1
|
Khoa ND, Nita K, Kuga K, Ito K. Oral configuration-dependent variability of the metrics of exhaled respiratory droplets during a consecutive coughing event. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108601. [PMID: 39817940 DOI: 10.1016/j.cmpb.2025.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND AND OBJECTIVE Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets. Thus, its configuration contributes significantly to the metrics of exhaled droplets. METHODS In this study, two realistic numerical models were developed: the respiratory system from the throat to the second bifurcation and the oral cavity with different anatomical structures. A coupling of Eulerian Wall Film (EWF) - Discrete Phase Model (DPM) was employed to numerically describe the generation, absorption and exhalation properties. In addition, two sequential coughing episodes were considered with variegated profiles in the second cough. RESULTS As a result, the enlargement of the oral cavity caused considerable alterations in the original spatial distribution and total number concentration of exhaled droplets: these were reduced by approximately 30 %. Considering the consecutive second cough, maintaining or decreasing the flow rates resulted in a decrease in the total quantity of exhalation droplets by 25-90 %. The variations in the oral structure or coughing flow profile also reallocated the local spatial and proportional distribution of exhaled droplet. The expelled droplets/droplet nuclei's size remained approximately 0.25-20 μm range with varied development trends even though the peak concentration reserved unchanged at approximately 5 μm. CONCLUSIONS This study is a substantial work emphasizing the dependent variability of oral geometry and coughing physiology related to the properties of exhaled droplets. It emphasizes the uncertainties in the input parameters required for indoor transmission risk studies related to intersubject variability.
Collapse
Affiliation(s)
- Nguyen Dang Khoa
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuma Nita
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Kuga
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhide Ito
- Faculty of Engineering Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Machida M, Dai K, Nakamura I, Inoue S. Causes of COVID-19 Outbreaks During Sports and Exercise: A Systematic Review. Sports Med 2024:10.1007/s40279-024-02153-7. [PMID: 39661271 DOI: 10.1007/s40279-024-02153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Physical activity is beneficial for preventing non-communicable and infectious diseases, such as pneumonia. Physical activity is also a potential protective factor for reducing coronavirus disease 2019 (COVID-19) severity. Conversely, outbreaks of respiratory viral infections are more likely to occur owing to group activities, opportunities for contact with individuals and vocalisations. Since the onset of the COVID-19 pandemic, several cases of COVID-19 outbreaks during various sports and exercise have been reported. However, the common causes underlying these outbreaks remain unclear. OBJECTIVE The objective of this study is to identify the causes of COVID-19 outbreaks during sports and exercise using systematic review approach. METHODS Our eligibility criteria were published articles reporting case investigation on COVID-19 outbreaks and the cause during sports and exercise. Studies such as reviews and observational studies without case investigations were excluded. PubMed, CINAHL, WHO COVID-19 Research Database and Ichushi Web were searched on 28 August 2023. The quality of included studies was rated using a quality criteria checklist adapted from a previous systematic review of influenza outbreaks. Vote counting of outbreak causes was performed by type of sports (team or individual). RESULTS Twenty-one articles reporting 22 outbreaks were identified (quality: high, 9; medium, 9; and low, 3). The outbreaks were most frequently reported in fitness classes, followed by soccer. Most studies listed multiple causes of the outbreaks. The most common suspected cause of outbreaks in individual exercise, mostly from fitness classes, was poor ventilation and not wearing masks, followed by not maintaining physical distance and participation of individuals with some symptoms. In team sports, the most common cause was interaction outside the game, such as social events. CONCLUSIONS This systematic review found a limited number of case investigations suggesting that COVID-19 outbreaks during sports and exercise may be associated with the inhalation of aerosols in indoor settings, interactions outside of team sports games and participation of individuals with some symptoms. Prevention strategies that focus on mitigating these issues may be effective at preventing sports and exercise-associated respiratory infectious diseases outbreaks. PROSPERO REGISTRATION NUMBER CRD42023443158.
Collapse
Affiliation(s)
- Masaki Machida
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
- Department of Infection Prevention and Control, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Koichi Dai
- Department of Infection Prevention and Control, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Itaru Nakamura
- Department of Infection Prevention and Control, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Shigeru Inoue
- Department of Preventive Medicine and Public Health, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
3
|
Saullo R, Jones J, Thiese MS, Cox C, Ogbonnaya UC, Hegmann KT. The impact of COVID-19 public health and social measures on years of potential life lost. JOURNAL OF EMERGENCY MANAGEMENT (WESTON, MASS.) 2024; 22:639-648. [PMID: 39776368 DOI: 10.5055/jem.0843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND To determine the impacts of statewide coronavirus disease 2019 (COVID-19)-related public health and social measures (PHSMs) and attempted pandemic mitigation measures on years of potential life lost (YPLL). METHODS The "openness score" of each state during the COVID-19 pandemic was obtained using two open-source sites, the Multistate openness score and the Wallethub openness score. These scores combined various PHSMs, such as restrictions on gatherings and closing various types of businesses. Using data from the Centers for Disease Control and Prevention (CDC) Wonder database, the differences in prepandemic (2017-2019) and pandemic excess mortality were calculated in terms of YPLL and then compared to the openness scores using univariate regression modeling. RESULTS States that instituted more restrictive PHSMs as measured by openness scores failed to experience reductions in YPLL. On the contrary, there were trends toward statistical significance associating greater YPLL with the institution of more stringent PHSMs (p = 0.109 and p = 0.080 for Multistate and Wallethub, respectively). DISCUSSION This study suggests restrictive PHSMs were ineffective for improving mortality in this pandemic and trended toward increasing mortality in the younger population, presumably from other, non-COVID-19 causes.
Collapse
Affiliation(s)
- Ryan Saullo
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| | - Jansen Jones
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| | - Matthew S Thiese
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| | - Chapman Cox
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| | - Uchenna C Ogbonnaya
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| | - Kurt T Hegmann
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah
| |
Collapse
|
4
|
Francis MR, Gidado S, Nuorti JP. The Risk of SARS-CoV-2 Transmission in Community Indoor Settings: A Systematic Review and Meta-analysis. J Infect Dis 2024; 230:e824-e836. [PMID: 38753340 PMCID: PMC11481457 DOI: 10.1093/infdis/jiae261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Quantifying the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in indoor settings is crucial for developing effective non-vaccine prevention strategies and policies. However, summary evidence on the transmission risks in settings other than households, schools, elderly care, and health care facilities is limited. We conducted a systematic review to estimate the secondary attack rates (SARs) of SARS-CoV-2 and the factors modifying transmission risk in community indoor settings. METHODS We searched Medline, Scopus, Web of Science, WHO COVID-19 Research Database, MedrXiv, and BiorXiv from 1 January 2020 to 20 February 2023. We included articles with original data for estimating SARS-CoV-2 SARs. We estimated the overall and setting-specific SARs using the inverse variance method for random-effects meta-analyses. RESULTS We included 34 studies with data on 577 index cases, 898 secondary cases, and 9173 contacts. The pooled SAR for community indoor settings was 20.4% (95% confidence interval [CI], 12.0%-32.5%). The setting-specific SARs were highest for singing events (SAR, 44.9%; 95% CI, 14.5%-79.7%), indoor meetings and entertainment venues (SAR, 31.9%; 95% CI, 10.4%-65.3%), and fitness centers (SAR, 28.9%; 95% CI, 9.9%-60.1%). We found no difference in SARs by index case, viral, and setting-specific characteristics. CONCLUSIONS The risk of SARS-CoV-2 transmission was highest in indoor settings where singing and exercising occurred. Effective mitigation measures such as assessing and improving ventilation should be considered to reduce the risk of transmission in high-risk settings. Future studies should systematically assess and report the host, viral, and setting-specific characteristics that may modify the transmission risks of SARS-CoV-2 and other respiratory viruses in indoor environments.
