1
|
Wang X, Pu F, Yang X, Feng X, Zhang J, Duan K, Nian X, Ma Z, Ma XX, Yang XM. Immunosuppressants exert antiviral effects against influenza A(H1N1)pdm09 virus via inhibition of nucleic acid synthesis, mRNA splicing, and protein stability. Virulence 2024; 15:2301242. [PMID: 38170681 PMCID: PMC10854267 DOI: 10.1080/21505594.2023.2301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Influenza A virus (IAV) poses a threat to patients receiving immunosuppressive medications since they are more susceptible to infection with severe symptoms, and even death. Understanding the direct effects of immunosuppressants on IAV infection is critical for optimizing immunosuppression in these patients who are infected or at risk of influenza virus infection. We profiled the effects of 10 immunosuppressants, explored the antiviral mechanisms of immunosuppressants, and demonstrated the combined effects of immunosuppressants with the antiviral drug oseltamivir in IAV-infected cell models. We found that mycophenolic acid (MPA) strongly inhibits viral RNA replication via depleting cellular guanosine pool. Treatment with 6-Thioguanine (6-TG) promoted viral protein degradation through a proteasomal pathway. Filgotinib blocked mRNA splicing of matrix protein 2, resulting in decreased viral particle assembly. Furthermore, combined treatment with immunosuppressants and oseltamivir inhibits IAV viral particle production in an additive or synergic manner. Our results suggest that MPA, 6-TG, and filgotinib could be the preferential choices for patients who must take immunosuppressants but are at risk of influenza virus infection.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Feiyang Pu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xuanye Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- Wuhan Institute of Biological Products Co, Ltd, Wuhan, China
| | - Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- China National Biotech Group Company Limited, Beijing, China
| |
Collapse
|
2
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
3
|
Zhao L, Li S, Deng L, Zhang Y, Jiang C, Wei Y, Xia J, Ping J. Host-specific SRSF7 regulates polymerase activity and replication of influenza A virus. Microbes Infect 2024:105401. [PMID: 39134172 DOI: 10.1016/j.micinf.2024.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/19/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Avian influenza viruses crossing the host barrier to infect humans have caused great panic in human society and seriously threatened public health. Herein, we revealed that knockdown of SRSF7 significantly down-regulated influenza virus titers and viral protein expression. We further observed for the first time that human SRSF7, but not avian SRSF7, significantly inhibited polymerase activity (PB2627E). Molecular mapping demonstrated that amino acids 206 to 228 of human SRSF7 play a decisive role in regulating the polymerase activity, which contains the amino acid motif absent in avian SRSF7. Importantly, our results illustrated that the PB2627K-encoding influenza virus induces SRSF7 protein degradation more strongly via the lysosome pathway and not via the proteasome pathway. Functional enrichment analysis of SRSF7-related KEGG pathways indicated that SRSF7 is closely related to cell growth and death. Lastly, our results showed that knocking down SRSF7 interferes with normal polymerase activity. Taken together, our results advance our understanding of interspecies transmission and our findings point out new targets for the development of drugs preventing or treating influenza virus infection.
Collapse
Affiliation(s)
- Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shengmin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yijia Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenfeng Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi, 830013, China.
| | - Jun Xia
- Key Laboratory of Herbivore Disease Prevention and Control, (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Kwasnik M, Rola J, Rozek W. Influenza D in Domestic and Wild Animals. Viruses 2023; 15:2433. [PMID: 38140674 PMCID: PMC10748149 DOI: 10.3390/v15122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.
Collapse
Affiliation(s)
| | | | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (J.R.)
| |
Collapse
|
5
|
Malvankar S, Singh A, Ravi Kumar YS, Sahu S, Shah M, Murghai Y, Seervi M, Srivastava RK, Verma B. Modulation of various host cellular machinery during COVID-19 infection. Rev Med Virol 2023; 33:e2481. [PMID: 37758688 DOI: 10.1002/rmv.2481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/24/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) emerged in December 2019, causing a range of respiratory infections from mild to severe. This resulted in the ongoing global COVID-19 pandemic, which has had a significant impact on public health. The World Health Organization declared COVID-19 as a global pandemic in March 2020. Viruses are intracellular pathogens that rely on the host's machinery to establish a successful infection. They exploit the gene expression machinery of host cells to facilitate their own replication. Gaining a better understanding of gene expression modulation in SARS-CoV2 is crucial for designing and developing effective antiviral strategies. Efforts are currently underway to understand the molecular-level interaction between the host and the pathogen. In this review, we describe how SARS-CoV2 infection modulates gene expression by interfering with cellular processes, including transcription, post-transcription, translation, post-translation, epigenetic modifications as well as processing and degradation pathways. Additionally, we emphasise the therapeutic implications of these findings in the development of new therapies to treat SARS-CoV2 infection.
Collapse
Affiliation(s)
- Shivani Malvankar
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Anjali Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Y S Ravi Kumar
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Swetangini Sahu
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Shah
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yamini Murghai
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Mahendra Seervi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Petersen PE, Dahl MM, Vest NMO, Jansen MD, Fosse JH, Falk K, Christiansen DH. Validation of a TaqMan one-step real-time RT-PCR assay targeting ISAV segment 7 spliced mRNA. J Virol Methods 2023; 321:114791. [PMID: 37562733 DOI: 10.1016/j.jviromet.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Infectious salmon anaemia virus (ISAV) can cause severe systemic infection in Atlantic salmon (Salmo salar L.), and a timely diagnosis is critical. Conventional real-time reverse transcription PCR (RT-qPCR) assays target unspliced RNA from either ISAV segment 7 or 8 and provide data on viral load. Here, we evaluate a TaqMan one-step RT-qPCR assay that detects explicitly a spliced messenger RNA (mRNA) of ISAV segment 7, thus providing evidence of active viral transcription. Assay performance was comparable with existing unspliced segment 7 and segment 8 assays. PCR efficiency as evaluated from dilutions of a synthetic DNA fragment was 98 % (R2 = 1.00). The assay also performed well on clinical heart samples with PCR efficiency of 108 % (R2 = 1.00). Finally, evaluation on kidney samples from experimental infection revealed higher levels of active transcription for high-virulent compared to low-virulent ISAV. At early, peak, and late infection, mean ratios of spliced to unspliced segment 7 RNA were 3.0 % (± 0.7), 1.7 % (± 0.3), and 1.5 % (± 0.1) for the low virulent and 9.4 % (± 2.2), 4.7 % (± 0.8), and 6.2 % (± 0.1) for the high virulent isolate, respectively. By detection and quantification of active ISAV transcription, this assay may provide a more detailed understanding of ISAV infection dynamics.
