virus.
Collapse
|
33
|
Bernasconi V, Bernocchi B, Ye L, Lê MQ, Omokanye A, Carpentier R, Schön K, Saelens X, Staeheli P, Betbeder D, Lycke N. Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Front Immunol 2018; 9:2060. [PMID: 30271406 PMCID: PMC6146233 DOI: 10.3389/fimmu.2018.02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependent manner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies.
Collapse
Affiliation(s)
- Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Bernocchi
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Minh Quan Lê
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Ajibola Omokanye
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France.,Faculté des Sciences du Sport, University of Artois, Arras, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
El-Shesheny R, Franks J, Marathe BM, Hasan MK, Feeroz MM, Krauss S, Vogel P, McKenzie P, Webby RJ, Webster RG. Genetic characterization and pathogenic potential of H10 avian influenza viruses isolated from live poultry markets in Bangladesh. Sci Rep 2018; 8:10693. [PMID: 30013138 PMCID: PMC6048039 DOI: 10.1038/s41598-018-29079-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022] Open
Abstract
Fatal human cases of avian-origin H10N8 influenza virus infections have raised concern about their potential for human-to-human transmission. H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic aquatic birds across Eurasia and North America. We isolated eight H10 AIVs (four H10N7, two H10N9, one H10N1, and one H10N6) from live poultry markets in Bangladesh. Genetic analyses demonstrated that all eight isolates belong to the Eurasian lineage. HA phylogenetic and antigenic analyses indicated that two antigenically distinct groups of H10 AIVs are circulating in Bangladeshi live poultry markets. We evaluated the virulence of four representative H10 AIV strains in DBA/2J mice and found that they replicated efficiently in mice without prior adaptation. Moreover, H10N6 and H10N1 AIVs caused high mortality with systemic dissemination. These results indicate that H10 AIVs pose a potential threat to human health and the mechanisms of their transmissibility should be elucidated.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bangladesh
- Disease Models, Animal
- Hemagglutination, Viral/immunology
- Humans
- Influenza A Virus, H10N7 Subtype/genetics
- Influenza A Virus, H10N7 Subtype/immunology
- Influenza A Virus, H10N7 Subtype/isolation & purification
- Influenza A Virus, H10N7 Subtype/pathogenicity
- Mice
- Mice, Inbred DBA
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/transmission
- Orthomyxoviridae Infections/virology
- Phylogeny
- Poultry/virology
- Poultry Diseases/immunology
- Poultry Diseases/mortality
- Poultry Diseases/transmission
- Poultry Diseases/virology
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Virus Replication
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - M Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
35
|
Muralidharan A, Gravel C, Duran A, Larocque L, Li C, Zetner A, Van Domselaar G, Wang L, Li X. Identification of immunodominant CD8 epitope in the stalk domain of influenza B viral hemagglutinin. Biochem Biophys Res Commun 2018; 502:226-231. [PMID: 29792863 DOI: 10.1016/j.bbrc.2018.05.148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 12/21/2022]
Abstract
Human infections by type B influenza virus constitute about 25% of all influenza cases. The viral hemagglutinin is comprised of two subunits, HA1 and HA2. While HA1 is constantly evolving in an unpredictable fashion, the HA2 subunit is highly conserved, making it a potential candidate for a universal vaccine. However, immunodominant epitopes in the HA2 subunit remain largely unknown. To delineate MHC Class I epitopes, we first identified 9-mer H-2Kd-restricted CD8 T cell epitopes in the HA2 domain by in silico analyses, followed by evaluating the immunodominance of these peptides in mice challenged with the virus. Of three peptides selected through in silico analysis, the universally conserved peptide, YYSTAASSL (B/HA2-190), possessed the highest predicted binding affinity to MHC Class I and was most effective in inducing IL-2 and TNF-α in mouse splenocytes. Importantly, the peptide demonstrated best capability of stimulating peptide-specific ex-vivo cytotoxicity against target cells. Taken together, this finding would be of value for assessment of cell-mediated immune responses elicited by vaccines based on the highly conserved HA2 stalk domain.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Roger Guindon Campus, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada
| | - Amparo Duran
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Roger Guindon Campus, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No.2; Tiantan Xili, Beijing, PR China
| | - Adrian Zetner
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, MB, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington St, Winnipeg, MB, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Roger Guindon Campus, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 251 Sir Frederick Banting Driveway, K1A 0K9, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Roger Guindon Campus, Ottawa, ON, Canada.
