1
|
Allard B, Ousova O, Savitskaya Z, Levardon H, Maurat E, Campagnac M, Trian T, Berger P. Pulmonary adaptation to repeated poly(I:C) exposure is impaired in asthmatic mice: an observational study. Respir Res 2024; 25:314. [PMID: 39160577 PMCID: PMC11334391 DOI: 10.1186/s12931-024-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation. METHODS Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation. RESULTS Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes. CONCLUSIONS This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.
Collapse
Affiliation(s)
- Benoit Allard
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France.
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France.
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Zhanna Savitskaya
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Hannah Levardon
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Marilyne Campagnac
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Pessac, F-33600, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, CIC 1401, 33600, France
| |
Collapse
|
2
|
Mei S, Li D, Wang A, Zhu G, Zhou B, Li N, Qin Y, Zhang Y, Jiang S. The role of sialidase Neu1 in respiratory diseases. Respir Res 2024; 25:134. [PMID: 38500102 PMCID: PMC10949680 DOI: 10.1186/s12931-024-02763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
Neu1 is a sialidase enzyme that plays a crucial role in the regulation of glycosylation in a variety of cellular processes, including cellular signaling and inflammation. In recent years, numerous evidence has suggested that human NEU1 is also involved in the pathogenesis of various respiratory diseases, including lung infection, chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis. This review paper aims to provide an overview of the current research on human NEU1 and respiratory diseases.
Collapse
Affiliation(s)
- Shiran Mei
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Dingding Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Aoyi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingwen Zhou
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian Li
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Qin
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanliang Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Popescu MC, Haddock NL, Burgener EB, Rojas-Hernandez LS, Kaber G, Hargil A, Bollyky PL, Milla CE. The Inovirus Pf4 Triggers Antiviral Responses and Disrupts the Proliferation of Airway Basal Epithelial Cells. Viruses 2024; 16:165. [PMID: 38275975 PMCID: PMC10818373 DOI: 10.3390/v16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The inovirus Pf4 is a lysogenic bacteriophage of Pseudomonas aeruginosa (Pa). People with Cystic Fibrosis (pwCF) experience chronic airway infection with Pa and a significant proportion have high numbers of Pf4 in their airway secretions. Given the known severe damage in the airways of Pa-infected pwCF, we hypothesized a high Pf4 burden can affect airway healing and inflammatory responses. In the airway, basal epithelial cells (BCs) are a multipotent stem cell population critical to epithelium homeostasis and repair. We sought to investigate the transcriptional responses of BCs under conditions that emulate infection with Pa and exposure to high Pf4 burden. METHODS Primary BCs isolated from pwCF and wild-type (WT) donors were cultured in vitro and exposed to Pf4 or bacterial Lipopolysaccharide (LPS) followed by transcriptomic and functional assays. RESULTS We found that BCs internalized Pf4 and this elicits a strong antiviral response as well as neutrophil chemokine production. Further, we found that BCs that take up Pf4 demonstrate defective migration and proliferation. CONCLUSIONS Our findings are highly suggestive of Pf4 playing a role in the pathogenicity of Pa in the airways. These findings provide additional evidence for the ability of inoviruses to interact with mammalian cells and disrupt cell function.
Collapse
Affiliation(s)
- Medeea C. Popescu
- Department of Infectious Diseases, Stanford University, Stanford, CA 94305, USA (P.L.B.)
- Immunology Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi L. Haddock
- Department of Infectious Diseases, Stanford University, Stanford, CA 94305, USA (P.L.B.)
- Immunology Program, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura S. Rojas-Hernandez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gernot Kaber
- Department of Infectious Diseases, Stanford University, Stanford, CA 94305, USA (P.L.B.)
| | - Aviv Hargil
- Department of Infectious Diseases, Stanford University, Stanford, CA 94305, USA (P.L.B.)
| | - Paul L. Bollyky
- Department of Infectious Diseases, Stanford University, Stanford, CA 94305, USA (P.L.B.)
| | - Carlos E. Milla
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Silva MJA, Vieira MCDS, Souza AB, dos Santos EC, Marcelino BDR, Casseb SMM, Lima KVB, Lima LNGC. Analysis of associations between the TLR3 SNPs rs3775291 and rs3775290 and COVID-19 in a cohort of professionals of Belém-PA, Brazil. Front Cell Infect Microbiol 2023; 13:1320701. [PMID: 38173795 PMCID: PMC10763251 DOI: 10.3389/fcimb.2023.1320701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The objective of this article was to verify associations between the SNPs rs3775291 (Cytosine [C]>Thymine [T]) and rs3775290 (C>T) of TLR3 in professionals from Health Institutions (HI) who worked during the first pandemic wave and COVID-19. A case-control study was carried out with workers from HI in Belém-PA, Brazil, divided into symptomatology groups (Asymptomatic-AS, n=91; and Symptomatic-SI, n=121), and severity groups, classified by Chest CT scan (symptomatic with lung involvement - SCP, n=34; symptomatic without lung involvement - SSP, n=8). Genotyping was performed by Sanger sequencing and statistical analysis was performed using the SPSS program. In the analysis of SNP rs3775291, the homozygous recessive genotype (T/T) was not found and the frequency of the mutant allele (T) was less than 2% in the cohort. For the rs3775290 SNP, the frequency of the mutant allele (T) was greater than 42% in the cohort. No significant associations were found for these SNPs in this cohort (N= 212 individuals). The scientific community and physicians can use these facts to find new methods of managing COVID-19.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Alex Brito Souza
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Everaldina Cordeiro dos Santos
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | - Beatriz dos Reis Marcelino
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Karla Valéria Batista Lima
- Molecular Biology Laboratory, Bacteriology and Mycology Section (SABMI), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | |
Collapse
|
5
|
Kim S, Lee SK, Son A, Lee J, Kim HG. A Comparative Inflammation-on-a-Chip with a Complete 3D Interface: Pharmacological Applications in COPD-Induced Neutrophil Migration. Adv Healthc Mater 2023; 12:e2301673. [PMID: 37505448 PMCID: PMC11469264 DOI: 10.1002/adhm.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slow-progressing inflammatory lung disease that is associated with high mortality and disability. There is a lack of appropriate preclinical models of COPD, which hampers drug discovery efforts. Herein, a comparative inflammation-on-a-chip (IoC) is developed with a complete 3D interface without the formation of any micropillar and phaseguide structures that replicated chemoattractant-induced neutrophil transendothelial migration (NTEM), a key feature of COPD. The IoC model is used to evaluate the pharmacological effects of CXCR2 inhibitors (MK-7123, AZD5069, and SB225002) on the migration of neutrophil-like cells in the presence of plasma samples from patients with COPD. This is the first study to evaluate inhibitors of CXCR2-dependent NTEM in a comparative IoC model that mimics the physiological 3D microenvironment, consisting of an endothelial barrier, extracellular compartment, and inflammatory conditions. This IoC model will be useful to investigate COPD severity using patient samples, and will aid basic and translational research involving NTEM.
Collapse
Affiliation(s)
- Soohyun Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Sung Kyun Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Ahryeong Son
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Jong‐Hwan Lee
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| | - Hong Gi Kim
- Center for Infectious Disease Vaccine and Diagnosis InnovationKorea Research Institute of Chemical TechnologyDaejeon34114Republic of Korea
| |
Collapse
|
6
|
Panzer B, Kopp CW, Neumayer C, Koppensteiner R, Jozkowicz A, Poledniczek M, Gremmel T, Jilma B, Wadowski PP. Toll-like Receptors as Pro-Thrombotic Drivers in Viral Infections: A Narrative Review. Cells 2023; 12:1865. [PMID: 37508529 PMCID: PMC10377790 DOI: 10.3390/cells12141865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral infections. The induced pro-inflammatory responses result in the disturbance of the endovascular surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation. TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation. The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking pro-thrombotic responses, which determine patient outcome during viral infections, especially in those with cardiovascular diseases.
Collapse
Affiliation(s)
- Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1090 Vienna, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alicja Jozkowicz
- Faculty of Biophysics, Biochemistry and Biotechnology, Department of Medical Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Patricia P Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Komai S, Ueta M, Nishigaki H, Mizushima K, Naito Y, Kinoshita S, Sotozono C. Differences in gene regulation by TLR3 and IPS-1 signaling in murine corneal epithelial cells. Sci Rep 2023; 13:7925. [PMID: 37193897 DOI: 10.1038/s41598-023-35144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/13/2023] [Indexed: 05/18/2023] Open
Abstract
Toll-like receptor 3 (TLR3) and interferon-beta promoter stimulator-1 (IPS-1) are associated with antiviral responses to double-stranded RNA viruses and contribute to innate immunity. We previously reported that conjunctival epithelial cell (CEC) TLR3 and IPS-1 pathways respond to the common ligand polyinosinic:polycytidylic acid (polyI:C) to regulate different gene expression patterns as well as CD11c + cell migration in murine-model corneas. However, the differences in the functions and the roles of TLR3 and IPS-1 remain unclear. In this study, we investigated the differences of TLR3 or IPS-1-induced gene expression in corneal epithelial cells (CECs) in response to polyI:C stimulation using cultured murine primary CECs (mPCECs) derived from TLR3 and IPS-1 knockout mice via comprehensive analysis. The genes associated with viral responses were upregulated in the wild-type mice mPCECs after polyI:C stimulation. Among these genes, Neurl3, Irg1, and LIPG were dominantly regulated by TLR3, while interleukin (IL)-6 and IL-15 were dominantly regulated by IPS-1. CCL5, CXCL10, OAS2, Slfn4, TRIM30α, and Gbp9 were complementarily regulated by both TLR3 and IPS-1. Our findings suggest that CECs may contribute to immune responses and that TLR3 and IPS-1 possibly have different functions in the corneal innate immune response.