Collapse
Affiliation(s)
- Petra Elisabeth Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands.
| | - Maria Marjunardóttir Dahl
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Nicolina Maria Ovadóttir Vest
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| | - Mona Dverdal Jansen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Johanna Hol Fosse
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, Pb 64, N-1431 Ås, Norway
| | - Debes Hammershaimb Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, V.U. Hammershaimbsg. 11, FO-100 Tórshavn, the Faroe Islands
| |
Collapse
|
7
|
Rabalski L, Kosinski M, Cybulski P, Stadejek T, Lepek K. Genetic Diversity of Type A Influenza Viruses Found in Swine Herds in Northwestern Poland from 2017 to 2019: The One Health Perspective. Viruses 2023; 15:1893. [PMID: 37766299 PMCID: PMC10536349 DOI: 10.3390/v15091893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.
Collapse
Affiliation(s)
- Lukasz Rabalski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
- Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100 Pulawy, Poland
| | - Maciej Kosinski
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Cybulski
- Goodvalley Agro S.A., Dworcowa 25, 77-320 Przechlewo, Poland
| | - Tomasz Stadejek
- Department of Pathology and Veterinary Diagnostic, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland
| | - Krzysztof Lepek
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
8
|
Komorizono R, Fujino K, Kessler S, Runge S, Kanda T, Horie M, Makino A, Rubbenstroth D, Tomonaga K. Reverse genetics of parrot bornavirus 4 reveals a unique splicing of the glycoprotein gene that affects viral propagation. J Virol 2023; 97:e0050923. [PMID: 37578232 PMCID: PMC10506466 DOI: 10.1128/jvi.00509-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.
Collapse
Affiliation(s)
- Ryo Komorizono
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Kan Fujino
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Susanne Kessler
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Solveig Runge
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
| | - Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Akiko Makino
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Dennis Rubbenstroth
- Institute of Virology, Medical Centre - University of Freiburg, Freiburg, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel, Riems, Germany
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
11
|
Oishi K, Blanco-Melo D, Kurland AP, Johnson JR, tenOever BR. Archaeal Kink-Turn Binding Protein Mediates Inhibition of Orthomyxovirus Splicing Biology. J Virol 2023; 97:e0181322. [PMID: 36943134 PMCID: PMC10134859 DOI: 10.1128/jvi.01813-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Despite lacking a DNA intermediate, orthomyxoviruses complete their replication cycle in the nucleus and generate multiple transcripts by usurping the host splicing machinery. This biology results in dynamic changes of relative viral transcripts over time and dictates the replicative phase of the infection. Here, we demonstrate that the family of archaeal L7Ae proteins uniquely inhibit the splicing biology of influenza A virus, influenza B virus, and Salmon isavirus, revealing a common strategy utilized by Orthomyxoviridae members to achieve this dynamic. L7Ae-mediated inhibition of virus biology was lost with the generation of a splicing-independent strain of influenza A virus and attempts to select for an escape mutant resulted in variants that conformed to host splicing biology at significant cost to their overall fitness. As L7Ae recognizes conventional kink turns in various RNAs, these data implicate the formation of a similar structure as a shared strategy adopted by this virus family to coordinate their replication cycle. IMPORTANCE Here, we demonstrate that a family of proteins from archaea specifically inhibit this splicing biology of all tested members of the Orthomyxoviridae family. We show that this inhibition extends to influenza A virus, influenza B virus, and isavirus genera, while having no significant impact on the mammalian transcriptome or proteome. Attempts to generate an escape mutant against L7Ae-mediated inhibition resulted in mutations surrounding the viral splice sites and a significant loss of viral fitness. Together, these findings reveal a unique biology shared among diverse members of the Orthomyxoviridae family that may serve as a means to generate future universal therapeutics.
Collapse
Affiliation(s)
- Kohei Oishi
- Department of Microbiology, New York University, Grossman School of Medicine, New York, New York, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew P. Kurland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jeffrey R. Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin R. tenOever
- Department of Microbiology, New York University, Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Bhat P, Aksenova V, Gazzara M, Rex EA, Aslam S, Haddad C, Gao S, Esparza M, Cagatay T, Batten K, El Zahed SS, Arnaoutov A, Zhong H, Shay JW, Tolbert BS, Dasso M, Lynch KW, García-Sastre A, Fontoura BMA. Influenza virus mRNAs encode determinants for nuclear export via the cellular TREX-2 complex. Nat Commun 2023; 14:2304. [PMID: 37085480 PMCID: PMC10121598 DOI: 10.1038/s41467-023-37911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3' UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.
Collapse
Affiliation(s)
- Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily A Rex
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tolga Cagatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hualin Zhong
- Department of Biological Sciences, Hunter College, New York, NY, 10065, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
13
|
Abdelwhab EM, Mettenleiter TC. Zoonotic Animal Influenza Virus and Potential Mixing Vessel Hosts. Viruses 2023; 15:980. [PMID: 37112960 PMCID: PMC10145017 DOI: 10.3390/v15040980] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.
Collapse
Affiliation(s)
- Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Zhu Y, Wang R, Zou J, Tian S, Yu L, Zhou Y, Ran Y, Jin M, Chen H, Zhou H. N6-methyladenosine reader protein YTHDC1 regulates influenza A virus NS segment splicing and replication. PLoS Pathog 2023; 19:e1011305. [PMID: 37053288 PMCID: PMC10146569 DOI: 10.1371/journal.ppat.1011305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/28/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
N6-methyladenosine (m6A) modification on viral RNAs has a profound impact on infectivity. m6A is also a highly pervasive modification for influenza viral RNAs. However, its role in virus mRNA splicing is largely unknown. Here, we identify the m6A reader protein YTHDC1 as a host factor that associates with influenza A virus NS1 protein and modulates viral mRNA splicing. YTHDC1 levels are enhanced by IAV infection. We demonstrate that YTHDC1 inhibits NS splicing by binding to an NS 3' splicing site and promotes IAV replication and pathogenicity in vitro and in vivo. Our results provide a mechanistic understanding of IAV-host interactions, a potential therapeutic target for blocking influenza virus infection, and a new avenue for the development of attenuated vaccines.
