1
|
Kumar MR, Fray EJ, Bender AM, Zitzmann C, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Biphasic decay of intact SHIV genomes following initiation of antiretroviral therapy complicates analysis of interventions targeting the reservoir. Proc Natl Acad Sci U S A 2023; 120:e2313209120. [PMID: 37844236 PMCID: PMC10614214 DOI: 10.1073/pnas.2313209120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy (ART) and precludes cure. Reservoir-targeting interventions are evaluated in ART-treated macaques infected with simian immunodeficiency virus (SIV) or simian-human immunodeficiency virus (SHIV). Efficacy is determined by reservoir measurements before and after the intervention. However, most proviruses persisting in the setting of ART are defective. In addition, intact HIV-1 and SIV genomes undergo complex, multiphasic decay observable when new infection events are blocked by ART. Intervention-induced elimination of latently infected cells must be distinguished from natural decay. Here, we address these issues for SHIV. We describe an intact proviral DNA assay that allows digital counting of SHIV genomes lacking common fatal defects. We show that intact SHIV genomes in circulating CD4+ T cells undergo biphasic decay during the first year of ART, with a rapid first phase (t1/2 = 30.1 d) and a slower second phase (t1/2 = 8.1 mo) that is still more rapid that the slow decay observed in people with HIV-1 on long-term ART (t1/2 = 3.7 y). In SHIV models, most interventions are tested during 2nd phase decay. Natural 2nd phase decay must be considered in evaluating interventions as most infected cells present at this time do not become part of the stable reservoir. In addition, for interventions tested during 2nd phase decay, a caveat is that the intervention may not be equally effective in people with HIV on long-term ART whose reservoirs are dominated by latently infected cells with a slower decay rate.
Collapse
Affiliation(s)
- Mithra R. Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Emily J. Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Alexandra M. Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | | | | | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Baltimore, MD21205
| |
Collapse
|
2
|
Wu HL, Busman-Sahay K, Weber WC, Waytashek CM, Boyle CD, Bateman KB, Reed JS, Hwang JM, Shriver-Munsch C, Swanson T, Northrup M, Armantrout K, Price H, Robertson-LeVay M, Uttke S, Kumar MR, Fray EJ, Taylor-Brill S, Bondoc S, Agnor R, Junell SL, Legasse AW, Moats C, Bochart RM, Sciurba J, Bimber BN, Sullivan MN, Dozier B, MacAllister RP, Hobbs TR, Martin LD, Panoskaltsis-Mortari A, Colgin LMA, Siliciano RF, Siliciano JD, Estes JD, Smedley JV, Axthelm MK, Meyers G, Maziarz RT, Burwitz BJ, Stanton JJ, Sacha JB. Allogeneic immunity clears latent virus following allogeneic stem cell transplantation in SIV-infected ART-suppressed macaques. Immunity 2023; 56:1649-1663.e5. [PMID: 37236188 PMCID: PMC10524637 DOI: 10.1016/j.immuni.2023.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.
Collapse
Affiliation(s)
- Helen L Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Whitney C Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Courtney M Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Carla D Boyle
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Katherine B Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jason S Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph M Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Christine Shriver-Munsch
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Tonya Swanson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mina Northrup
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Kimberly Armantrout
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Heidi Price
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mitch Robertson-LeVay
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Samantha Uttke
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Mithra R Kumar
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Emily J Fray
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Sol Taylor-Brill
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Stephen Bondoc
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rebecca Agnor
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephanie L Junell
- Division of Medical Physics, Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alfred W Legasse
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rachele M Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Joseph Sciurba
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Benjamin N Bimber
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michelle N Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Brandy Dozier
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Rhonda P MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Lauren D Martin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Lois M A Colgin
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Robert F Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Janet D Siliciano
- Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeremy V Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Michael K Axthelm
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Gabrielle Meyers
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard T Maziarz
- Division of Blood and Marrow Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jeffrey J Stanton
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97007, USA; Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97007, USA.
| |
Collapse
|
3
|
Huang Y, Abdelgawad A, Turchinovich A, Queen S, Abreu CM, Zhu X, Batish M, Zheng L, Witwer KW. RNA landscapes of brain tissue and brain tissue-derived extracellular vesicles in simian immunodeficiency virus (SIV) infection and SIV-related central nervous system pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535193. [PMID: 37034720 PMCID: PMC10081316 DOI: 10.1101/2023.04.01.535193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Introduction Antiretroviral treatment regimens can effectively control HIV replication and some aspects of disease progression. However, molecular events in end-organ diseases such as central nervous system (CNS) disease are not yet fully understood, and routine eradication of latent reservoirs is not yet in reach. Brain tissue-derived extracellular vesicles (bdEVs) act locally in the source tissue and may indicate molecular mechanisms in HIV CNS pathology. Regulatory RNAs from EVs have emerged as important participants in HIV disease pathogenesis. Using brain tissue and bdEVs from the simian immunodeficiency virus (SIV) model of HIV disease, we profiled messenger RNAs (mRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), seeking to identify possible networks of RNA interaction in SIV infection and neuroinflammation. Methods Postmortem occipital cortex tissue were collected from pigtailed macaques: uninfected controls and SIV-infected subjects (acute phase and chronic phase with or without CNS pathology). bdEVs were separated and characterized in accordance with international consensus standards. RNAs from bdEVs and source tissue were used for sequencing and qPCR to detect mRNA, miRNA, and circRNA levels. Results Multiple dysregulated bdEV RNAs, including mRNAs, miRNAs, and circRNAs, were identified in acute infection and chronic infection with pathology. Most dysregulated mRNAs in bdEVs reflected dysregulation in their source tissues. These mRNAs are disproportionately involved in inflammation and immune responses, especially interferon pathways. For miRNAs, qPCR assays confirmed differential abundance of miR-19a-3p, let-7a-5p, and miR-29a-3p (acute SIV infection), and miR-146a-5p and miR-449a-5p (chronic with pathology) in bdEVs. In addition, target prediction suggested that several circRNAs that were differentially abundant in source tissue might be responsible for specific differences in small RNA levels in bdEVs during SIV infection. Conclusions RNA profiling of bdEVs and source tissues reveals potential regulatory networks in SIV infection and SIV-related CNS pathology.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ahmed Abdelgawad
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center DKFZ, Heidelberg, Germany
- Heidelberg Biolabs GmbH, Mannheim, Germany
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xianming Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Huang Y, Liao Z, Dang P, Queen S, Abreu CM, Gololobova O, Zheng L, Witwer KW. Longitudinal characterization of circulating extracellular vesicles and small RNA during simian immunodeficiency virus infection and antiretroviral therapy. AIDS 2023; 37:733-744. [PMID: 36779477 PMCID: PMC9994802 DOI: 10.1097/qad.0000000000003487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVES Latent infection by HIV hinders viral eradication despite effective antiretroviral treatment (ART). Among proposed contributors to viral latency are cellular small RNAs that have also been proposed to shuttle between cells in extracellular vesicles. Thus, we profiled extracellular vesicle small RNAs during different infection phases to understand the potential relationship between these extracellular vesicle associated small RNAs and viral infection. DESIGN A well characterized simian immunodeficiency virus (SIV)/macaque model of HIV was used to profile extracellular vesicle enriched blood plasma fractions harvested during preinfection, acute infection, latent infection/ART treatment, and rebound after ART interruption. METHODS Measurement of extracellular vesicle concentration, size distribution, and morphology was complemented with qPCR array for small RNA expression, followed by individual qPCR validations. Iodixanol density gradients were used to separate extracellular vesicle subtypes and virions. RESULTS Plasma extracellular vesicle particle counts correlated with viral load and peaked during acute infection. However, SIV gag RNA detection showed that virions did not fully explain this peak. Extracellular vesicle microRNAs miR-181a, miR-342-3p, and miR-29a decreased with SIV infection and remained downregulated in latency. Interestingly, small nuclear RNA U6 had a tight association with viral load peak. CONCLUSION This study is the first to monitor how extracellular vesicle concentration and extracellular vesicle small RNA expression change dynamically in acute viral infection, latency, and rebound in a carefully controlled animal model. These changes may also reveal regulatory roles in retroviral infection and latency.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Phuong Dang
- College of Pharmacy, University of Texas, Houston, Texas, USA
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Celina Monteiro Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Fray EJ, Wu F, Simonetti FR, Zitzmann C, Sambaturu N, Molina-Paris C, Bender AM, Liu PT, Ventura JD, Wiseman RW, O'Connor DH, Geleziunas R, Leitner T, Ribeiro RM, Perelson AS, Barouch DH, Siliciano JD, Siliciano RF. Antiretroviral therapy reveals triphasic decay of intact SIV genomes and persistence of ancestral variants. Cell Host Microbe 2023; 31:356-372.e5. [PMID: 36809762 PMCID: PMC10583177 DOI: 10.1016/j.chom.2023.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 01/24/2023] [Indexed: 02/22/2023]
Abstract
The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.