Collapse
Affiliation(s)
- Seitaro Komai
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan.
| | - Hiromi Nishigaki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-Cho, Kamigyo-Ku, Kyoto, Japan
| |
Collapse
|
8
|
Yamaya M, Kikuchi A, Sugawara M, Nishimura H. Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respir Investig 2023; 61:270-283. [PMID: 36543714 PMCID: PMC9761392 DOI: 10.1016/j.resinv.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.
Collapse
Affiliation(s)
- Mutsuo Yamaya
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan; Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | - Akiko Kikuchi
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Mitsuru Sugawara
- Department of Otolaryngology, Tohoku Kosai Hospital, Sendai 980-0803, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
9
|
Rovira Rubió J, Megremis S, Pasioti M, Lakoumentas J, Constantinides B, Xepapadaki P, Bachert C, Finotto S, Jartti T, Andreakos E, Stanic B, Akdis CA, Akdis M, Papadopoulos NG. Respiratory virome profiles reflect antiviral immune responses. Allergy 2023; 78:1258-1268. [PMID: 36595290 DOI: 10.1111/all.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND From early life, respiratory viruses are implicated in the development, exacerbation and persistence of respiratory conditions such as asthma. Complex dynamics between microbial communities and host immune responses shape immune maturation and homeostasis, influencing health outcomes. We evaluated the hypothesis that the respiratory virome is linked to systemic immune responses, using peripheral blood and nasopharyngeal swab samples from preschool-age children in the PreDicta cohort. METHODS Peripheral blood mononuclear cells from 51 children (32 asthmatics and 19 healthy controls) participating in the 2-year multinational PreDicta cohort were cultured with bacterial (Bacterial-DNA, LPS) or viral (R848, Poly:IC, RV) stimuli. Supernatants were analysed by Luminex for the presence of 22 relevant cytokines. Virome composition was obtained using untargeted high throughput sequencing of nasopharyngeal samples. The metagenomic data were used for the characterization of virome profiles and the presence of key viral families (Picornaviridae, Anelloviridae, Siphoviridae). These were correlated to cytokine secretion patterns, identified through hierarchical clustering and principal component analysis. RESULTS High spontaneous cytokine release was associated with increased presence of Prokaryotic virome profiles and reduced presence of Eukaryotic and Anellovirus profiles. Antibacterial responses did not correlate with specific viral families or virome profile; however, low antiviral responders had more Prokaryotic and less Eukaryotic virome profiles. Anelloviruses and Anellovirus-dominated profiles were equally distributed among immune response clusters. The presence of Picornaviridae and Siphoviridae was associated with low interferon-λ responses. Asthma or allergy did not modify these correlations. CONCLUSION Antiviral cytokine responses at a systemic level reflect the upper airway virome composition. Individuals with low innate interferon responses have higher abundance of Picornaviruses (mostly Rhinoviruses) and bacteriophages. Bacteriophages, particularly Siphoviridae, appear to be sensitive sensors of host antimicrobial capacity, while Anelloviruses are not correlated with TLR-induced immune responses.
Collapse
Affiliation(s)
- Judit Rovira Rubió
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Spyridon Megremis
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Maria Pasioti
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - John Lakoumentas
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bede Constantinides
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Claus Bachert
- Upper Airway Research Laboratory, Ghent University Hospital, Ghent, Belgium
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tuomas Jartti
- PEDEGO Research Unit, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, University of Oulu, Oulu, Finland.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK.,Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Price AS, Kennedy JL. T-helper 2 mechanisms involved in human rhinovirus infections and asthma. Ann Allergy Asthma Immunol 2022; 129:681-691. [PMID: 36002092 PMCID: PMC10316285 DOI: 10.1016/j.anai.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Human rhinovirus (HRV) is the most common causative agent for the common cold and its respiratory symptoms. For those with asthma, cystic fibrosis, or chronic obstructive pulmonary disease, HRVs can lead to severe and, at times, fatal complications. Furthermore, an array of innate and adaptive host immune responses leads to varying outcomes ranging from subclinical to severe. In this review, we discuss the viral pathogenesis and host immune responses associated with this virus. Specifically, we focus on the immune responses that might skew a T-helper type 2 response, including alarmins, in those with allergic asthma. We also discuss the role of a poor innate immune response with interferons. Finally, we consider therapeutic options for HRV-associated exacerbations of asthma, including biologics and intranasal sprays on the basis of the current literature.
Collapse
Affiliation(s)
- Adam S Price
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Joshua L Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas; Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
11
|
Rhinovirus Infection and Virus-Induced Asthma. Viruses 2022; 14:v14122616. [PMID: 36560620 PMCID: PMC9781665 DOI: 10.3390/v14122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
While the aetiology of asthma is unclear, the onset and/or exacerbation of asthma may be associated with respiratory infections. Virus-induced asthma is also known as virus-associated/triggered asthma, and the reported main causative agent is rhinovirus (RV). Understanding the relationship between viral infections and asthma may overcome the gaps in deferential immunity between viral infections and allergies. Moreover, understanding the complicated cytokine networks involved in RV infection may be necessary. Therefore, the complexity of RV-induced asthma is not only owing to the response of airway and immune cells against viral infection, but also to allergic immune responses caused by the wide variety of cytokines produced by these cells. To better understand RV-induced asthma, it is necessary to elucidate the nature RV infections and the corresponding host defence mechanisms. In this review, we attempt to organise the complexity of RV-induced asthma to make it easily understandable for readers.
Collapse
|
12
|
Vakil MK, Mansoori Y, Al‐Awsi GRL, Hosseinipour A, Ahsant S, Ahmadi S, Ekrahi M, Montaseri Z, Pezeshki B, Mohaghegh P, Sohrabpour M, Bahmanyar M, Daraei A, Dadkhah Jouybari T, Tavassoli A, Ghasemian A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J Med Virol 2022; 94:4088-4096. [PMID: 35538614 PMCID: PMC9348290 DOI: 10.1002/jmv.27849] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.
Collapse
Affiliation(s)
- Mohammad Kazem Vakil
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Yaser Mansoori
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Ghaidaa Raheem Lateef Al‐Awsi
- University of Al‐QadisiyahCollege of ScienceAl DiwaniyahIraq
- Department of Radiological TechniquesAl‐Mustaqbal University CollegeBabylonIraq
| | - Ali Hosseinipour
- Department of Internal MedicineFasa University of Medical SciencesFasaIran
| | - Samaneh Ahsant
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Sedigheh Ahmadi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Mohammad Ekrahi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Zahra Montaseri
- Department of Infectious DiseasesFasa University of Medical SciencesFasaIran
| | - Babak Pezeshki
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Poopak Mohaghegh
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Mojtaba Sohrabpour
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Maryam Bahmanyar
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of MedicineBabol University of Medical SciencesBabolIran
| | | | | | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
13
|
Zhou S, Yao Z. Roles of Infection in Psoriasis. Int J Mol Sci 2022; 23:ijms23136955. [PMID: 35805960 PMCID: PMC9266590 DOI: 10.3390/ijms23136955] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated disorder with cutaneous and systemic manifestations. Genetic predisposition, environmental factors, and immune dysfunction all contribute to the pathogenesis of psoriasis with host-microbe interaction governing the progression of this disease. Emerging evidence has indicated that infection is an environmental trigger for psoriasis and plays multiple roles in its maintenance as evidenced by the frequent association between guttate psoriasis onset and acute streptococcal infection. Different infectious factors act on immune cells to produce inflammatory cytokines that can induce or aggravate psoriasis. In addition to bacterial infections, viral and fungal infections have also been shown to be strongly associated with the onset or exacerbation of psoriasis. Intervention of skin microbiota to treat psoriasis has become a hot research topic. In this review, we summarize the effects of different infectious factors (bacteria, viruses, and fungi) on psoriasis, thereby providing insights into the manipulation of pathogens to allow for the identification of improved therapeutic options for the treatment of this condition.
Collapse
Affiliation(s)
- Shihui Zhou
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China;
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
14
|
Sallard E, Schult F, Baehren C, Buedding E, Mboma O, Ahmad-Nejad P, Ghebremedhin B, Ehrhardt A, Wirth S, Aydin M. Viral Infection and Respiratory Exacerbation in Children: Results from a Local German Pediatric Exacerbation Cohort. Viruses 2022; 14:491. [PMID: 35336898 PMCID: PMC8955305 DOI: 10.3390/v14030491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.
Collapse
Affiliation(s)
- Erwan Sallard
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Frank Schult
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Carolin Baehren
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Eleni Buedding
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| | - Olivier Mboma
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Beniam Ghebremedhin
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Witten/Herdecke University, 58453 Witten, Germany; (E.S.); (A.E.)
| | - Stefan Wirth
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
| | - Malik Aydin
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany; (F.S.); (O.M.); (S.W.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, Faculty of Health, School of Life Sciences (ZBAF), Witten/Herdecke University, 58455 Witten, Germany; (C.B.); (E.B.)
| |
Collapse
|
15
|
Alseoudy MM, Elgamal M, Abdelghany DA, Borg AM, El-Mesery A, Elzeiny D, Hammad MO. Prognostic impact of toll-like receptors gene polymorphism on outcome of COVID-19 pneumonia: A case-control study. Clin Immunol 2022; 235:108929. [PMID: 35063671 PMCID: PMC8767970 DOI: 10.1016/j.clim.2022.108929] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Toll-like receptor 3 (TLR3) and TLR7 genes are involved in the host immune response against viral infections including SARS-COV-2. This study aimed to investigate the association between the TLR3(rs3775290) and TLR7(rs179008) polymorphisms with the prognosis and susceptibility to COVID-19 pneumonia accompanying SARS-COV-2 infection. This case-control study included 236 individuals: 136 COVID-19 pneumonia patients and 100 age and sex-matched controls. Two polymorphisms (TLR3 rs3775290 and TLR7 rs179008) were genotyped by allelic discrimination through TaqMan real-time PCR. This study also investigated predictors of mortality in COVID-19 pneumonia through logistic regression. The mutant ‘T/T' genotypes and the ‘T' alleles of TLR3(rs3775290) and TLR7(rs179008) polymorphisms were significantly associated with increased risk of COVID-19 pneumonia. This study did not report association between the mutant ‘T/T' genotypes of TLR3(rs3775290) and TLR7(rs179008) and the disease outcome. In multivariate analysis, the independent predictors of mortality in COVID-19 pneumonia were male sex, SPO2 ≤ 82%, INR > 1, LDH ≥ 1000 U/l, and lymphocyte count<900/mm3 (P < 0.05).