Collapse
Affiliation(s)
- Mark Rohit Francis
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Saheed Gidado
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - J Pekka Nuorti
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Infectious Diseases and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
5
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Katz A, Li T, James LL, Buhariwala P, Osei-Twum JA, Siegel J, O'Campo P. Emergency Knowledge Translation, COVID-19 and indoor air: evaluating a virtual ventilation and filtration consultation program for community spaces in Ontario. BMC Public Health 2024; 24:2682. [PMID: 39354403 PMCID: PMC11443783 DOI: 10.1186/s12889-024-20151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND An October, 2021 review of Public Health Ontario's COVID-19 guidance for congregate settings such as shelters and long-term care homes demonstrated that this guidance did not include references to ventilation or filtration. In April 2022, an interdisciplinary team with expertise in indoor air quality (IAQ), engineering, epidemiology, community programming and knowledge translation launched a virtual ventilation and filtration consultation program for community spaces in Toronto, Ontario. The program gives people working in community spaces direct access to IAQ experts through 25-min online appointments. The program aims to help reduce the risk of COVID-19 transmission in community spaces, and was designed to help compensate for gaps in public health guidance and action. METHODS Representatives from participating organizations (n. 27) received a link to an online survey via email in April 2023. Survey questions explored the impacts of the program on topics such as: purchase and use of portable air filters; maintenance and use of bathroom fans; and, maintenance and modification of HVAC systems. Survey participation was anonymous, and no demographic information was collected from participants. RESULTS Representatives from 11 organizations completed the survey (40%). Of those who responded, nine (82%) made changes as a result of the program, with eight (73%) making two or more changes such as purchasing portable air filters and increasing routine maintenance of HVAC systems. CONCLUSIONS When presented with brief access to expert support and tailored plain language guidance, people working in community spaces increased their use of ventilation and filtration strategies for COVID-19 infection prevention and control.
Collapse
Affiliation(s)
- Amy Katz
- MAP, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- Faculty of Information, University of Toronto, Toronto, ON, Canada.
| | - Tianyuan Li
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - LLana James
- Anansi Health & Innovation Consortium, Toronto, Canada
- Department of Biomedical and Molecular Sciences and School of Rehabilitation Therapy, Queen's University, Kingston, ON, Canada
| | - Pearl Buhariwala
- MAP, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Jo-Ann Osei-Twum
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Siegel
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Patricia O'Campo
- MAP, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Fuster-Parra P, Huguet-Torres A, Castro-Sánchez E, Bennasar-Veny M, Yañez AM. Identifying the interplay between protective measures and settings on the SARS-CoV-2 transmission using a Bayesian network. PLoS One 2024; 19:e0307041. [PMID: 38990971 PMCID: PMC11238975 DOI: 10.1371/journal.pone.0307041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Contact tracing played a crucial role in minimizing the onward dissemination of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the recent pandemic. Previous studies had also shown the effectiveness of preventive measures such as mask-wearing, physical distancing, and exposure duration in reducing SARS-CoV-2 transmission. However, there is still a lack of understanding regarding the impact of various exposure settings on the spread of SARS-CoV-2 within the community, as well as the most effective preventive measures, considering the preventive measures adherence in different daily scenarios. We aimed to evaluate the effect of individual protective measures and exposure settings on the community transmission of SARS-CoV-2. Additionally, we aimed to investigate the interaction between different exposure settings and preventive measures in relation to such SARS-CoV-2 transmission. Routine SARS-CoV-2 contact tracing information was supplemented with additional data on individual measures and exposure settings collected from index patients and their close contacts. We used a case-control study design, where close contacts with a positive test for SARS-CoV-2 were classified as cases, and those with negative results classified as controls. We used the data collected from the case-control study to construct a Bayesian network (BN). BNs enable predictions for new scenarios when hypothetical information is introduced, making them particularly valuable in epidemiological studies. Our results showed that ventilation and time of exposure were the main factors for SARS-CoV-2 transmission. In long time exposure, ventilation was the most effective factor in reducing SARS-CoV-2, while masks and physical distance had on the other hand a minimal effect in this ventilation spaces. However, face masks and physical distance did reduce the risk in enclosed and unventilated spaces. Distance did not reduce the risk of infection when close contacts wore a mask. Home exposure presented a higher risk of SARS-CoV-2 transmission, and any preventive measures posed a similar risk across all exposure settings analyzed. Bayesian network analysis can assist decision-makers in refining public health campaigns, prioritizing resources for individuals at higher risk, and offering personalized guidance on specific protective measures tailored to different settings or environments.
Collapse
Affiliation(s)
- Pilar Fuster-Parra
- Department of Mathematics and Computer Sciences, University of Balearic Islands, Palma, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
| | - Aina Huguet-Torres
- Department of Nursing and Physiotherapy, University of Balearic Islands, Palma, Spain
- Research Group on Global Health, University of Balearic Islands, Palma, Spain
| | - Enrique Castro-Sánchez
- Research Group on Global Health, University of Balearic Islands, Palma, Spain
- College of Business, Arts, and Social Sciences, Brunel University London, Uxbridge, United Kingdom
- Imperial College London, London, United Kingdom
| | - Miquel Bennasar-Veny
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
- Department of Nursing and Physiotherapy, University of Balearic Islands, Palma, Spain
- Research Group on Global Health, University of Balearic Islands, Palma, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Aina M Yañez
- Institut d'Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma, Spain
- Department of Nursing and Physiotherapy, University of Balearic Islands, Palma, Spain
- Research Group on Global Health, University of Balearic Islands, Palma, Spain
| |
Collapse
|
8
|
Mizukoshi A, Okumura J, Azuma K. A COVID-19 cluster analysis in an office: Assessing the long-range aerosol and fomite transmissions with infection control measures. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:1396-1412. [PMID: 37936539 DOI: 10.1111/risa.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/01/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023]
Abstract
Simulated exposure to severe acute respiratory syndrome coronavirus 2 in the environment was demonstrated based on the actual coronavirus disease 2019 cluster occurrence in an office, with a projected risk considering the likely transmission pathways via aerosols and fomites. A total of 35/85 occupants were infected, with the attack rate in the first stage as 0.30. It was inferred that the aerosol transmission at long-range produced the cluster at virus concentration in the saliva of the infected cases on the basis of the simulation, more than 108 PFU mL-1. Additionally, all wearing masks effectiveness was estimated to be 61%-81% and 88%-95% reduction in risk for long-range aerosol transmission in the normal and fit state of the masks, respectively, and a 99.8% or above decline in risk of fomite transmission. The ventilation effectiveness for long-range aerosol transmission was also calculated to be 12%-29% and 36%-66% reductions with increases from one air change per hour (ACH) to two ACH and six ACH, respectively. Furthermore, the virus concentration reduction in the saliva to 1/3 corresponded to the risk reduction for long-range aerosol transmission by 60%-64% and 40%-51% with and without masks, respectively.