| |
Collapse
|
36
|
Novel triple-reassortant influenza viruses in pigs, Guangxi, China. Emerg Microbes Infect 2018; 7:85. [PMID: 29765037 PMCID: PMC5953969 DOI: 10.1038/s41426-018-0088-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/10/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Considered a “mixing vessel” for influenza viruses, pigs can give rise to new influenza virus reassortants that can threaten humans. During our surveillance of pigs in Guangxi, China from 2013 to 2015, we isolated 11 H1N1 and three H3N2 influenza A viruses of swine origin (IAVs-S). Out of the 14, we detected ten novel triple-reassortant viruses, which contained surface genes (hemagglutinin and neuraminidase) from Eurasian avian-like (EA) H1N1 or seasonal human-like H3N2, matrix (M) genes from H1N1/2009 pandemic or EA H1N1, nonstructural (NS) genes from classical swine, and the remaining genes from H1N1/2009 pandemic. Mouse studies indicate that these IAVs-S replicate efficiently without prior adaptation, with some isolates demonstrating lethality. Notably, the reassortant EA H1N1 viruses with EA-like M gene have been reported in human infections. Further investigations will help to assess the potential risk of these novel triple-reassortant viruses to humans.
Collapse
|
37
|
Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses. Antimicrob Agents Chemother 2018; 62:AAC.02269-17. [PMID: 29507069 PMCID: PMC5923107 DOI: 10.1128/aac.02269-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/12/2023] Open
Abstract
Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients.
Collapse
|
38
|
El-Shesheny R, Feeroz MM, Krauss S, Vogel P, McKenzie P, Webby RJ, Webster RG. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals. Emerg Microbes Infect 2018; 7:70. [PMID: 29691394 PMCID: PMC5915612 DOI: 10.1038/s41426-018-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.
Collapse
Affiliation(s)
- Rabeh El-Shesheny
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohammed M Feeroz
- Department of Zoology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
39
|
Nogales A, Piepenbrink MS, Wang J, Ortega S, Basu M, Fucile CF, Treanor JJ, Rosenberg AF, Zand MS, Keefer MC, Martinez-Sobrido L, Kobie JJ. A Highly Potent and Broadly Neutralizing H1 Influenza-Specific Human Monoclonal Antibody. Sci Rep 2018. [PMID: 29531320 PMCID: PMC5847613 DOI: 10.1038/s41598-018-22307-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza’s propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | | | - Jiong Wang
- Division of Nephrology, University of Rochester, Rochester, NY, USA
| | - Sandra Ortega
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Christopher F Fucile
- Department of Microbiology, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Treanor
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Alexander F Rosenberg
- Department of Microbiology, Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin S Zand
- Division of Nephrology, University of Rochester, Rochester, NY, USA
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology & Immunology, University of Rochester, Rochester, NY, USA.
| | - James J Kobie
- Infectious Diseases Division, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
40
|
Syrian Hamster as an Animal Model for the Study of Human Influenza Virus Infection. J Virol 2018; 92:JVI.01693-17. [PMID: 29212926 DOI: 10.1128/jvi.01693-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
Ferrets and mice are frequently used as animal models for influenza research. However, ferrets are demanding in terms of housing space and handling, whereas mice are not naturally susceptible to infection with human influenza A or B viruses. Therefore, prior adaptation of human viruses is required for their use in mice. In addition, there are no mouse-adapted variants of the recent H3N2 viruses, because these viruses do not replicate well in mice. In this study, we investigated the susceptibility of Syrian hamsters to influenza viruses with a view to using the hamster model as an alternative to the mouse model. We found that hamsters are sensitive to influenza viruses, including the recent H3N2 viruses, without adaptation. Although the hamsters did not show weight loss or clinical signs of H3N2 virus infection, we observed pathogenic effects in the respiratory tracts of the infected animals. All of the H3N2 viruses tested replicated in the respiratory organs of the hamsters, and some of them were detected in the nasal washes of infected animals. Moreover, a 2009 pandemic (pdm09) virus and a seasonal H1N1 virus, as well as one of the two H3N2 viruses, but not a type B virus, were transmissible by the airborne route in these hamsters. Hamsters thus have the potential to be a small-animal model for the study of influenza virus infection, including studies of the pathogenicity of H3N2 viruses and other strains, as well as for use in H1N1 virus transmission studies.IMPORTANCE We found that Syrian hamsters are susceptible to human influenza viruses, including the recent H3N2 viruses, without adaptation. We also found that a pdm09 virus and a seasonal H1N1 virus, as well as one of the H3N2 viruses, but not a type B virus tested, are transmitted by the airborne route in these hamsters. Syrian hamsters thus have the potential to be used as a small-animal model for the study of human influenza viruses.