Collapse
Affiliation(s)
- Yinxing Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruifang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Luyao Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanbao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ying Ran
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
15
|
AbuBakar U, Amrani L, Kamarulzaman FA, Karsani SA, Hassandarvish P, Khairat JE. Avian Influenza Virus Tropism in Humans. Viruses 2023; 15:833. [PMID: 37112812 PMCID: PMC10142937 DOI: 10.3390/v15040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
An influenza pandemic happens when a novel influenza A virus is able to infect and transmit efficiently to a new, distinct host species. Although the exact timing of pandemics is uncertain, it is known that both viral and host factors play a role in their emergence. Species-specific interactions between the virus and the host cell determine the virus tropism, including binding and entering cells, replicating the viral RNA genome within the host cell nucleus, assembling, maturing and releasing the virus to neighboring cells, tissues or organs before transmitting it between individuals. The influenza A virus has a vast and antigenically varied reservoir. In wild aquatic birds, the infection is typically asymptomatic. Avian influenza virus (AIV) can cross into new species, and occasionally it can acquire the ability to transmit from human to human. A pandemic might occur if a new influenza virus acquires enough adaptive mutations to maintain transmission between people. This review highlights the key determinants AIV must achieve to initiate a human pandemic and describes how AIV mutates to establish tropism and stable human adaptation. Understanding the tropism of AIV may be crucial in preventing virus transmission in humans and may help the design of vaccines, antivirals and therapeutic agents against the virus.
Collapse
Affiliation(s)
- Umarqayum AbuBakar
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farah Ayuni Kamarulzaman
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Center, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences (ISB), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
16
|
Han YJ, Lee KM, Wu GH, Gong YN, Dutta A, Shih SR. Targeting influenza A virus by splicing inhibitor herboxidiene reveals the importance of subtype-specific signatures around splice sites. J Biomed Sci 2023; 30:10. [PMID: 36737756 PMCID: PMC9895974 DOI: 10.1186/s12929-023-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. METHODS We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. RESULTS M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. CONCLUSIONS The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.
Collapse
Affiliation(s)
- Yi-Ju Han
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Hong Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Avijit Dutta
- grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
18
|
Waite DW, Liefting L, Delmiglio C, Chernyavtseva A, Ha HJ, Thompson JR. Development and Validation of a Bioinformatic Workflow for the Rapid Detection of Viruses in Biosecurity. Viruses 2022; 14:v14102163. [PMID: 36298719 PMCID: PMC9610911 DOI: 10.3390/v14102163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022] Open
Abstract
The field of biosecurity has greatly benefited from the widespread adoption of high-throughput sequencing technologies, for its ability to deeply query plant and animal samples for pathogens for which no tests exist. However, the bioinformatics analysis tools designed for rapid analysis of these sequencing datasets are not developed with this application in mind, limiting the ability of diagnosticians to standardise their workflows using published tool kits. We sought to assess previously published bioinformatic tools for their ability to identify plant- and animal-infecting viruses while distinguishing from the host genetic material. We discovered that many of the current generation of virus-detection pipelines are not adequate for this task, being outperformed by more generic classification tools. We created synthetic MinION and HiSeq libraries simulating plant and animal infections of economically important viruses and assessed a series of tools for their suitability for rapid and accurate detection of infection, and further tested the top performing tools against the VIROMOCK Challenge dataset to ensure that our findings were reproducible when compared with international standards. Our work demonstrated that several methods provide sensitive and specific detection of agriculturally important viruses in a timely manner and provides a key piece of ground truthing for method development in this space.
Collapse
Affiliation(s)
- David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
- Correspondence:
| | - Lia Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Catia Delmiglio
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | | | - Hye Jeong Ha
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt 5018, New Zealand
| | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| |
Collapse
|
19
|
Lee MC, Yu CP, Chen XH, Liu MT, Yang JR, Chen AY, Huang CH. Influenza A virus NS1 protein represses antiviral immune response by hijacking NF-κB to mediate transcription of type III IFN. Front Cell Infect Microbiol 2022; 12:998584. [PMID: 36189352 PMCID: PMC9519859 DOI: 10.3389/fcimb.2022.998584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Non-structural protein 1 (NS1), one of the viral proteins of influenza A viruses (IAVs), plays a crucial role in evading host antiviral immune response. It is known that the IAV NS1 protein regulates the antiviral genes response mainly through several different molecular mechanisms in cytoplasm. Current evidence suggests that NS1 represses the transcription of IFNB1 gene by inhibiting the recruitment of Pol II to its exons and promoters in infected cells. However, IAV NS1 whether can utilize a common mechanism to antagonize antiviral response by interacting with cellular DNA and immune-related transcription factors in the nucleus, is not yet clear. Methods Chromatin immunoprecipitation and sequencing (ChIP-seq) was used to determine genome-wide transcriptional DNA-binding sites for NS1 and NF-κB in viral infection. Next, we used ChIP-reChIP, luciferase reporter assay and secreted embryonic alkaline phosphatase (SEAP) assay to provide information on the dynamic binding of NS1 and NF-κB to chromatin. RNA sequencing (RNA-seq) transcriptomic analyses were used to explore the critical role of NS1 and NF-κB in IAV infection as well as the detailed processes governing host antiviral response. Results Herein, NS1 was found to co-localize with NF-κB using ChIP-seq. ChIP-reChIP and luciferase reporter assay confirmed the co-localization of NS1 and NF-κB at type III IFN genes, such as IFNL1, IFNL2, and IFNL3. We discovered that NS1 disturbed binding manners of NF-κB to inhibit IFNL1 expression. NS1 hijacked NF-κB from a typical IFNL1 promoter to the exon-intron region of IFNL1 and decreased the enrichment of RNA polymerase II and H3K27ac, a chromatin accessibility marker, in the promoter region of IFNL1 during IAV infection, consequently reducing IFNL1 gene expression. NS1 deletion enhanced the enrichment of RNA polymerase II at the IFNL1 promoter and promoted its expression. Conclusion Overall, NS1 hijacked NF-κB to prevent its interaction with the IFNL1 promoter and restricted the open chromatin architecture of the promoter, thereby abating antiviral gene expression.
