1
|
Vohra MS, Ahmad B, Taylor ER, Benchoula K, Fong IL, Parhar IS, Ogawa S, Serpell CJ, Wong EH. 5,7,3',4',5'-pentamethoxyflavone (PMF) exhibits anti-obesity and neuroprotective effects in an obese zebrafish model. Mol Cell Endocrinol 2025; 604:112554. [PMID: 40252912 DOI: 10.1016/j.mce.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Obesity is a multi-chronic illness characterized by superfluous fat accumulation, contributing to significant metabolic and neurological complications. Current therapeutic approaches have limited efficacy and notable side effects, underscoring an urgent demand for novel, safer alternatives. This study is the first to investigate the anti-obesity potential of 5,7,3',4',5'-pentamethoxyflavone (PMF) in vivo using a zebrafish model. Our findings demonstrate that PMF administration exerts pronounced anti-obesogenic effects, evidenced by reductions in blood glucose, plasma triglycerides, total cholesterol, hepatic low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Mechanistically, PMF suppressed hepatic adipogenic and lipogenic gene expression while promoting lipid catabolism through activation of peroxisome proliferator-activated receptor-alpha (PPAR-α) and its downstream enzymes, including acyl-CoA oxidase 1 (ACOX1), medium-chain acyl-CoA dehydrogenase (ACADM), and carnitine palmitoyl transferase 1B (CPT-1β). Additionally, PMF markedly mitigated oxidative stress by lowering malondialdehyde (MDA) and nitric oxide (NO) levels, accompanied by increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione S-transferase (GST). Notably, PMF effectively prevented obesity by suppressing food intake, downregulating orexigenic genes, and enhancing anorexigenic signals. Furthermore, PMF exhibited neuroprotective properties by elevating brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B2 (TrkB2), revealing a novel link between metabolic and neurological regulation. This study provides pioneering, comprehensive in vivo evidence supporting PMF as a promising therapeutic candidate with dual beneficial roles in metabolic health and neuroprotection.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Emerald R Taylor
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Kent, Canterbury, CT2 7NH, United Kingdom
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, 94300, Kota Samarahan, Malaysia; Universiti Malaysia Sarawak, Malaysia
| | - Ishwar S Parhar
- School of Medicine and Health Sciences, Monash University, Sunway Campus, PJ 46150, Selangor, Malaysia
| | - Satoshi Ogawa
- School of Medicine and Health Sciences, Monash University, Sunway Campus, PJ 46150, Selangor, Malaysia
| | - Christopher J Serpell
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1 1AX, United Kingdom.
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Digital Health and Medical Advancement Impact Lab, Taylor's University Lakeside Campus, 1, Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia.
| |
Collapse
|
2
|
Park WY, Montufar C, Zaganjor E. Mitochondrial substrate oxidation regulates distinct cell differentiation outcomes. Trends Cell Biol 2025; 35:274-277. [PMID: 40011089 PMCID: PMC11972143 DOI: 10.1016/j.tcb.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Mitochondrial metabolism, signaling, and dynamics are key regulators of cell fate. While glycolysis supports stemness, mitochondrial expansion and oxidative phosphorylation (OXPHOS) facilitate differentiation. This forum presents emerging evidence that the type of substrate, whether amino acids, carbohydrates, or fatty acids, oxidized by mitochondria significantly influences differentiation outcomes.
Collapse
Affiliation(s)
- Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Daniel Y, Dufour-Gaume F, Vergnaud A, Denis M, Giaume L, Rozec B, Prat N, Lauzier B. Adjuvant therapies for management of hemorrhagic shock: a narrative review. Crit Care 2025; 29:138. [PMID: 40158128 PMCID: PMC11955146 DOI: 10.1186/s13054-025-05368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Severe bleeding remains a leading cause of death in patients with major trauma, despite improvements in care during the acute phase, especially the application of damage control concepts. Death from hemorrhage occurs rapidly after the initial trauma, in most cases before the patient has had a chance to reach a hospital. Thus, the development of adjuvant drugs that would increase the survival of injured patients is necessary. Among the many avenues of research in this area, one is to improve cell survival during tissue hypoxia. During hemorrhagic shock, oxygen delivery to cells decreases and, despite increased oxygen extraction, anaerobic metabolism occurs, leading to acidosis, coagulopathy, apoptosis, and organ dysfunction. METHODS We selected six treatments that may help cells cope with this situation and could be used as adjuvant therapies during the initial resuscitation of severe trauma patients, including out-of-hospital settings: niacin, thiazolidinediones, prolyl hydroxylase domain inhibitors, O-GlcNAcylation stimulation, histone deacetylase inhibitors, and adenosine-lidocaine-magnesium solution. For each treatment, the biological mechanism involved and a systematic review of its interest in hemorrhagic shock (preclinical data and human clinical trials) are presented. CONCLUSION Promising molecules, some of which are already used in humans for other indications, give us hope for human clinical trials in the field of hemorrhagic shock in the near future.
Collapse
Affiliation(s)
- Yann Daniel
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France.
| | - Frédérique Dufour-Gaume
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
| | - Amandine Vergnaud
- Nantes Université, 44000, Nantes, France
- CNRS, INSERM, Institut du Thorax, 44000, Nantes, France
| | - Manon Denis
- CNRS, INSERM, Institut du Thorax, 44000, Nantes, France
- CHU Nantes, 44000, Nantes, France
| | - Louise Giaume
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Bertrand Rozec
- CNRS, INSERM, Institut du Thorax, 44000, Nantes, France
- CHU Nantes, 44000, Nantes, France
| | - Nicolas Prat
- French Military Health Service, 60, Bd du Général Martial Valin, 75509, Paris Cedex 15, France
- Institut de Recherche Biomédicale des Armées (IRBA), 91220, Bretigny-sur-Orge, France
| | - Benjamin Lauzier
- Nantes Université, 44000, Nantes, France
- CNRS, INSERM, Institut du Thorax, 44000, Nantes, France
| |
Collapse
|
4
|
Amiri P, Hosseini SA, Saghafi-Asl M, Roshanravan N, Tootoonchian M. Expression of PGC-1α, PPAR-α and UCP1 genes, metabolic and anthropometric factors in response to sodium butyrate supplementation in patients with obesity: a triple-blind, randomized placebo-controlled clinical trial. Eur J Clin Nutr 2025; 79:249-257. [PMID: 39448815 DOI: 10.1038/s41430-024-01512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES There is increasing evidence that gut metabolites have a role in the etiology of obesity. This study aimed to investigate the effects of sodium butyrate (NaB) supplementation on the expression of peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1α (PGC-1α), PPAR-α, and uncoupling protein-1 (UCP-1) genes, as well as on the metabolic parameters and anthropometric indices in persons with obesity. METHODS In this triple-blind placebo-controlled randomized clinical trial, 50 individuals with obesity were randomly assigned to NaB (600 mg/day) + hypo-caloric diet or placebo group + hypo-caloric diet for 8 weeks. The study measured the participants' anthropometric characteristics, food consumption, and feelings of hunger in addition to the serum levels of metabolic indices and the mRNA expression of the PGC-1α, PPAR-α, and UCP-1 genes in peripheral blood mononuclear cells (PBMCs). RESULTS PGC-1α and UCP-1 genes expression significantly increased in NaB group compared to the placebo at the endpoint. A significant decrease in weight, BMI, and waist circumference (WC) was observed in NaB group. Among the metabolic factors, NaB significantly decreased fasting blood sugar (FBS) (P = 0.04), low-density lipoprotein cholesterol (LDL-C) (P = 0.038) and increased high-density lipoprotein cholesterol (HDL-C) (P = 0.016). NaB could not significantly change serum GLP-1 level. CONCLUSIONS This study unveiled NaB supplementation alone cannot have significant beneficial effects on anthropometric, and biochemical factors. NaB could affect anthropometric and metabolic risk variables associated with obesity only when prescribed, along with calorie restriction. CLINICAL TRIAL REGISTRATION This study was registered in the Iranian Registry of Clinical Trials ( https://en.irct.ir/trial/53968 ) on 31 January 2021 (registry number IRCT20190303042905N2).