Collapse
Affiliation(s)
- Atsushi Mizukoshi
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jiro Okumura
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
9
|
Ruuskanen O, Dollner H, Luoto R, Valtonen M, Heinonen OJ, Waris M. Contraction of Respiratory Viral Infection During air Travel: An Under-Recognized Health Risk for Athletes. SPORTS MEDICINE - OPEN 2024; 10:60. [PMID: 38776030 PMCID: PMC11111432 DOI: 10.1186/s40798-024-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Air travel has an important role in the spread of viral acute respiratory infections (ARIs). Aircraft offer an ideal setting for the transmission of ARI because of a closed environment, crowded conditions, and close-contact setting. Numerous studies have shown that influenza and COVID-19 spread readily in an aircraft with one virus-positive symptomatic or asymptomatic index case. The numbers of secondary cases differ markedly in different studies most probably because of the wide variation of the infectiousness of the infector as well as the susceptibility of the infectees. The primary risk factor is sitting within two rows of an infectious passenger. Elite athletes travel frequently and are thus prone to contracting an ARI during travel. It is anecdotally known in the sport and exercise medicine community that athletes often contract ARI during air travel. The degree to which athletes are infected in an aircraft by respiratory viruses is unclear. Two recent studies suggest that 8% of Team Finland members traveling to major winter sports events contracted the common cold most probably during air travel. Further prospective clinical studies with viral diagnostics are needed to understand the transmission dynamics and to develop effective and socially acceptable preventive measures during air travel.
Collapse
Affiliation(s)
- Olli Ruuskanen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | - Henrik Dollner
- Department of Clinical and Molecular Medicine, Children's Clinic, St. Olavs University Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raakel Luoto
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | | | - Olli J Heinonen
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Virology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
10
|
Wills CP, Perez B, Moore J. Coronavirus Disease 2019: Past, Present, and Future. Emerg Med Clin North Am 2024; 42:415-442. [PMID: 38641397 DOI: 10.1016/j.emc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 is one of the most impactful diseases experienced in the past century. While the official national health emergency concluded in May of 2023, coronavirus disease 2019 (COVID-19) continues to mutate. As the summer of 2023, all countries were experiencing a new surge of cases from the EG.5 Omicron variant. Additionally, a new genetically distinct Omicron descendant BA2.86 had been detected in multiple countries including the United States. This article seeks to offer lessons learned from the pandemic, summarize best evidence for current management of patients with COVID-19, and give insights into future directions with this disease.
Collapse
Affiliation(s)
- Charlotte Page Wills
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA.
| | - Berenice Perez
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Justin Moore
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, Oakland, California, 1411 East 31st Street, Oakland, CA 94602, USA
| |
Collapse
|
11
|
Sinclair P, Zhao L, Beggs CB, Illingworth CJR. The airborne transmission of viruses causes tight transmission bottlenecks. Nat Commun 2024; 15:3540. [PMID: 38670957 PMCID: PMC11053022 DOI: 10.1038/s41467-024-47923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission.
Collapse
Affiliation(s)
- Patrick Sinclair
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clive B Beggs
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
12
|
Haddrell A, Oswin H, Otero-Fernandez M, Robinson JF, Cogan T, Alexander R, Mann JFS, Hill D, Finn A, Davidson AD, Reid JP. Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk. Nat Commun 2024; 15:3487. [PMID: 38664424 PMCID: PMC11045827 DOI: 10.1038/s41467-024-47777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO2, concluding that even this moderate increase in CO2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO2 levels in our atmosphere.
Collapse
Affiliation(s)
- Allen Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK.
| | - Henry Oswin
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | | | - Joshua F Robinson
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Tristan Cogan
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - Robert Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jamie F S Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - Darryl Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Population Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Jonathan P Reid
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK.
| |
Collapse
|
13
|
Groß R, Reßin H, von Maltitz P, Albers D, Schneider L, Bley H, Hoffmann M, Cortese M, Gupta D, Deniz M, Choi JY, Jansen J, Preußer C, Seehafer K, Pöhlmann S, Voelker DR, Goffinet C, Pogge-von Strandmann E, Bunz U, Bartenschlager R, El Andaloussi S, Sparrer KMJ, Herker E, Becker S, Kirchhoff F, Münch J, Müller JA. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens. Nat Microbiol 2024; 9:905-921. [PMID: 38528146 PMCID: PMC10994849 DOI: 10.1038/s41564-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hanna Reßin
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Schneider
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Hanna Bley
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Miriam Deniz
- Clinic for Gynecology and Obstetrics, Ulm University Medical Center, Ulm, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | | | - Christine Goffinet
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elke Pogge-von Strandmann
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Ahmed F, Shafer L, Malla P, Hopkins R, Moreland S, Zviedrite N, Uzicanin A. Systematic review of empiric studies on lockdowns, workplace closures, and other non-pharmaceutical interventions in non-healthcare workplaces during the initial year of the COVID-19 pandemic: benefits and selected unintended consequences. BMC Public Health 2024; 24:884. [PMID: 38519891 PMCID: PMC10960383 DOI: 10.1186/s12889-024-18377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND We conducted a systematic review aimed to evaluate the effects of non-pharmaceutical interventions within non-healthcare workplaces and community-level workplace closures and lockdowns on COVID-19 morbidity and mortality, selected mental disorders, and employment outcomes in workers or the general population. METHODS The inclusion criteria included randomized controlled trials and non-randomized studies of interventions. The exclusion criteria included modeling studies. Electronic searches were conducted using MEDLINE, Embase, and other databases from January 1, 2020, through May 11, 2021. Risk of bias was assessed using the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool. Meta-analysis and sign tests were performed. RESULTS A total of 60 observational studies met the inclusion criteria. There were 40 studies on COVID-19 outcomes, 15 on anxiety and depression symptoms, and five on unemployment and labor force participation. There was a paucity of studies on physical distancing, physical barriers, and symptom and temperature screening within workplaces. The sign test indicated that lockdown reduced COVID-19 incidence or case growth rate (23 studies, p < 0.001), reproduction number (11 studies, p < 0.001), and COVID-19 mortality or death growth rate (seven studies, p < 0.05) in the general population. Lockdown did not have any effect on anxiety symptoms (pooled standardized mean difference = -0.02, 95% CI: -0.06, 0.02). Lockdown had a small effect on increasing depression symptoms (pooled standardized mean difference = 0.16, 95% CI: 0.10, 0.21), but publication bias could account for the observed effect. Lockdown increased unemployment (pooled mean difference = 4.48 percentage points, 95% CI: 1.79, 7.17) and decreased labor force participation (pooled mean difference = -2.46 percentage points, 95% CI: -3.16, -1.77). The risk of bias for most of the studies on COVID-19 or employment outcomes was moderate or serious. The risk of bias for the studies on anxiety or depression symptoms was serious or critical. CONCLUSIONS Empiric studies indicated that lockdown reduced the impact of COVID-19, but that it had notable unwanted effects. There is a pronounced paucity of studies on the effect of interventions within still-open workplaces. It is important for countries that implement lockdown in future pandemics to consider strategies to mitigate these unintended consequences. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration # CRD42020182660.