Collapse
|
16
|
Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P. Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 2021; 6:127. [PMID: 34711839 PMCID: PMC8553822 DOI: 10.1038/s41541-021-00391-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are transmembrane proteins belonging to the family of pattern-recognition receptors. They function as sensors of invading pathogens through recognition of pathogen-associated molecular patterns. After their engagement by microbial ligands, TLRs trigger downstream signaling pathways that culminate into transcriptional upregulation of genes involved in immune defense. Here we provide an updated overview on members of the TLR family and we focus on their role in antiviral response. Understanding of innate sensing and signaling of viruses triggered by these receptors would provide useful knowledge to prompt the development of vaccines able to elicit effective and long-lasting immune responses. We describe the mechanisms developed by viral pathogens to escape from immune surveillance mediated by TLRs and finally discuss how TLR/virus interplay might be exploited to guide the design of innovative vaccine platforms.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Roberta Manco
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology, C.N.R., Via Pietro Castellino 111, 80131, Naples, Italy.
| | | |
Collapse
|
17
|
Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021; 12:731846. [PMID: 34691038 PMCID: PMC8526928 DOI: 10.3389/fimmu.2021.731846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Sarkar S, Ratho RK, Singh M, Singh MP, Singh A, Sharma M. Comparative analysis of epidemiology, clinical features and cytokine response of Respiratory Syncytial and Human Metapneumovirus infected children with acute lower respiratory infections. Jpn J Infect Dis 2021; 75:56-62. [PMID: 34193665 DOI: 10.7883/yoken.jjid.2021.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both Human Respiratory Syncytial virus (RSV) and Human Metapneumovirus (hMPV) cause immune-mediated under-five acute respiratory infections (ARI), but differences in their disease pathogenesis, if any, are not well-known. This study was undertaken to analyze the epidemio-clinico-immunological features of RSV and hMPV infections. Naso-pharyngeal aspirates from children (aged two months to five years) with ARI presenting to our tertiary care center between December 2013 to March 2016 were subjected to real-time polymerase chain reaction for detection of RSV and hMPV. Positive samples were analyzed for co-infections and levels of cytokines. Of 349 naso-pharyngeal aspirates, RSV was detected in 40.68% (142/349), hMPV in 6.59% (23/349) and both in 1.4% (5/349). Co-infections were common, rhinovirus being the commonest co-offender. The demographical and clinical parameters of RSV- and hMPV-infected children were comparable. MMP-9/TIMP-1 ratio was significantly higher in RSV-mediated ARI and IFN-γ in hMPV-mediated ARI. Both RSV and hMPV are common among north Indian children with ARI and coinfections are not uncommon. Their clinical features being non-discriminatory, molecular diagnosis should be utilized to ascertain their individual epidemiology. The differences in their immune-pathogenesis (MMP-9/TIMP-1 ratio in RSV and IFN-γ in hMPV) could serve as useful tools for developing newer drugs.
Collapse
Affiliation(s)
- Subhabrata Sarkar
- Department of Virology, Postgraduate Institute of Medical Education and Research, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, India
| | - Meenu Singh
- Department of Pediatric Pulmonology, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, India
| | - Mini Pritam Singh
- Department of Virology, Postgraduate Institute of Medical Education and Research, India
| | - Amarjeet Singh
- School and Public Health, Postgraduate Institute of Medical Education and Research, India
| | - Megha Sharma
- Department of Virology, Postgraduate Institute of Medical Education and Research, India
| |
Collapse
|
19
|
Mustafa DAM, Saida L, Latifi D, Wismans LV, de Koning W, Zeneyedpour L, Luider TM, van den Hoogen B, van Eijck CHJ. Rintatolimod Induces Antiviral Activities in Human Pancreatic Cancer Cells: Opening for an Anti-COVID-19 Opportunity in Cancer Patients? Cancers (Basel) 2021; 13:cancers13122896. [PMID: 34207861 PMCID: PMC8227153 DOI: 10.3390/cancers13122896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Specific treatment for COVID-19 infections in cancer patients is lacking while the demand for treatment is increasing. Therefore, we explored the effect of Rintatolimod, a Toll-like receptor 3 (TLR3) agonist, on human epithelial cancerous cells. Our results demonstrated that Rintatolimod stimulated an anti-viral effect by producing RNase L that blocks virus replication. Moreover, Rintatolimod activated the innate and the adaptive immune systems by activating a cascade of actions in human cancerous cells. We believe that Rintatolimod should be considered in the treatment regimens of cancer patients who suffer from SARS-CoV-2 infection. Abstract Severe acute respiratory virus-2 (SARS-CoV-2) has spread globally leading to a devastating loss of life. Large registry studies have begun to shed light on the epidemiological and clinical vulnerabilities of cancer patients who succumb to or endure poor outcomes of SARS-CoV-2. Specific treatment for COVID-19 infections in cancer patients is lacking while the demand for treatment is increasing. Therefore, we explored the effect of Rintatolimod (Ampligen®) (AIM ImmunoTech, Ocala, FL, USA), a Toll-like receptor 3 (TLR3) agonist, to treat uninfected human pancreatic cancer cells (HPACs). The direct effect of Rintatolimod was measured by targeted gene expression profiling and by proteomics measurements. Our results show that Rintatolimod induces an antiviral effect in HPACs by inducing RNase-L-dependent and independent pathways of the innate immune system. Treatment with Rintatolimod activated the interferon signaling pathway, leading to the overexpression of several cytokines and chemokines in epithelial cells. Furthermore, Rintatolimod treatment increased the expression of angiogenesis-related genes without promoting fibrosis, which is the main cause of death in patients with COVID-19. We conclude that Rintatolimod could be considered an early additional treatment option for cancer patients who are infected with SARS-CoV-2 to prevent the complicated severity of the disease.
Collapse
Affiliation(s)
- Dana A. M. Mustafa
- Department of Pathology, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lawlaw Saida
- Department of Surgery, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.S.); (D.L.); (L.V.W.)
| | - Diba Latifi
- Department of Surgery, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.S.); (D.L.); (L.V.W.)
| | - Leonoor V. Wismans
- Department of Surgery, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.S.); (D.L.); (L.V.W.)
| | - Willem de Koning
- Clinical Bioinformatics Unit, Department of Pathology, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lona Zeneyedpour
- Department of Neurology, Clinical and Cancer Proteomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.Z.); (T.M.L.)
| | - Theo M. Luider
- Department of Neurology, Clinical and Cancer Proteomics, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.Z.); (T.M.L.)
| | | | - Casper H. J. van Eijck
- Department of Surgery, The Tumor Immuno-Pathology (TIP) Laboratory, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands; (L.S.); (D.L.); (L.V.W.)
- Correspondence: ; Tel.: +31-1-7044329
| |
Collapse
|
20
|
Samotij D, Gawron E, Szczęch J, Ostańska E, Reich A. Acrodermatitis Continua of Hallopeau Evolving into Generalized Pustular Psoriasis Following COVID-19: A Case Report of a Successful Treatment with Infliximab in Combination with Acitretin. Biologics 2021; 15:107-113. [PMID: 33948082 PMCID: PMC8088410 DOI: 10.2147/btt.s302164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is emerging. Various cutaneous manifestations have been observed in patients with SARS-CoV-2 infection, yet exacerbations of psoriasis have been reported sporadically. Acrodermatitis continua of Hallopeau (ACH) is an uncommon, sterile pustular dermatosis involving one or more digits. In some rare cases, ACH may evolve into generalized pustular psoriasis (GPP), which is a severe, and potentially life-threatening, form of psoriasis that manifests itself with widespread eruptions of pustules. We describe the first case of a patient in whom ACH abruptly progressed into GPP during COVID-19. A combination of infliximab and acitretin was used allowing swift clinical improvement.
Collapse
Affiliation(s)
- Dominik Samotij
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | - Ewelina Gawron
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | - Justyna Szczęch
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | - Elżbieta Ostańska
- Department of Pathology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszów, Poland
| |
Collapse
|
21
|
Chałubiński M, Szulc A, Pawełczyk M, Gajewski A, Gawrysiak M, Likońska A, Kowalski ML. Human rhinovirus 16 induces antiviral and inflammatory response in the human vascular endothelium. APMIS 2021; 129:143-151. [PMID: 33230840 DOI: 10.1111/apm.13103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Abstract
The effect of rhinovirus on airway epithelium is very well described. However, its influence on the vascular endothelium is unknown. The current study assesses the effect of rhinovirus HRV16 on the antiviral and inflammatory response in the human vascular endothelial cells (ECs). HRV16 increased IFN-β, RANTES, and IP-10 mRNA expression and protein release. HRV16 copy number in ECs reached maximal value 10 h after incubation. Increase in virus copies was accompanied by the enhancement of Toll- and RIG-I-like receptors: TLR3, RIG-I, and MDA5. Additionally, HRV16 increased OAS-1 and PKR mRNA expression, enzymes responsible for virus degradation and inhibition of replication. ICAM-1 blockade decreased HRV16 copy number in ECs and inhibited IFN-β, RANTES, IP-10, OAS1, PKR, TLR3, RIG-I, and MDA5 mRNA expression increase upon subsequent induction with HRV16. The vascular endothelium may be infected by human rhinovirus and generate antiviral and inflammatory innate response. Results of the study indicate the possible involvement of the vascular endothelium in the immunopathology of rhinoviral airway infections.