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Howard K, Ferris WF, van de Vyver M. The characterization and comparison of femoral bone-derived skeletal stem cells. Biochimie 2025; 233:88-98. [PMID: 40023362 DOI: 10.1016/j.biochi.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Skeletal stem cells (SSCs) reside in various niche locations within long bones to maintain bone homeostasis and facilitate fracture repair. Bone fragility, associated with ageing, increases the susceptibility of the femoral head to fractures due to an increase in bone adipocytes and concomitant loss of structural integrity. However, the specific contribution of epiphyseal SSCs to fragility is unknown. To explore this, a comparative analysis was performed on the transcriptional profiles and lineage commitment of Wistar rat femoral SSCs derived from the bone marrow (BM-), diaphyseal cortical bone (CB-) and proximal epiphyseal trabecular bone (PF-SSCs) isolated from the same long bones. SSCs were characterized based on morphology, immunophenotype (CD90/CD45), growth rate (population doubling time), gene expression profiles and differentiation capacity (Oil Red O, Alizarin Red S). qRT-PCR micro-arrays were performed on SSCs to evaluate the expression of stemness, SSC and lineage-specific markers in both undifferentiated and differentiated states. Our findings support the hypothesis that SSCs from different bone regions exhibit distinct transcriptional profiles, reflecting their specific niche environments. CB-SSCs displayed superior osteogenic potential as evidenced by the expression of key osteogenic genes and higher levels of mineralization. In contrast, PF-SSCs had a reduced osteogenic capacity with a higher adipogenic potential. Overall, the study revealed the importance of niche-specific stem cell properties for use in regenerative medicine applications and provides insight into the potential role of PF-SSCs in bone fragility and fracture risk.
Collapse
Affiliation(s)
- Kayla Howard
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - William Frank Ferris
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa.
| |
Collapse
|
6
|
Guo B, Fan S, Liu M, Yang H, Dai L, Wang L. ATP Synthase Members of Chloroplasts and Mitochondria in Rubber Trees ( Hevea brasiliensis) Response to Plant Hormones. PLANTS (BASEL, SWITZERLAND) 2025; 14:604. [PMID: 40006862 PMCID: PMC11859043 DOI: 10.3390/plants14040604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
ATP synthase is a key enzyme in photophosphorylation in photosynthesis and oxidative phosphorylation in respiration, which can catalyze the synthesis of ATP and supply energy to organisms. ATP synthase has been well studied in many animal species but has been poorly characterized in plants. This research identified forty ATP synthase family members in the rubber tree, and the phylogenetic relationship, gene structure, cis-elements, and expression pattern were analyzed. These results indicated that the ATP synthase of mitochondria was divided into three subgroups and the ATP synthase of chloroplast was divided into two subgroups, respectively. ATP synthase in the same subgroup shared a similar gene structure. Evolutionary relationships were consistent with the introns and exons domains, which were highly conserved patterns. A large number of cis elements related to light, phytohormones and stress resistance were present in the promoters of ATP synthase genes in rubber trees, of which the light signal accounts for the most. Transcriptome and qRT-PCR analysis showed that HbATP synthases responded to cold stress and hormone stimulation, and the response to ethylene was most significant. HbMATPR3 was strongly induced by ethylene and salicylic acid, reaching 122-fold and 17-fold, respectively. HbMATP7-1 was 41 times higher than the control after induction by jasmonic acid. These results laid a foundation for further studies on the function of ATP synthase, especially in plant hormone signaling in rubber trees.
Collapse
Affiliation(s)
| | | | | | | | | | - Lifeng Wang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Special Natural Rubber Processing Technology Innovation Center, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (B.G.); (S.F.); (M.L.); (H.Y.); (L.D.)
| |
Collapse
|
7
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
8
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Pinette JA, Myers JW, Park WY, Bryant HG, Eddie AM, Wilson GA, Montufar C, Shaikh Z, Vue Z, Nunn ER, Bessho R, Cottam MA, Haase VH, Hinton AO, Spinelli JB, Cartailler JP, Zaganjor E. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. J Lipid Res 2024; 65:100641. [PMID: 39245323 PMCID: PMC11913791 DOI: 10.1016/j.jlr.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
A key organismal response to overnutrition involves the development of new adipocytes through the process of adipogenesis. Preadipocytes sense changes in the systemic nutrient status and metabolites can directly modulate adipogenesis. We previously identified a role of de novo nucleotide biosynthesis in adipogenesis induction, whereby inhibition of nucleotide biosynthesis suppresses the expression of the transcriptional regulators PPARγ and C/EBPα. Here, we set out to identify the global transcriptomic changes associated with the inhibition of nucleotide biosynthesis. Through RNA sequencing (RNAseq), we discovered that mitochondrial signatures were the most altered in response to inhibition of nucleotide biosynthesis. Blocking nucleotide biosynthesis induced rounded mitochondrial morphology, and altered mitochondrial function, and metabolism, reducing levels of tricarboxylic acid cycle intermediates, and increasing fatty acid oxidation (FAO). The loss of mitochondrial function induced by suppression of nucleotide biosynthesis was rescued by exogenous expression of PPARγ. Moreover, inhibition of FAO restored PPARγ expression, mitochondrial protein expression, and adipogenesis in the presence of nucleotide biosynthesis inhibition, suggesting a regulatory role of nutrient oxidation in differentiation. Collectively, our studies shed light on the link between substrate oxidation and transcription in cell fate determination.
Collapse
Affiliation(s)
- Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jacob W Myers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Woo Yong Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather G Bryant
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Alex M Eddie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Genesis A Wilson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Claudia Montufar
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zayedali Shaikh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elizabeth R Nunn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ryoichi Bessho
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew A Cottam
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Volker H Haase
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Research and Medical Services, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Philippe Cartailler
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Diabetes Research Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Li S, Xu R, Yao Y, Rousseau D. ATAD3 is a limiting factor in mitochondrial biogenesis and adipogenesis of white adipocyte-like 3T3-L1 cells. Cell Biol Int 2024; 48:1473-1489. [PMID: 38923254 DOI: 10.1002/cbin.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
ATAD3 is a vital ATPase of the inner mitochondrial membrane of pluri-cellular eukaryotes, with largely unknown functions but early required for organism development as necessary for mitochondrial biogenesis. ATAD3 knock-down in C. elegans inhibits at first the development of adipocyte-like intestinal tissue so we used mouse adipocyte model 3T3-L1 cells to analyze ATAD3 functions during adipogenesis and lipogenesis in a mammalian model. ATAD3 function was studied by stable and transient modulation of ATAD3 expression in adipogenesis- induced 3T3-L1 cells using Knock-Down and overexpression strategies, exploring different steps of adipocyte differentiation and lipogenesis. We show that (i) an increase in ATAD3 is preceding differentiation-induced mitochondrial biogenesis; (ii) downregulation of ATAD3 inhibits adipogenesis, lipogenesis, and impedes overexpression of many mitochondrial proteins; (iii) ATAD3 re-expression rescues the phenotype of ATAD3 KD, and (iv) differentiation and lipogenesis are accelerated by ATAD3 overexpression, but inhibited by expression of a dominant-negative mutant. We further show that the ATAD3 KD phenotype is not due to altered insulin signal but involves a limitation of mitochondrial biogenesis linked to Drp1. These results demonstrate that ATAD3 is limiting for in vitro mitochondrial biogenesis and adipogenesis/lipogenesis and therefore that ATAD3 mutation/over- or under-expression could be involved in adipogenic and lipogenic pathologies.