Collapse
Affiliation(s)
- Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John D Ventura
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI 53715, USA
| | | | - Thomas Leitner
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ruy M Ribeiro
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Long S, Berkemeier B. Ultrasensitive detection and quantification of viral nucleic acids with Raindance droplet digital PCR (ddPCR). Methods 2022; 201:49-64. [PMID: 33957204 PMCID: PMC8563494 DOI: 10.1016/j.ymeth.2021.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sensitive detection of viral nucleic acids is critically important for diagnosis and monitoring of the progression of infectious diseases such as those caused by SARS-CoV2, HIV-1, and other viruses. In HIV-1 infection cases, assessing the efficacy of treatment interventions that are superimposed on combination antiretroviral therapy (cART) has benefited tremendously from the development of sensitive HIV-1 DNA and RNA quantitation assays. Simian immunodeficiency virus (SIV) infection of Rhesus macaques is similar in many key aspects to human HIV-1 infection and consequently this non-human primate (NHP) model has and continues to prove instrumental in evaluating HIV prevention, treatment and eradication approaches. Cell and tissue associated HIV-1 viral nucleic acids have been found to serve as useful predictors of disease outcome and indicators of treatment efficacy, highlighting the value of and the need for sensitive detection of viruses in cells/tissues from infected individuals or animal models. However, viral nucleic acid detection and quantitation in such sample sources can often be complicated by high nucleic acid input (that is required to detect ultralow level viruses in, for example, cure research) or inhibitors, leading to reduced detection sensitivity and under-quantification, and confounded result interpretation. Here, we present a step-by-step procedure to quantitatively recover cell/tissue associated viral DNA and RNA, using SIV-infected Rhesus macaque cells and tissues as model systems, and subsequently quantify the viral DNA and RNA with an ultrasensitive SIV droplet digital PCR (ddPCR) assay and reverse transcription ddPCR (RT-ddPCR) assay, respectively, on the Raindance ddPCR platform. The procedure can be readily adapted for a broad range of applications where highly sensitive nucleic acid detection and quantitation are required.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States
| |
Collapse
|
7
|
He WQ, He XY, Lu Y, Zhang S, Zhang MX, Zheng YT, Pang W. HIV-1 but not SIV mac239 induces higher interferon-α antiviral state in chronic infected northern pig-tailed macaques (Macaca leonina). Microbes Infect 2022; 24:104970. [PMID: 35331910 DOI: 10.1016/j.micinf.2022.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Studies have shown that interferon (IFN)-α has an inhibitory effect on human immunodeficiency virus type 1 (HIV-1) replication in the acute infection stage, but its role in chronic infection is still unclear. We previously established a nonpathogenic HIV-1 and pathogenic simian immunodeficiency virus (SIV) model in northern pig-tailed macaques (NPMs, Macaca leonina). In the current study, we detected viral RNA and DNA in various tissues (axillary lymph nodes (LNs), inguinal LNs, and spleen) in HIV-1NL4-3- and SIVmac239-infected NPM during the chronic stage of infection. Results indicated that the levels of viral DNA and RNA were higher in the tested tissues (LNs and spleen) of the SIVmac239-infected NPMs than in the HIV-1NL4-3 infected NPMs. Furthermore, IFN-α expression was higher in the HIV-infected tissues than in the SIV-infected controls. The HIV restriction factors induced by IFN-α (i.e., tetherin and MX2), as well as inflammatory factors IFN-γ, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), were analyzed using real-time polymerase chain reaction (PCR) and immunofluorescence staining assays. Results showed that their expression levels were much higher in the HIV-infected tissues than in the SIV-infected controls. These findings were confirmed by in vitro experiments on healthy NPM peripheral blood mononuclear cells infected with HIV-1NL4-3, which showed lower viral replication, higher IFN-α expression, and an antiviral status. This study demonstrated that HIV-1 infection, but not SIVmac239 infection, in NPMs caused higher expression of IFN-α and induced a higher antiviral status. This may be one of the reasons why HIV-1 cannot replicate at a high level or develop into AIDS in NPMs.
Collapse
Affiliation(s)
- Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ying Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shuai Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
8
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
9
|
Rahman SA, Yagnik B, Bally AP, Morrow KN, Wang S, Vanderford TH, Freeman GJ, Ahmed R, Amara RR. PD-1 blockade and vaccination provide therapeutic benefit against SIV by inducing broad and functional CD8 + T cells in lymphoid tissue. Sci Immunol 2021; 6:eabh3034. [PMID: 34516743 DOI: 10.1126/sciimmunol.abh3034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Bhrugu Yagnik
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander P Bally
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Kristen N Morrow
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Shelly Wang
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gordon J Freeman
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rafi Ahmed
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Martin AR, Bender AM, Hackman J, Kwon KJ, Lynch BA, Bruno D, Martens C, Beg S, Florman SS, Desai N, Segev D, Laird GM, Siliciano JD, Quinn TC, Tobian AAR, Durand CM, Siliciano RF, Redd AD. Similar Frequency and Inducibility of Intact Human Immunodeficiency Virus-1 Proviruses in Blood and Lymph Nodes. J Infect Dis 2021; 224:258-268. [PMID: 33269401 PMCID: PMC8280486 DOI: 10.1093/infdis/jiaa736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The human immunodeficiency virus (HIV)-1 latent reservoir (LR) in resting CD4+ T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. METHODS We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from 10 HIV-1-infected patients on antiretroviral therapy (ART) using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. RESULTS The frequencies of CD4+ T cells with intact proviruses were not significantly different in PB versus LN (61/106 vs 104/106 CD4+ cells), and they were substantially lower than frequencies of CD4+ T cells with defective proviruses. The frequencies of CD4+ T cells induced to produce high levels of viral RNA were not significantly different in PB versus LN (4.3/106 vs 7.9/106), but they were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. CONCLUSIONS These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs.