Collapse
Affiliation(s)
- Meng-Chang Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Xing-Hong Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Tsan Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ji-Rong Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - An-Yu Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Heng Huang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Chih-Heng Huang,
| |
Collapse
|
20
|
Hage A, Bharaj P, van Tol S, Giraldo MI, Gonzalez-Orozco M, Valerdi KM, Warren AN, Aguilera-Aguirre L, Xie X, Widen SG, Moulton HM, Lee B, Johnson JR, Krogan NJ, García-Sastre A, Shi PY, Freiberg AN, Rajsbaum R. The RNA helicase DHX16 recognizes specific viral RNA to trigger RIG-I-dependent innate antiviral immunity. Cell Rep 2022; 38:110434. [PMID: 35263596 PMCID: PMC8903195 DOI: 10.1016/j.celrep.2022.110434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-I) are essential to establish antiviral innate immunity. Unanchored (or free) polyubiquitin (poly-Ub) has been shown to regulate IFN-I responses. However, few unanchored poly-Ub interactors are known. To identify factors regulated by unanchored poly-Ub in a physiological setting, we developed an approach to isolate unanchored poly-Ub from lung tissue. We identified the RNA helicase DHX16 as a potential pattern recognition receptor (PRR). Silencing of DHX16 in cells and in vivo diminished IFN-I responses against influenza virus. These effects extended to members of other virus families, including Zika and SARS-CoV-2. DHX16-dependent IFN-I production requires RIG-I and unanchored K48-poly-Ub synthesized by the E3-Ub ligase TRIM6. DHX16 recognizes a signal in influenza RNA segments that undergo splicing and requires its RNA helicase motif for direct, high-affinity interactions with specific viral RNAs. Our study establishes DHX16 as a PRR that partners with RIG-I for optimal activation of antiviral immunity requiring unanchored poly-Ub.
Collapse
Affiliation(s)
- Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Preeti Bharaj
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria Gonzalez-Orozco
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karl M Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abbey N Warren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), University of California at San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Silva LR, da Silva-Júnior EF. Multi-Target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives Against Influenza Viruses. Curr Top Med Chem 2022; 22:1485-1500. [PMID: 35086449 DOI: 10.2174/1568026622666220127112056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Influenza viruses (INFV), Orthomyxoviridae family, are mainly transmitted among humans, via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules more effective and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found a promising multi-target agent against INFV since can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile to most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| |
Collapse
|
23
|
A new self-attenuated therapeutic influenza vaccine that uses host cell-restricted attenuation by artificial microRNAs. Int J Pharm 2022; 612:121325. [PMID: 34883209 PMCID: PMC8871448 DOI: 10.1016/j.ijpharm.2021.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023]
Abstract
New strategies are urgently needed for developing vaccines and/or anti-viral drugs against influenza viruses, because antigenic shift and drift inevitably occurs in circulating strains each year, and new strains resistant to anti-viral drugs have recently emerged. In our study, we designed and incorporated artificial microRNAs (amiRNAs) into the NA segment of rescued influenza viruses to separately target two host genes, Cdc2-like kinase 1 (CLK1) and SON DNA binding protein (SON), which were found to play an essential role in virus replication. Mouse epithelial fibroblast (MEF) or human lung carcinoma A549 cells infected with engineered influenza PR8 viruses expressing amiR-30CLK1 (PR8-amiR-30CLK1) or amiR-93SON (PR8-amiR-93SON) had reduced expression of host proteins CLK1 and SON, respectively. All engineered influenza viruses functioned as attenuated vaccines, induced significantly higher antibody responses, and provided greater protective efficacy. In addition, they were found to be safe, based on the mouse weight changes and clinical signs observed. In contrast to the engineered viruses targeting SON, mice treated with engineered viruses targeting CLK1 recovered from weight loss and survived lethal infection by 6 h after lethal-dose PR8 infection, suggesting that our PR8-amiR-30CLK1 self-attenuated influenza virus (SAIV) could be used as a new therapeutic influenza vaccine.
Collapse
|
24
|
Wang Y, Li J, Zhang L, Sun HX, Zhang Z, Xu J, Xu Y, Lin Y, Zhu A, Luo Y, Zhou H, Wu Y, Lin S, Sun Y, Xiao F, Chen R, Wen L, Chen W, Li F, Ou R, Zhang Y, Kuo T, Li Y, Li L, Sun J, Sun K, Zhuang Z, Lu H, Chen Z, Mai G, Zhuo J, Qian P, Chen J, Yang H, Wang J, Xu X, Zhong N, Zhao J, Li J, Zhao J, Jin X. Plasma cell-free RNA characteristics in COVID-19 patients. Genome Res 2022; 32:228-241. [PMID: 35064006 PMCID: PMC8805721 DOI: 10.1101/gr.276175.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)–related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.
Collapse
|
25
|
Peterson JM, O'Leary CA, Moss WN. In silico analysis of local RNA secondary structure in influenza virus A, B and C finds evidence of widespread ordered stability but little evidence of significant covariation. Sci Rep 2022; 12:310. [PMID: 35013354 PMCID: PMC8748542 DOI: 10.1038/s41598-021-03767-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Influenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3-found in influenza C-had higher than expected amounts of sequence covariation.
Collapse
Affiliation(s)
- Jake M Peterson
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Collin A O'Leary
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
Sura T, Surabhi S, Maaß S, Hammerschmidt S, Siemens N, Becher D. The global proteome and ubiquitinome of bacterial and viral co-infected bronchial epithelial cells. J Proteomics 2022; 250:104387. [PMID: 34600154 DOI: 10.1016/j.jprot.2021.104387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Viral infections facilitate bacterial trafficking to the lower respiratory tract resulting in bacterial-viral co-infections. Bacterial dissemination to the lower respiratory tract is enhanced by influenza A virus induced epithelial cell damage and dysregulation of immune responses. Epithelial cells act as a line of defense and detect pathogens by a high variety of pattern recognition receptors. The post-translational modification ubiquitin is involved in almost every cellular process. Moreover, ubiquitination contributes to the regulation of host immune responses, influenza A virus uncoating and transport within host cells. We applied proteomics with a special focus on ubiquitination to assess the impact of single bacterial and viral as well as bacterial-viral co-infections on bronchial epithelial cells. We used Tandem Ubiquitin Binding Entities to enrich polyubiquitinated proteins and assess changes in the ubiquitinome. Infecting 16HBE cells with Streptococcus pyogenes led to an increased abundance of proteins related to mitochondrial translation and energy metabolism in proteome and ubiquitinome. In contrast, influenza A virus infection mainly altered the ubiquitinome. Co-infections had no additional impact on protein abundances or affected pathways. Changes in protein abundance and enriched pathways were assigned to imprints of both infecting pathogens. SIGNIFICANCE: Viral and bacterial co-infections of the lower respiratory tract are a burden for health systems worldwide. Therefore, it is necessary to elucidate the complex interplay between the host and the infecting pathogens. Thus, we analyzed the proteome and the ubiquitinome of co-infected bronchial epithelial cells to elaborate a potential synergism of the two infecting organisms. The results presented in this work can be used as a starting point for further analyses.