Collapse
Affiliation(s)
- Maciej Chałubiński
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Szulc
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | | | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Likońska
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Distinct Antiviral Properties of Two Different Bacterial Lysates. Can Respir J 2021; 2021:8826645. [PMID: 33613792 PMCID: PMC7878088 DOI: 10.1155/2021/8826645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/20/2021] [Indexed: 12/23/2022] Open
Abstract
Oral bacterial lysates (OBLs) can reduce the frequency and severity of recurrent respiratory tract infections in children from viral and bacterial origins. OBL-induced early innate immune reaction was already shown, but the specific features of different OBLs have never been studied and compared. A study was conducted to assess in vitro the protective effects on rhinovirus- (RV-) infected human bronchial epithelial cells (BECs) of two slightly different OBLs: OM-85 and Pulmonarom. Furthermore, since immune cells represent the key arm for antiviral defence, the capacity of these OBLs to induce selected cytokine production in mouse bone marrow-derived DCs (BMDCs) was also evaluated. Although different OBLs may share some mechanisms to protect host cells from virus infection, some product-specific antimicrobial activities were observed on RV-infected human BECs and mouse BMDCs. These results are consistent with a product-specific response possibly triggered by different pathogen-associated molecular patterns (PAMPs) contained in OBLs.
Collapse
|
23
|
Sada M, Watanabe M, Inui T, Nakamoto K, Hirata A, Nakamura M, Honda K, Saraya T, Kurai D, Kimura H, Ishii H, Takizawa H. Ruxolitinib inhibits poly(I:C) and type 2 cytokines-induced CCL5 production in bronchial epithelial cells: A potential therapeutic agent for severe eosinophilic asthma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:363-373. [PMID: 33534941 PMCID: PMC8127547 DOI: 10.1002/iid3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Rationale Severe eosinophilic asthma is characterized by airway eosinophilia and corticosteroid‐resistance, commonly overlapping with type 2 inflammation. It has been reported that chemokine (C‐C motif) ligand 5 (CCL5) is involved in the exacerbation of asthma by RNA virus infections. Indeed, treatment with a virus‐associated ligand and a T helper type 2 cell (Th2) cytokine can synergistically stimulate CCL5 production in bronchial epithelial cells. We aimed to evaluate the mechanisms underlying CCL5 production in this in vitro model and to assess the potential of Janus kinase 1 (JAK1) as a novel therapeutic target via the use of ruxolitinib. Methods We stimulated primary normal human bronchial epithelial (NHBE) cells and BEAS‐2B cells with poly(I:C) along with interleukin‐13 (IL‐13) or IL‐4, and assessed CCL5 production. We also evaluated the signals involved in virus‐ and Th2‐cytokine‐induced CCL5 production and explored a therapeutic agent that attenuates the CCL5 production. Results Poly(I:C) stimulated NHBE and BEAS‐2B cells to produce CCL5. Poly(I:C) and IL‐13 increased CCL5 production. Poly(I:C)‐induced CCL5 production occurred via the TLR3–IRF3 and IFNAR/JAK1–phosphoinositide 3‐kinase (PI3K) pathways, but not the IFNAR/JAK1–STATs pathway. In addition, IL‐13 did not augment poly(I:C)‐induced CCL5 production via the canonical IL‐13R/IL‐4R/JAK1–STAT6 pathway but likely via subsequent TLR3‐IRF3‐IFNAR/JAK1‐PI3K pathways. JAK1 was identified to be a potential therapeutic target for severe eosinophilic asthma. The JAK1/2 inhibitor, ruxolitinib, was demonstrated to more effectively decrease CCL5 production in BEAS‐2B cells than fluticasone propionate. Conclusion We have demonstrated that JAK1 is a possible therapeutic target for severe corticosteroid‐resistant asthma with airway eosinophilia and persistent Th2‐type inflammation, and that ruxolitinib has potential as an alternative pharmacotherapy.
Collapse
Affiliation(s)
- Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Kurai
- Division of Infectious Diseases, Department of General Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell Surface Expression of Endosomal Toll-Like Receptors-A Necessity or a Superfluous Duplication? Front Immunol 2021; 11:620972. [PMID: 33597952 PMCID: PMC7882679 DOI: 10.3389/fimmu.2020.620972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases-cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
25
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
26
|
Ganjian H, Rajput C, Elzoheiry M, Sajjan U. Rhinovirus and Innate Immune Function of Airway Epithelium. Front Cell Infect Microbiol 2020; 10:277. [PMID: 32637363 PMCID: PMC7316886 DOI: 10.3389/fcimb.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Airway epithelial cells, which lines the respiratory mucosa is in direct contact with the environment. Airway epithelial cells are the primary target for rhinovirus and other inhaled pathogens. In response to rhinovirus infection, airway epithelial cells mount both pro-inflammatory responses and antiviral innate immune responses to clear the virus efficiently. Some of the antiviral responses include the expression of IFNs, endoplasmic reticulum stress induced unfolded protein response and autophagy. Airway epithelial cells also recruits other innate immune cells to establish antiviral state and resolve the inflammation in the lungs. In patients with chronic lung disease, these responses may be either defective or induced in excess leading to deficient clearing of virus and sustained inflammation. In this review, we will discuss the mechanisms underlying antiviral innate immunity and the dysregulation of some of these mechanisms in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Haleh Ganjian
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Charu Rajput
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Manal Elzoheiry
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| | - Umadevi Sajjan
- Department of Thoracic Medicine and Surgery, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
- Department of Physiology, Lewis Katz Medical School, Temple University, Philadelphia, PA, United States
| |
Collapse
|
27
|
Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology 2020; 160:171-182. [PMID: 32196653 PMCID: PMC7218407 DOI: 10.1111/imm.13195] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
The airway epithelium represents a physical barrier to the external environment acting as the first line of defence against potentially harmful environmental stimuli including microbes and allergens. However, lung epithelial cells are increasingly recognized as active effectors of microbial defence, contributing to both innate and adaptive immune function in the lower respiratory tract. These cells express an ample repertoire of pattern recognition receptors with specificity for conserved microbial and host motifs. Modern molecular techniques have uncovered the complexity of the lower respiratory tract microbiome. The interaction between the microbiota and the airway epithelium is key to understanding how stable immune homeostasis is maintained. Loss of epithelial integrity following exposure to infection can result in the onset of inflammation in susceptible individuals and may culminate in lung disease. Here we discuss the current knowledge regarding the molecular and cellular mechanisms by which the pulmonary epithelium interacts with the lung microbiome in shaping immunity in the lung. Specifically, we focus on the interactions between the lung microbiome and the cells of the conducting airways in modulating immune cell regulation, and how defects in barrier structure and function may culminate in lung disease. Understanding these interactions is fundamental in the search for more effective therapies for respiratory diseases.
Collapse
Affiliation(s)
- Rachele Invernizzi
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Clare M. Lloyd
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
| | - Philip L. Molyneaux
- Inflammation, Repair and Development SectionNational Heart and Lung InstituteImperial CollegeLondonUK
- Department of Respiratory MedicineInterstitial Lung Disease UnitRoyal Brompton HospitalLondonUK
| |
Collapse
|
28
|
Chen TH, Chen CC, Huang MH, Huang CH, Jan JT, Wu SC. Use of PELC/CpG Adjuvant for Intranasal Immunization with Recombinant Hemagglutinin to Develop H7N9 Mucosal Vaccine. Vaccines (Basel) 2020; 8:vaccines8020240. [PMID: 32455704 PMCID: PMC7349964 DOI: 10.3390/vaccines8020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Human infections with H7N9 avian influenza A virus can result in severe diseases with high mortality. Developing an effective vaccine is urgently needed to prevent its pandemic potential. Vaccine delivery routes via mucosal surfaces are known to elicit mucosal immune responses such as secretory IgA antibodies in mucosal fluids, thus providing first-line protection at infection sites. PEG-b-PLACL (PELC) is a squalene-based oil-in-water emulsion adjuvant system that can enhance antigen penetration and uptake in nasal mucosal layers with enhanced mucin interactions. In this study, intranasal immunizations with recombinant H7 (rH7) proteins with a PELC/CpG adjuvant, as compared to the use of poly (I:C) or bacterial flagellin adjuvant, elicited higher titers of H7-specific IgG, IgA, hemagglutination inhibition, and neutralizing antibodies in sera, and increased numbers of H7-specific IgG- and IgA-antibody secreting cells in the spleen. Both PELC/CpG and poly (I:C) adjuvants at a dose as low as 5 μg HA provided an 80% survival rate against live virus challenges, but a lower degree of PELC/CpG-induced Th17 responses was observed. Therefore, the mucosal delivery of rH7 proteins formulated in a PELC/CpG adjuvant can be used for H7N9 mucosal vaccine development.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30071, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence: ; Tel.: +886-3-5742906; Fax: +886-3-5715934
| |
Collapse
|
29
|
Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020:1372494. [PMID: 32455136 PMCID: PMC7231083 DOI: 10.1155/2020/1372494] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are a group of related proteins that help regulate the activity of the immune system and play a key role in host defense against viral infections. Upon infection, the IFN-I are rapidly secreted and induce a wide range of effects that not only act upon innate immune cells but also modulate the adaptive immune system. While IFN-I and many IFN stimulated genes are well-known for their protective antiviral role, recent studies have associated them with potential pathogenic functions. In this review, we summarize the current knowledge regarding the complex effects of human IFN-I responses in respiratory as well as reemerging flavivirus infections of public health significance and the molecular mechanisms by which viral proteins antagonize the establishment of an antiviral host defense. Antiviral effects and immune modulation of IFN-stimulated genes is discussed in resisting and controlling pathogens. Understanding the mechanisms of these processes will be crucial in determining how viral replication can be effectively controlled and in developing safe and effective vaccines and novel therapeutic strategies.