Collapse
Affiliation(s)
- Alyssa R Martin
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jada Hackman
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Briana A Lynch
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Bruno
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Genomics Unit, Research Technologies Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Subul Beg
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Niraj Desai
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dorry Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Gorska AM, Donoso M, Valdebenito S, Prideaux B, Queen S, Scemes E, Clements J, Eugenin E. Human immunodeficiency virus-1/simian immunodeficiency virus infection induces opening of pannexin-1 channels resulting in neuronal synaptic compromise: A novel therapeutic opportunity to prevent NeuroHIV. J Neurochem 2021; 158:500-521. [PMID: 33899944 DOI: 10.1111/jnc.15374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
In healthy conditions, pannexin-1 (Panx-1) channels are in a close state, but in several pathological conditions, including human immunodeficiency virus-1 (HIV) and NeuroHIV, the channel becomes open. However, the mechanism or contribution of Panx-1 channels to the HIV pathogenesis and NeuroHIV is unknown. To determine the contribution of Panx-1 channels to the pathogenesis of NeuroHIV, we used a well-established model of simian immunodeficiency virus (SIV) infection in macaques (Macaca mulatta) in the presence of and absence of a Panx-1 blocker to later examine the synaptic/axonal compromise induced for the virus. Using Golgi's staining, we demonstrated that SIV infection compromised synaptic and axonal structures, especially in the white matter. Blocking Panx-1 channels after SIV infection prevented the synaptic and axonal compromise induced by the virus, especially by maintaining the more complex synapses. Our data demonstrated that targeting Panx-1 channels can prevent and maybe revert brain synaptic compromise induced by SIV infection.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Suzanne Queen
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliana Scemes
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Janice Clements
- Department of Molecular and Comparative Pathobiology, John Hopkins Medical Center, Baltimore, MD, USA
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
12
|
Rausch JW, Le Grice SFJ. Characterizing the Latent HIV-1 Reservoir in Patients with Viremia Suppressed on cART: Progress, Challenges, and Opportunities. Curr HIV Res 2021; 18:99-113. [PMID: 31889490 PMCID: PMC7475929 DOI: 10.2174/1570162x18666191231105438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Modern combination antiretroviral therapy (cART) can bring HIV-1 in blood plasma to level undetectable by standard tests, prevent the onset of acquired immune deficiency syndrome (AIDS), and allow a near-normal life expectancy for HIV-infected individuals. Unfortunately, cART is not curative, as within a few weeks of treatment cessation, HIV viremia in most patients rebounds to pre-cART levels. The primary source of this rebound, and the principal barrier to a cure, is the highly stable reservoir of latent yet replication-competent HIV-1 proviruses integrated into the genomic DNA of resting memory CD4+ T cells. In this review, prevailing models for how the latent reservoir is established and maintained, residual viremia and viremic rebound upon withdrawal of cART, and the types and characteristics of cells harboring latent HIV-1 will be discussed. Selected technologies currently being used to advance our understanding of HIV latency will also be presented, as will a perspective on which areas of advancement are most essential for producing the next generation of HIV-1 therapeutics.
Collapse
Affiliation(s)
- Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD 21702, United States
| |
Collapse
|
13
|
Long S, Berkemeier B. Development of a reverse transcription droplet digital PCR (RT-ddPCR) assay for sensitive detection of simian immunodeficiency virus (SIV). Virol J 2021; 18:35. [PMID: 33588884 PMCID: PMC7883996 DOI: 10.1186/s12985-021-01503-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Simian immunodeficiency virus (SIV)-infected rhesus macaques constitute an excellent model of human HIV infection. Sensitive detection of SIV RNA in cell and tissue samples from infected animals subjected to treatment regimens becomes especially critical in determining which therapeutic attempts are successful, and consequently, which interventions should be prioritized in HIV cure research. RESULTS In this report, we describe the design and testing of a Raindance ddPCR platform-based, sensitive SIV reverse transcription droplet digital PCR (RT-ddPCR) assay by exploring the combinations of various priming conditions and reverse transcriptases, and testing one-step vs. two-step procedures, to eliminate background signal(s) and enable detection and quantification of low level target signals. CONCLUSIONS Similar reaction conditions and assay validation procedures can be explored for potential development of additional assays for other applications that require sensitive detection of low-level targets in RNA samples.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
14
|
Long S, Berkemeier B. Development and optimization of a simian immunodeficiency virus (SIV) droplet digital PCR (ddPCR) assay. PLoS One 2020; 15:e0240447. [PMID: 33035247 PMCID: PMC7546489 DOI: 10.1371/journal.pone.0240447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate and sensitive quantification of rebound competent HIV that persists despite combination antiretroviral treatment (cART), including in latently infected cells (i.e., viral reservoir), is critical for evaluating cure strategies for decreasing or eliminating this reservoir. Simian immunodeficiency virus (SIV)-infected Rhesus macaques are an important non-human primate (NHP) system for studying potential cure strategies as they model many key aspects of human HIV-infection including the persistence of a latent viral reservoir in resting memory CD4+ T cells in animals receiving prolonged cART. In this report, we describe the design and testing of a sensitive SIV droplet digital PCR (ddPCR) assay through exploring the combination and optimization of different probe systems (including single, double quencher probes and minor groove binder (MGB) probes) and reaction conditions to eliminate background signal(s), ensure distinct target signal cluster separation from non-target signals, and enable detection and quantification of low level authentic target signals. Similar reaction conditions and assay validation procedures can be explored for potential development of additional assays for other applications that require sensitive detection of low-level targets in a large background of nucleic acid input derived from cell or tissue sources.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail:
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
15
|
Ventura JD. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:549-560. [PMID: 33005119 PMCID: PMC7513431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An estimated 37 million people globally suffer from Human Immunodeficiency Virus-1 (HIV-1) infection with 1.7 million newly acquired infections occurring on average each year. Although crucial advances in combined antiretroviral therapy (ART) over the last two decades have transformed an HIV-1 diagnosis into a tolerable and controlled condition, enabling over 20 million people living with HIV-1 to enjoy healthy and productive lives, no cure or vaccine yet exists. Developing a successful cure strategy will require a firm understanding of how viral latency is established and how a persistent and long-lived latent is generated. The latent reservoir remains the primary obstacle for cure development and most putative cure strategies proposed fundamentally address its eradication or permanent suppression.
Collapse
Affiliation(s)
- John D. Ventura
- To whom all correspondence should be addressed:
Dr. John D. Ventura, . ORCID iD:
https://orcid.org/0000-0002-4373-3242.
| |
Collapse
|
16
|
Long S, Fennessey CM, Newman L, Reid C, O'Brien SP, Li Y, Del Prete GQ, Lifson JD, Gorelick RJ, Keele BF. Evaluating the Intactness of Persistent Viral Genomes in Simian Immunodeficiency Virus-Infected Rhesus Macaques after Initiating Antiretroviral Therapy within One Year of Infection. J Virol 2019; 94:e01308-19. [PMID: 31597776 PMCID: PMC6912123 DOI: 10.1128/jvi.01308-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
The major obstacle to more-definitive treatment for HIV infection is the early establishment of virus that persists despite long-term combination antiretroviral therapy (cART) and can cause recrudescent viremia if cART is interrupted. Previous studies of HIV DNA that persists despite cART indicated that only a small fraction of persistent viral sequences was intact. Experimental simian immunodeficiency virus (SIV) infections of nonhuman primates (NHPs) are essential models for testing interventions designed to reduce the viral reservoir. We studied the viral genomic integrity of virus that persists during cART under conditions typical of many NHP reservoir studies, specifically with cART started within 1 year postinfection and continued for at least 9 months. The fraction of persistent DNA in SIV-infected NHPs starting cART during acute or chronic infection was assessed with a multiamplicon, real-time PCR assay designed to analyze locations that are regularly spaced across the viral genome to maximize coverage (collectively referred to as "tile assay") combined with near-full-length (nFL) single-genome sequencing. The tile assay is used to rapidly screen for major deletions, with nFL sequence analysis used to identify additional potentially inactivating mutations. Peripheral blood mononuclear cells (PBMC) from animals started on cART within 1 month of infection, sampled at least 9 months after cART initiation, contained at least 80% intact genomes, whereas those from animals started on cART 1 year postinfection and treated for 1 year contained intact genomes only 47% of the time. The most common defect identified was large deletions, with the remaining defects caused by APOBEC-mediated mutations, frameshift mutations, and inactivating point mutations. Overall, this approach can be used to assess the intactness of persistent viral DNA in NHPs.IMPORTANCE Molecularly defining the viral reservoir that persists despite antiretroviral therapy and that can lead to rebound viremia if antiviral therapy is removed is critical for testing interventions aimed at reducing this reservoir. In HIV infection in humans with delayed treatment initiation and extended treatment duration, persistent viral DNA has been shown to be dominated by nonfunctional genomes. Using multiple real-time PCR assays across the genome combined with near-full-genome sequencing, we defined SIV genetic integrity after 9 to 18 months of combination antiretroviral therapy in rhesus macaques starting therapy within 1 year of infection. In the animals starting therapy within a month of infection, the vast majority of persistent DNA was intact and presumptively functional. Starting therapy within 1 year increased the nonintact fraction of persistent viral DNA. The approach described here allows rapid screening of viral intactness and is a valuable tool for assessing the efficacy of novel reservoir-reducing interventions.