Collapse
Affiliation(s)
- Thomas Sura
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Surabhi Surabhi
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sandra Maaß
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Sven Hammerschmidt
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Nikolai Siemens
- University of Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Department of Molecular Genetics and Infection Biology, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Dörte Becher
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Department of Microbial Proteomics, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
27
|
The Thiazole-5-Carboxamide GPS491 Inhibits HIV-1, Adenovirus, and Coronavirus Replication by Altering RNA Processing/Accumulation. Viruses 2021; 14:v14010060. [PMID: 35062264 PMCID: PMC8779516 DOI: 10.3390/v14010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.
Collapse
|
28
|
Abstract
Influenza A virus has long been known to encode 10 major polypeptides, produced, almost without exception, by every natural isolate of the virus. These polypeptides are expressed in readily detectable amounts during infection and are either fully essential or their loss severely attenuates virus replication. More recent work has shown that this core proteome is elaborated by expression of a suite of accessory gene products that tend to be expressed at lower levels through noncanonical transcriptional and/or translational events. Expression and activity of these accessory proteins varies between virus strains and is nonessential (sometimes inconsequential) for virus replication in cell culture, but in many cases has been shown to affect virulence and/or transmission in vivo. This review describes, when known, the expression mechanisms and functions of this influenza A virus accessory proteome and discusses its significance and evolution.
Collapse
Affiliation(s)
- Rute M Pinto
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Eleanor Gaunt
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
29
|
Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021; 12:743580. [PMID: 34899631 PMCID: PMC8664230 DOI: 10.3389/fmicb.2021.743580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes have evolutionarily acquired an immune system to fend off invading mobile genetic elements, including viral phages and plasmids. Through recognizing specific sequences of the invading nucleic acid, prokaryotes mediate a subsequent degradation process collectively referred to as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system. The CRISPR-Cas systems are divided into two main classes depending on the structure of the effector Cas proteins. Class I systems have effector modules consisting of multiple proteins, while class II systems have a single multidomain effector. Additionally, the CRISPR-Cas systems can also be categorized into types depending on the spacer acquisition components and their evolutionary features, namely, types I-VI. Among CRISPR/Cas systems, Cas9 is one of the most common multidomain nucleases that identify, degrade, and modulate DNA. Importantly, variants of Cas proteins have recently been found to target RNA, especially the single-effector Cas13 nucleases. The Cas13 has revolutionized our ability to study and perturb RNAs in endogenous microenvironments. The Cas13 effectors offer an excellent candidate for developing novel research tools in virological and biotechnological fields. Herein, in this review, we aim to provide a comprehensive summary of the recent advances of Cas13s for targeting viral RNA for either RNA-mediated degradation or CRISPR-Cas13-based diagnostics. Additionally, we aim to provide an overview of the proposed applications that could revolutionize our understanding of viral-host interactions using Cas13-mediated approaches.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
30
|
How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses 2021; 13:v13112309. [PMID: 34835115 PMCID: PMC8619935 DOI: 10.3390/v13112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host's antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.
Collapse
|
31
|
Priyadarshi H, Das R. Complexities in viral replication strategies as a potential explanation for prevalence of asymptomatic carriers in Covid-19 infections: analytical observation on SARS-Cov2 genome characteristics. Theory Biosci 2021; 140:241-247. [PMID: 34114198 PMCID: PMC8191711 DOI: 10.1007/s12064-021-00349-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Analytical observations (in silico) indicate molecular features of SARS-Cov2 genome that potentially explains the high prevalence of asymptomatic cases in Covid-19 pandemic. We observed that the virus maintains a low preference for 'GGG' codon for glycine (3%) in its genome. We also observed multiple putative introns of 26-44 nucleotide (nt) length in the genomic region between the coding regions of Nsp10 and RPol in the viral ORF1ab, like several other beta-coronaviruses of similar infectivity levels. It appears that the virus employs a dual strategy to ensure unhindered replication within the host. One of the strategies employ a (- )1 frameshift translation event through programmed ribosomal slippage at the ribosomal slippage site in the ORF1ab. The alternate strategy relies on intron excision to generate a read through frame. The presence of 'GGG' in this conserved ribosomal slippage site ensures adequate tRNA in cytoplasm to match the codon, implying no additional frameshift translation due to ribosomal stalling. With fewer replication events, viral load remains low and resulting in asymptomatic cases. We suggest that this strategy is the primary reason for the prevalence of asymptomatic cases in the disease, enabling the virus to spread rapidly.
Collapse
Affiliation(s)
- Himanshu Priyadarshi
- Department of Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Agartala, Tripura, 799210, India.
| | - Rekha Das
- ICAR Research Complex for NEH Region, Tripura Regional Centre, Lembucherra, Agartala, Tripura, 799210, India
| |
Collapse
|
32
|
Froggatt HM, Burke KN, Chaparian RR, Miranda HA, Zhu X, Chambers BS, Heaton NS. Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity. PLoS Pathog 2021; 17:e1009951. [PMID: 34570829 PMCID: PMC8496794 DOI: 10.1371/journal.ppat.1009951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/07/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses encode their genomes across eight, negative sense RNA segments. The six largest segments produce mRNA transcripts that do not generally splice; however, the two smallest segments are actively spliced to produce the essential viral proteins NEP and M2. Thus, viral utilization of RNA splicing effectively expands the viral coding capacity without increasing the number of genomic segments. As a first step towards understanding why splicing is not more broadly utilized across genomic segments, we designed and inserted an artificial intron into the normally nonsplicing NA segment. This insertion was tolerated and, although viral mRNAs were incompletely spliced, we observed only minor effects on viral fitness. To take advantage of the unspliced viral RNAs, we encoded a reporter luciferase gene in frame with the viral ORF such that when the intron was not removed the reporter protein would be produced. This approach, which we also show can be applied to the NP encoding segment and in different viral genetic backgrounds, led to high levels of reporter protein expression with minimal effects on the kinetics of viral replication or the ability to cause disease in experimentally infected animals. These data together show that the influenza viral genome is more tolerant of splicing than previously appreciated and this knowledge can be leveraged to develop viral genetic platforms with utility for biotechnology applications. Unlike most host mRNAs, some viral mRNAs encode multiple discrete, functional proteins. One method influenza A viruses use to increase the protein products from two of their eight RNA genome segments is splicing. Splicing requires host machinery to remove part of the viral mRNA, the intron, to generate a different mRNA product. Although only certain influenza viral segments naturally splice, we were interested in whether additional segments could splice to produce multiple proteins. We inserted artificial introns harboring reporter genes into otherwise nonsplicing genomic segments of an H1N1 influenza A virus and found that this modification was well tolerated by the virus. We further demonstrated that an unrelated H3N2 influenza A virus could similarly support splicing and express a reporter protein from an artificial intron. These findings have implications for our understanding of how viruses expand their coding capacity with a limited genome. Additionally, encoding reporter proteins in spliced intronic sequences also represents a new method of generating reporter viruses requiring limited manipulation of the viral RNA.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Hector A. Miranda
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Benjamin S. Chambers
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Acetylation, Methylation and Allysine Modification Profile of Viral and Host Proteins during Influenza A Virus Infection. Viruses 2021; 13:v13071415. [PMID: 34372620 PMCID: PMC8310381 DOI: 10.3390/v13071415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
Protein modifications dynamically occur and regulate biological processes in all organisms. Towards understanding the significance of protein modifications in influenza virus infection, we performed a global mass spectrometry screen followed by bioinformatics analyses of acetylation, methylation and allysine modification in human lung epithelial cells in response to influenza A virus infection. We discovered 8 out of 10 major viral proteins and 245 out of 2280 host proteins detected to be differentially modified by three modifications in infected cells. Some of the identified proteins were modified on multiple amino acids residues and by more than one modification; the latter occurred either on different or same residues. Most of the modified residues in viral proteins were conserved across >40 subtypes of influenza A virus, and influenza B or C viruses and located on the protein surface. Importantly, many of those residues have already been determined to be critical for the influenza A virus. Similarly, many modified residues in host proteins were conserved across influenza A virus hosts like humans, birds, and pigs. Finally, host proteins undergoing the three modifications clustered in common functional networks of metabolic, cytoskeletal, and RNA processes, all of which are known to be exploited by the influenza A virus.