Collapse
Affiliation(s)
- Shuijie Li
- Department of Biology, University Grenoble Alpes, Grenoble, France
| | - Rui Xu
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Yao Yao
- Institute of Biochemistry and Cell Biology of Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China
| | - Denis Rousseau
- Department of Biology, University Grenoble Alpes, Grenoble, France
- Laboratoire des Matériaux et du Génie Physique-Interfaces entre Matériaux et Matière Biologique -Institut National Polytechnique-Centre National de la Recherche Scientifique - Unité Mixte de Recherche, Grenoble, France
| |
Collapse
|
11
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
12
|
Zhao C, Hu B, Zeng X, Zhang Z, Luo W, Li H, Zhang X. IGF2 promotes the differentiation of chicken embryonic myoblast by regulating mitochondrial remodeling. J Cell Physiol 2024; 239:e31351. [PMID: 38946060 DOI: 10.1002/jcp.31351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Skeletal muscle is crucial for animal movement and posture maintenance, and it serves as a significant source of meat in the livestock and poultry industry. The number of muscle fibers differentiated from myoblast in the embryonic stage is one of the factors determining the content of skeletal muscle. Insulin-like growth factor 2 (IGF2), a well-known growth-promoting hormone, is crucial for embryonic and skeletal muscle growth and development. However, the specific molecular mechanism underlying its impact on chicken embryonic myoblast differentiation remains unclear. To elucidate the molecular mechanism by which IGF2 regulates chicken myoblast differentiation, we manipulated IGF2 expression in chicken embryonic myoblast. The results demonstrated that IGF2 was upregulated during chicken skeletal muscle development and myoblast differentiation. On the one hand, we found that IGF2 promotes mitochondrial biogenesis through the PGC1/NRF1/TFAM pathway, thereby enhancing mitochondrial membrane potential, oxidative phosphorylation, and ATP synthesis during myoblast differentiation. This process is mediated by the PI3K/AKT pathway. On the other hand, IGF2 regulates BNIP3-mediated mitophagy, clearing dysfunctional mitochondria. Collectively, our findings confirmed that IGF2 cooperatively regulates mitochondrial biogenesis and mitophagy to remodel the mitochondrial network and enhance mitochondrial function, ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Changbin Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Bowen Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Xiaoyin Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Ze Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Wen Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Hongmei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Cheng Y, Liang S, Zhang S, Hui X. Thermogenic Fat as a New Obesity Management Tool: From Pharmaceutical Reagents to Cell Therapies. Biomedicines 2024; 12:1474. [PMID: 39062047 PMCID: PMC11275133 DOI: 10.3390/biomedicines12071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is a complex medical condition caused by a positive imbalance between calorie intake and calorie consumption. Brown adipose tissue (BAT), along with the newly discovered "brown-like" adipocytes (called beige cells), functions as a promising therapeutic tool to ameliorate obesity and metabolic disorders by burning out extra nutrients in the form of heat. Many studies in animal models and humans have proved the feasibility of this concept. In this review, we aim to summarize the endeavors over the last decade to achieve a higher number/activity of these heat-generating adipocytes. In particular, pharmacological compounds, especially agonists to the β3 adrenergic receptor (β3-AR), are reviewed in terms of their feasibility and efficacy in elevating BAT function and improving metabolic parameters in human subjects. Alternatively, allograft transplantation of BAT and the transplantation of functional brown or beige adipocytes from mesenchymal stromal cells or human induced pluripotent stem cells (hiPSCs) make it possible to increase the number of these beneficial adipocytes in patients. However, practical and ethical issues still need to be considered before the therapy can eventually be applied in the clinical setting. This review provides insights and guidance on brown- and beige-cell-based strategies for the management of obesity and its associated metabolic comorbidities.
Collapse
Affiliation(s)
- Ying Cheng
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China;
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shiqing Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Shuhan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (S.L.); (S.Z.)
| |
Collapse
|
14
|
Das S, Mukhuty A, Mullen GP, Rudolph MC. Adipocyte Mitochondria: Deciphering Energetic Functions across Fat Depots in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:6681. [PMID: 38928386 PMCID: PMC11203708 DOI: 10.3390/ijms25126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
Collapse
Affiliation(s)
- Snehasis Das
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alpana Mukhuty
- Department of Zoology, Rampurhat College, Rampurhat 731224, India
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Liu Y, Wang L, Ai J, Li K. Mitochondria in Mesenchymal Stem Cells: Key to Fate Determination and Therapeutic Potential. Stem Cell Rev Rep 2024; 20:617-636. [PMID: 38265576 DOI: 10.1007/s12015-024-10681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Mesenchymal stem cells (MSCs) have become popular tool cells in the field of transformation and regenerative medicine due to their function of cell rescue and cell replacement. The dynamically changing mitochondria serve as an energy metabolism factory and signal transduction platform, adapting to different cell states and maintaining normal cell activities. Therefore, a clear understanding of the regulatory mechanism of mitochondria in MSCs is profit for more efficient clinical transformation of stem cells. This review highlights the cutting-edge knowledge regarding mitochondrial biology from the following aspects: mitochondrial morphological dynamics, energy metabolism and signal transduction. The manuscript mainly focuses on mitochondrial mechanistic insights in the whole life course of MSCs, as well as the potential roles played by mitochondria in MSCs treatment of transplantation, for seeking pivotal targets of stem cell fate regulation and stem cell therapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingjuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihui Ai
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kezhen Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
Brownstein AJ, Veliova M, Acin-Perez R, Villalobos F, Petcherski A, Tombolato A, Liesa M, Shirihai OS. Mitochondria isolated from lipid droplets of white adipose tissue reveal functional differences based on lipid droplet size. Life Sci Alliance 2024; 7:e202301934. [PMID: 38056907 PMCID: PMC10700548 DOI: 10.26508/lsa.202301934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Recent studies in brown adipose tissue (BAT) described a unique subpopulation of mitochondria bound to lipid droplets (LDs), which were termed PeriDroplet Mitochondria (PDM). PDM can be isolated from BAT by differential centrifugation and salt washes. Contrary to BAT, this approach has so far not led to the successful isolation of PDM from white adipose tissue (WAT). Here, we developed a method to isolate PDM from WAT with high yield and purity by an optimized proteolytic treatment that preserves the respiratory function of mitochondria. Using this approach, we show that, contrary to BAT, WAT PDM have lower respiratory and ATP synthesis capacities compared with WAT cytoplasmic mitochondria (CM). Furthermore, by isolating PDM from LDs of different sizes, we found a negative correlation between LD size and the respiratory capacity of their PDM in WAT. Thus, our new isolation method reveals tissue-specific characteristics of PDM and establishes the existence of heterogeneity in PDM function determined by LD size.
Collapse
Affiliation(s)
- Alexandra J Brownstein
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Cellular Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Michaela Veliova
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Rebeca Acin-Perez
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Frankie Villalobos
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Anton Petcherski
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Alberto Tombolato
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Marc Liesa
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Cells and Tissues, Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Orian S Shirihai
- David Geffen School of Medicine, Department of Medicine (Endocrinology) and Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Molecular Cellular Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Hachiya K, Deguchi Y, Hirata T, Arikawa T, Fukai H, Esashi T, Nagasawa K, Mizunoe Y, Nozaki Y, Kobayashi M, Higami Y. Obesity-induced PARIS (ZNF746) accumulation in adipose progenitor cells leads to attenuated mitochondrial biogenesis and impaired adipogenesis. Sci Rep 2023; 13:22990. [PMID: 38151567 PMCID: PMC10752882 DOI: 10.1038/s41598-023-49996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
White adipose tissue (WAT) is critical for whole-body energy metabolism, and its dysfunction leads to various metabolic disorders. In recent years, many studies have suggested that impaired mitochondria may contribute to obesity-related decline in adipose tissue function, but the detailed mechanisms remain unclear. To investigate these mechanisms, we carried out a comprehensive analysis of WAT from mice with diet-induced obesity. We discovered the transcription factor Parkin interactive substrate (PARIS or ZNF746), which suppresses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, to be accumulated in adipose progenitor cells from obese mice. Furthermore, we demonstrated that 3T3-L1 preadipocytes with overexpression of PARIS protein exhibited decreased mitochondrial biogenesis and impaired adipogenesis. Our results suggest that the accumulation of PARIS protein may be a novel component in the pathogenesis of obesity-related dysfunction in WAT.
Collapse
Affiliation(s)
- Kazuki Hachiya
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takuro Hirata
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tomoya Arikawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Hiroto Fukai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tatsuhiro Esashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Kota Nagasawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
18
|
Yu C, Sautchuk R, Martinez J, Eliseev RA. Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis. J Biol Chem 2023; 299:105458. [PMID: 37949231 PMCID: PMC10716586 DOI: 10.1016/j.jbc.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.
Collapse
Affiliation(s)
- Chen Yu
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
19
|
Desousa BR, Kim KKO, Jones AE, Ball AB, Hsieh WY, Swain P, Morrow DH, Brownstein AJ, Ferrick DA, Shirihai OS, Neilson A, Nathanson DA, Rogers GW, Dranka BP, Murphy AN, Affourtit C, Bensinger SJ, Stiles L, Romero N, Divakaruni AS. Calculation of ATP production rates using the Seahorse XF Analyzer. EMBO Rep 2023; 24:e56380. [PMID: 37548091 PMCID: PMC10561364 DOI: 10.15252/embr.202256380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore present a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data and empirical conversion factors. We quantify the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detect substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.