Collapse
|
41
|
Influenza Pathogenesis in Genetically Defined Resistant and Susceptible Murine Strains
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:471-479. [PMID: 28955185 PMCID: PMC5612189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The murine infection model is a cornerstone for influenza virus research and includes aspects such as disease pathogenesis, immunobiology, and vaccine and antiviral drug development. One compelling feature of the murine model is the availability of inbred mouse strains, each with a unique genetic makeup and potential for variable responses to influenza infection. Using highly controlled infection studies, the response to influenza virus infection is classified on a spectrum from susceptible to resistant, reflecting severe morbidity and high mortality, to limited or no morbidity and no mortality. Although there have been a variety of studies establishing disparate pathogenesis amongst various murine strains, thus far, there is no consensus regarding the determinants of the outcome of infection. The goal of this review is to explore and discuss the differences in pathogenesis, as well as the innate and adaptive immune responses to influenza infection that have been described in susceptible and resistant mouse strains. Understanding how host genetics influences the response to influenza infection provides valuable insight into the variable responses seen in vaccine or drug efficacy studies, as well as indicates possible mechanisms contributing to increased disease severity in humans infected with influenza virus with no known risk factors.
Collapse
|
42
|
Park S, Il Kim J, Lee I, Bae JY, Yoo K, Nam M, Kim J, Sook Park M, Song KJ, Song JW, Kee SH, Park MS. Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Sci Rep 2017; 7:10928. [PMID: 28883554 PMCID: PMC5589767 DOI: 10.1038/s41598-017-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/23/2017] [Indexed: 01/30/2023] Open
Abstract
It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kirim Yoo
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Misun Nam
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Juwon Kim
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Mee Sook Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, and the Institute for Viral Diseases, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
43
|
Rodriguez L, Nogales A, Martínez-Sobrido L. Influenza A Virus Studies in a Mouse Model of Infection. J Vis Exp 2017. [PMID: 28930978 DOI: 10.3791/55898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Influenza viruses cause over 500,000 deaths worldwide1 and are associated with an annual cost of 12 - 14 billion USD in the United States alone considering direct medical and hospitalization expenses and work absenteeism2. Animal models are crucial in Influenza A virus (IAV) studies to evaluate viral pathogenesis, host-pathogen interactions, immune responses, and the efficacy of current and/or novel vaccine approaches as well as antivirals. Mice are an advantageous small animal model because their immune system is evolutionarily similar to that found in humans, they are available from commercial vendors as genetically identical subjects, there are multiple strains that can be exploited to evaluate the genetic basis of infections, and they are relatively inexpensive and easy to manipulate. To recapitulate IAV infection in humans via the airways, mice are first anesthetized prior to intranasal inoculation with infectious IAVs under proper biosafety containment. After infection, the pathogenesis of IAVs is determined by monitoring daily the morbidity (body weight loss) and mortality (survival) rate. In addition, viral pathogenesis can also be evaluated by assessing virus replication in the upper (nasal mucosa) or lower (lungs) respiratory tract of infected mice. Humoral responses upon IAV infection can be rapidly evaluated by non-invasive bleeding and secondary antibody detection assays aimed at detecting the presence of total or neutralizing antibodies. Here, we describe the common methods used to infect mice intranasally (i.n) with IAV and evaluate pathogenesis, humoral immune responses and protection efficacy.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry;
| |
Collapse
|
44
|