Collapse
|
34
|
Khan HN, Jongejan A, van Vught LA, Horn J, Schultz MJ, Zwinderman AH, Cremer OL, Bonten MJ, van der Poll T, Scicluna BP. The circulatory small non-coding RNA landscape in community-acquired pneumonia on intensive care unit admission. J Cell Mol Med 2021; 25:7621-7630. [PMID: 34272809 PMCID: PMC8358855 DOI: 10.1111/jcmm.16406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
Community‐acquired pneumonia (CAP) is a major cause of sepsis. Despite several clinical trials targeting components of the inflammatory response, no specific treatment other than antimicrobial therapy has been approved. This argued for a deeper understanding of sepsis immunopathology, in particular factors that can modulate the host response. Small non‐coding RNA, for example, micro (mi)RNA, have been established as important modifiers of cellular phenotypes. Notably, miRNAs are not exclusive to the intracellular milieu but have also been detected extracellular in the circulation with functional consequences. Here, we sought to determine shifts in circulatory small RNA levels of critically ill patients with CAP‐associated sepsis and to determine the influence of clinical severity and causal pathogens on small RNA levels. Blood plasma was collected from 13 critically ill patients with sepsis caused by CAP on intensive care unit admission and from 5 non‐infectious control participants. Plasma small RNA‐sequencing identified significantly altered levels of primarily mature miRNAs in CAP relative to controls. Pathways analysis of high or low abundance miRNA identified various over‐represented cellular biological pathways. Analysis of small RNA levels against common clinical severity and inflammatory parameters indices showed direct and indirect correlations. Additionally, variance of plasma small RNA levels in CAP patients may be explained, at least in part, by differences in causal pathogens. Small nuclear RNA levels were specifically altered in CAP due to Influenza infection in contrast to Streptococcus pneumoniae infection. Pathway analysis of plasma miRNA signatures unique to Influenza or Streptococcus pneumoniae infections showed enrichment for specific proteoglycan, cell cycle, and immunometabolic pathways.
Collapse
Affiliation(s)
- Hina N Khan
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Lonneke A van Vught
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands
| | - Janneke Horn
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| | - Olaf L Cremer
- Department of Intensive Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc J Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tom van der Poll
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Mordstein C, Cano L, Morales AC, Young B, Ho AT, Rice AM, Liss M, Hurst LD, Kudla G. Transcription, mRNA export and immune evasion shape the codon usage of viruses. Genome Biol Evol 2021; 13:6275682. [PMID: 33988683 PMCID: PMC8410142 DOI: 10.1093/gbe/evab106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The nucleotide composition, dinucleotide composition, and codon usage of many viruses differs from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analysed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host - instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.
Collapse
Affiliation(s)
- Christine Mordstein
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Laura Cano
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Atahualpa Castillo Morales
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Bethan Young
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Alexander T Ho
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Rice
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Michael Liss
- Thermo Fisher Scientific, GENEART GmbH, Regensburg, Germany
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Interaction of NEP with G Protein Pathway Suppressor 2 Facilitates Influenza A Virus Replication by Weakening the Inhibition of GPS2 to RNA Synthesis and Ribonucleoprotein Assembly. J Virol 2021; 95:JVI.00008-21. [PMID: 33658351 PMCID: PMC8139649 DOI: 10.1128/jvi.00008-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nuclear export protein (NEP) serves multiple functions in the life cycle of influenza A virus (IAV). Identifying novel host proteins that interact with NEP and understanding their functions in IAV replication are of great interest. In this study, we screened and confirmed the direct interaction of G protein pathway suppressor 2 (GPS2) with NEP through a yeast two-hybrid screening assay and glutathione S-transferase-pulldown and co-immunoprecipitation assays. Knockdown or knockout of GPS2 enhanced IAV titers, whereas overexpression of GPS2 impaired IAV replication, demonstrating that GPS2 acted as a negative host factor in IAV replication. Meanwhile, GPS2 inhibited viral RNA synthesis by reducing the assembly of IAV polymerase. Interestingly, IAV NEP interacted with GPS2 and mediated its nuclear export, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication. Overall, this study identified the novel NEP-binding host partner GPS2 as a critical host factor to participate in IAV replication. These findings provided novel insights into the interactions between IAV and host cells, revealing a new function for GPS2 during IAV replication.Importance: NEP is proposed to play multiple biologically important roles in the life cycle of IAV, which largely relies on host factors by interaction. Our study demonstrated that GPS2 could reduce the interaction between PB1 and PB2 and interfere with vRNP assembly. Thus, GPS2 inhibited the RNA synthesis of IAV and negatively regulated its replication. Importantly, IAV NEP interacted with GPS2 and mediated the nuclear export of GPS2, thereby activated the degradation of GPS2. Thus, NEP-GPS2 interaction weakened the inhibition of GPS2 to viral polymerase activity and benefited virus replication.