Collapse
|
30
|
Teimouri H, Maali A. Single-Nucleotide Polymorphisms in Host Pattern-Recognition Receptors Show Association with Antiviral Responses against SARS-CoV-2, in-silico Trial. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2020. [DOI: 10.29252/jommid.8.2.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Lamborn IT, Su HC. Genetic determinants of host immunity against human rhinovirus infections. Hum Genet 2020; 139:949-959. [PMID: 32112143 DOI: 10.1007/s00439-020-02137-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022]
Abstract
Human rhinoviruses (RV) are a frequent cause of respiratory tract infections with substantial morbidity and mortality in some patients. Nevertheless, the genetic basis of susceptibility to RV in humans has been relatively understudied. Experimental infections of mice and in vitro infections of human cells have indicated that various pathogen recognition receptors (TLRs, RIG-I, and MDA5) regulate innate immune responses to RV. However, deficiency of MDA5 is the only one among these so far uncovered that confers RV susceptibility in humans. Other work has shown increased RV susceptibility in patients with a polymorphism in CDHR3 that encodes the cellular receptor for RV-C entry. Here, we provide a comprehensive review of the genetic determinants of human RV susceptibility in the context of what is known about RV biology.
Collapse
Affiliation(s)
- Ian T Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.,Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
32
|
The Response of Tissue Mast Cells to TLR3 Ligand Poly(I:C) Treatment. J Immunol Res 2020; 2020:2140694. [PMID: 32185237 PMCID: PMC7060451 DOI: 10.1155/2020/2140694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are found mainly at the anatomical sites exposed to the external environment; thus, they are localized close to blood vessels, lymphatic vessels, and a multitude of immune cells. Moreover, those cells can recognize invading pathogens through a range of surface molecules known as pathogen recognition receptors (PRRs), mainly Toll-like receptors (TLRs). MCs are extensively engaged in the control and clearance of bacterial infections, but much less is known about their contribution to antiviral host response as well as pathomechanisms of virus-induced diseases. In the study, we employed in vivo differentiated mature tissue mast cells freshly isolated from rat peritoneal cavity. Here, we demonstrated that rat peritoneal mast cells (rPMCs) express viral dsRNA-specific TLR3 molecule (intracellularly and on the cell surface) as well as other proteins associated with cellular antiviral response: IRF3, type I and II IFN receptors, and MHC I. We found that exposure of rPMCs to viral dsRNA mimic, i.e., poly(I:C), induced transient upregulation of surface TLR3 (while temporarily decreased TLR3 intracellular expression), type II IFN receptor, and MHC I. TLR3 ligand-stimulated rPMCs did not degranulate but generated and/or released type I IFNs (IFN-α and IFNβ) as well as proinflammatory lipid mediators (cysLTs), cytokines (TNF, IL-1β), and chemokines (CCL3, CXCL8). We documented that rPMC priming with poly(I:C) did not affect FcεRI-dependent degranulation. However, their costimulation with TLR3 agonist and anti-IgE led to a significant increase in cysLT and TNF secretion. Our findings confirm that MCs may serve as active participants in the antiviral immune response. Presented data on modulated FcεRI-mediated MC secretion of mediators upon poly(I:C) treatment suggests that dsRNA-type virus infection could influence the severity of allergic reactions.
Collapse
|
33
|
Bergamin CS, Pérez-Hurtado E, Oliveira L, Gabbay M, Piveta V, Bittencourt C, Russo D, Carmona RDC, Sato M, Dib SA. Enterovirus Neutralizing Antibodies, Monocyte Toll Like Receptors Expression and Interleukin Profiles Are Similar Between Non-affected and Affected Siblings From Long-Term Discordant Type 1 Diabetes Multiplex-Sib Families: The Importance of HLA Background. Front Endocrinol (Lausanne) 2020; 11:555685. [PMID: 33071971 PMCID: PMC7538605 DOI: 10.3389/fendo.2020.555685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses are main candidates among environmental agents in the development of type 1 diabetes (T1D). However, the relationship between virus and the immune system response during T1D pathogenesis is heterogeneous. This is an interesting paradigm and the search for answers would help to highlight the role of viral infection in the etiology of T1D. The current data is a cross-sectional study of affected and non-affected siblings from T1D multiplex-sib families to analyze associations among T1D, genetic, islet autoantibodies and markers of innate immunity. We evaluated the prevalence of anti-virus antibodies (Coxsackie B and Echo) and its relationships with human leukocyte antigen (HLA) class II alleles, TLR expression (monocytes), serum cytokine profile and islet β cell autoantibodies in 51 individuals (40 T1D and 11 non-affected siblings) from 20 T1D multiplex-sib families and 54 healthy control subjects. The viral antibody profiles were similar among all groups, except for antibodies against CVB2, which were more prevalent in the non-affected siblings. TLR4 expression was higher in the T1D multiplex-sib family's members than in the control subjects. TLR4 expression showed a positive correlation with CBV2 antibody prevalence (rS: 0.45; P = 0.03), CXCL8 (rS: 0.65, P = 0.002) and TNF-α (rS: 0.5, P = 0.01) serum levels in both groups of T1D multiplex-sib family. Furthermore, within these families, there was a positive correlation between HLA class II alleles associated with high risk for T1D and insulinoma-associated protein 2 autoantibody (IA-2A) positivity (odds ratio: 38.8; P = 0.021). However, the HLA protective haplotypes against T1D prevalence was higher in the non-affected than the affected siblings. This study shows that although the prevalence of viral infection is similar among healthy individuals and members from the T1D multiplex-sib families, the innate immune response is higher in the affected and in the non-affected siblings from these families than in the healthy controls. However, autoimmunity against β-islet cells and an absence of protective HLA alleles were only observed in the T1D multiplex-sib members with clinical disease, supporting the importance of the genetic background in the development of T1D and heterogeneity of the interaction between environmental factors and disease pathogenesis despite the high genetic diversity of the Brazilian population.
Collapse
Affiliation(s)
- Carla Sanchez Bergamin
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Carla Sanchez Bergamin
| | - Elizabeth Pérez-Hurtado
- Immunology Division, Microbiology, Immunology and Parasitological Department, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luanda Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology and Tropical Medicine Institute of São Paulo, Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Monica Gabbay
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Valdecira Piveta
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Bittencourt
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise Russo
- Enteric Diseases Laboratory, Virology Center From Instituto Adolfo Lutz, São Paulo, Brazil
| | - Rita de Cássia Carmona
- Enteric Diseases Laboratory, Virology Center From Instituto Adolfo Lutz, São Paulo, Brazil
| | - Maria Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology and Tropical Medicine Institute of São Paulo, Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Sergio A. Dib
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Huang HI, Lin JY, Chen SH. EV71 Infection Induces IFNβ Expression in Neural Cells. Viruses 2019; 11:v11121121. [PMID: 31817126 PMCID: PMC6950376 DOI: 10.3390/v11121121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Enterovirus 71 (EV71) can invade the central nervous system (CNS) and cause neurological disease. Accumulating evidence indicates that EV71 can directly infect neurons in the CNS. Innate immune responses in the CNS have been known to play an essential role in limiting pathogen infections. Thus, investigating the effects of EV71 infection of neural cells is important for understanding disease pathogenesis. In this study, human neural cells were infected with EV71, and interferonβ (IFNβ) expression was examined. Our results show that IFNβ expression was upregulated in EV71-infected neural cells via pattern recognition receptors (PRRs) sensing of virus RNA. The PRRs Toll-like receptor 3 (TLR3), Toll-like receptor 8 (TLR8), and melanoma differentiation-associated gene-5 (MDA-5), but not retinoic acid-inducible gene-I (RIG-I) and Toll-like receptor 7 (TLR7), were found to be EV71-mediated IFNβ induction. Although viral proteins exhibited the ability to cleave mitochondrial antiviral signaling protein (MAVS) and Toll/IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-β (TRIF) in neural cells, levels of viral protein expression were low in these cells. Furthermore, neural cells efficiently produced IFNβ transcripts upon EV71 vRNA stimulation. Treating infected cells with anti-IFNβ antibodies resulted in increased virus replication, indicating that IFNβ release may play a role in limiting viral growth. These results indicate that EV71 infection can induce IFNβ expression in neural cells through PRR pathways.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou 33303, Taiwan
- Correspondence:
| | - Jhao-Yin Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| | - Sheng-Hung Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan; (J.-Y.L.); (S.-H.C.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 33303, Taiwan
| |
Collapse
|
35
|
Sbidian E, Madrange M, Viguier M, Salmona M, Duchatelet S, Hovnanian A, Smahi A, Le Goff J, Bachelez H. Respiratory virus infection triggers acute psoriasis flares across different clinical subtypes and genetic backgrounds. Br J Dermatol 2019; 181:1304-1306. [PMID: 31150103 PMCID: PMC7161746 DOI: 10.1111/bjd.18203] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E Sbidian
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département de Dermatologie, UPEC, Créteil, F-94010, France.,Inserm, Centre d'Investigation Clinique 1430, Créteil, F-94010, France.,EA 7379 EpidermE, Université Paris-Est Créteil, UPEC, Créteil, F-94010, France
| | - M Madrange
- Laboratoire de Génétique des Maladies Autoinflammatoires, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France
| | - M Viguier
- Université Reims-Champagne Ardenne, Service de Dermatologie-Vénéréologie, Hôpital Robert Debré, Reims, France
| | - M Salmona
- Sorbonne Paris Cité Université Paris Diderot, Paris, France.,Department of Virology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France.,Inserm INSIGHT U976, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - S Duchatelet
- Laboratoire de Génétique des Maladies Cutanées, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France
| | - A Hovnanian
- Laboratoire de Génétique des Maladies Cutanées, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France
| | - A Smahi
- Laboratoire de Génétique des Maladies Autoinflammatoires, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France
| | - J Le Goff
- Sorbonne Paris Cité Université Paris Diderot, Paris, France.,Department of Virology, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France.,Inserm INSIGHT U976, AP-HP, Hôpital Saint-Louis, Paris, F-75010, France
| | - H Bachelez
- Laboratoire de Génétique des Maladies Autoinflammatoires, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France.,Laboratoire de Génétique des Maladies Cutanées, INSERM UMR 1163, Institut Imagine, Hôpital Necker, Paris, France.,Department of Dermatology, AP-HP, Hôpital Saint-Louis, 1, avenue Claude Vellefaux., 75475, Paris cedex 10, France
| |
Collapse
|
36
|
Saitoh SI, Miyake K. Nucleic Acid Innate Immune Receptors. ADVANCES IN NUCLEIC ACID THERAPEUTICS 2019. [DOI: 10.1039/9781788015714-00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Viral infection is a serious threat to humans. Nucleic acid (NA) sensing is an essential strategy to protect humans from viral infection. Currently, many intracellular NA sensors for DNA and RNA have been identified. To control viral infections, the immune system uses a variety of NA sensors, including Toll-like receptors in endolysosomes and cytosolic NA sensors. These sensors activate defence responses by inducing the production of a variety of cytokines, including type I interferons and interleukin-1 beta (IL-1β). In addition to viral NAs, self-derived NAs are released during tissue damage and activate NA sensors, which leads to a variety of inflammatory diseases. To avoid unnecessary activation of NA sensors, the processing and trafficking of NA sensors and NAs needs to be tightly controlled. The regulatory mechanisms of NA sensors and NAs have been clarified by biochemical, cell biological, and crystal structure analyses. Here, we summarize recent progress on the mechanisms controlling NA sensor activation.