Collapse
Affiliation(s)
- Brandon R Desousa
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Kristen KO Kim
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Anthony E Jones
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Andréa B Ball
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Wei Y Hsieh
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - Danielle H Morrow
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | - Orian S Shirihai
- Department of MedicineUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - David A Nathanson
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | | | | | - Steven J Bensinger
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | - Linsey Stiles
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
- Department of MedicineUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - Ajit S Divakaruni
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
20
|
Baldini F, Zeaiter L, Diab F, Zbeeb H, Cuneo L, Pagano A, Portincasa P, Diaspro A, Vergani L. Nuclear and chromatin rearrangement associate to epigenome and gene expression changes in a model of in vitro adipogenesis and hypertrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159368. [PMID: 37499858 DOI: 10.1016/j.bbalip.2023.159368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Hypertrophy of adipocytes represents the main cause of obesity. We investigated in vitro the changes associated with adipocyte differentiation and hypertrophy focusing on the nuclear morphometry and chromatin epigenetic remodelling. The 3 T3-L1 pre-adipocytes were firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids to induce hypertrophy. Confocal and super-resolution stimulation emission depletion (STED) microscopy combined with ELISA assays allowed us to explore nuclear architecture, chromatin distribution and epigenetic modifications. In each condition, we quantified the triglyceride accumulation, the mRNA expression of adipogenesis and dysfunction markers, the release of five pro-inflammatory cytokines. Confocal microscopy revealed larger volume and less elongated shape of the nuclei in both mature and hypertrophic cells respect to pre-adipocytes, and a trend toward reduced chromatin compaction. Compared to mature adipocytes, the hypertrophic phenotype showed larger triglyceride content, increased PPARγ expression reduced IL-1a release, and up-regulation of a pool of genes markers for adipose tissue dysfunction. Moreover, a remodelling of both epigenome and chromatin organization was observed in hypertrophic adipocytes, with an increase in the average fluorescence of H3K9 acetylated domains in parallel with the increase in KAT2A expression, and a global hypomethylation of DNA. These findings making light on the nuclear changes during adipocyte differentiation and hypertrophy might help the strategies for treating obesity and metabolic complications.
Collapse
Affiliation(s)
- Francesca Baldini
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy
| | - Lama Zeaiter
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lisa Cuneo
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
21
|
Longo M, Zatterale F, Spinelli R, Naderi J, Parrillo L, Florese P, Nigro C, Leone A, Moccia A, Desiderio A, Raciti GA, Miele C, Smith U, Beguinot F. Altered H3K4me3 profile at the TFAM promoter causes mitochondrial alterations in preadipocytes from first-degree relatives of type 2 diabetics. Clin Epigenetics 2023; 15:144. [PMID: 37679776 PMCID: PMC10486065 DOI: 10.1186/s13148-023-01556-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND First-degree relatives of type 2 diabetics (FDR) exhibit a high risk of developing type 2 diabetes (T2D) and feature subcutaneous adipocyte hypertrophy, independent of obesity. In FDR, adipose cell abnormalities contribute to early insulin-resistance and are determined by adipocyte precursor cells (APCs) early senescence and impaired recruitment into the adipogenic pathway. Epigenetic mechanisms signal adipocyte differentiation, leading us to hypothesize that abnormal epigenetic modifications cause adipocyte dysfunction and enhance T2D risk. To test this hypothesis, we examined the genome-wide histone profile in APCs from the subcutaneous adipose tissue of healthy FDR. RESULTS Sequencing-data analysis revealed 2644 regions differentially enriched in lysine 4 tri-methylated H3-histone (H3K4me3) in FDR compared to controls (CTRL) with significant enrichment in mitochondrial-related genes. These included TFAM, which regulates mitochondrial DNA (mtDNA) content and stability. In FDR APCs, a significant reduction in H3K4me3 abundance at the TFAM promoter was accompanied by a reduction in TFAM mRNA and protein levels. FDR APCs also exhibited reduced mtDNA content and mitochondrial-genome transcription. In parallel, FDR APCs exhibited impaired differentiation and TFAM induction during adipogenesis. In CTRL APCs, TFAM-siRNA reduced mtDNA content, mitochondrial transcription and adipocyte differentiation in parallel with upregulation of the CDKN1A and ZMAT3 senescence genes. Furthermore, TFAM-siRNA significantly expanded hydrogen peroxide (H2O2)-induced senescence, while H2O2 did not affect TFAM expression. CONCLUSIONS Histone modifications regulate APCs ability to differentiate in mature cells, at least in part by modulating TFAM expression and affecting mitochondrial function. Reduced H3K4me3 enrichment at the TFAM promoter renders human APCs senescent and dysfunctional, increasing T2D risk.
Collapse
Affiliation(s)
- Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Federica Zatterale
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Rosa Spinelli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Jamal Naderi
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pasqualina Florese
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Alessia Leone
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Augusta Moccia
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Gregory A Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| |
Collapse
|
22
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
23
|
Sparks L, Whytock K, Divoux A, Sun Y, Pino M, Yu G, Smith S, Walsh M. A single nuclei atlas of aging human abdominal subcutaneous white adipose tissue. RESEARCH SQUARE 2023:rs.3.rs-3097605. [PMID: 37503028 PMCID: PMC10371078 DOI: 10.21203/rs.3.rs-3097605/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
White adipose tissue (WAT) is a robust energy storage and endocrine organ critical for maintaining metabolic health as we age. Our aim was to identify cell-specific transcriptional aberrations that occur in WAT with aging. We leveraged full-length snRNA-Seq to characterize the cellular landscape of human subcutaneous WAT in a prospective cohort of 10 Younger (≤ 30 years) and 10 Older individuals (≥ 65 years) balanced for sex and body mass index (BMI). We highlight that aging WAT is associated with adipocyte hypertrophy, increased proportions of resident macrophages (M2), an upregulated innate immune response and senescence profiles in specific adipocyte populations, highlighting CXCL14 as a biomarker of this process. We also identify novel markers of pre-adipocytes and track their expression levels through pre-adipocyte differentiation. We propose that aging WAT is associated with low-grade inflammation that is managed by a foundation of innate immunity to preserve the metabolic health of the WAT.
Collapse
Affiliation(s)
| | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai
| | - Maria Pino
- Translational Research Institute, AdventHealth
| | - Gongxin Yu
- Translational Research Institute, AdventHealth
| | | | | |
Collapse
|
24
|
Wang R, Ganbold M, Ferdousi F, Tominaga K, Isoda H. A Rare Olive Compound Oleacein Improves Lipid and Glucose Metabolism, and Inflammatory Functions: A Comprehensive Whole-Genome Transcriptomics Analysis in Adipocytes Differentiated from Healthy and Diabetic Adipose Stem Cells. Int J Mol Sci 2023; 24:10419. [PMID: 37445596 DOI: 10.3390/ijms241310419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Oleacein (OLE), a rare natural compound found in unfiltered extra virgin olive oil, has been shown to have anti-inflammatory and anti-obesity properties. However, little is known regarding the mechanisms by which OLE influences metabolic processes linked to disease targets, particularly in the context of lipid metabolism. In the present study, we conducted whole-genome DNA microarray analyses in adipocytes differentiated from human adipose-derived stem cells (hASCs) and diabetic hASCs (d-hASCs) to examine the effects of OLE on modulating metabolic pathways. We found that OLE significantly inhibited lipid formation in adipocytes differentiated from both sources. In addition, microarray analysis demonstrated that OLE treatment could significantly downregulate lipid-metabolism-related genes and modulate glucose metabolism in both adipocyte groups. Transcription factor enrichment and protein-protein interaction (PPI) analyses identified potential regulatory gene targets. We also found that OLE treatment enhanced the anti-inflammatory properties in adipocytes. Our study findings suggest that OLE exhibits potential benefits in improving lipid and glucose metabolism, thus holding promise for its application in the management of metabolic disorders.
Collapse
Affiliation(s)
- Rui Wang
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Munkhzul Ganbold
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kenichi Tominaga
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8577, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
25
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of adrenomedullin on mitochondrial respiratory capacity in human adipocyte. Sci Rep 2023; 13:9578. [PMID: 37311963 DOI: 10.1038/s41598-023-36622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Mitochondrial function in adipocyte is an important aspect in maintaining metabolic homeostasis. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM), and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. The present study demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain, including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species generation and this increase is reversed by ADM antagonist, ADM22-52, but treatment with ADM does not significantly affect mitochondrial contents in the adipocytes; (3) Adipocyte basal and maximal oxygen consumption rate are dose-dependently suppressed by ADM, thus results in impaired mitochondrial respiratory capacity. We conclude that elevated ADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM action may improve GDM-related glucose and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Yuanlin Dong
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Vidyadharan Alukkal Vipin
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chellakkan Selvanesan Blesson
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine/Texas Children's Hospital, 1102 Bates Street, Room #1850.34, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
27
|
Colangeli L, Escobar Marcillo DI, Simonelli V, Iorio E, Rinaldi T, Sbraccia P, Fortini P, Guglielmi V. The Crosstalk between Gut Microbiota and White Adipose Tissue Mitochondria in Obesity. Nutrients 2023; 15:nu15071723. [PMID: 37049562 PMCID: PMC10097238 DOI: 10.3390/nu15071723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Adipose tissue (AT) dysregulation is a key process in the pathophysiology of obesity and its cardiometabolic complications, but even if a growing body of evidence has been collected over recent decades, the underlying molecular basis of adiposopathy remains to be fully understood. In this context, mitochondria, the intracellular organelles that orchestrate energy production and undergo highly dynamic adaptive changes in response to changing environments, have emerged as crucial regulators of both white (WAT) and brown adipose tissue (BAT) metabolism and function. Given that the gut microbiota and its metabolites are able to regulate host metabolism, adipogenesis, WAT inflammation, and thermogenesis, we hypothesize that their frequently observed dysregulation in obesity could affect AT metabolism by exerting direct and indirect effects on AT mitochondria. By collecting and revising the current evidence on the connections between gut microbiota and AT mitochondria in obesity, we gained insights into the molecular biology of their hitherto largely unexplored crosstalk, tracing how gut microbiota may regulate AT mitochondrial function.