Collapse
|
37
|
Replication-Competent ΔNS1 Influenza A Viruses Expressing Reporter Genes. Viruses 2021; 13:v13040698. [PMID: 33920517 PMCID: PMC8072579 DOI: 10.3390/v13040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The influenza A virus (IAV) is able to infect multiple mammalian and avian species, and in humans IAV is responsible for annual seasonal epidemics and occasional pandemics of respiratory disease with significant health and economic impacts. Studying IAV involves laborious secondary methodologies to identify infected cells. Therefore, to circumvent this requirement, in recent years, multiple replication-competent infectious IAV expressing traceable reporter genes have been developed. These IAVs have been very useful for in vitro and/or in vivo studies of viral replication, identification of neutralizing antibodies or antivirals, and in studies to evaluate vaccine efficacy, among others. In this report, we describe, for the first time, the generation and characterization of two replication-competent influenza A/Puerto Rico/8/1934 H1N1 (PR8) viruses where the viral non-structural protein 1 (NS1) was substituted by the monomeric (m)Cherry fluorescent or the NanoLuc luciferase (Nluc) proteins. The ΔNS1 mCherry was able to replicate in cultured cells and in Signal Transducer and Activator of Transcription 1 (STAT1) deficient mice, although at a lower extent than a wild-type (WT) PR8 virus expressing the same mCherry fluorescent protein (WT mCherry). Notably, expression of either reporter gene (mCherry or Nluc) was detected in infected cells by fluorescent microscopy or luciferase plate readers, respectively. ΔNS1 IAV expressing reporter genes provide a novel approach to better understand the biology and pathogenesis of IAV, and represent an excellent tool to develop new therapeutic approaches against IAV infections.
Collapse
|
38
|
RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021; 26:molecules26082263. [PMID: 33919699 PMCID: PMC8070285 DOI: 10.3390/molecules26082263] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers.
Collapse
|
39
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
40
|
Wang X, Lin L, Zhong Y, Feng M, Yu T, Yan Y, Zhou J, Liao M. Cellular hnRNPAB binding to viral nucleoprotein inhibits flu virus replication by blocking nuclear export of viral mRNA. iScience 2021; 24:102160. [PMID: 33681726 PMCID: PMC7918295 DOI: 10.1016/j.isci.2021.102160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) play critical roles in the nuclear export, splicing, and sensing of RNA. However, the role of heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) is poorly understood. In this study, we report that hnRNPAB cooperates with nucleoprotein (NP) to restrict viral mRNA nuclear export via inhibiting viral mRNA binding to ALY and NXF1. HnRNPAB restricts mRNA transfer from ALY to NXF1, inhibiting the mRNA nuclear export. Moreover, when cells are invaded by influenza A virus, NP interacts with hnRNPAB and interrupts the ALY-UAP56 interaction, leading to repression of ALY-viral mRNA binding, and then inhibits the viral mRNA binding to NXF1, leading to nuclear stimulation of viral mRNA. Collectively, these observations provide a new role of hnRNPAB to act as an mRNA nuclear retention factor, which is also effective for viral mRNA of influenza A virus, and NP cooperates with hnRNPAB to further restrict the viral mRNA nuclear export. HnRNPAB inhibits influenza A virus replication by repressing viral mRNA nuclear export HnRNPAB interrupts viral mRNA transferring from ALY to NXF1 NP cooperates with hnRNPAB to further restrict viral mRNA nuclear export The ALY-viral mRNA binding is restricted by NP-hnRNPAB complex
Collapse
Affiliation(s)
- Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Lulu Lin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yiye Zhong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Mingfang Feng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Tianqi Yu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, P.R. China
- Corresponding author
| | - Min Liao
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
- Corresponding author
| |
Collapse
|
41
|
Abstract
Some negative-sense RNA viruses prime mRNA transcription using host 5' cap sequences, usurping host translational machinery and evading antiviral surveillance. In this issue of Cell, Ho et al. identify an additional consequence of this viral strategy: the acquisition of upstream start codons from host-derived sequences and subsequent translation of novel viral products.
Collapse
Affiliation(s)
- Alistair B Russell
- Division of Biology, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
42
|
Abstract
From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Jieshi Yu
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
43
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
44
|
Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. J Virol 2020; 95:JVI.01391-20. [PMID: 33087462 DOI: 10.1128/jvi.01391-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
The viral ribonucleoprotein (vRNP) of the influenza A virus (IAV) is responsible for the viral RNA transcription and replication in the nucleus, and its functions rely on host factors. Previous studies have indicated that eukaryotic translation elongation factor 1 delta (eEF1D) may associate with RNP subunits, but its roles in IAV replication are unclear. Herein, we showed that eEF1D was an inhibitor of IAV replication because knockout of eEF1D resulted in a significant increase in virus yield. eEF1D interacted with RNP subunits polymerase acidic protein (PA), polymerase basic 1 (PB1), polymerase basic 2 (PB2), and also with nucleoprotein (NP) in an RNA-dependent manner. Further studies revealed that eEF1D impeded the nuclear import of NP and PA-PB1 heterodimer of IAV, thereby suppressing the vRNP assembly, viral polymerase activity, and viral RNA synthesis. Together, our studies demonstrate eEF1D negatively regulating the IAV replication by inhibition of the nuclear import of RNP subunits, which not only uncovers a novel role of eEF1D in IAV replication but also provides new insights into the mechanisms of nuclear import of vRNP proteins.IMPORTANCE Influenza A virus is the major cause of influenza, a respiratory disease in humans and animals. Different from most other RNA viruses, the transcription and replication of IAV occur in the cell nucleus. Therefore, the vRNPs must be imported into the nucleus for viral transcription and replication, which requires participation of host proteins. However, the mechanisms of the IAV-host interactions involved in nuclear import remain poorly understood. Here, we identified eEF1D as a novel inhibitor for the influenza virus life cycle. Importantly, eEF1D impaired the interaction between NP and importin α5 and the interaction between PB1 and RanBP5, which impeded the nuclear import of vRNP. Our studies not only reveal the molecular mechanisms of the nuclear import of IAV vRNP but also provide potential anti-influenza targets for antiviral development.