Collapse
Affiliation(s)
- Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo 4-6-1 Shirokanedai Minatoku Tokyo 108-8639 Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo 4-6-1 Shirokanedai Minatoku Tokyo 108-8639 Japan
| |
Collapse
|
37
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
38
|
Zhu J, Message SD, Mallia P, Kebadze T, Contoli M, Ward CK, Barnathan ES, Mascelli MA, Kon OM, Papi A, Stanciu LA, Edwards MR, Jeffery PK, Johnston SL. Bronchial mucosal IFN-α/β and pattern recognition receptor expression in patients with experimental rhinovirus-induced asthma exacerbations. J Allergy Clin Immunol 2019; 143:114-125.e4. [PMID: 29698627 PMCID: PMC6320262 DOI: 10.1016/j.jaci.2018.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The innate immune system senses viral infection through pattern recognition receptors (PRRs), leading to type I interferon production. The role of type I interferon and PPRs in rhinovirus-induced asthma exacerbations in vivo are uncertain. OBJECTIVES We sought to compare bronchial mucosal type I interferon and PRR expression at baseline and after rhinovirus infection in atopic asthmatic patients and control subjects. METHODS Immunohistochemistry was used to detect expression of IFN-α, IFN-β, and the PRRs: Toll-like receptor 3, melanoma differentiation-associated gene 5, and retinoic acid-inducible protein I in bronchial biopsy specimens from 10 atopic asthmatic patients and 15 nonasthmatic nonatopic control subjects at baseline and on day 4 and 6 weeks after rhinovirus infection. RESULTS We observed IFN-α/β deficiency in the bronchial epithelium at 3 time points in asthmatic patients in vivo. Lower epithelial IFN-α/β expression was related to greater viral load, worse airway symptoms, airway hyperresponsiveness, and reductions in lung function during rhinovirus infection. We found lower frequencies of bronchial subepithelial monocytes/macrophages expressing IFN-α/β in asthmatic patients during infection. Interferon deficiency at baseline was not accompanied by deficient PRR expression in asthmatic patients. Both epithelial and subepithelial PRR expression were induced during rhinovirus infection. Rhinovirus infection-increased numbers of subepithelial interferon/PRR-expressing inflammatory cells were related to greater viral load, airway hyperresponsiveness, and reductions in lung function. CONCLUSIONS Bronchial epithelial IFN-α/β expression and numbers of subepithelial IFN-α/β-expressing monocytes/macrophages during infection were both deficient in asthmatic patients. Lower epithelial IFN-α/β expression was associated with adverse clinical outcomes after rhinovirus infection in vivo. Increases in numbers of subepithelial cells expressing interferon/PRRs during infection were also related to greater viral load/illness severity.
Collapse
Affiliation(s)
- Jie Zhu
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Simon D Message
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Tatiana Kebadze
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Marco Contoli
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom; Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | | | | | | | - Onn M Kon
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| | - Luminita A Stanciu
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Michael R Edwards
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Peter K Jeffery
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Sebastian L Johnston
- Airway Disease Infection, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom; Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
39
|
Pech M, Weckmann M, König IR, Franke A, Heinsen FA, Oliver B, Ricklefs I, Fuchs O, Rabe K, Hansen G, v. Mutius E, Kopp MV. Rhinovirus infections change DNA methylation and mRNA expression in children with asthma. PLoS One 2018; 13:e0205275. [PMID: 30485264 PMCID: PMC6261460 DOI: 10.1371/journal.pone.0205275] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is thought to be involved in asthma development during early childhood. We hypothesized that HRVI causes differential DNA methylation and subsequently differential mRNA expression in epithelial cells of children with asthma. Primary nasal epithelial cells from children with (n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in asthmatics (vs. controls) and resulting mRNA expression were analyzed by the HumanMethylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268 genes were identified to have HRVI-induced asthma-specifically modified DNA methylation and mRNA expression. A minimum-change criteria was applied to restrict assessment of genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1 reads/kb per million mapped reads, respectively. Using this approach we identified 16 CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1), involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to specific modifications of DNA methylation with altered mRNA expression in children with asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the host immune response against viral infections and asthma pathogenesis. The findings of our pilot study may partially explain how HRVI contribute to the persistence and progression of asthma, and aid to identify possible new therapeutic targets. The promising findings of this pilot study would benefit from replication in a larger cohort.
Collapse
Affiliation(s)
- Martin Pech
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Markus Weckmann
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Inke R. König
- University of Lübeck, Institute for Medical Biometry and Statistics, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Brian Oliver
- University of Technology Sydney, and Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Isabell Ricklefs
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Oliver Fuchs
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
- Department of Pediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Klaus Rabe
- LungenClinic Grosshansdorf, Department of Pneumology, Großhansdorf, Germany, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Grosshansdorf, Germany
| | - Gesine Hansen
- Hannover Medical School, Department of Paediatric Pneumology, Allergology and Neonatology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Erika v. Mutius
- Ludwig-Maximilians-University Munich, Dr. von Hauner Children's Hospital, Comprehensive Pneumology Center München (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Matthias V. Kopp
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
- * E-mail:
| | | |
Collapse
|
40
|
Chiang CLL, Kandalaft LE. In vivo cancer vaccination: Which dendritic cells to target and how? Cancer Treat Rev 2018; 71:88-101. [PMID: 30390423 DOI: 10.1016/j.ctrv.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
The field of cancer immunotherapy has been revolutionized with the use of immune checkpoint blockade antibodies such as anti-programmed cell death 1 protein (PD-1) and chimeric antigen receptor T cells. Significant clinical benefits are observed in different cancer types with these treatments. While considerable efforts are made in augmenting tumor-specific T cell responses with these therapies, other immunotherapies that actively stimulate endogenous anti-tumor T cells and generating long-term memory have received less attention. Given the high cost of cancer immunotherapies especially with chimeric antigen receptor T cells, not many patients will have access to such treatments. The next-generation of cancer immunotherapy could entail in vivo cancer vaccination to activate both the innate and adaptive anti-tumor responses. This could potentially be achieved via in vivo targeting of dendritic cells which are an indispensable link between the innate and adaptive immunities. Dendritic cells highly expressed toll-like receptors for recognizing and eliminating pathogens. Synthetic toll-like receptors agonists could be synthesized at a low cost and have shown promise in preclinical and clinical trials. As different subsets of human dendritic cells exist in the immune system, activation with different toll-like receptor agonists could exert profound effects on the quality and magnitude of anti-tumor T cell responses. Here, we reviewed the different subsets of human dendritic cells. Using published preclinical and clinical cancers studies available on PubMed, we discussed the use of clinically approved and emerging toll-like receptor agonists to activate dendritic cells in vivo for cancer immunotherapy. Finally, we searched www.clinicaltrials.gov and summarized the active cancer trials evaluating toll-like receptor agonists as an adjuvant.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania Medical Center, Smilow Translational Research Center 8th Floor, 186B, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Ahmed-Hassan H, Abdul-Cader MS, Ahmed Sabry M, Hamza E, Sharif S, Nagy E, Abdul-Careem MF. Double-Stranded Ribonucleic Acid-Mediated Antiviral Response Against Low Pathogenic Avian Influenza Virus Infection. Viral Immunol 2018; 31:433-446. [PMID: 29813000 DOI: 10.1089/vim.2017.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor (TLR)3 signaling pathway is known to induce type 1 interferons (IFNs) and proinflammatory mediators leading to antiviral response against many viral infections. Double-stranded ribonucleic acid (dsRNA) has been shown to act as a ligand for TLR3 and, as such, has been a focus as a potential antiviral agent in many host-viral infection models. Yet, its effectiveness and involved mechanisms as a mediator against low pathogenic avian influenza virus (LPAIV) have not been investigated adequately. In this study, we used avian fibroblasts to verify whether dsRNA induces antiviral response against H4N6 LPAIV and clarify whether type 1 IFNs and proinflammatory mediators such as interleukin (IL)-1β are contributing to the dsRNA-mediated antiviral response against H4N6 LPAIV. We found that dsRNA induces antiviral response in avian fibroblasts against H4N6 LPAIV infection. The treatment of avian fibroblasts with dsRNA increases the expressions of TLR3, IFN-α, IFN-β, and IL-1β. We also confirmed that this antiviral response elicited against H4N6 LPAIV infection correlates, but is not attributable to type 1 IFNs or IL-1β. Our findings imply that the TLR3 ligand, dsRNA, can elicit antiviral response in avian fibroblasts against LPAIV infection, highlighting potential value of dsRNA as an antiviral agent against LPAIV infections. However, further investigations are required to determine the potential role of other innate immune mediators or combination of the tested cytokines in the dsRNA-mediated antiviral response against H4N6 LPAIV infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada .,2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| | - Maha Ahmed Sabry