Collapse
Affiliation(s)
- Faruque Ahmed
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA.
| | - Livvy Shafer
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Pallavi Malla
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Roderick Hopkins
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
- Cherokee Nation Operational Solutions, Tulsa, OK, USA
| | - Sarah Moreland
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Nicole Zviedrite
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
| | - Amra Uzicanin
- Division of Global Migration Health, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop V18-2, Atlanta, GA, 30329-4027, USA
| |
Collapse
|
15
|
Garritty C, Hamel C, Trivella M, Gartlehner G, Nussbaumer-Streit B, Devane D, Kamel C, Griebler U, King VJ. Updated recommendations for the Cochrane rapid review methods guidance for rapid reviews of effectiveness. BMJ 2024; 384:e076335. [PMID: 38320771 DOI: 10.1136/bmj-2023-076335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Affiliation(s)
- Chantelle Garritty
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1G 5Z3, Canada
- Global Health and Guidelines Division, Public Health Agency of Canada, Ottawa, ON, Canada
| | - Candyce Hamel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1G 5Z3, Canada
- Canadian Association of Radiologists, Ottawa, ON, Canada
| | - Marialena Trivella
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
- Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Gerald Gartlehner
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
- Research Triangle Institute (RTI) International, Research Triangle Park, NC, USA
| | - Barbara Nussbaumer-Streit
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
| | - Declan Devane
- Cochrane Ireland and Evidence Synthesis Ireland, School of Nursing and Midwifery, University of Galway, Galway, Ireland
| | - Chris Kamel
- Canadian Agency for Drugs and Technologies in Health (CADTH), Ottawa, ON, Canada
| | - Ursula Griebler
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation, University for Continuing Education Krems, Krems, Austria
| | - Valerie J King
- Center for Evidence-based Policy, Department of Family Medicine, Oregon Health and Science University (OHSU), Portland, OR, USA
| |
Collapse
|
16
|
Krutikov M, Stirrup O, Fuller C, Adams N, Azmi B, Irwin-Singer A, Sethu N, Hayward A, Altamirano H, Copas A, Shallcross L. Built Environment and SARS-CoV-2 Transmission in Long-Term Care Facilities: Cross-Sectional Survey and Data Linkage. J Am Med Dir Assoc 2024; 25:304-313.e11. [PMID: 38065220 PMCID: PMC11139658 DOI: 10.1016/j.jamda.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVES To describe the built environment in long-term care facilities (LTCF) and its association with introduction and transmission of SARS-CoV-2 infection. DESIGN Cross-sectional survey with linkage to routine surveillance data. SETTING AND PARTICIPANTS LTCFs in England caring for adults ≥65 years old, participating in the VIVALDI study (ISRCTN14447421) were eligible. Data were included from residents and staff. METHODS Cross-sectional survey of the LTCF built environment with linkage to routinely collected asymptomatic and symptomatic SARS-CoV-2 testing and vaccination data between September 1, 2020, and March 31, 2022. We used individual and LTCF level Poisson and Negative Binomial regression models to identify risk factors for 4 outcomes: incidence rate of resident infections and outbreaks, outbreak size, and duration. We considered interactions with variant transmissibility (pre vs post Omicron dominance). RESULTS A total of 134 of 151 (88.7%) LTCFs participated in the survey, contributing data for 13,010 residents and 17,766 staff. After adjustment and stratification, outbreak incidence (measuring infection introduction) was only associated with SARS-CoV-2 incidence in the community [incidence rate ratio (IRR) for high vs low incidence, 2.84; 95% CI, 1.85-4.36]. Characteristics of the built environment were associated with transmission outcomes and differed by variant transmissibility. For resident infection incidence, factors included number of storeys (0.64; 0.43-0.97) and bedrooms (1.04; 1.02-1.06), and purpose-built vs converted buildings (1.99; 1.08-3.69). Air quality was associated with outbreak size (dry vs just right 1.46; 1.00-2.13). Funding model (0.99; 0.99-1.00), crowding (0.98; 0.96-0.99), and bedroom temperature (1.15; 1.01-1.32) were associated with outbreak duration. CONCLUSIONS AND IMPLICATIONS We describe previously undocumented diversity in LTCF built environments. LTCFs have limited opportunities to prevent SARS-CoV-2 introduction, which was only driven by community incidence. However, adjusting the built environment, for example by isolating infected residents or improving airflow, may reduce transmission, although data quality was limited by subjectivity. Identifying LTCF built environment modifications that prevent infection transmission should be a research priority.
Collapse
Affiliation(s)
- Maria Krutikov
- Institute of Health Informatics, University College London, London, UK.
| | - Oliver Stirrup
- Institute for Global Health, University College London, London, UK
| | - Chris Fuller
- Institute of Health Informatics, University College London, London, UK
| | - Natalie Adams
- Institute of Health Informatics, University College London, London, UK
| | - Borscha Azmi
- Institute of Health Informatics, University College London, London, UK
| | - Aidan Irwin-Singer
- Surveillance Testing and Immunity, UK Health Security Agency, London, UK
| | - Niyathi Sethu
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Andrew Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Hector Altamirano
- Institute for Environmental Design and Engineering, University College London, London, UK
| | - Andrew Copas
- Institute for Global Health, University College London, London, UK
| | - Laura Shallcross
- Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
17
|
Rakover A, Galmiche S, Charmet T, Chény O, Omar F, David C, Martin S, Mailles A, Fontanet A. Source of SARS-CoV-2 infection: results from a series of 584,846 cases in France from October 2020 to August 2022. BMC Public Health 2024; 24:325. [PMID: 38287286 PMCID: PMC10826227 DOI: 10.1186/s12889-024-17772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND We aimed to study the source of infection for recently SARS-CoV-2-infected individuals from October 2020 to August 2022 in France. METHODS Participants from the nationwide ComCor case-control study who reported recent SARS-CoV-2 infection were asked to document the source and circumstances of their infection through an online questionnaire. Multivariable logistic regression was used to identify the factors associated with not identifying any source of infection. RESULTS Among 584,846 adults with a recent SARS-CoV-2 infection in France, 46.9% identified the source of infection and an additional 22.6% suspected an event during which they might have become infected. Known and suspected sources of infection were household members (30.8%), extended family (15.6%), work colleagues (15.0%), friends (11.0%), and possibly multiple/other sources (27.6%). When the source of infection was known, was not a household member, and involved a unique contact (n = 69,788), characteristics associated with transmission events were indoors settings (91.6%), prolonged (> 15 min) encounters (50.5%), symptomatic source case (64.9%), and neither the source of infection nor the participant wearing a mask (82.2%). Male gender, older age, lower education, living alone, using public transportation, attending places of public recreation (bars, restaurants, nightclubs), public gatherings, and cultural events, and practicing indoor sports were all independently associated with not knowing the source of infection. CONCLUSION Two-thirds of infections were attributed to interactions with close relatives, friends, or work colleagues. Extra-household indoor encounters without masks were commonly reported and represented avoidable circumstances of infection. TRIAL REGISTRATION ClinicalTrials.gov registration number: NCT04607941.