Collapse
Affiliation(s)
- Samuel Long
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Laura Newman
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carolyn Reid
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
17
|
Bender AM, Simonetti FR, Kumar MR, Fray EJ, Bruner KM, Timmons AE, Tai KY, Jenike KM, Antar AAR, Liu PT, Ho YC, Raugi DN, Seydi M, Gottlieb GS, Okoye AA, Del Prete GQ, Picker LJ, Mankowski JL, Lifson JD, Siliciano JD, Laird GM, Barouch DH, Clements JE, Siliciano RF. The Landscape of Persistent Viral Genomes in ART-Treated SIV, SHIV, and HIV-2 Infections. Cell Host Microbe 2019; 26:73-85.e4. [PMID: 31295427 DOI: 10.1016/j.chom.2019.06.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022]
Abstract
Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.
Collapse
Affiliation(s)
- Alexandra M Bender
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine M Bruner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katherine Y Tai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine M Jenike
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annukka A R Antar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Po-Ting Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ya-Chi Ho
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dana N Raugi
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Moussa Seydi
- Service de Maladies Infectieuses et Tropicales, CHNU-Fann, Dakar, Senegal
| | - Geoffrey S Gottlieb
- Department of Medicine & Center of Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Beaverton, OR, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Greg M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Accelevir Diagnostics, Baltimore, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Denton PW, Søgaard OS, Tolstrup M. Impacts of HIV Cure Interventions on Viral Reservoirs in Tissues. Front Microbiol 2019; 10:1956. [PMID: 31497010 PMCID: PMC6712158 DOI: 10.3389/fmicb.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
HIV reservoirs persist in infected individuals despite combination antiretroviral therapy and can be identified in secondary lymphoid tissues, in intestinal tissues, in the central nervous system as well as in blood. Clinical trials have begun to explore effects of small molecule interventions to perturb the latent viral infection, but only limited information is available regarding the impacts of HIV cure-related clinical interventions on viral reservoirs found in tissues. Of the 14 HIV cure-related clinical trials since 2012 that have evaluated the effects of small molecule interventions in vivo, four trials have examined the impacts of the interventions in peripheral blood as well as other tissues that harbor persistent HIV. The additional tissues examined include cerebral spinal fluid, intestines and lymph nodes. We provide a comparison contrast analyses of the data across anatomical compartments tested in these studies to reveal where peripheral blood analyses reflect outcomes in other tissues as well as where the data reveal differences between tissue outcomes. We also summarize the current knowledge on these topics and highlight key open questions that need to be addressed experimentally to move the HIV cure research field closer to the development of an intervention strategy capable of eliciting long-term antiretroviral free remission of HIV disease.
Collapse
Affiliation(s)
- Paul W Denton
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Abreu CM, Veenhuis RT, Avalos CR, Graham S, Parrilla DR, Ferreira EA, Queen SE, Shirk EN, Bullock BT, Li M, Metcalf Pate KA, Beck SE, Mangus LM, Mankowski JL, Mac Gabhann F, O'Connor SL, Gama L, Clements JE. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. mBio 2019; 10:e01659-19. [PMID: 31431552 PMCID: PMC6703426 DOI: 10.1128/mbio.01659-19] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies.IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.
Collapse
Affiliation(s)
- Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Claudia R Avalos
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shelby Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daymond R Parrilla
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edna A Ferreira
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brandon T Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ming Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Infectious Virus Persists in CD4 + T Cells and Macrophages in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J Virol 2019; 93:JVI.00065-19. [PMID: 31118264 PMCID: PMC6639293 DOI: 10.1128/jvi.00065-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023] Open
Abstract
This study suggests that CD4+ T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies. Understanding the cellular and anatomical sites of latent virus that contribute to human immunodeficiency virus (HIV) rebound is essential for eradication. In HIV-positive patients, CD4+ T lymphocytes comprise a well-defined functional latent reservoir, defined as cells containing transcriptionally silent genomes able to produce infectious virus once reactivated. However, the persistence of infectious latent virus in CD4+ T cells in compartments other than blood and lymph nodes is unclear. Macrophages (Mϕ) are infected by HIV/simian immunodeficiency virus (SIV) and are likely to carry latent viral genomes during antiretroviral therapy (ART), contributing to the reservoir. Currently, the gold standard assay used to measure reservoirs containing replication-competent virus is the quantitative viral outgrowth assay (QVOA). Using an SIV-macaque model, the CD4+ T cell and Mϕ functional latent reservoirs were measured in various tissues using cell-specific QVOAs. Our results showed that blood, spleen, and lung in the majority of suppressed animals contain latently infected Mϕs. Surprisingly, the numbers of CD4+ T cells, monocytes, and Mϕs carrying infectious genomes in blood and spleen were at comparable frequencies (∼1 infected cell per million). We also demonstrate that ex vivo viruses produced in the Mϕ QVOA are capable of infecting activated CD4+ T cells. These results strongly suggest that latently infected tissue Mϕs can reestablish productive infection upon treatment interruption. This study provides the first comparison of CD4+ T cell and Mϕ functional reservoirs in a macaque model. It is the first confirmation of the persistence of latent genomes in monocytes in blood and Mϕs in the spleen and lung of SIV-infected ART-suppressed macaques. Our results demonstrate that transcriptionally silent genomes in Mϕs can contribute to viral rebound after ART interruption and should be considered in future HIV cure strategies. IMPORTANCE This study suggests that CD4+ T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies.
Collapse
|
21
|
Gagne M, Michaels D, Schiralli Lester GM, Gummuluru S, Wong WW, Henderson AJ. Strength of T cell signaling regulates HIV-1 replication and establishment of latency. PLoS Pathog 2019; 15:e1007802. [PMID: 31116788 PMCID: PMC6548398 DOI: 10.1371/journal.ppat.1007802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/04/2019] [Accepted: 04/30/2019] [Indexed: 01/27/2023] Open
Abstract
A major barrier to curing HIV-1 is the long-lived latent reservoir that supports re-emergence of HIV-1 upon treatment interruption. Targeting this reservoir will require mechanistic insights into the establishment and maintenance of HIV-1 latency. Whether T cell signaling at the time of HIV-1 infection influences productive replication or latency is not fully understood. We used a panel of chimeric antigen receptors (CARs) with different ligand binding affinities to induce a range of signaling strengths to model differential T cell receptor signaling at the time of HIV-1 infection. Stimulation of T cell lines or primary CD4+ T cells expressing chimeric antigen receptors supported HIV-1 infection regardless of affinity for ligand; however, only signaling by the highest affinity receptor facilitated HIV-1 expression. Activation of chimeric antigen receptors that had intermediate and low binding affinities did not support provirus transcription, suggesting that a minimal signal is required for optimal HIV-1 expression. In addition, strong signaling at the time of infection produced a latent population that was readily inducible, whereas latent cells generated in response to weaker signals were not easily reversed. Chromatin immunoprecipitation showed HIV-1 transcription was limited by transcriptional elongation and that robust signaling decreased the presence of negative elongation factor, a pausing factor, by more than 80%. These studies demonstrate that T cell signaling influences HIV-1 infection and the establishment of different subsets of latently infected cells, which may have implications for targeting the HIV-1 reservoir.