Collapse
|
28
|
Dong Y, Vipin VA, Blesson CS, Yallampalli C. Impact of Adrenomedullin on Mitochondrial Respiratory Capacity in Human Adipocyte. RESEARCH SQUARE 2023:rs.3.rs-2600140. [PMID: 36945563 PMCID: PMC10029071 DOI: 10.21203/rs.3.rs-2600140/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
For metabolic homeostasis adequate mitochondrial function in adipocytes is essential. Our previous observation showed that circulating levels of adrenomedullin (ADM) and mRNA and protein for ADM in omental adipose tissue were higher in patients with gestational diabetes mellitus (GDM) compared with normal pregnancy, and these alterations are accompanied by glucose and lipid metabolic dysregulation, but the impact of ADM on mitochondrial biogenesis and respiration in human adipocyte remain elusive. In this study we demonstrated that: (1) Increasing doses of glucose and ADM inhibit human adipocyte mRNA expressions of mitochondrial DNA (mtDNA)-encoded subunits of electron transport chain (ETC), including nicotinamide adenine dinucleotide dehydrogenase (ND) 1 and 2, cytochrome (CYT) b, as well as ATPase 6; (2) ADM significantly increases human adipocyte mitochondrial reactive oxygen species (ROS) generation and this increase is reversed by ADM antagonist, ADM22-52, but does not significantly affect adipocyte mitochondrial contents; (3) Adipocyte basal and maximal oxygen consumption rate (OCR) are dose-dependently suppressed by ADM, and results in impaired mitochondrial respiratory capacity. We conclude that elevatedADM observed in diabetic pregnancy may be involved in glucose and lipid dysregulation through compromising adipocyte mitochondrial function, and blockade of ADM actions in adipocytes may improve GDM-related metabolic complications.
Collapse
|
29
|
Kucuk Baloglu F, Guldag Tas D, Yilmaz O, Severcan F. The recovery effect of Vitamin C on structural alterations due to Streptozotocin-Induced diabetes in rat testicular tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122149. [PMID: 36470089 DOI: 10.1016/j.saa.2022.122149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Type I Diabetes is a multisystem disease that causes alterations in carbohydrate, protein, and fat metabolisms due to hyperglycemia. It has an extensive pathology, especially the mechanism involving oxidative stress is still complex. Type I diabetes is correlated with increased formation of free radicals and decreased levels of antioxidant potential. Vitamin C (Vit C) is a powerful antioxidant that participates in antioxidant defense, protecting lipid membranes and proteins from oxidative damage by donating electrons to free radicals. The effect of type I diabetes and the recovery role of Vit C on the structure and composition of the biomolecular content of testicular tissue is still unknown. Therefore, the current study aimed to investigate the alterations in the biomolecules of rat testes due to Streptozotocin (STZ)-induced type I diabetes using Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectroscopy and histological staining. The results revealed that the biomolecular structure and composition of testicular tissue are highly affected due to the development of diabetes. We obtained decreased saturation levels and increased unsaturation index in the lipids indicating the presence of lipid peroxidation in the diabetic state. The elevated lipid peroxidation levels have been implicated in the pathogenesis of naturally occurring and chemically induced diabetes. On the other hand, the protein content of diabetic rat testicular tissue was shown to decrease considerably, indicating an increase in proteolysis processes. Supporting the ratio of protein structural and conformational change, protein secondary structural components were also found to alter substantially in the diabetic state. Diabetes was also shown to lead to a decrease in the content of nucleic acids compared to proteins. These diabetes-induced alterations were found to be substantially recovered with the administration of Vit C. Although different doses and administration types of Vit C have been reported in the literature, there is no consensus yet. Therefore, we used three different doses of Vit C in our study as high (100 mg/kg/day), medium (50 mg/kg/day) and low (15 mg/kg/day) doses intraperitoneally in the present study, and the medium dose was found to be the most effective in the recovery from the diabetes-induced structural damages on rat testicular tissue. Vit C may have a therapeutic effect to be used as a complementary therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fatma Kucuk Baloglu
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Giresun University, Department of Biology, Giresun, Turkey
| | - Damla Guldag Tas
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey
| | - Okkes Yilmaz
- Firat University, Department of Biology, Elazig, Turkey
| | - Feride Severcan
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey; Altinbas University, Department of Biophysics, Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
30
|
Li Y, Lee SH, Piao M, Kim HS, Lee KY. Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants (Basel) 2023; 12:antiox12030640. [PMID: 36978888 PMCID: PMC10045306 DOI: 10.3390/antiox12030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Metallothionein 3 (MT3), also known as a neuronal growth-inhibitory factor, is a member of the metallothionein family and is involved in a variety of biological functions, including protection against metal toxicity and reactive oxygen species (ROS). However, less is known about the role of MT3 in the differentiation of 3T3-L1 cells into adipocytes. In this study, we observed that MT3 levels were downregulated during 3T3-L1 adipocyte differentiation. Mt3 overexpression inhibited adipocyte differentiation and reduced the levels of the adipogenic transcription factors C/EBPα and PPARγ. Further analyses showed that MT3 also suppressed the transcriptional activity of PPARγ, and this effect was not mediated by a direct interaction between MT3 with PPARγ. In addition, Mt3 overexpression resulted in a decrease in ROS levels during early adipocyte differentiation, while treatment with antimycin A, which induces ROS generation, restored the ROS levels. Mt3 knockdown, on the other hand, elevated ROS levels, which were suppressed upon treatment with the antioxidant N-acetylcysteine. Our findings indicate a previously unknown role of MT3 in the differentiation of 3T3-L1 cells into adipocytes and provide a potential novel target that might facilitate obesity treatment.
Collapse
Affiliation(s)
- Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: (H.S.K.); (K.Y.L.)
| |
Collapse
|
31
|
Immuno-metabolic effect of pancreastatin inhibitor PSTi8 in diet induced obese mice: In vitro and in vivo findings. Life Sci 2023; 316:121415. [PMID: 36690247 DOI: 10.1016/j.lfs.2023.121415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS Pancreastatin (PST), an anti-insulin peptide derived from chromogranin A. Its levels increase in cases of obesity, which contributes to adipose tissue inflammation and insulin resistance. This study aims to investigate the immunometabolic effect of PST inhibitor (PSTi8) against PST by using in vitro and in vivo finding. MAIN METHODS 3T3-L1 cells were differentiated with or without PSTi8, and Oil Red O staining was performed. J774A.1 cells were used for macrophage polarization study. The diet-induced obesity and T2DM model was developed in C57BL/6 mice through high-fat diet for 8 weeks. Alzet osmotic pumps were filled with PSTi8 (release rate: 2 mg/kg/day) and implanted in mice for eight weeks. Further, insulin and glucose tolerance tests were performed. Liver and eWAT sections were stained with hematoxylin and eosin. FACS was used to measure mitochondrial ROS and membrane potential, while Oroboros O2k was used to measure oxygen consumption rate. Immunocytochemistry and qRT-PCR were done for protein and gene expression, respectively. KEY FINDINGS PSTi8 inhibited the expression of lipolytic genes and proteins in 3T3-L1 adipocytes. PSTi8 improved the inulin sensitivity, lipid profile, MMP, and OCR levels in the 3T3-L1 adipocyte and eWAT. It also increased the M1 to M2 macrophage polarization in J77A.1 cells and eWAT. Further, PSTi8 attenuated inflammatory CD4+ T, CD8+ T cells and increased the anti-inflammatory T-reg and eosinophil populations in the eWAT. It also reduced the expression of pro-inflammatory genes like Mcp1, Tnfα, and Il-6. SIGNIFICANCE Collectively, PSTi8 exerted its beneficial effect on adipose tissue inflammation and restored energy expenditure against diet-induced obesity.