Collapse
Affiliation(s)
- Arthur Rakover
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France.
| | - Simon Galmiche
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
- Sorbonne Université, Ecole Doctorale Pierre Louis de Santé Publique, Paris, France
| | - Tiffany Charmet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Olivia Chény
- Institut Pasteur, Université Paris Cité, Centre for Translational Research, Paris, France
| | | | | | - Sophie Martin
- Caisse Nationale de L'Assurance Maladie, Paris, France
| | | | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
- Conservatoire National Des Arts Et Métiers, Unité PACRI, Paris, France
| |
Collapse
|
18
|
Ragan I, Perez J, Davenport W, Hartson L, Doyle B. UV-C Light Intervention as a Barrier against Airborne Transmission of SARS-CoV-2. Viruses 2024; 16:89. [PMID: 38257789 PMCID: PMC10820972 DOI: 10.3390/v16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND SARS-CoV-2 continues to impact human health globally, with airborne transmission being a significant mode of transmission. In addition to tools like vaccination and testing, countermeasures that reduce viral spread in indoor settings are critical. This study aims to assess the efficacy of UV-C light, utilizing the Violett sterilization device, as a countermeasure against airborne transmission of SARS-CoV-2 in the highly susceptible Golden Syrian hamster model. METHODS Two cohorts of naïve hamsters were subjected to airborne transmission from experimentally infected hamsters; one cohort was exposed to air treated with UV-C sterilization, while the other cohort was exposed to untreated air. RESULTS Treatment of air with UV-C light prevented the airborne transmission of SARS-CoV-2 from the experimentally exposed hamster to naïve hamsters. Notably, this protection was sustained over a multi-day exposure period during peak viral shedding by hamsters. CONCLUSIONS These findings demonstrate the efficacy of the UV-C light to mitigate against airborne SARS-CoV-2 transmission. As variants continue to emerge, UV-C light holds promise as a tool for reducing infections in diverse indoor settings, ranging from healthcare facilities to households. This study reinforces the urgency of implementing innovative methods to reduce airborne disease transmission and safeguard public health against emerging biological threats.
Collapse
Affiliation(s)
- Izabela Ragan
- Department of Biomedical Science, Colorado State University, Fort Collins, CO 80521, USA
| | | | | | - Lindsay Hartson
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | | |
Collapse
|
19
|
Ahmed F, Nowalk MP, Zimmerman RK, Bear T, Grijalva CG, Talbot HK, Florea A, Tartof SY, Gaglani M, Smith M, McLean HQ, King JP, Martin ET, Monto AS, Phillips CH, Wernli KJ, Flannery B, Chung JR, Uzicanin A. Work Attendance with Acute Respiratory Illness Before and During COVID-19 Pandemic, United States, 2018-2022. Emerg Infect Dis 2023; 29:2442-2450. [PMID: 37917142 PMCID: PMC10683820 DOI: 10.3201/eid2912.231070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Both SARS-CoV-2 and influenza virus can be transmitted by asymptomatic, presymptomatic, or symptomatic infected persons. We assessed effects on work attendance while ill before and during the COVID-19 pandemic in the United States by analyzing data collected prospectively from persons with acute respiratory illnesses enrolled in a multistate study during 2018-2022. Persons with previous hybrid work experience were significantly less likely to work onsite on the day before through the first 3 days of illness than those without that experience, an effect more pronounced during the COVID-19 pandemic than during prepandemic influenza seasons. Persons with influenza or COVID-19 were significantly less likely to work onsite than persons with other acute respiratory illnesses. Among persons with positive COVID-19 test results available by the second or third day of illness, few worked onsite. Hybrid and remote work policies might reduce workplace exposures and help reduce spread of respiratory viruses.
Collapse
|
20
|
Alsved M, Nyström K, Thuresson S, Nygren D, Patzi-Churqui M, Hussein T, Fraenkel CJ, Medstrand P, Löndahl J. Infectivity of exhaled SARS-CoV-2 aerosols is sufficient to transmit covid-19 within minutes. Sci Rep 2023; 13:21245. [PMID: 38040798 PMCID: PMC10692216 DOI: 10.1038/s41598-023-47829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
Exhaled SARS-CoV-2-containing aerosols contributed significantly to the rapid and vast spread of covid-19. However, quantitative experimental data on the infectivity of such aerosols is missing. Here, we quantified emission rates of infectious viruses in exhaled aerosol from individuals within their first days after symptom onset from covid-19. Six aerosol samples from three individuals were culturable, of which five were successfully quantified using TCID50. The source strength of the three individuals was highest during singing, when they exhaled 4, 36, or 127 TCID50/s, respectively. Calculations with an indoor air transmission model showed that if an infected individual with this emission rate entered a room, a susceptible person would inhale an infectious dose within 6 to 37 min in a room with normal ventilation. Thus, our data show that exhaled aerosols from a single person can transmit covid-19 to others within minutes at normal indoor conditions.
Collapse
Affiliation(s)
- Malin Alsved
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden.
| | - Kristina Nyström
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41346, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden
| | - Sara Thuresson
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden
| | - David Nygren
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22100, Lund, Sweden
| | - Marianela Patzi-Churqui
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, 41346, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346, Gothenburg, Sweden
| | - Tareq Hussein
- Environmental and Atmospheric Research Laboratory (EARL), Department of Physics, School of Science, The University of Jordan, Amman, 11942, Jordan
- Institute for Atmospheric and Earth System Research (INAR/Physics), University of Helsinki, 00014, Helsinki, Finland
| | - Carl-Johan Fraenkel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, 22100, Lund, Sweden
- Department of Clinical Microbiology and Infection Control, Region Skåne, 22185, Lund, Sweden
| | - Patrik Medstrand
- Department of Translational Medicine, Clinical Virology, Lund University, 22100, Lund, Sweden
- SciLifeLab, Lund University, 22100, Lund, Sweden
| | - Jakob Löndahl
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Box 118, 22100, Lund, Sweden.
| |
Collapse
|
21
|
O'Callaghan C, Cloutman-Green E, Brierley J. Pandemic preparedness: is the UK ready for a pandemic that affects children? BMJ 2023; 383:2804. [PMID: 38016735 DOI: 10.1136/bmj.p2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Affiliation(s)
- Chris O'Callaghan
- University College London, Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre. London
| | - Elaine Cloutman-Green
- Great Ormond Street Hospital, Great Ormond Street, London
- Department of Civil, Environmental and Geomatic Engineering, University College London
| | - Joe Brierley
- Paediatric Bioethics Centre, Great Ormond Street Hospital, London
| |
Collapse
|
22
|
Thibon C, Vecellio L, Belkhir L, Dubus JC, Robert A, Kabamba B, Reychler G. There Is a Risk of Spread During a Nebulization Session in a Patient with COVID-19. J Aerosol Med Pulm Drug Deliv 2023; 36:268-274. [PMID: 37610849 DOI: 10.1089/jamp.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Introduction: A hypothetical risk of SARS-CoV-2 airborne transmission through nebulization was suggested based on a potential environmental contamination by the fugitive aerosol emitted in the environment during the procedure. The aim of this study was to verify this risk from the fugitive aerosol emitted by COVID-19 patients during one nebulization session. Methods: In this cohort study, COVID-19 patients treated with nebulization were recruited at their admission to the hospital. Patients had to perform a nebulization session while a BioSampler® and a pump were used to vacuum the fugitive aerosol and collect it for SARS-CoV-2 RNA detection. Results: Ten consecutive patients hospitalized with COVID-19 were recruited. The median viral load was 6.5 × 106 copies/mL. Two out of the 10 samples from the fugitive aerosol collected were positive to SARS-CoV-2. Conclusion: The risk of fugitive aerosol contamination with SARS-CoV-2 during nebulization has now been verified.