Watkins HC, Rappazzo CG, Higgins JS, Sun X, Brock N, Chau A, Misra A, Cannizzo JPB, King MR, Maines TR, Leifer CA, Whittaker GR, DeLisa MP, Putnam D. Safe Recombinant Outer Membrane Vesicles that Display M2e Elicit Heterologous Influenza Protection. Mol Ther 2017; 25:989-1002. [PMID: 28215994 DOI: 10.1016/j.ymthe.2017.01.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 01/10/2023] Open
Abstract
Recombinant, Escherichia coli-derived outer membrane vesicles (rOMVs), which display heterologous protein subunits, have potential as a vaccine adjuvant platform. One drawback to rOMVs is their lipopolysaccharide (LPS) content, limiting their translatability to the clinic due to potential adverse effects. Here, we explore a unique rOMV construct with structurally remodeled lipids containing only the lipid IVa portion of LPS, which does not stimulate human TLR4. The rOMVs are derived from a genetically engineered B strain of E. coli, ClearColi, which produces lipid IVa, and which was further engineered in our laboratory to hypervesiculate and make rOMVs. We report that rOMVs derived from this lipid IVa strain have substantially attenuated pyrogenicity yet retain high levels of immunogenicity, promote dendritic cell maturation, and generate a balanced Th1/Th2 humoral response. Additionally, an influenza A virus matrix 2 protein-based antigen displayed on these rOMVs resulted in 100% survival against a lethal challenge with two influenza A virus strains (H1N1 and H3N2) in mice with different genetic backgrounds (BALB/c, C57BL/6, and DBA/2J). Additionally, a two-log reduction of lung viral titer was achieved in a ferret model of influenza infection with human pandemic H1N1. The rOMVs reported herein represent a potentially safe and simple subunit vaccine delivery platform.
Collapse
Affiliation(s)
- Hannah C Watkins
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - C Garrett Rappazzo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jaclyn S Higgins
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Nicole Brock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Annie Chau
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Aditya Misra
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joseph P B Cannizzo
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Vollmer AH, Gebre MS, Barnard DL. Serum amyloid A (SAA) is an early biomarker of influenza virus disease in BALB/c, C57BL/2, Swiss-Webster, and DBA.2 mice. Antiviral Res 2016; 133:196-207. [PMID: 27523492 PMCID: PMC5042138 DOI: 10.1016/j.antiviral.2016.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 11/20/2022]
Abstract
Assessment of influenza virus disease progression and efficacy of antiviral therapy in the widely used mouse models relies mostly on body weight loss and lung virus titers as markers of disease. However, both parameters have their shortcomings. Therefore, the aim of our study was to find non-invasive markers in the murine model of severe influenza that could detect disease early and predict disease outcome. BALB/c mice were lethally infected with influenza A(H1N1)pdm09 virus and serum samples were collected at various time points. Enzyme-linked immunosorbent assays were performed to quantify amounts of serum amyloid A (SAA), C-reactive protein, complement 3, transferrin, corticosterone, prostaglandin E2, H2O2, and alpha-2,6-sialyltransferase. We found that SAA was the most promising candidate with levels acutely and temporarily elevated by several hundred-fold 3 days post virus inoculation. Upon treatment with oseltamivir phosphate, levels of SAA were significantly decreased. High levels of SAA were associated with poor disease prognosis, whereas body weight loss was not as a reliable predictor of disease outcome. SAA levels were also transiently increased in BALB/c mice infected with influenza A(H3N2) and influenza B virus, as well as in C57BL/2, Swiss-Webster, and DBA.2 mice infected with influenza A(H1N1)pdm09 virus. High levels of SAA often, but not always, were associated with disease outcome in these other influenza virus mouse models. Therefore, SAA represents a valid biomarker for influenza disease detection in all tested mouse strains but its prognostic value is limited to BALB/c mice infected with influenza A(H1N1)pdm09 virus.