Collapse
Affiliation(s)
- Matthew Gagne
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Daniel Michaels
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, United States of America
| | - Gillian M. Schiralli Lester
- Department of Pediatrics, Neonatology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - Andrew J. Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States of America
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, United States of America
| |
Collapse
|
22
|
Mylvaganam GH, Chea LS, Tharp GK, Hicks S, Velu V, Iyer SS, Deleage C, Estes JD, Bosinger SE, Freeman GJ, Ahmed R, Amara RR. Combination anti-PD-1 and antiretroviral therapy provides therapeutic benefit against SIV. JCI Insight 2018; 3:122940. [PMID: 30232277 PMCID: PMC6237231 DOI: 10.1172/jci.insight.122940] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
Therapeutic strategies that augment antiviral immunity and reduce the viral reservoir are critical to achieving durable remission of HIV. The coinhibitory receptor programmed death-1 (PD-1) regulates CD8+ T cell dysfunction during chronic HIV and SIV infections. We previously demonstrated that in vivo blockade of PD-1 during chronic SIV infection improves the function of antiviral CD8+ T cells and B cells. Here, we tested the immunological and virological effects of PD-1 blockade combined with antiretroviral therapy (ART) in rhesus macaques. Administration of anti-PD-1 antibody 10 days prior to ART initiation rapidly enhanced antiviral CD8+ T cell function and diminished IFN-stimulated genes. This resulted in faster viral suppression in plasma and better Th17 cell reconstitution in the rectal mucosa following ART initiation. PD-1 blockade during ART resulted in lower levels of cell-associated replication-competent virus. Following ART interruption, PD-1 antibody-treated animals showed markedly higher expansion of proliferating CXCR5+perforin+granzyme B+ effector CD8+ T cells and lower regulatory T cells that resulted in better control of viremia. Our results show that PD-1 blockade can be administered safely with ART to augment antiviral CD8+ T cell function and reduce the viral reservoir, leading to improved control of viral rebound after ART interruption.
Collapse
Affiliation(s)
- Geetha H. Mylvaganam
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Lynette S. Chea
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakeenah Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Vijayakumar Velu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S. Iyer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Gordon J. Freeman
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|
24
|
Wang Z, Simonetti FR, Siliciano RF, Laird GM. Measuring replication competent HIV-1: advances and challenges in defining the latent reservoir. Retrovirology 2018; 15:21. [PMID: 29433524 PMCID: PMC5810003 DOI: 10.1186/s12977-018-0404-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/06/2018] [Indexed: 12/24/2022] Open
Abstract
Antiretroviral therapy cannot cure HIV-1 infection due to the persistence of a small number of latently infected cells harboring replication-competent proviruses. Measuring persistent HIV-1 is challenging, as it consists of a mosaic population of defective and intact proviruses that can shift from a state of latency to active HIV-1 transcription. Due to this complexity, most of the current assays detect multiple categories of persistent HIV-1, leading to an overestimate of the true size of the latent reservoir. Here, we review the development of the viral outgrowth assay, the gold-standard quantification of replication-competent proviruses, and discuss the insights provided by full-length HIV-1 genome sequencing methods, which allowed us to unravel the composition of the proviral landscape. In this review, we provide a dissection of what defines HIV-1 persistence and we examine the unmet needs to measure the efficacy of interventions aimed at eliminating the HIV-1 reservoir.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Room 879, Edward D. Miller Research Building, 733 N. Broadway, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Room 879, Edward D. Miller Research Building, 733 N. Broadway, Baltimore, MD, 21205, USA. .,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Gregory M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Room 879, Edward D. Miller Research Building, 733 N. Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
25
|
Fisher BS, Green RR, Brown RR, Wood MP, Hensley-McBain T, Fisher C, Chang J, Miller AD, Bosche WJ, Lifson JD, Mavigner M, Miller CJ, Gale M, Silvestri G, Chahroudi A, Klatt NR, Sodora DL. Liver macrophage-associated inflammation correlates with SIV burden and is substantially reduced following cART. PLoS Pathog 2018; 14:e1006871. [PMID: 29466439 PMCID: PMC5837102 DOI: 10.1371/journal.ppat.1006871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 03/05/2018] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver disease is a leading contributor to morbidity and mortality during HIV infection, despite the use of combination antiretroviral therapy (cART). The precise mechanisms of liver disease during HIV infection are poorly understood partially due to the difficulty in obtaining human liver samples as well as the presence of confounding factors (e.g. hepatitis co-infection, alcohol use). Utilizing the simian immunodeficiency virus (SIV) macaque model, a controlled study was conducted to evaluate the factors associated with liver inflammation and the impact of cART. We observed an increase in hepatic macrophages during untreated SIV infection that was associated with a number of inflammatory and fibrosis mediators (TNFα, CCL3, TGFβ). Moreover, an upregulation in the macrophage chemoattractant factor CCL2 was detected in the livers of SIV-infected macaques that coincided with an increase in the number of activated CD16+ monocyte/macrophages and T cells expressing the cognate receptor CCR2. Expression of Mac387 on monocyte/macrophages further indicated that these cells recently migrated to the liver. The hepatic macrophage and T cell levels strongly correlated with liver SIV DNA levels, and were not associated with the levels of 16S bacterial DNA. Utilizing in situ hybridization, SIV-infected cells were found primarily within portal triads, and were identified as T cells. Microarray analysis identified a strong antiviral transcriptomic signature in the liver during SIV infection. In contrast, macaques treated with cART exhibited lower levels of liver macrophages and had a substantial, but not complete, reduction in their inflammatory profile. In addition, residual SIV DNA and bacteria 16S DNA were detected in the livers during cART, implicating the liver as a site on-going immune activation during antiretroviral therapy. These findings provide mechanistic insights regarding how SIV infection promotes liver inflammation through macrophage recruitment, with implications for in HIV-infected individuals.
Collapse
Affiliation(s)
- Bridget S. Fisher
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Richard R. Green
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Rachel R. Brown
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Matthew P. Wood
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tiffany Hensley-McBain
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Cole Fisher
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Andrew D. Miller
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Section of Anatomic Pathology, Ithaca, New York, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Maud Mavigner
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Charlene J. Miller
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Research Center and, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ann Chahroudi
- Emory Vaccine Research Center and, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Donald L. Sodora
- Center for Infectious Disease Research, formally Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
26
|
Whitney JB, Brad Jones R. In Vitro and In Vivo Models of HIV Latency. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1075:241-263. [DOI: 10.1007/978-981-13-0484-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Beck SE, Queen SE, Metcalf Pate KA, Mangus LM, Abreu CM, Gama L, Witwer KW, Adams RJ, Zink MC, Clements JE, Mankowski JL. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders. J Neurovirol 2017; 24:204-212. [PMID: 28975505 DOI: 10.1007/s13365-017-0582-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 02/01/2023]
Abstract
Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.