Collapse
|
45
|
Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S, Youssef A, Alysandratos KD, Padhorny D, Ojha S, Mora-Martin A, Kretov D, Ash PEA, Verma M, Zhao J, Patten JJ, Villacorta-Martin C, Bolzan D, Perea-Resa C, Bullitt E, Hinds A, Tilston-Lunel A, Varelas X, Farhangmehr S, Braunschweig U, Kwan JH, McComb M, Basu A, Saeed M, Perissi V, Burks EJ, Layne MD, Connor JH, Davey R, Cheng JX, Wolozin BL, Blencowe BJ, Wuchty S, Lyons SM, Kozakov D, Cifuentes D, Blower M, Kotton DN, Wilson AA, Mühlberger E, Emili A. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Mol Cell 2020; 80:1104-1122.e9. [PMID: 33259812 PMCID: PMC7674017 DOI: 10.1016/j.molcel.2020.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.
Collapse
Affiliation(s)
- Ryan M Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Indranil Paul
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | - Dmitry Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Mamta Verma
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - J J Patten
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, FL, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Anne Hinds
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Benjamin L Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, FL, USA; Department of Biology, University of Miami, Miami, FL, USA; Miami Institute of Data Science and Computing, Miami, FL, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
46
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
47
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
48
|
Divergent Influenza-Like Viruses of Amphibians and Fish Support an Ancient Evolutionary Association. Viruses 2020; 12:v12091042. [PMID: 32962015 PMCID: PMC7551885 DOI: 10.3390/v12091042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza viruses (family Orthomyxoviridae) infect a variety of vertebrates, including birds, humans, and other mammals. Recent metatranscriptomic studies have uncovered divergent influenza viruses in amphibians, fish and jawless vertebrates, suggesting that these viruses may be widely distributed. We sought to identify additional vertebrate influenza-like viruses through the analysis of publicly available RNA sequencing data. Accordingly, by data mining, we identified the complete coding segments of five divergent vertebrate influenza-like viruses. Three fell as sister lineages to influenza B virus: salamander influenza-like virus in Mexican walking fish (Ambystoma mexicanum) and plateau tiger salamander (Ambystoma velasci), Siamese algae-eater influenza-like virus in Siamese algae-eater fish (Gyrinocheilus aymonieri) and chum salmon influenza-like virus in chum salmon (Oncorhynchus keta). Similarly, we identified two influenza-like viruses of amphibians that fell as sister lineages to influenza D virus: cane toad influenza-like virus and the ornate chorus frog influenza-like virus, in the cane toad (Rhinella marina) and ornate chorus frog (Microhyla fissipes), respectively. Despite their divergent phylogenetic positions, these viruses retained segment conservation and splicing consistent with transcriptional regulation in influenza B and influenza D viruses, and were detected in respiratory tissues. These data suggest that influenza viruses have been associated with vertebrates for their entire evolutionary history.
Collapse
|
49
|
Plant EP, Manukyan H, Laassri M, Ye Z. Insights from the comparison of genomic variants from two influenza B viruses grown in the presence of human antibodies in cell culture. PLoS One 2020; 15:e0239015. [PMID: 32925936 PMCID: PMC7489522 DOI: 10.1371/journal.pone.0239015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding the extent and limitation of viral genome evolution can provide insight about potential drug and vaccine targets. Influenza B Viruses (IBVs) infect humans in a seasonal manner and causes significant morbidity and mortality. IBVs are negative-sense single-stranded RNA viruses with a segmented genome and can be divided into two antigenically distinct lineages. The two lineages have been circulating and further evolving for almost four decades. The immune response to IBV infection can lead to antibodies that target the strain causing the infection. Some antibodies are cross-reactive and are able to bind strains from both lineages but, because of antigenic drift and immunodominance, both lineages continue to evolve and challenge human health. Here we investigate changes in the genomes of an IBVs from each lineage after passage in tissue culture in the presence of human sera containing polyclonal antibodies directed toward antigenically and temporally distinct viruses. Our previous analysis of the fourth segment, which encodes the major surface protein HA, revealed a pattern of change in which signature sequences from one lineage mutated to the signature sequences of the other lineage. Here we analyze genes from the other genomic segments and observe that most of the quasispecies’ heterogeneity occurs at the same loci in each lineage. The nature of the variants at these loci are investigated and possible reasons for this pattern are discussed. This work expands our understanding of the extent and limitations of genomic change in IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Hasmik Manukyan
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Majid Laassri
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhiping Ye
- Office of Vaccine Research and Review, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
50
|
Mecate-Zambrano A, Sukumar S, Seebohm G, Ciminski K, Schreiber A, Anhlan D, Greune L, Wixler L, Grothe S, Stein NC, Schmidt MA, Langer K, Schwemmle M, Shi T, Ludwig S, Boergeling Y. Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly. PLoS Pathog 2020; 16:e1008775. [PMID: 32866218 PMCID: PMC7485975 DOI: 10.1371/journal.ppat.1008775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/11/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Small RNA viruses only have a very limited coding capacity, thus most viral proteins have evolved to fulfill multiple functions. The highly conserved matrix protein 1 (M1) of influenza A viruses is a prime example for such a multifunctional protein, as it acts as a master regulator of virus replication whose different functions have to be tightly regulated. The underlying mechanisms, however, are still incompletely understood. Increasing evidence points towards an involvement of posttranslational modifications in the spatio-temporal regulation of M1 functions. Here, we analyzed the role of M1 tyrosine phosphorylation in genuine infection by using recombinant viruses expressing M1 phosphomutants. Presence of M1 Y132A led to significantly decreased viral replication compared to wildtype and M1 Y10F. Characterization of phosphorylation dynamics by mass spectrometry revealed the presence of Y132 phosphorylation in M1 incorporated into virions that is most likely mediated by membrane-associated Janus kinases late upon infection. Molecular dynamics simulations unraveled a potential phosphorylation-induced exposure of the positively charged linker domain between helices 4 and 5, supposably acting as interaction platform during viral assembly. Consistently, M1 Y132A showed a defect in lipid raft localization due to reduced interaction with viral HA protein resulting in a diminished structural stability of viral progeny and the formation of filamentous particles. Importantly, reduced M1-RNA binding affinity resulted in an inefficient viral genome incorporation and the production of non-infectious virions that interferes with virus pathogenicity in mice. This study advances our understanding of the importance of dynamic phosphorylation as a so far underestimated level of regulation of multifunctional viral proteins and emphasizes the potential feasibility of targeting posttranslational modifications of M1 as a novel antiviral intervention.
Collapse
Affiliation(s)
- Angeles Mecate-Zambrano
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Swathi Sukumar
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Lilo Greune
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Ludmilla Wixler
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephanie Grothe
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Nora Caroline Stein
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - M. Alexander Schmidt
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Klaus Langer
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tianlai Shi
- Immunology, Inflammation and Infectious Diseases (I3) DTA, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- * E-mail:
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| |
Collapse
|