Collapse
Affiliation(s)
- Almut H Vollmer
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Makda S Gebre
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Dale L Barnard
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
46
|
DesRochers BL, Chen RE, Gounder AP, Pinto AK, Bricker T, Linton CN, Rogers CD, Williams GD, Webby RJ, Boon ACM. Residues in the PB2 and PA genes contribute to the pathogenicity of avian H7N3 influenza A virus in DBA/2 mice. Virology 2016; 494:89-99. [PMID: 27105450 DOI: 10.1016/j.virol.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
Abstract
Replication and transmission of avian influenza virus in humans poses a pandemic threat. The molecular determinants that facilitate this process are not well understood. We used DBA/2 mice to identify viral factors that mediate the difference in pathogenesis between a virulent (H7N3) and a non-virulent (H7N9) avian influenza virus from North America. In vitro and in vivo characterization of reassortant viruses identified the PB2 and PA polymerase genes as major determinants of H7N3 pathogenesis. Analysis of individual residues in the PB2 and PA genes identified position 358 (E358V) in PB2 and positions 190 (P190S) and 400 (Q400P) in PA that reduced the virulence of H7N3 virus. The E358V and P190S substitutions also caused reduced inflammation after infection. Our results suggest that specific residues in the polymerase proteins PB2 and PA are important for replication and virulence of avian influenza viruses in a mammalian host.
Collapse
Affiliation(s)
- Brittany L DesRochers
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rita E Chen
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Anshu P Gounder
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Amelia K Pinto
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Traci Bricker
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Camille N Linton
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Corianne D Rogers
- Department of Infectious Diseases, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA
| | - Graham D Williams
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children׳s Research Hospital, Memphis, TN 38105, USA
| | - Adrianus C M Boon
- Departments of Internal Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
47
|
The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome. Antimicrob Agents Chemother 2016; 60:2118-31. [PMID: 26787699 DOI: 10.1128/aac.02457-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/12/2016] [Indexed: 11/20/2022] Open
Abstract
Most cases of severe influenza are associated with pulmonary complications, such as acute respiratory distress syndrome (ARDS), and no antiviral drugs of proven value for treating such complications are currently available. The use of monoclonal antibodies targeting the stem of the influenza virus surface hemagglutinin (HA) is a rapidly developing strategy for the control of viruses of multiple HA subtypes. However, the mechanisms of action of these antibodies are not fully understood, and their ability to mitigate severe complications of influenza has been poorly studied. We evaluated the effect of treatment with VIS410, a human monoclonal antibody targeting the HA stem region, on the development of ARDS in BALB/c mice after infection with influenza A(H7N9) viruses. Prophylactic administration of VIS410 resulted in the complete protection of mice against lethal A(H7N9) virus challenge. A single therapeutic dose of VIS410 given 24 h after virus inoculation resulted in dose-dependent protection of up to 100% of mice inoculated with neuraminidase inhibitor-susceptible or -resistant A(H7N9) viruses. Compared to the outcomes in mock-treated controls, a single administration of VIS410 improved viral clearance from the lungs, reduced virus spread in lungs in a dose-dependent manner, resulting in a lower lung injury score, reduced the extent of the alteration in lung vascular permeability and protein accumulation in bronchoalveolar lavage fluid, and improved lung physiologic function. Thus, antibodies targeting the HA stem can reduce the severity of ARDS and show promise as agents for controlling pulmonary complications in influenza.
Collapse
|
48
|
Leist SR, Kollmus H, Hatesuer B, Lambertz RLO, Schughart K. Lst1 deficiency has a minor impact on course and outcome of the host response to influenza A H1N1 infections in mice. Virol J 2016; 13:17. [PMID: 26817701 PMCID: PMC4729168 DOI: 10.1186/s12985-016-0471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously, we performed a quantitative trait locus (QTL) mapping study in BXD recombinant inbred mice to identify host genetic factors that confer resistance to influenza A virus infection. We found Lst1 (leukocyte specific transcript 1) as one of the most promising candidate genes in the Qivr17-2 locus because it is non-functional in DBA/2 J mice. Several studies have proposed that LST1 plays a role in the immune response to inflammatory diseases in humans and has additional immune-regulatory functions. Here, we evaluated the relevance of LST1 for the host response to influenza A infection in B6-Lst1 (-/-) mutant mice. FINDINGS To investigate the role of LST1, we infected B6-Lst1 (-/-) mutant and C57BL/6 N wild-type mice with a low-virulent influenza A virus (PR8M; H1N1). Lst1 deficient mice exhibited significantly increased body weight loss at days 5 and 6 after infection and slightly increased lethality compared to infected wild-type mice. Determination of viral loads, histopathological examination and analysis of immune cell composition in bronchoalveolar lavage of infected lungs did not reveal any obvious differences between KO and wild-type mice. CONCLUSIONS The absence of Lst1 leads to a slightly more susceptible phenotype. However, deletion of Lst1 in DBA/2 J mice alone does not explain the high susceptibility of this strain to PR8M influenza infections.