Collapse
Affiliation(s)
- Sarah E Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Celina M Abreu
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Tissue reservoirs of HIV may promote the persistent immunopathology responsible for non-AIDS morbidity and data support multifocal reactivation from tissues as the source of viral rebound during antiretroviral therapy (ART) interruption. The heterogeneity of tissue reservoirs and incomplete knowledge about their composition are obstacles to an HIV cure. RECENT FINDINGS In addition to the higher concentration of infected CD4 T cells found in both central lymphoid tissues and gut, specific subsets of CD4 T cells appear to play a disproportionate role in HIV persistence. Recently, a subset of central memory T cells enriched in lymph node germinal centers called T-follicular helper cells has been identified that expresses more viral RNA and occupies an anatomic niche inaccessible to cytotoxic T lymphocyte killing. Additional observations suggest that antiretroviral drug (ARV) concentrations may be lower in some tissues, raising the possibility for localized, low-level viral replication. Finally, some recent data implicate the persistence of infected, non-CD4 T-cell types in tissues during ART. SUMMARY The retention of infected cells in a wide variety of tissues, often with distinct viral and cellular characteristics, underscores the importance of studying tissue reservoirs in the development and assessment of cure strategies. Both inhibitory ARVs and latency-reversing drugs must reach these sites, and novel strategies may be needed to attack virus in cells as variable as T-follicular helper cells and macrophages.
Collapse
|
29
|
Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir. mBio 2017; 8:mBio.01186-17. [PMID: 28811349 PMCID: PMC5559639 DOI: 10.1128/mbio.01186-17] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART. Resting CD4+ T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4+ T cells and underscore the importance of macrophages in developing strategies to eradicate HIV.
Collapse
|
30
|
Deruaz M, Tager AM. Humanized mouse models of latent HIV infection. Curr Opin Virol 2017; 25:97-104. [PMID: 28810166 DOI: 10.1016/j.coviro.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/16/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022]
Abstract
Antiretroviral therapy can efficiently control HIV viral replication, resulting in low viral loads and sustained CD4+ T cell counts in HIV-infected persons. However, fast viral rebound occurs in most infected persons when therapy is interrupted. The principal component of persistent infection is a latent but replication-competent HIV reservoir. The long half-life of this reservoir is a major barrier to cure, and its elimination is the target of important research efforts. Animal models that can recapitulate this aspect of human infection are needed to examine the HIV reservoir in tissues in vivo, and to test eradication strategies. In this review, we will summarize recent studies using humanized mouse models to examine different aspects of the viral reservoir.
Collapse
Affiliation(s)
- Maud Deruaz
- Human Immune System Mouse Program, Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, USA
| | - Andrew M Tager
- Human Immune System Mouse Program, Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Murray AJ, Kwon KJ, Farber DL, Siliciano RF. The Latent Reservoir for HIV-1: How Immunologic Memory and Clonal Expansion Contribute to HIV-1 Persistence. THE JOURNAL OF IMMUNOLOGY 2017; 197:407-17. [PMID: 27382129 DOI: 10.4049/jimmunol.1600343] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate.
Collapse
Affiliation(s)
- Alexandra J Murray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032; Department of Surgery, Columbia University Medical Center, New York, NY 10032; and
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Howard Hughes Medical Institute, Baltimore MD 21250
| |
Collapse
|
32
|
Siliciano JD, Siliciano RF. Assays to Measure Latency, Reservoirs, and Reactivation. Curr Top Microbiol Immunol 2017; 417:23-41. [PMID: 29071475 DOI: 10.1007/82_2017_75] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 persists even in patients who are successfully treated with combination antiretroviral therapy. The major barrier to cure is a small pool of latently infected resting CD4+ T cells carrying an integrated copy of the viral genome that is not expressed while the cells remain in a resting state. Targeting this latent reservoir is a major focus of HIV-1 cure research, and the development of a rapid and scalable assay for the reservoir is a rate-limiting step in the search for a cure. The most commonly used assays are standard PCR assays targeting conserved regions of the HIV-1 genome. However, because the vast majority of HIV-1 proviruses are defective, such assays may not accurately capture changes in the minor subset of proviruses that are replication-competent and that pose a barrier to cure. On the other hand, the viral outgrowth assay that was used to initially define the latent reservoir may underestimate reservoir size because not all replication-competent proviruses are induced by a single round of T cell activation in this assay. Therefore, this assay is best regarded as a definitive minimal estimate of reservoir size. The best approach may be to measure all of the proviruses with the potential to cause viral rebound. A variety of novel assays have recently been described. Ultimately, the assay that best predicts time to viral rebound will be the most useful to the cure effort.
Collapse
Affiliation(s)
- Janet D Siliciano
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
33
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
34
|
Hutto EH, Anderson DC, Mansfield KG. Cytomegalovirus-associated Discrete Gastrointestinal Masses in Macaques Infected with the Simian Immunodeficiency Virus. Vet Pathol 2016; 41:691-5. [PMID: 15557079 DOI: 10.1354/vp.41-6-691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytomegalovirus (CMV)-associated gastrointestinal masses have been reported in human acquired immune deficiency syndrome patients. This is the first report on CMV-associated gastrointestinal masses in simian immunodeficiency virus (SIV)-infected macaques. Two SIV-infected macaques presented at necropsy with multiple nodular or umbilicated masses within the gastrointestinal tract. In one animal, the masses were located throughout the gastrointestinal tract, whereas in the other, the masses were restricted to the proximal small intestine. Grossly, the masses were indistinguishable from those caused by neoplastic conditions such as lymphoma and, histologically, were composed of hyperplastic glandular tissue, dense neutrophilic infiltrates within the lamina propria, and multifocal proprial hemorrhage. Frequent cytomegalic cells with basophilic intranuclear inclusions were found in affected regions. Immunohistochemistry for CMV demonstrated frequent immunopositive cells within affected areas. Furthermore, immunohistochemistry for the proliferation marker Ki-67 demonstrated increased proliferation in hyperplastic glands and crypts. CMV should be considered a cause of discrete mass lesions in the gastrointestinal tract of SIV-infected macaques.
Collapse
Affiliation(s)
- E Hendricks Hutto
- New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | | | | |
Collapse
|
35
|
Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques. J Virol 2016; 90:5643-5656. [PMID: 27030272 PMCID: PMC4886778 DOI: 10.1128/jvi.00290-16] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022] Open
Abstract
Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4+ T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4+ T cells and to evaluate the number of CD4+ T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4+ T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor β RNA was measured as a control to assess the potential contribution of CD4+ T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE Infection of CD4+ T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue-resident macrophages have the ability to self-renew and persist in the body for months to years. Thus, tissue macrophages, once infected, have the characteristics of a potentially stable viral reservoir. A better understanding of the number of productively infected macrophages is crucial to further evaluate the role of infected myeloid cells as a potential viral reservoir. In the study described here we compared the frequency of productively infected CD4+ T cells and macrophages in an SIV-infected macaque model. We developed a critical assay that will allow us to quantitate myeloid cells containing viral genomes that lead to productive infection in SIV-infected macaques and assess the role of macrophages as potential reservoirs.
Collapse
|
36
|
Denton PW, Søgaard OS, Tolstrup M. Using animal models to overcome temporal, spatial and combinatorial challenges in HIV persistence research. J Transl Med 2016; 14:44. [PMID: 26861779 PMCID: PMC4746773 DOI: 10.1186/s12967-016-0807-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/29/2016] [Indexed: 12/03/2022] Open
Abstract
Research challenges associated with understanding HIV persistence during antiretroviral therapy can be categorized as temporal, spatial and combinatorial. Temporal research challenges relate to the timing of events during establishment and maintenance of HIV persistence. Spatial research challenges regard the anatomical locations and cell subsets that harbor persistent HIV. Combinatorial research challenges pertain to the order of administration, timing of administration and specific combinations of compounds to be administered during HIV eradication therapy. Overcoming these challenges will improve our understanding of HIV persistence and move the field closer to achieving eradication of persistent HIV. Given that humanized mice and non-human primate HIV models permit rigorous control of experimental conditions, these models have been used extensively as in vivo research platforms for directly addressing these research challenges. The aim of this manuscript is to provide a comprehensive review of these recent translational advances made in animal models of HIV persistence.