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Eman Hamza
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Shayan Sharif
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Eva Nagy
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Mohamed Faizal Abdul-Careem
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
42
|
van den Berge M, Jonker MR, Miller-Larsson A, Postma DS, Heijink IH. Effects of fluticasone propionate and budesonide on the expression of immune defense genes in bronchial epithelial cells. Pulm Pharmacol Ther 2018; 50:47-56. [PMID: 29627483 DOI: 10.1016/j.pupt.2018.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/07/2018] [Accepted: 04/04/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND COPD patients have increased risk of pneumonia when treated with fluticasone propionate (FP), whereas this is generally not the case with budesonide (BUD) treatment. We hypothesized that BUD and FP differentially affect the expression of immune defense genes. METHODS Human bronchial epithelial 16HBE cells and air-liquid interface (ALI)-cultured primary bronchial epithelial cells (PBECs) were pre-treated with clinically equipotent concentrations of BUD or FP (0.16-16 nM BUD and 0.1-10 nM FP), and the expression of immune defense genes was studied at baseline and after exposure to rhinovirus (RV16). RESULTS Using microfluidic cards, we observed that both BUD and FP significantly suppressed CXCL8, IFNB1 and S100A8 mRNA expression in unstimulated 16HBE cells. Interestingly, BUD, but not FP, significantly increased lactotransferrin (LTF) expression. The difference between the effect of BUD and FP on LTF expression was statistically significant and confirmed by qPCR and at the protein level by western blotting. RV16 infection of ALI-cultured PBECs significantly increased the expression of CCL20, IFNB1 and S100A8, but not of LTF or CAMP/LL-37. In these RV16-exposed cells, LTF expression was again significantly higher upon pre-treatment with BUD than with FP. The same was observed for S100A8, but not for CCL20, IFNB1 or CAMP/LL-37 expression. CONCLUSIONS Treatment of human bronchial epithelial cells with BUD results in significantly higher expression of specific immune defense genes than treatment with FP. The differential regulation of these immune defense genes may help to explain the clinical observation that BUD and FP treatment differ with respect to the risk of developing pneumonia in COPD.
Collapse
Affiliation(s)
- M van den Berge
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - M R Jonker
- University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Mölndal, Sweden
| | - A Miller-Larsson
- AstraZeneca Gothenburg, Department of Respiratory GMed, Mölndal, Sweden
| | - D S Postma
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands
| | - I H Heijink
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Groningen, The Netherlands; University of Groningen, University Medical Centre Groningen, Department of Pathology & Medical Biology, Experimental Pulmonology and Inflammation Research, Mölndal, Sweden.
| |
Collapse
|
43
|
Duffney PF, McCarthy CE, Nogales A, Thatcher TH, Martinez-Sobrido L, Phipps RP, Sime PJ. Cigarette smoke dampens antiviral signaling in small airway epithelial cells by disrupting TLR3 cleavage. Am J Physiol Lung Cell Mol Physiol 2018; 314:L505-L513. [PMID: 29351447 PMCID: PMC5900359 DOI: 10.1152/ajplung.00406.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
Cigarette smokers and people exposed to second-hand smoke are at an increased risk for pulmonary viral infections, and yet the mechanism responsible for this heightened susceptibility is not understood. To understand the effect of cigarette smoke on susceptibility to viral infection, we used an air-liquid interface culture system and exposed primary human small airway epithelial cells (SAEC) to whole cigarette smoke, followed by treatment with the viral mimetic polyinosinic polycytidylic acid (poly I:C) or influenza A virus (IAV). We found that prior smoke exposure strongly inhibited production of proinflammatory (interleukin-6 and interleukin-8) and antiviral [interferon-γ-induced protein 10 (IP-10) and interferons] mediators in SAECs in response to poly I:C and IAV infection. Impaired antiviral responses corresponded to increased infection with IAV. This was associated with a decrease in phosphorylation of the key antiviral transcription factor interferon response factor 3 (IRF3). Here, we found that cigarette smoke exposure inhibited activation of Toll-like receptor 3 (TLR3) by impairing TLR3 cleavage, which was required for downstream phosphorylation of IRF3 and production of IP-10. These results identify a novel mechanism by which cigarette smoke exposure impairs antiviral responses in lung epithelial cells, which may contribute to increased susceptibility to respiratory infections.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Claire E McCarthy
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Thomas H Thatcher
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| | - Patricia J Sime
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Department of Microbiology and Immunology, University of Rochester , Rochester, New York
- Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry , Rochester, New York
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry , Rochester, New York
| |
Collapse
|
44
|
Lötzerich M, Roulin PS, Boucke K, Witte R, Georgiev O, Greber UF. Rhinovirus 3C protease suppresses apoptosis and triggers caspase-independent cell death. Cell Death Dis 2018; 9:272. [PMID: 29449668 PMCID: PMC5833640 DOI: 10.1038/s41419-018-0306-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Apoptosis and programmed necrosis (necroptosis) determine cell fate, and antagonize infection. Execution of these complementary death pathways involves the formation of receptor-interacting protein kinase 1 (RIPK1) containing complexes. RIPK1 binds to adaptor proteins, such as TRIF (Toll-IL-1 receptor-domain-containing-adaptor-inducing interferon-beta factor), FADD (Fas-associated-protein with death domain), NEMO (NF-κB regulatory subunit IKKγ), SQSTM1 (sequestosome 1/p62), or RIPK3 (receptor-interacting protein kinase 3), which are involved in RNA sensing, NF-κB signaling, autophagosome formation, apoptosis, and necroptosis. We report that a range of rhinoviruses impair apoptosis and necroptosis in epithelial cells late in infection. Unlike the double-strand (ds) RNA mimetic poly I:C (polyinosinic:polycytidylic acid), the exposure of dsRNA to toll-like receptor 3 (TLR3) in rhinovirus-infected cells did not lead to apoptosis execution. Accordingly, necroptosis and the production of ROS (reactive oxygen species) were not observed late in infection, when RIPK3 was absent. Instead, a virus-induced alternative necrotic cell death pathway proceeded, which led to membrane rupture, indicated by propidium iodide staining. The impairment of dsRNA-induced apoptosis late in infection was controlled by the viral 3C-protease (3Cpro), which disrupted RIPK1-TRIF/FADD /SQSTM1 immune-complexes. 3Cpro and 3C precursors were found to coimmuno-precipitate with RIPK1, cleaving the RIPK1 death-domain, and generating N-terminal RIPK1 fragments. The depletion of RIPK1 or chemical inhibition of its kinase at the N-terminus did not interfere with virus progeny formation or cell fate. The data show that rhinoviruses suppress apoptosis and necroptosis, and release progeny by an alternative cell death pathway, which is controlled by viral proteases modifying innate immune complexes.
Collapse
Affiliation(s)
- Mark Lötzerich
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Hussman Institute for Autism, 801 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Pascal S Roulin
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karin Boucke
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oleg Georgiev
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
45
|
Bugge M, Bergstrom B, Eide OK, Solli H, Kjønstad IF, Stenvik J, Espevik T, Nilsen NJ. Surface Toll-like receptor 3 expression in metastatic intestinal epithelial cells induces inflammatory cytokine production and promotes invasiveness. J Biol Chem 2017; 292:15408-15425. [PMID: 28717003 PMCID: PMC5602399 DOI: 10.1074/jbc.m117.784090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
Toll-like receptors (TLRs) are innate immune receptors for sensing microbial molecules and damage-associated molecular patterns released from host cells. Double-stranded RNA and the synthetic analog polyinosinic:polycytidylic acid (poly(I:C)) bind and activate TLR3. This stimulation leads to recruitment of the adaptor molecule TRIF (Toll/IL-1 resistance (TIR) domain-containing adapter-inducing interferon β) and activation of the transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3), classically inducing IFNβ production. Here we report that, unlike non-metastatic intestinal epithelial cells (IECs), metastatic IECs express TLR3 and that TLR3 promotes invasiveness of these cells. In response to poly(I:C) addition, the metastatic IECs also induced the chemokine CXCL10 in a TLR3-, TRIF-, and IRF3-dependent manner but failed to produce IFNβ. This was in contrast to healthy and non-metastatic IECs, which did not respond to poly(I:C) stimulation. Endolysosomal acidification and the endosomal transporter protein UNC93B1 was required for poly(I:C)-induced CXCL10 production. However, TLR3-induced CXCL10 was triggered by immobilized poly(I:C), was only modestly affected by inhibition of endocytosis, and could be blocked with an anti-TLR3 antibody, indicating that TLR3 can still signal from the cell surface of these cells. Furthermore, plasma membrane fractions from metastatic IECs contained both full-length and cleaved TLR3, demonstrating surface expression of both forms of TLR3. Our results imply that metastatic IECs express surface TLR3, allowing it to sense extracellular stimuli that trigger chemokine responses and promote invasiveness in these cells. We conclude that altered TLR3 expression and localization may have implications for cancer progression.