Collapse
|
32
|
Anitha A, Thanseem I, Iype M, Thomas SV. Mitochondrial dysfunction in cognitive neurodevelopmental disorders: Cause or effect? Mitochondrion 2023; 69:18-32. [PMID: 36621534 DOI: 10.1016/j.mito.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Mitochondria have a crucial role in brain development and neurogenesis, both in embryonic and adult brains. Since the brain is the highest energy consuming organ, it is highly vulnerable to mitochondrial dysfunction. This has been implicated in a range of brain disorders including, neurodevelopmental conditions, psychiatric illnesses, and neurodegenerative diseases. Genetic variations in mitochondrial DNA (mtDNA), and nuclear DNA encoding mitochondrial proteins, have been associated with several cognitive disorders. However, it is not yet clear whether mitochondrial dysfunction is a primary cause of these conditions or a secondary effect. Our review article deals with this topic, and brings out recent advances in mitochondria-oriented therapies. Mitochondrial dysfunction could be involved in the pathogenesis of a subset of disorders involving cognitive impairment. In these patients, mitochondrial dysfunction could be the cause of the condition, rather than the consequence. There are vast areas in this topic that remains to be explored and elucidated.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India.
| | - Ismail Thanseem
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Dept. of Pediatric Neurology, Government Medical College, Thiruvananthapuram 695 011, Kerala, India; Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| | - Sanjeev V Thomas
- Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| |
Collapse
|
33
|
Thanaskody K, Jusop AS, Tye GJ, Wan Kamarul Zaman WS, Dass SA, Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front Cell Dev Biol 2022; 10:1005926. [PMID: 36407112 PMCID: PMC9666898 DOI: 10.3389/fcell.2022.1005926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 01/24/2023] Open
Abstract
Over the past 2 decades, mesenchymal stem cells (MSCs) have attracted a lot of interest as a unique therapeutic approach for a variety of diseases. MSCs are capable of self-renewal and multilineage differentiation capacity, immunomodulatory, and anti-inflammatory properties allowing it to play a role in regenerative medicine. Furthermore, MSCs are low in tumorigenicity and immune privileged, which permits the use of allogeneic MSCs for therapies that eliminate the need to collect MSCs directly from patients. Induced pluripotent stem cells (iPSCs) can be generated from adult cells through gene reprogramming with ectopic expression of specific pluripotency factors. Advancement in iPS technology avoids the destruction of embryos to make pluripotent cells, making it free of ethical concerns. iPSCs can self-renew and develop into a plethora of specialized cells making it a useful resource for regenerative medicine as they may be created from any human source. MSCs have also been used to treat individuals infected with the SARS-CoV-2 virus. MSCs have undergone more clinical trials than iPSCs due to high tumorigenicity, which can trigger oncogenic transformation. In this review, we discussed the overview of mesenchymal stem cells and induced pluripotent stem cells. We briefly present therapeutic approaches and COVID-19-related diseases using MSCs and iPSCs.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirah Syamimi Jusop
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia,Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sylvia Annabel Dass
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,*Correspondence: Fazlina Nordin,
| |
Collapse
|
34
|
AlZaim I, Eid AH, Abd-Elrahman KS, El-Yazbi AF. Adipose Tissue Mitochondrial Dysfunction and Cardiometabolic Diseases: On the Search for Novel Molecular Targets. Biochem Pharmacol 2022; 206:115337. [DOI: 10.1016/j.bcp.2022.115337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
35
|
Yiew NKH, Finck BN. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am J Physiol Endocrinol Metab 2022; 323:E33-E52. [PMID: 35635330 PMCID: PMC9273276 DOI: 10.1152/ajpendo.00074.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Pyruvate metabolism, a central nexus of carbon homeostasis, is an evolutionarily conserved process and aberrant pyruvate metabolism is associated with and contributes to numerous human metabolic disorders including diabetes, cancer, and heart disease. As a product of glycolysis, pyruvate is primarily generated in the cytosol before being transported into the mitochondrion for further metabolism. Pyruvate entry into the mitochondrial matrix is a critical step for efficient generation of reducing equivalents and ATP and for the biosynthesis of glucose, fatty acids, and amino acids from pyruvate. However, for many years, the identity of the carrier protein(s) that transported pyruvate into the mitochondrial matrix remained a mystery. In 2012, the molecular-genetic identification of the mitochondrial pyruvate carrier (MPC), a heterodimeric complex composed of protein subunits MPC1 and MPC2, enabled studies that shed light on the many metabolic and physiological processes regulated by pyruvate metabolism. A better understanding of the mechanisms regulating pyruvate transport and the processes affected by pyruvate metabolism may enable novel therapeutics to modulate mitochondrial pyruvate flux to treat a variety of disorders. Herein, we review our current knowledge of the MPC, discuss recent advances in the understanding of mitochondrial pyruvate metabolism in various tissue and cell types, and address some of the outstanding questions relevant to this field.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Vacurova E, Trnovska J, Svoboda P, Skop V, Novosadova V, Reguera DP, Petrezselyová S, Piavaux B, Endaya B, Spoutil F, Zudova D, Stursa J, Melcova M, Bielcikova Z, Werner L, Prochazka J, Sedlacek R, Huttl M, Hubackova SS, Haluzik M, Neuzil J. Mitochondrially targeted tamoxifen alleviates markers of obesity and type 2 diabetes mellitus in mice. Nat Commun 2022; 13:1866. [PMID: 35387987 PMCID: PMC8987092 DOI: 10.1038/s41467-022-29486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus represents a major health problem with increasing prevalence worldwide. Limited efficacy of current therapies has prompted a search for novel therapeutic options. Here we show that treatment of pre-diabetic mice with mitochondrially targeted tamoxifen, a potential anti-cancer agent with senolytic activity, improves glucose tolerance and reduces body weight with most pronounced reduction of visceral adipose tissue due to reduced food intake, suppressed adipogenesis and elimination of senescent cells. Glucose-lowering effect of mitochondrially targeted tamoxifen is linked to improvement of type 2 diabetes mellitus-related hormones profile and is accompanied by reduced lipid accumulation in liver. Lower senescent cell burden in various tissues, as well as its inhibitory effect on pre-adipocyte differentiation, results in lower level of circulating inflammatory mediators that typically enhance metabolic dysfunction. Targeting senescence with mitochodrially targeted tamoxifen thus represents an approach to the treatment of type 2 diabetes mellitus and its related comorbidities, promising a complex impact on senescence-related pathologies in aging population of patients with type 2 diabetes mellitus with potential translation into the clinic.
Collapse
Affiliation(s)
- Eliska Vacurova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Jaroslava Trnovska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Svoboda
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vojtech Skop
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, 20892, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Silvia Petrezselyová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Benoit Piavaux
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Berwini Endaya
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Frantisek Spoutil
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Dagmar Zudova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Stursa
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | | | - Lukas Werner
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jan Prochazka
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Martina Huttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Haluzik
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia.
| |
Collapse
|
37
|
Xia W, Qiu J, Peng Y, Snyder MM, Gu L, Huang K, Luo N, Yue F, Kuang S. Chchd10 is dispensable for myogenesis but critical for adipose browning. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:14. [PMID: 35362877 PMCID: PMC8975916 DOI: 10.1186/s13619-022-00111-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
Abstract
The Chchd10 gene encodes a coiled-coil-helix-coiled-coil-helix-domain containing protein predicted to function in the mitochondrion and nucleus. Mutations of Chchd10 are associated with ALS, dementia and myopathy in humans and animal models, but how knockout of Chchd10 (Chchd10KO) affects various tissues especially skeletal muscle and adipose tissues remains unclear. Here we show that Chchd10 expression increases as myoblasts and preadipocytes differentiate. During myogenesis, CHCHD10 interacts with TAR DNA binding protein 43 (TDP-43) in regenerating myofibers in vivo and in newly differentiated myotubes ex vivo. Surprisingly, Chchd10KO mice had normal skeletal muscle development, growth and regeneration, with moderate defects in grip strength and motor performance. Chchd10KO similarly had no effects on development of brown and white adipose tissues (WAT). However, Chchd10KO mice had blunted response to acute cold and attenuated cold-induced browning of WAT, with markedly reduced UCP1 levels. Together, these results demonstrate that Chchd10 is dispensable for normal myogenesis and adipogenesis but is required for normal motility and cold-induced, mitochondrion-dependent browning of adipocytes. The data also suggest that human CHCHD10 mutations cause myopathy through a gain-of-function mechanism.
Collapse
Affiliation(s)
- Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China. .,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA. .,College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, 610041, China.