Collapse
Affiliation(s)
- Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Bastian Hatesuer
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Ruth L O Lambertz
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany.
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany. .,University of Veterinary Medicine Hannover, Hannover, Germany. .,University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
| |
Collapse
|
49
|
Pavulraj S, Bera BC, Joshi A, Anand T, Virmani M, Vaid RK, Shanmugasundaram K, Gulati BR, Rajukumar K, Singh R, Misri J, Singh RK, Tripathi BN, Virmani N. Pathology of Equine Influenza virus (H3N8) in Murine Model. PLoS One 2015; 10:e0143094. [PMID: 26587990 PMCID: PMC4654517 DOI: 10.1371/journal.pone.0143094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 01/09/2023] Open
Abstract
Equine influenza viruses (EIV)—H3N8 continue to circulate in equine population throughout the world. They evolve by the process of antigenic drift that leads to substantial change in the antigenicity of the virus, thereby necessitating substitution of virus strain in the vaccines. This requires frequent testing of the new vaccines in the in vivo system; however, lack of an appropriate laboratory animal challenge model for testing protective efficacy of equine influenza vaccine candidates hinders the screening of new vaccines and other therapeutic approaches. In the present investigation, BALB/c mouse were explored for suitability for conducting pathogenecity studies for EIV. The BALB/c mice were inoculated intranasally @ 2×106.24 EID50 with EIV (H3N8) belonging to Clade 2 of Florida sublineage and monitored for setting up of infection and associated parameters. All mice inoculated with EIV exhibited clinical signs viz. loss in body weights, lethargy, dyspnea, etc, between 3 and 5 days which commensurate with lesions observed in the respiratory tract including rhinitis, tracheitis, bronchitis, bronchiolitis, alveolitis and diffuse interstitial pneumonia. Transmission electron microscopy, immunohistochemistry, virus quantification through titration and qRT-PCR demonstrated active viral infection in the upper and lower respiratory tract. Serology revealed rise in serum lactate dehydrogenase levels along with sero-conversion. The pattern of disease progression, pathological lesions and virus recovery from nasal washings and lungs in the present investigations in mice were comparable to natural and experimental EIV infection in equines. The findings establish BALB/c mice as small animal model for studying EIV (H3N8) infection and will have immense potential for dissecting viral pathogenesis, vaccine efficacy studies, preliminary screening of vaccine candidates and antiviral therapeutics against EIV.
Collapse
Affiliation(s)
| | | | - Alok Joshi
- Veterinary Hospital—Naini, Barakot, Almora, Uttarakhand, India
| | - Taruna Anand
- National Research Centre on Equines, Hisar, Haryana, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| | | | | | | | - K. Rajukumar
- National Institute of High Security Animal Diseases, Bhopal, MP, India
| | - Rajendra Singh
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Jyoti Misri
- Division of Animal Science, Krishi Bhavan, New Delhi, India
| | | | | | - Nitin Virmani
- National Research Centre on Equines, Hisar, Haryana, India
- * E-mail:
| |
Collapse
|
50
|
van de Sandt CE, Bodewes R, Rimmelzwaan GF, de Vries RD. Influenza B viruses: not to be discounted. Future Microbiol 2015; 10:1447-65. [PMID: 26357957 DOI: 10.2217/fmb.15.65] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In contrast to influenza A viruses, which have been investigated extensively, influenza B viruses have attracted relatively little attention. However, influenza B viruses are an important cause of morbidity and mortality in the human population and full understanding of their biological and epidemiological properties is imperative to better control this important pathogen. However, some of its characteristics are still elusive and warrant investigation. Here, we review evolution, epidemiology, pathogenesis and immunity and identify gaps in our knowledge of influenza B viruses. The divergence of two antigenically distinct influenza B viruses is highlighted. The co-circulation of viruses of these two lineages necessitated the development of quadrivalent influenza vaccines, which is discussed in addition to possibilities to develop universal vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Rogier Bodewes
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,ViroClinics Biosciences BV, Rotterdam Science Tower, Marconistraat 16, 3029 AK Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|