Collapse
Affiliation(s)
- Christophe Thibon
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Laurent Vecellio
- PST A, Université de Tours, Tours, France
- Group Aerosoltherapy GAT of the French Language Respiratory Society-Société de Pneumologie de Langue Française SPLF, Paris, France
| | - Leila Belkhir
- Department of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Dubus
- Group Aerosoltherapy GAT of the French Language Respiratory Society-Société de Pneumologie de Langue Française SPLF, Paris, France
- Unité de Pneumologie Pédiatrique, Centre Hospitalo-Universitaire (CHU) Timone-Enfants, Marseille, France
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Annie Robert
- Pole épidémiologie et biostatistique, Institut de recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Benoît Kabamba
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Microbiology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Group Aerosoltherapy GAT of the French Language Respiratory Society-Société de Pneumologie de Langue Française SPLF, Paris, France
| |
Collapse
|
23
|
Abstract
COVID-19, the illness caused by SARS-CoV-2, became a worldwide pandemic in 2020. Initial clinical manifestations range from asymptomatic infection to mild upper respiratory illness but may progress to pulmonary involvement with hypoxemia and, in some cases, multiorgan involvement, shock, and death. Older adults, pregnant persons, those with common comorbidities, and those with immunosuppression are at greatest risk for progression. Vaccination is effective in preventing symptomatic infection and reducing risk for severe disease, hospitalization, and death. Antiviral treatment and immunomodulators have been shown to benefit certain patients. This article summarizes current recommendations on prevention, diagnosis, management, and treatment of COVID-19.
Collapse
Affiliation(s)
| | - Roy M Gulick
- Weill Cornell Medicine, New York, New York (K.M.M., R.M.G.)
| |
Collapse
|
24
|
Marco L, Cambien G, Garcia M, Broutin L, Cateau E, Lariviere A, Castel O, Thevenot S, Bousseau A. [Respiratory infections: Additional transmission-based precautions in healthcare facilities]. Rev Mal Respir 2023; 40:572-603. [PMID: 37365075 DOI: 10.1016/j.rmr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION In health care, measures against cross-transmission of microorganisms are codified by standard precautions, and if necessary, they are supplemented by additional precautions. STATE OF THE ART Several factors impact transmission of microorganisms via the respiratory route: size and quantity of the emitted particles, environmental conditions, nature and pathogenicity of the microorganisms, and degree of host receptivity. While some microorganisms necessitate additional airborne or droplet precautions, others do not. PROSPECTS For most microorganisms, transmission patterns are well-understood and transmission-based precautions are well-established. For others, measures to prevent cross-transmission in healthcare facilities remain under discussion. CONCLUSIONS Standard precautions are essential to the prevention of microorganism transmission. Understanding of the modalities of microorganism transmission is essential to implementation of additional transmission-based precautions, particularly in view of opting for appropriate respiratory protection.
Collapse
Affiliation(s)
- L Marco
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - G Cambien
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Inserm CIC 1402, université de Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - M Garcia
- Département des agents infectieux, laboratoire de virologie et mycobactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Laboratoire inflammation, tissus épithéliaux et cytokines, EA 4331, université de Poitiers, 86021 Poitiers, France
| | - L Broutin
- Département des agents infectieux, laboratoire de bactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - E Cateau
- Laboratoire écologie et biologie des interactions, UMR CNRS 7267, université de Poitiers, 86021 Poitiers, France; Département des agents infectieux, laboratoire de parasitologie et mycologie médicale, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - A Lariviere
- Département des agents infectieux, laboratoire de virologie et mycobactériologie, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - O Castel
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France
| | - S Thevenot
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France; Inserm CIC 1402, université de Poitiers, CHU de Poitiers, 86021 Poitiers, France
| | - A Bousseau
- Unité d'hygiène hospitalière, département des agents infectieux, pôle BIOSPHARM, CHU de Poitiers, 86021 Poitiers, France.
| |
Collapse
|
25
|
Kleynhans J, Dall'Amico L, Gauvin L, Tizzoni M, Maloma L, Walaza S, Martinson NA, von Gottberg A, Wolter N, Makhasi M, Cohen C, Cattuto C, Tempia S. Association of close-range contact patterns with SARS-CoV-2: a household transmission study. eLife 2023; 12:e84753. [PMID: 37461328 DOI: 10.7554/elife.84753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Background Households are an important location for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, especially during periods when travel and work was restricted to essential services. We aimed to assess the association of close-range contact patterns with SARS-CoV-2 transmission. Methods We deployed proximity sensors for two weeks to measure face-to-face interactions between household members after SARS-CoV-2 was identified in the household, in South Africa, 2020-2021. We calculated the duration, frequency, and average duration of close-range proximity events with SARS-CoV-2 index cases. We assessed the association of contact parameters with SARS-CoV-2 transmission using mixed effects logistic regression accounting for index and household member characteristics. Results We included 340 individuals (88 SARS-CoV-2 index cases and 252 household members). On multivariable analysis, factors associated with SARS-CoV-2 acquisition were index cases with minimum Ct value <30 (aOR 16.8 95% CI 3.1-93.1) vs >35, and female contacts (aOR 2.5 95% CI 1.3-5.0). No contact parameters were associated with acquisition (aOR 1.0-1.1) for any of the duration, frequency, cumulative time in contact, or average duration parameters. Conclusions We did not find an association between close-range proximity events and SARS-CoV-2 household transmission. Our findings may be due to study limitations, that droplet-mediated transmission during close-proximity contacts plays a smaller role than airborne transmission of SARS-CoV-2 in the household, or due to high contact rates in households. Funding Wellcome Trust (Grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth, and Development Office, United Kingdom.