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Peng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Madigan M Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kuilong Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanjian Luo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
38
|
Meister BM, Hong SG, Shin J, Rath M, Sayoc J, Park JY. Healthy versus Unhealthy Adipose Tissue Expansion: the Role of Exercise. J Obes Metab Syndr 2022; 31:37-50. [PMID: 35283364 PMCID: PMC8987461 DOI: 10.7570/jomes21096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Although the hallmark of obesity is the expansion of adipose tissue, not all adipose tissue expansion is the same. Expansion of healthy adipose tissue is accompanied by adequate capillary angiogenesis and mitochondria-centered metabolic integrity, whereas expansion of unhealthy adipose tissue is associated with capillary and mitochondrial derangement, resulting in deposition of immune cells (M1-stage macrophages) and excess production of pro-inflammatory cytokines. Accumulation of these dysfunctional adipose tissues has been linked to the development of obesity comorbidities, such as type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease, which are leading causes of human mortality and morbidity in modern society. Mechanistically, vascular rarefaction and mitochondrial incompetency (for example, low mitochondrial content, fragmented mitochondria, defective mitochondrial respiratory function, and excess production of mitochondrial reactive oxygen species) are frequently observed in adipose tissue of obese patients. Recent studies have demonstrated that exercise is a potent behavioral intervention for preventing and reducing obesity and other metabolic diseases. However, our understanding of potential cellular mechanisms of exercise, which promote healthy adipose tissue expansion, is at the beginning stage. In this review, we hypothesize that exercise can induce unique physiological stimuli that can alter angiogenesis and mitochondrial remodeling in adipose tissues and ultimately promote the development and progression of healthy adipogenesis. We summarize recent reports on how regular exercise can impose differential processes that lead to the formation of either healthy or unhealthy adipose tissue and discuss key knowledge gaps that warrant future research.
Collapse
Affiliation(s)
- Benjamin M Meister
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Soon-Gook Hong
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Junchul Shin
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Meghan Rath
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jacqueline Sayoc
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joon-Young Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Nunn ER, Shinde AB, Zaganjor E. Weighing in on Adipogenesis. Front Physiol 2022; 13:821278. [PMID: 35283790 PMCID: PMC8914022 DOI: 10.3389/fphys.2022.821278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is a growing health concern worldwide because of its contribution to metabolic syndrome, type II diabetes, insulin resistance (IR), and numerous cancers. In obesity, white adipose tissue (WAT) expands through two mechanisms: increase in adipocyte cell number by precursor cell differentiation through the process of adipogenesis (hyperplasia) and increase in existing mature adipocyte cell size (hypertrophy). While hypertrophy is associated with the negative effects of obesity on metabolic health, such as inflammation and lipotoxicity, adipogenesis prevents obesity-mediated metabolic decline. Moreover, in metabolically healthy obesity adipogenesis is increased. Thus, it is vital to understand the mechanistic basis for adipose expansion to inform novel therapeutic approaches to mitigate the dysfunction of this tissue and associated diseases. In this mini-review, we summarize recent studies on the regulation of adipogenesis and provide a perspective on targeting adipogenesis as a potential therapeutic avenue for metabolic disorders.
Collapse
|
40
|
Fiorani M, De Matteis R, Canonico B, Blandino G, Mazzoli A, Montanari M, Guidarelli A, Cantoni O. Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation. Biofactors 2021; 47:837-851. [PMID: 34260117 PMCID: PMC8597007 DOI: 10.1002/biof.1769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Human SW872 preadipocyte conversion to mature adipocytes is associated with time-dependent changes in differentiation markers' expression and with morphological changes accompanied by the accumulation of lipid droplets (LDs) as well as by increased mitochondriogenesis and mitochondrial membrane potential. Under identical conditions, the formation of reactive oxygen species (ROS) revealed with a general probe was significant at days 3 and 10 of differentiation and bearly detectable at day 6. NADPH oxidase (NOX)-2 activity determined with an immunocytochemical approach followed a very similar pattern. There was no evidence of mitochondrial ROS (mROS), as detected with a selective fluorescence probe, at days 3 and 6, possibly due to the triggering of the Nrf-2 antioxidant response. mROS were instead clearly detected at day 10, concomitantly with the accumulation of very large LDs, oxidation of both cardiolipin and thioredoxin 2, and decreased mitochondrial glutathione. In conclusion, the morphological and biochemical changes of differentiating SW872 cells are accompanied by the discontinuous formation of ROS derived from NOX-2, increasingly implicated in adipogenesis and adipose tissue dysfunction. In addition, mROS formation was significant only in the late phase of differentiation and was associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Rita De Matteis
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Barbara Canonico
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Giulia Blandino
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Alessandro Mazzoli
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Mariele Montanari
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Andrea Guidarelli
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Orazio Cantoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
41
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
42
|
Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci U S A 2021; 118:2104650118. [PMID: 34088848 DOI: 10.1073/pnas.2104650118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.
Collapse
|
43
|
Kobayashi M, Deguchi Y, Nozaki Y, Higami Y. Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue. Int J Mol Sci 2021; 22:ijms22116025. [PMID: 34199596 PMCID: PMC8199692 DOI: 10.3390/ijms22116025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochondrial DNA replication and mitochondrial gene expression by interacting with several transcription factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity- and caloric restriction-related physiological changes in adipocytes and WAT.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (Y.D.); (Y.N.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda 278-8510, Japan
- Correspondence: (M.K.); (Y.H.); Tel.: +81-4-7121-3676 (M.K. & Y.H.)
| |
Collapse
|
44
|
Yin Y, Wu Y, Zhang X, Zhu Y, Sun Y, Yu J, Gong Y, Sun P, Lin H, Han X. PPA1 Regulates Systemic Insulin Sensitivity by Maintaining Adipocyte Mitochondria Function as a Novel PPARγ Target Gene. Diabetes 2021; 70:1278-1291. [PMID: 33722839 DOI: 10.2337/db20-0622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022]
Abstract
Downregulation of mitochondrial function in adipose tissue is considered as one important driver for the development of obesity-associated metabolic disorders. Inorganic pyrophosphatase 1 (PPA1) is an enzyme that catalyzes the hydrolysis of inorganic pyrophosphate to inorganic phosphate and is required for anabolism to take place in cells. Although alteration of PPA1 has been related to some diseases, the importance of PPA1 in metabolic syndromes has never been discussed. In this study, we found that global PPA1 knockout mice (PPA1+/-) showed impaired glucose tolerance and severe insulin resistance under high-fat-diet feeding. In addition, impaired adipose tissue development and ectopic lipid accumulation were observed. Conversely, overexpression of PPA1 in adipose tissue by adeno-associated virus injection can partly reverse the metabolic disorders in PPA1+/- mice, suggesting that impaired adipose tissue function is responsible for the metabolic disorders observed in PPA1+/- mice. Mechanistic studies revealed that PPA1 acted as a PPARγ target gene to maintain mitochondrial function in adipocytes. Furthermore, specific knockdown of PPA1 in fat body of Drosophila led to impaired mitochondria morphology, decreased lipid storage, and made Drosophila more sensitive to starvation. In conclusion, for the first time, our findings demonstrate the importance of PPA1 in maintaining adipose tissue function and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yeting Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiani Yu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yufei Gong
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Wagner G, Fenzl A, Lindroos-Christensen J, Einwallner E, Husa J, Witzeneder N, Rauscher S, Gröger M, Derdak S, Mohr T, Sutterlüty H, Klinglmüller F, Wolkerstorfer S, Fondi M, Hoermann G, Cao L, Wagner O, Kiefer FW, Esterbauer H, Bilban M. LMO3 reprograms visceral adipocyte metabolism during obesity. J Mol Med (Berl) 2021; 99:1151-1171. [PMID: 34018016 PMCID: PMC8313462 DOI: 10.1007/s00109-021-02089-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Abstract Obesity and body fat distribution are important risk factors for the development of type 2 diabetes and metabolic syndrome. Evidence has accumulated that this risk is related to intrinsic differences in behavior of adipocytes in different fat depots. We recently identified LIM domain only 3 (LMO3) in human mature visceral adipocytes; however, its function in these cells is currently unknown. The aim of this study was to determine the potential involvement of LMO3-dependent pathways in the modulation of key functions of mature adipocytes during obesity. Based on a recently engineered hybrid rAAV serotype Rec2 shown to efficiently transduce both brown adipose tissue (BAT) and white adipose tissue (WAT), we delivered YFP or Lmo3 to epididymal WAT (eWAT) of C57Bl6/J mice on a high-fat diet (HFD). The effects of eWAT transduction on metabolic parameters were evaluated 10 weeks later. To further define the role of LMO3 in insulin-stimulated glucose uptake, insulin signaling, adipocyte bioenergetics, as well as endocrine function, experiments were conducted in 3T3-L1 adipocytes and newly differentiated human primary mature adipocytes, engineered for transient gain or loss of LMO3 expression, respectively. AAV transduction of eWAT results in strong and stable Lmo3 expression specifically in the adipocyte fraction over a course of 10 weeks with HFD feeding. LMO3 expression in eWAT significantly improved insulin sensitivity and healthy visceral adipose tissue expansion in diet-induced obesity, paralleled by increased serum adiponectin. In vitro, LMO3 expression in 3T3-L1 adipocytes increased PPARγ transcriptional activity, insulin-stimulated GLUT4 translocation and glucose uptake, as well as mitochondrial oxidative capacity in addition to fatty acid oxidation. Mechanistically, LMO3 induced the PPARγ coregulator Ncoa1, which was required for LMO3 to enhance glucose uptake and mitochondrial oxidative gene expression. In human mature adipocytes, LMO3 overexpression promoted, while silencing of LMO3 suppressed mitochondrial oxidative capacity. LMO3 expression in visceral adipose tissue regulates multiple genes that preserve adipose tissue functionality during obesity, such as glucose metabolism, insulin sensitivity, mitochondrial function, and adiponectin secretion. Together with increased PPARγ activity and Ncoa1 expression, these gene expression changes promote insulin-induced GLUT4 translocation, glucose uptake in addition to increased mitochondrial oxidative capacity, limiting HFD-induced adipose dysfunction. These data add LMO3 as a novel regulator improving visceral adipose tissue function during obesity. Key messages LMO3 increases beneficial visceral adipose tissue expansion and insulin sensitivity in vivo. LMO3 increases glucose uptake and oxidative mitochondrial activity in adipocytes. LMO3 increases nuclear coactivator 1 (Ncoa1). LMO3-enhanced glucose uptake and mitochondrial gene expression requires Ncoa1.