Collapse
Affiliation(s)
- Paul W Denton
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark. .,Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark.
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus, Denmark. .,Department of Infectious Diseases, Aarhus University Hospital, Skejby, Aarhus, Denmark.
| |
Collapse
|
37
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
38
|
Micci L, Ryan ES, Fromentin R, Bosinger SE, Harper JL, He T, Paganini S, Easley KA, Chahroudi A, Benne C, Gumber S, McGary CS, Rogers KA, Deleage C, Lucero C, Byrareddy SN, Apetrei C, Estes JD, Lifson JD, Piatak M, Chomont N, Villinger F, Silvestri G, Brenchley JM, Paiardini M. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J Clin Invest 2015; 125:4497-513. [PMID: 26551680 PMCID: PMC4665780 DOI: 10.1172/jci81400] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non-AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4(+) T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21-treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection.
Collapse
Affiliation(s)
- Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily S. Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rémi Fromentin
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, Georgia, USA
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tianyu He
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sara Paganini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, and
| | - Ann Chahroudi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Clarisse Benne
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sanjeev Gumber
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Colleen S. McGary
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth A. Rogers
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
| | - Claire Deleage
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Carissa Lucero
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Siddappa N. Byrareddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacob D. Estes
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Jeffrey D. Lifson
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Michael Piatak
- AIDS Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Nicolas Chomont
- Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Faculty of Medicine, and Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Francois Villinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jason M. Brenchley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center (YNPRC), Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Schafer JL, Li H, Evans TI, Estes JD, Reeves RK. Accumulation of Cytotoxic CD16+ NK Cells in Simian Immunodeficiency Virus-Infected Lymph Nodes Associated with In Situ Differentiation and Functional Anergy. J Virol 2015; 89:6887-94. [PMID: 25903330 PMCID: PMC4468491 DOI: 10.1128/jvi.00660-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recent evidence suggests that even in treated infections, human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication may continue in lymph nodes (LN), serving as a potential virus reservoir. Here we investigated the effects of lentivirus infection on natural killer (NK) cell frequencies, phenotypes, and functions in naive and acutely or chronically SIVmac239-infected rhesus macaques. Compared to that in naive animals, we observed a 3-fold-greater frequency of cytotoxic CD16(+) CD56(-) NK cells in LN of chronically infected macaques. However, NK cells did not appear to be trafficking to LN, as homing markers CD62L and CCR7 did not increase on circulating NK cells during infection. LN NK cells demonstrated enhanced cytotoxicity in acute infection, with 2-fold increases in perforin expression and 3-fold increases in CD107a expression following mitogen stimulation. Lysis of K562 cells by LN NK cells from acutely infected animals was greater than lysis by preinfection samples from the same animals. LN NK cells from chronically infected animals lysed K562 cells more efficiently than LN NK cells from uninfected animals, but importantly, surrogate markers of cytotoxicity in infected macaques were disproportionately greater than ex vivo killing. Furthermore, Tim-3, an indicator of activation and/or exhaustion, was upregulated 3-fold on LN NK cells in chronically infected animals. Collectively, these data suggest that LN NK cells are skewed toward a cytotoxic phenotype during SIV infection but may become dysfunctional and exhausted in chronic disease. IMPORTANCE The accumulation of CD16(+) CD56(-) NK cells in the SIV-infected lymph node without changes in NK homing to the LN could suggest that these cells are differentiating in situ. Surprisingly, this increase in frequency of the cytotoxic subset of NK cells is not accompanied by an increase of similar magnitude in the cytolytic function of LN lymphocytes. This functional modulation, together with the higher Tim-3 expression observed on LN NK cells isolated from chronically infected animals than on those from naive macaques, is indicative of an exhausted phenotype. This exhaustion could contribute to the robust replication of HIV and SIV in the LN during acute and chronic stages of infection, allowing the survival of infected cells and maintenance of a viral reservoir.
Collapse
Affiliation(s)
- Jamie L Schafer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haiying Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tristan I Evans
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
40
|
Simian Immunodeficiency Virus SIVsab Infection of Rhesus Macaques as a Model of Complete Immunological Suppression with Persistent Reservoirs of Replication-Competent Virus: Implications for Cure Research. J Virol 2015; 89:6155-60. [PMID: 25833043 DOI: 10.1128/jvi.00256-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency virus SIVsab infection is completely controlled in rhesus macaques (RMs) through functional immune responses. We report that in SIVsab-infected RMs, (i) viral replication is controlled to <0 to 3 copies/ml, (ii) about one-third of the virus strains in reservoirs are replication incompetent, and (iii) rebounding virus after CD8(+) cell depletion is replication competent and genetically similar to the original virus stock, suggesting early reservoir seeding. This model permits assessment of strategies aimed at depleting the reservoir without multidrug antiretroviral therapy.
Collapse
|
41
|
Zhan XY, Wang N, Liu G, Qin L, Xu W, Zhao S, Qin L, Chen X. Plasmodium infection reduces the volume of the viral reservoir in SIV-infected rhesus macaques receiving antiretroviral therapy. Retrovirology 2014; 11:112. [PMID: 25487036 PMCID: PMC4269176 DOI: 10.1186/s12977-014-0112-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/24/2014] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies indicated that Plasmodium infection activates the immune system, including memory CD4+ T cells, which constitute the reservoir of human immunodeficiency virus type-1 (HIV-1). Therefore, we postulated that co-infection with malaria might activate the reservoir of HIV-1. To test this hypothesis, we used a rhesus macaque model of co-infection with malaria and simian immunodeficiency virus (SIV), along with antiretroviral therapy (ART). Results Our results showed that Plasmodium infection reduced both the replication-competent virus pool in resting CD4+ T cells and the integrated virus DNA (iDNA) load in peripheral blood mononuclear cells in the monkeys. This reduction might be attributable to malaria-mediated activation and apoptotic induction of memory CD4+ T cells. Further studies indicated that histone acetylation and NF-kappaB (NF-κB) activation in resting CD4+ T cells may also play an important role in this reduction. Conclusions The findings of this work expand our knowledge of the interaction between these two diseases. As more HIV-1-infected individuals in malaria-endemic areas receive ART, we should explore whether any of the patients co-infected with Plasmodium experience virologic benefits. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Nina Wang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Limei Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Wanwan Xu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Luogang District, Guangzhou Science Park, Guangzhou, 510530, Guangdong Province, China.
| |
Collapse
|
42
|
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 2014; 12:750-64. [PMID: 25402363 PMCID: PMC4383747 DOI: 10.1038/nrmicro3352] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART.
Collapse
Affiliation(s)
- Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Julia Marsh Sung
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Carolina Garrido
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - David M Margolis
- 1] Department of Medicine, University of North Carolina at Chapel Hill. [2] Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. [3] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
43
|
Peterson CW, Younan P, Polacino PS, Maurice NJ, Miller HW, Prlic M, Jerome KR, Woolfrey AE, Hu SL, Kiem HP. Robust suppression of env-SHIV viremia in Macaca nemestrina by 3-drug ART is independent of timing of initiation during chronic infection. J Med Primatol 2014; 42:237-46. [PMID: 24025078 DOI: 10.1111/jmp.12060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nonhuman primates (NHPs) are an important model organism for studies of HIV pathogenesis and preclinical evaluation of anti-HIV therapies. The successful translation of NHP-derived data to clinically relevant anti-HIV studies will require better understanding of the viral strains and NHP species used and their responses to existing antiretroviral therapies (ART). METHODS Five pigtailed macaques (Macaca nemestrina) were productively infected with the SIV/HIV chimeric virus SHIV-1157 ipd3N4 following intravenous challenge. After 8 or 27 weeks, ART (PMPA, FTC, raltegravir) was initiated. Viral load, T-cell counts, and production of SHIV-specific antibodies were monitored throughout the course of infection and ART. RESULTS ART led to a rapid and sustained decrease in plasma viral load. Suppression of plasma viremia by ART was independent of the timing of initiation during chronic infection. CONCLUSIONS We present a new NHP model of HIV infection on antiretroviral therapy, which should prove applicable to multiple clinically relevant anti-HIV approaches.