Collapse
Affiliation(s)
- Marit Bugge
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and.,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| | - Bjarte Bergstrom
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Oda K Eide
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Helene Solli
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Ingrid F Kjønstad
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Jørgen Stenvik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Terje Espevik
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and
| | - Nadra J Nilsen
- From the Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway and .,the Clinic of Medicine, St. Olav's University Hospital, 7030 Trondheim, Norway
| |
Collapse
|
46
|
Polymorphism in the gene encoding toll-like receptor 10 may be associated with asthma after bronchiolitis. Sci Rep 2017; 7:2956. [PMID: 28592890 PMCID: PMC5462783 DOI: 10.1038/s41598-017-03429-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) recognise microbes that contribute to the severity of bronchiolitis and the subsequent risk of asthma. We evaluated whether post-bronchiolitis asthma was associated with polymorphisms in the TLR3 rs3775291, TLR4 rs4986790, TLR7 rs179008, TLR8 rs2407992, TLR9 rs187084, and TLR10 rs4129009 genes. The gene polymorphisms were studied at the age of 6.4 years (mean) in 135 children hospitalised for bronchiolitis in infancy. The outcome measure was current or previous asthma. Current asthma was more common (30%) in children with the variant AG or GG genotype in the TLR10 rs4129009 gene versus those who were homozygous for the major allele A (11%) (p = 0.03). The adjusted odds ratio (aOR) was 4.30 (95% CI 1.30–14.29). Asthma ever was more common (34.6%) in girls with the TLR7 variant AT or TT genotype versus those who were homozygous for the major allele A (12.5%) (p = 0.03). The adjusted OR was 3.93 (95% CI 1.06–14.58). Corresponding associations were not seen in boys. There were no significant associations between TLR3, TLR4, TLR8, or TLR9 polymorphisms and post-bronchiolitis asthma. Polymorphism in the TLR10 gene increases and in the TLR7 gene may increase the risk of asthma in preschool-aged children after infant bronchiolitis.
Collapse
|
47
|
Yang M, Wang HY, Chen JC, Zhao J. Regulation of airway inflammation and remodeling in asthmatic mice by TLR3/TRIF signal pathway. Mol Immunol 2017; 85:265-272. [PMID: 28342933 DOI: 10.1016/j.molimm.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
Abstract
This paper aims to investigate the effect of Toll-like receptors 3 (TLR3)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway on the airway inflammation and remodeling in asthmatic mice. C57BL/6 and TLR3-/- mice were randomly divided into three groups (10 mice per group), including Control group (mice inhaled phosphate buffer saline (PBS)), Asthma group (mice inhaled ovalbumin (OVA)) and polyriboinosinic-ribocytidylic acid (poly (I: C)) group (asthmatic mice were injected intraperitoneally with TLR3 agonist poly (I: C)). Hematoxylin-eosin (HE) staining, Wright-Giemsa staining, Enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry, Hydroxyproline assay, quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to assess for the indices of airway inflammation and remodeling. In terms of WT mice, all asthma groups with or without the addition of poly (I: C) showed exaggerated inflammation and remodeling in the airways as compared to Control group, which were more seriously in poly (I: C) group than Asthma group. Furthermore, we observed the significant inhibition of airway inflammation and remodeling in the TLR3-/- mice in both Asthma no matter with or without addition of poly (I: C) than the WT mice. TLR3 knockout could obviously relieve the airway inflammation and remodeling in asthma through inhibiting TLR3/TRIF signaling pathway.
Collapse
Affiliation(s)
- Mei Yang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China.
| | - Hao-Ying Wang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China
| | - Jian-Chang Chen
- Department of emergency, Shandong Provincial Western Hospital, Jinan 250021, Shandong, PR China
| | - Jing Zhao
- Department of cardiology, Qilu Hospital Affiliated to Shandong University, Jinan 250012, PR China
| |
Collapse
|
48
|
Hung IFN, Zhang AJ, To KKW, Chan JFW, Zhu SHS, Zhang R, Chan TC, Chan KH, Yuen KY. Unexpectedly Higher Morbidity and Mortality of Hospitalized Elderly Patients Associated with Rhinovirus Compared with Influenza Virus Respiratory Tract Infection. Int J Mol Sci 2017; 18:ijms18020259. [PMID: 28134768 PMCID: PMC5343795 DOI: 10.3390/ijms18020259] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 11/17/2022] Open
Abstract
Rhinovirus is a common cause of upper and lower respiratory tract infections in adults, especially among the elderly and immunocompromised. Nevertheless, its clinical characteristics and mortality risks have not been well described. A retrospective analysis on a prospective cohort was conducted in a single teaching hospital center over a one-year period. We compared adult patients hospitalized for pneumonia caused by rhinovirus infection with those hospitalized for influenza infection during the same period. All recruited patients were followed up for at least 3 months up to 15 months. Independent risk factors associated with mortality for rhinovirus infection were identified. Between 1 March 2014 and 28 February 2015, a total of 1946 patients were consecutively included for analysis. Of these, 728 patients were hospitalized for rhinovirus infection and 1218 patients were hospitalized for influenza infection. Significantly more rhinovirus patients were elderly home residents and had chronic lung diseases (p < 0.001), whereas more influenza patients had previous stroke (p = 0.02); otherwise, there were no differences in the Charlson comorbidity indexes between the two groups. More patients in the rhinovirus group developed pneumonia complications (p = 0.03), required oxygen therapy, and had a longer hospitalization period (p < 0.001), whereas more patients in the influenza virus group presented with fever (p < 0.001) and upper respiratory tract symptoms of cough and sore throat (p < 0.001), and developed cardiovascular complications (p < 0.001). The 30-day (p < 0.05), 90-day (p < 0.01), and 1-year (p < 0.01) mortality rate was significantly higher in the rhinovirus group than the influenza virus group. Intensive care unit admission (odds ratio (OR): 9.56; 95% confidence interval (C.I.) 2.17–42.18), elderly home residents (OR: 2.60; 95% C.I. 1.56–4.33), requirement of oxygen therapy during hospitalization (OR: 2.62; 95% C.I. 1.62–4.24), and hemoglobin level <13.3 g/dL upon admission (OR: 2.43; 95% C.I. 1.16–5.12) were independent risk factors associated with 1-year mortality in patients hospitalized for rhinovirus infection. Rhinovirus infection in the adults was associated with significantly higher mortality and longer hospitalization when compared with influenza virus infection. Institutionalized older adults were particularly at risk. More stringent infection control among health care workers in elderly homes could lower the infection rate before an effective vaccine and antiviral become available.
Collapse
Affiliation(s)
- Ivan F N Hung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China.
| | - Anna Jinxia Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Kelvin K W To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Jasper F W Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Shawn H S Zhu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Ricky Zhang
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Tuen-Ching Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, Hong Kong SAR, China.
| | - Kwok-Hung Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu's Centre for Infection and Division of Infectious Diseases, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| |
Collapse
|
49
|
Airway Epithelial Orchestration of Innate Immune Function in Response to Virus Infection. A Focus on Asthma. Ann Am Thorac Soc 2017; 13 Suppl 1:S55-63. [PMID: 27027954 DOI: 10.1513/annalsats.201507-421mg] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Asthma is a very common respiratory condition with a worldwide prevalence predicted to increase. There are significant differences in airway epithelial responses in asthma that are of particular interest during exacerbations. Preventing exacerbations is a primary aim when treating asthma because they often necessitate unscheduled healthcare visits and hospitalizations and are a significant cause of morbidity and mortality. The most common cause of asthma exacerbations is a respiratory virus infection, of which the most likely type is rhinovirus infection. This article focuses on the role played by the epithelium in orchestrating the innate immune responses to respiratory virus infection. Recent studies show impaired bronchial epithelial cell innate antiviral immune responses, as well as augmentation of a pro-Th2 response characterized by the epithelial-derived cytokines IL-25 and IL-33, crucial in maintaining the Th2 cytokine response to virus infection in asthma. A better understanding of the mechanisms of these abnormal immune responses has the potential to lead to the development of novel therapeutic targets for virus-induced exacerbations. The aim of this article is to highlight current knowledge regarding the role of viruses and immune modulation in the asthmatic epithelium and to discuss exciting areas for future research and novel treatments.
Collapse
|
50
|
Athari SS, Athari SM, Beyzay F, Movassaghi M, Mortaz E, Taghavi M. Critical role of Toll-like receptors in pathophysiology of allergic asthma. Eur J Pharmacol 2016; 808:21-27. [PMID: 27894811 DOI: 10.1016/j.ejphar.2016.11.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 11/21/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022]
Abstract
Allergic asthma is an airway disease, characterized by reversible bronchoconstriction, chronic inflammation of the airway, and thickness of smooth muscle in the respiratory tract. Asthma is orchestrated by an excessive Th2-adaptive immune response, in which innate immunity plays a key role. Recently TLRs have received more and more attention as they are central to orchestrate the innate immune responses. TLRs are localized as integral membrane or intracellular glycoproteins with those on the cell surface sensing microbial antigens and the ones, localized in intracellular vesicles, sensing microbial nucleic acid species. Having recognized microbial antigens, TLRs conduct the immune response towards a pro- or anti-allergy response. As a double-edged sword, they could initiate either harmful or helpful responses by the immune system in case of allergic asthma. In the current review, we will describe the role of TLRs and their signaling pathways in allergic asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Health policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Fateme Beyzay
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Movassaghi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Taghavi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|