Collapse
Affiliation(s)
- Jackie Kleynhans
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Laetitia Gauvin
- ISI Foundation, Turin, Italy
- Institute for Research on Sustainable Development, Aubervilliers, France
| | - Michele Tizzoni
- ISI Foundation, Turin, Italy
- Department of Sociology and Social Research, University of Trento, Trento, Italy
| | - Lucia Maloma
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil A Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Center for TB Research, Baltimore, United States
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mvuyo Makhasi
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ciro Cattuto
- ISI Foundation, Turin, Italy
- Department of Informatics, University of Turin, Turin, Italy
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Lee T, Barone TL, Yantek DS, Portnoff L, Zheng Y. Evaluation of a prototype local ventilation system to mitigate retail store worker exposure to airborne particles. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:289-303. [PMID: 37084391 DOI: 10.1080/15459624.2023.2205448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The objective of this study is to evaluate a prototype local ventilation system (LVS) intended to reduce retail store workers' exposure to aerosols. The evaluation was carried out in a large aerosol test chamber where relatively uniform concentrations of polydisperse sodium chloride and glass-sphere particles were generated to test the system with nano- and micro-size particles. In addition, a cough simulator was constructed to mimic aerosols released by mouth breathing and coughing. Particle reduction efficiencies of the LVS were determined in four different experimental conditions using direct reading instruments and inhalable samplers. The particle reduction efficiency (%) depended on the position beneath the LVS, but the percentage was consistently high at the LVS center as follows: (1) > 98% particle reduction relative to background aerosols; (2) > 97% in the manikin's breathing zone relative to background aerosols; (3) > 97% during mouth breathing and coughing simulation; and (4) > 97% with a plexiglass barrier installation. Lower particle reduction (<70%) was observed when the LVS airflow was disturbed by background ventilation airflow. The lowest particle reduction (<20%) was observed when the manikin was closest to the simulator during coughing.
Collapse
Affiliation(s)
- Taekhee Lee
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Teresa L Barone
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - David S Yantek
- Mining Systems Safety Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Lee Portnoff
- Research Branch, National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| | - Yi Zheng
- Health Hazards Prevention Branch, Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Rodriguez-Rodriguez BA, Ciabattoni GO, Duerr R, Valero-Jimenez AM, Yeung ST, Crosse KM, Schinlever AR, Bernard-Raichon L, Rodriguez Galvan J, McGrath ME, Vashee S, Xue Y, Loomis CA, Khanna KM, Cadwell K, Desvignes L, Frieman MB, Ortigoza MB, Dittmann M. A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. Nat Commun 2023; 14:3026. [PMID: 37230979 PMCID: PMC10211296 DOI: 10.1038/s41467-023-38783-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets. Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not robustly transmit SARS-CoV-2. Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Omicron BA.1 and Omicron BQ.1.1. We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission in our model. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing a role for an accessory protein in this context.
Collapse
Affiliation(s)
| | - Grace O Ciabattoni
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ralf Duerr
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Vaccine Center, NYU Grossmann of Medicine, New York, NY, 10016, USA
| | - Ana M Valero-Jimenez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Keaton M Crosse
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Austin R Schinlever
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Lucie Bernard-Raichon
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Joaquin Rodriguez Galvan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sanjay Vashee
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Yong Xue
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Cynthia A Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ludovic Desvignes
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- High Containment Laboratories - Office of Science and Research, NYU Langone Health, New York, NY, 10016, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Mila B Ortigoza
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Medicine/Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Meike Dittmann
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
28
|
Duval D, Pearce-Smith N, Palmer JC, Sarfo-Annin JK, Rudd P, Clark R. Critical appraisal in rapid systematic reviews of COVID-19 studies: implementation of the Quality Criteria Checklist (QCC). Syst Rev 2023; 12:55. [PMID: 36973811 PMCID: PMC10042397 DOI: 10.1186/s13643-023-02219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
In this letter, we briefly describe how we selected and implemented the quality criteria checklist (QCC) as a critical appraisal tool in rapid systematic reviews conducted to inform public health advice, guidance and policy during the COVID-19 pandemic. As these rapid reviews usually included a range of study designs, it was key to identify a single tool that would allow for reliable critical appraisal across most experimental and observational study designs and applicable to a range of topics. After carefully considering a number of existing tools, the QCC was selected as it had good interrater agreement between three reviewers (Fleiss kappa coefficient 0.639) and was found to be easy and fast to apply once familiar with the tool. The QCC consists of 10 questions, with sub-questions to specify how it should be applied to a specific study design. Four of these questions are considered as critical (on selection bias, group comparability, intervention/exposure assessment and outcome assessment) and the rating of a study (high, moderate or low methodological quality) depends on the responses to these four critical questions. Our results suggest that the QCC is an appropriate critical appraisal tool to assess experimental and observational studies within COVID-19 rapid reviews. This study was done at pace during the COVID-19 pandemic; further reliability analyses should be conducted, and more research is needed to validate the QCC across a range of public health topics.
Collapse
Affiliation(s)
- Daphne Duval
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK.
- Research Management and Knowledge Division, UK Health Security Agency (UKHSA), London, UK.
| | - Nicola Pearce-Smith
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK
- Research Management and Knowledge Division, UK Health Security Agency (UKHSA), London, UK
| | - Jennifer C Palmer
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK
- Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jason Kwasi Sarfo-Annin
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK
- Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
| | - Paul Rudd
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK
- Research Management and Knowledge Division, UK Health Security Agency (UKHSA), London, UK
| | - Rachel Clark
- COVID-19 Rapid Evidence Service, UK Health Security Agency (UKHSA), London, UK
- Strategic Evidence and Analysis Division, Office for Health Improvement and Disparities (OHID), Department of Health and Social Care (DHSC), London, UK
| |
Collapse
|
29
|
Groma V, Kugler S, Farkas Á, Füri P, Madas B, Nagy A, Erdélyi T, Horváth A, Müller V, Szántó-Egész R, Micsinai A, Gálffy G, Osán J. Size distribution and relationship of airborne SARS-CoV-2 RNA to indoor aerosol in hospital ward environments. Sci Rep 2023; 13:3566. [PMID: 36864124 PMCID: PMC9980870 DOI: 10.1038/s41598-023-30702-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 03/04/2023] Open
Abstract
Aerosol particles proved to play a key role in airborne transmission of SARS-CoV-2 viruses. Therefore, their size-fractionated collection and analysis is invaluable. However, aerosol sampling in COVID departments is not straightforward, especially in the sub-500-nm size range. In this study, particle number concentrations were measured with high temporal resolution using an optical particle counter, and several 8 h daytime sample sets were collected simultaneously on gelatin filters with cascade impactors in two different hospital wards during both alpha and delta variants of concern periods. Due to the large number (152) of size-fractionated samples, SARS-CoV-2 RNA copies could be statistically analyzed over a wide range of aerosol particle diameters (70-10 µm). Our results revealed that SARS-CoV-2 RNA is most likely to exist in particles with 0.5-4 µm aerodynamic diameter, but also in ultrafine particles. Correlation analysis of particulate matter (PM) and RNA copies highlighted the importance of indoor medical activity. It was found that the daily maximum increment of PM mass concentration correlated the most with the number concentration of SARS-CoV-2 RNA in the corresponding size fractions. Our results suggest that particle resuspension from surrounding surfaces is an important source of SARS-CoV-2 RNA present in the air of hospital rooms.