Collapse
|
44
|
Deere JD, Kauffman RC, Cannavo E, Higgins J, Villalobos A, Adamson L, Schinazi RF, Luciw PA, North TW. Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART. PLoS One 2014; 9:e87914. [PMID: 24505331 PMCID: PMC3914874 DOI: 10.1371/journal.pone.0087914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/01/2014] [Indexed: 02/06/2023] Open
Abstract
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load.
Collapse
Affiliation(s)
- Jesse D. Deere
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Robert C. Kauffman
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Elda Cannavo
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Joanne Higgins
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Andradi Villalobos
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Lourdes Adamson
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Raymond F. Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Pathology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Thomas W. North
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Molecular Biosciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
45
|
Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, Piatak M, Mellors JW, Lifson JD, Ambrose Z. Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model. PLoS One 2013; 8:e84275. [PMID: 24367650 PMCID: PMC3867492 DOI: 10.1371/journal.pone.0084275] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023] Open
Abstract
Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood.
Collapse
Affiliation(s)
- Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jean Ndjomou
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tamera Franks
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
46
|
Sisk JM, Witwer KW, Tarwater PM, Clements JE. SIV replication is directly downregulated by four antiviral miRNAs. Retrovirology 2013; 10:95. [PMID: 23988154 PMCID: PMC3766675 DOI: 10.1186/1742-4690-10-95] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 12/30/2022] Open
Abstract
Background Host cell microRNAs (miRNAs) have been shown to regulate the expression of both cellular and viral RNAs, in particular impacting both Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). To investigate the role of miRNAs in regulating replication of the simian immunodeficiency virus (SIV) in macrophage lineage cells, we used primary macrophages to study targeting of SIV RNA by miRNAs. We examined whether specific host miRNAs directly target SIV RNA early in infection and might be induced via type I interferon pathways. Results miRNA target prediction programs identified miRNA binding sites within SIV RNA. Predicted binding sites for miRs-29a, -29b, -9 and -146a were identified in the SIV Nef/U3 and R regions, and all four miRNAs decreased virus production and viral RNA expression in primary macrophages. To determine whether levels of these miRNAs were affected by SIV infection, IFNβ or TNFα treatments, miRNA RT-qPCR assays measured miRNA levels after infection or treatment of macrophages. SIV RNA levels as well as virus production was downregulated by direct targeting of the SIV Nef/U3 and R regions by four miRNAs. miRs-29a, -29b, -9 and -146a were induced in primary macrophages after SIV infection. Each of these miRNAs was regulated by innate immune signaling through TNFα and/or the type I IFN, IFNβ. Conclusions The effects on miRNAs caused by HIV/SIV infection are illustrated by changes in their cellular expression throughout the course of disease, and in different patient populations. Our data demonstrate that levels of primary transcripts and mature miRs-29a, -29b, -9 and -146a are modulated by SIV infection. We show that the SIV 3′ UTR contains functional miRNA response elements (MREs) for all four miRNAs. Notably, these miRNAs regulate virus production and viral RNA levels in macrophages, the primary cells infected in the CNS that drive inflammation leading to HIV-associated neurocognitive disorders. This report may aid in identification miRNAs that target viral RNAs and HIV/SIV specifically, as well as in identification of miRNAs that may be targets of new therapies to treat HIV.
Collapse
Affiliation(s)
- Jeanne M Sisk
- Department of Molecular and Comparative Pathobiology, Edward D, Miller Research Building, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
47
|
Del Prete GQ, Lifson JD. Considerations in the development of nonhuman primate models of combination antiretroviral therapy for studies of AIDS virus suppression, residual virus, and curative strategies. Curr Opin HIV AIDS 2013; 8:262-72. [PMID: 23698559 PMCID: PMC3939607 DOI: 10.1097/coh.0b013e328361cf40] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Animal models will be critical for preclinical evaluations of novel HIV eradication and/or functional cure strategies in the setting of suppressive combination antiretroviral therapy (cART). Here, the strengths, limitations, and challenges of recent efforts to develop nonhuman primate (NHP) models of cART-mediated suppression for use in studies of persistent virus and curative approaches are discussed. RECENT FINDINGS Several combinations of NHP species and viruses that recapitulate key aspects of human HIV infection have been adapted for cART-mediated suppression studies. Different cART regimens incorporating drugs targeting multiple different steps of the viral replication cycle have provided varying levels of virologic suppression, dependent in part upon the host species, virus, drug regimen and timing, and virologic monitoring assay sensitivity. New, increasingly sensitive virologic monitoring approaches for measurements of plasma viral RNA, cell-associated and tissue-associated viral RNA and DNA, and the replication-competent residual viral pool in the setting of cART in NHP models are being developed to allow for the assessment of persistent virus on cART and to evaluate the impact of viral induction/eradication strategies in vivo. SUMMARY Given the vagaries of each specific virus and host species, and cART regimen, each model will require further development and analysis to determine their appropriate application for addressing specific experimental questions.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
48
|
Abstract
HIV-1 can establish a state of latent infection at the level of individual T cells. Latently infected cells are rare in vivo and appear to arise when activated CD4(+) T cells, the major targets cells for HIV-1, become infected and survive long enough to revert back to a resting memory state, which is nonpermissive for viral gene expression. Because latent virus resides in memory T cells, it persists indefinitely even in patients on potent antiretroviral therapy. This latent reservoir is recognized as a major barrier to curing HIV-1 infection. The molecular mechanisms of latency are complex and include the absence in resting CD4(+) T cells of nuclear forms of key host transcription factors (e.g., NFκB and NFAT), the absence of Tat and associated host factors that promote efficient transcriptional elongation, epigenetic changes inhibiting HIV-1 gene expression, and transcriptional interference. The presence of a latent reservoir for HIV-1 helps explain the presence of very low levels of viremia in patients on antiretroviral therapy. These viruses are released from latently infected cells that have become activated and perhaps from other stable reservoirs but are blocked from additional rounds of replication by the drugs. Several approaches are under exploration for reactivating latent virus with the hope that this will allow elimination of the latent reservoir.
Collapse
Affiliation(s)
- Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
49
|
No viral evolution in the lymph nodes of simian immunodeficiency virus-infected rhesus macaques during combined antiretroviral therapy. J Virol 2013; 87:4789-93. [PMID: 23408611 DOI: 10.1128/jvi.03367-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate the mode of viral persistence in primate lentivirus-infected individuals during combination antiretroviral therapy (cART), four simian immunodeficiency virus 239-infected monkeys were treated with cART for 1 year. The viral env genes prepared from total RNA extracted from the mesenteric lymph nodes collected at the completion of therapy were assessed by single genome amplification. Analyses of nucleotide substitutions and phylogeny revealed no viral evolution during cART.
Collapse
|
50
|
Chan CN, Dietrich I, Hosie MJ, Willett BJ. Recent developments in human immunodeficiency virus-1 latency research. J Gen Virol 2013; 94:917-932. [PMID: 23364195 PMCID: PMC3709588 DOI: 10.1099/vir.0.049296-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-1) remains incurable and the virus persists due to reservoirs of latently infected CD4(+) memory T-cells and sanctuary sites within the infected individual where drug penetration is poor. Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host, but many difficulties and unanswered questions remain. In this review, the latest developments in HIV-persistence and latency research are presented.
Collapse
Affiliation(s)
- Chi Ngai Chan
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Isabelle Dietrich
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|