Supplementary Information The online version contains supplementary material available at 10.1007/s00109-021-02089-9.
Collapse
Affiliation(s)
- Gabriel Wagner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Anna Fenzl
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Josefine Lindroos-Christensen
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,Novo Nordisk, Maaloev, Denmark
| | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Julia Husa
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Sabine Rauscher
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Marion Gröger
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Mohr
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Hedwig Sutterlüty
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian Klinglmüller
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, 1090, Vienna, Austria.,Austrian Medicines & Medical Devices Agency, 1200, Vienna, Austria
| | - Silviya Wolkerstorfer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria.,Institute of Cardiovascular Prevention, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Martina Fondi
- University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria.,Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, 6020, Innsbruck, Austria
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Oswald Wagner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria. .,Core Facilities, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
46
|
Denu RA, Hematti P. Optimization of oxidative stress for mesenchymal stromal/stem cell engraftment, function and longevity. Free Radic Biol Med 2021; 167:193-200. [PMID: 33677063 DOI: 10.1016/j.freeradbiomed.2021.02.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells that possess great potential as a cellular therapeutic based on their ability to differentiate to different lineages and to modulate immune responses. However, their potential is limited by their low tissue abundance, and thus the need for robust ex vivo expansion prior to their application. This creates its own issues, namely replicative senescence, which could lead to reduced MSC functionality and negatively impact their engraftment. Ex vivo expansion and MSC aging are associated with greater oxidative stress. Therefore, there is great need to identify strategies to reduce oxidative stress in MSCs. This review summarizes the achievements made to date in addressing oxidative stress in MSCs and speculates about interesting avenues of future investigation to solve this critical problem.
Collapse
Affiliation(s)
- Ryan A Denu
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Peiman Hematti
- Departments of Medicine, Pediatrics, Surgery and Biomedical Engineering, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
47
|
Audano M, Pedretti S, Ligorio S, Gualdrini F, Polletti S, Russo M, Ghisletti S, Bean C, Crestani M, Caruso D, De Fabiani E, Mitro N. Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction. J Cell Biol 2021; 220:e202003173. [PMID: 33566069 PMCID: PMC7879490 DOI: 10.1083/jcb.202003173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Simona Ligorio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Humanitas University (Hunimed), Pieve Emanuele, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marta Russo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Camilla Bean
- Department of Biology, University of Padova, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
48
|
Petrosino JM, Longenecker JZ, Ramkumar S, Xu X, Dorn LE, Bratasz A, Yu L, Maurya S, Tolstikov V, Bussberg V, Janssen PM, Periasamy M, Kiebish MA, Duester G, von Lintig J, Ziouzenkova O, Accornero F. Paracardial fat remodeling affects systemic metabolism through alcohol dehydrogenase 1. J Clin Invest 2021; 131:141799. [PMID: 33586683 PMCID: PMC7880313 DOI: 10.1172/jci141799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Z. Longenecker
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Xianyao Xu
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute
| | - Lisa E. Dorn
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Santosh Maurya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | | | - Valerie Bussberg
- BERG, Precision Medicine Department, Framingham, Massachusetts, USA
| | - Paul M.L. Janssen
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Internal Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ouliana Ziouzenkova
- Department of Human Sciences, College of Education and Human Ecology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
49
|
Smith CO, Eliseev RA. Energy Metabolism During Osteogenic Differentiation: The Role of Akt. Stem Cells Dev 2021; 30:149-162. [PMID: 33307974 DOI: 10.1089/scd.2020.0141] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteogenic differentiation, the process by which bone marrow mesenchymal stem/stromal (a.k.a. skeletal stem) cells and osteoprogenitors form osteoblasts, is a critical event for bone formation during development, fracture repair, and tissue maintenance. Extra cellular and intracellular signaling pathways triggering osteogenic differentiation are relatively well known; however, the ensuing change in cell energy metabolism is less clearly defined. We and others have previously reported activation of mitochondria during osteogenic differentiation. To further elucidate the involved bioenergetic mechanisms and triggers, we tested the effect of osteogenic media containing ascorbate and β-glycerol phosphate, or various osteogenic hormones and growth factors on energy metabolism in long bone (ST2)- and calvarial bone (MC3T3-E1)-derived osteoprogenitors. We show that osteogenic media and differentiation factors, Wnt3a and BMP2, stimulate mitochondrial oxidative phosphorylation (OxPhos) with little effect on glycolysis. The activation of OxPhos occurs acutely, suggesting a metabolic signaling change rather than protein expression change. To this end, we found that the observed mitochondrial activation is Akt dependent. Akt is activated by osteogenic media, Wnt3a, and BMP2, leading to increased phosphorylation of various mitochondrial Akt targets, a phenomenon known to stimulate OxPhos. In sum, our data provide comprehensive analysis of cellular bioenergetics during osteoinduction in cells of two different origins (mesenchyme vs neural crest) and identify Wnt3a and BMP2 as physiological stimulators of mitochondrial respiration through Akt activation.
Collapse
Affiliation(s)
- Charles Owen Smith
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, Rochester, New York, USA
| |
Collapse
|
50
|
Zhang C, Qiao S, Wu J, Xu W, Ma S, Zhao B, Wang X. A new insulin-sensitive enhancer from Silene viscidula, WPTS, treats type 2 diabetes by ameliorating insulin resistance, reducing dyslipidemia, and promoting proliferation of islet β cells. Pharmacol Res 2021; 165:105416. [PMID: 33412277 DOI: 10.1016/j.phrs.2020.105416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/20/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Wacao pentacyclic triterpenoid saponins (WPTS) is a newly discovered insulin sensitivity enhancer. It is a powerful hypoglycemic compound derived from Silene viscidula, which has a hypoglycemic effect similar to that of insulin. It can rapidly reduce blood glucose levels, normalizing them within 3 days of administration. However, its mechanism of action is completely different from that of insulin. Thus, we aimed to determine the pharmacological effects and mechanism of activity of WPTS on type 2 diabetes to elucidate the main reasons for its rapid effects. The results showed that WPTS could effectively improve insulin resistance in KKAy diabetic mice. Comparative transcriptomics showed that WPTS could upregulate the expression of insulin resistance-related genes such as glucose transporter type 4 (Glut4), insulin receptor substrate 1 (Irs1), Akt, and phosphoinositide 3-kinase (PI3K), and downregulate the expression of lipid metabolism-related genes such as monoacylglycerol O-acyltransferase 1 (Moat1), lipase C (Lipc), and sphingomyelin phosphodiesterase 4 (Smpd4). The results indicated that the differentially expressed genes could regulate lipid metabolism via the PI3K/AKT metabolic pathway, and it is noteworthy that WPTS was found to upregulate Glut4 expression, decrease blood glucose levels, and attenuate insulin resistance via the PI3K/AKT pathway. Q-PCR and western blotting further validated the transcriptomics findings at the mRNA and protein levels, respectively. We believe that WPTS can achieve a rapid hypoglycemic effect by improving the lipid metabolism and insulin resistance of the diabetic KKAy mice. WPTS could be a very promising candidate drug for the treatment of diabetes and deserves further research.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, China
| | - Sanyang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Shuangshuang Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baosheng Zhao
- Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China; Beijing Institute of Chinese Medicine, Beijing University of Chinese Medicine, China.
| |
Collapse
|