Collapse
Affiliation(s)
- V Groma
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - Sz Kugler
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - Á Farkas
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - P Füri
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - B Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary
| | - A Nagy
- Department of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Budapest, 1121, Hungary
| | - T Erdélyi
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
| | - A Horváth
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
- Pest County Pulmonology Hospital, Törökbálint, 2045, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, 1085, Hungary
| | | | | | - G Gálffy
- Pest County Pulmonology Hospital, Törökbálint, 2045, Hungary
| | - J Osán
- Environmental Physics Department, Centre for Energy Research, Budapest, 1121, Hungary.
| |
Collapse
|
30
|
Tandjaoui-Lambiotte Y, Lomont A, Moenne-Locoz P, Seytre D, Zahar JR. Spread of viruses, which measures are the most apt to control COVID-19? Infect Dis Now 2023; 53:104637. [PMID: 36526247 PMCID: PMC9746078 DOI: 10.1016/j.idnow.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
The persistent debate about the modes of transmission of SARS-CoV2 and preventive measures has illustrated the limits of our knowledge regarding the measures to be implemented in the face of viral risk. Past and present (pandemic-related) scientific data underline the complexity of the phenomenon and its variability over time. Several factors contribute to the risk of transmission, starting with incidence in the general population (i.e., colonization pressure) and herd immunity. Other major factors include intensity of symptoms, interactions with the reservoir (proximity and duration of contact), the specific characteristics of the virus(es) involved, and a number of unpredictable elements (humidity, temperature, ventilation…). In this review, we will emphasize the difficulty of "standardizing" the situations that might explain the discrepancies found in the literature. We will show that the airborne route remains the main mode of transmission. Regarding preventive measures of prevention, while vaccination remains the cornerstone of the fight against viral outbreaks, we will remind the reader that wearing a mask is the main barrier measure and that the choice of type of mask depends on the risk situations. Finally, we believe that the recent pandemic should induce us in the future to modify our recommendations by adapting our measures in hospitals, not to the pathogen concerned, which is currently the case, but rather to the type of at-risk situation.
Collapse
Affiliation(s)
- Y Tandjaoui-Lambiotte
- Service de Pneumologie-Infectiologie, CH Saint Denis, 2 rue Dr. Delafontaine, 93200, France
| | - A Lomont
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - P Moenne-Locoz
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - D Seytre
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France
| | - J R Zahar
- Unité de Prévention du Risque Infectieux, Service de microbiologie clinique, GHU Paris Seine Saint-Denis, Université Sorbonne Paris Nord, France.
| |
Collapse
|
31
|
Wu Y, Liu Z, Mao S, Liu B, Tong Z. Identify the Virus-like Models for COVID-19 as Bio-Threats: Combining Phage Display, Spectral Detection and Algorithms Analysis. Int J Mol Sci 2023; 24:ijms24043209. [PMID: 36834622 PMCID: PMC9967019 DOI: 10.3390/ijms24043209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The rapid identification and recognition of COVID-19 have been challenging since its outbreak. Multiple methods were developed to realize fast monitoring early to prevent and control the pandemic. In addition, it is difficult and unrealistic to apply the actual virus to study and research because of the highly infectious and pathogenic SARS-CoV-2. In this study, the virus-like models were designed and produced to replace the original virus as bio-threats. Three-dimensional excitation-emission matrix fluorescence and Raman spectroscopy were employed for differentiation and recognition among the produced bio-threats and other viruses, proteins, and bacteria. Combined with PCA and LDA analysis, the identification of the models for SARS-CoV-2 was achieved, reaching a correction of 88.9% and 96.3% after cross-validation, respectively. This idea might provide a possible pattern for detecting and controlling SARS-CoV-2 from the perspective of combining optics and algorithms, which could be applied in the early-warning system against COVID-19 or other bio-threats in the future.
Collapse
Affiliation(s)
- Yuting Wu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Sihan Mao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
- Correspondence:
| |
Collapse
|
32
|
Habet V, Oliveira CR. Clinical Epidemiology of Pediatric Coronavirus Disease 2019 and its Postacute Sequelae. Semin Respir Crit Care Med 2023; 44:66-74. [PMID: 36646086 PMCID: PMC9926930 DOI: 10.1055/s-0042-1759566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected individuals of all ages across. Although children generally experience a benign illness from COVID-19, the emergence of novel variants of the virus has resulted in significant changes in the morbidity and mortality rates for this age group. Currently, COVID-19 is the eighth leading cause of pediatric deaths in the United States. In addition to acute respiratory illness, some children can develop a severe postinfectious condition known as a multisystem inflammatory syndrome in children, which can progress to rapid-onset cardiogenic shock. Recovery from COVID-19 can also be slow for some children, resulting in persistent or reoccurring symptoms for months, commonly referred to as long COVID. These postinfectious sequelae are often distressing for children and their parents, can negatively impact the quality of life, and impose a considerable burden on the health care system. In this article, we review the clinical epidemiology of pediatric COVID-19 and outline the management considerations for its acute and postacute manifestations.
Collapse
Affiliation(s)
- Victoria Habet
- Section of Critical Care, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos R. Oliveira
- Section of Infectious Diseases and Global Health, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
- Section of Health Informatics, Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut
| |
Collapse
|
33
|
Aganovic A, Cao G, Kurnitski J, Wargocki P. New dose-response model and SARS-CoV-2 quanta emission rates for calculating the long-range airborne infection risk. BUILDING AND ENVIRONMENT 2023; 228:109924. [PMID: 36531865 PMCID: PMC9747236 DOI: 10.1016/j.buildenv.2022.109924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Predictive models for airborne infection risk have been extensively used during the pandemic, but there is yet still no consensus on a common approach, which may create misinterpretation of results among public health experts and engineers designing building ventilation. In this study we applied the latest data on viral load, aerosol droplet sizes and removal mechanisms to improve the Wells Riley model by introducing the following novelties i) a new model to calculate the total volume of respiratory fluid exhaled per unit time ii) developing a novel viral dose-based generation rate model for dehydrated droplets after expiration iii) deriving a novel quanta-RNA relationship for various strains of SARS-CoV-2 iv) proposing a method to account for the incomplete mixing conditions. These new approaches considerably changed previous estimates and allowed to determine more accurate average quanta emission rates including omicron variant. These quanta values for the original strain of 0.13 and 3.8 quanta/h for breathing and speaking and the virus variant multipliers may be used for simple hand calculations of probability of infection or with developed model operating with six size ranges of aerosol droplets to calculate the effect of ventilation and other removal mechanisms. The model developed is made available as an open-source tool.
Collapse
Affiliation(s)
- Amar Aganovic
- Department of Automation and Process Engineering, UiT The Arctic University of Norway, Tromsø, Norway
| | - Guangyu Cao
- Department of Energy and Process Engineering, Norwegian University of Science and Technology - NTNU, Trondheim, Norway
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Tallinn, Estonia
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
34
|
Schlechter Luftaustausch begünstigt SARS-CoV-2-Übertragung über lange Distanz. Pneumologie 2023. [DOI: 10.1055/a-1945-2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
The Skagit County choir COVID-19 outbreak - have we got it wrong? Public Health 2023; 214:85-90. [PMID: 36525760 PMCID: PMC9659549 DOI: 10.1016/j.puhe.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Over time, papers or reports may come to be taken for granted as evidence for some phenomenon. Researchers cite them without critically re-examining findings in the light of subsequent work. This can give rise to misleading or erroneous results and conclusions. We explore whether this has occurred in the widely reported outbreak of SARS-CoV-2 at a rehearsal of the Skagit Valley Chorale in March 2020, where it was assumed, and subsequently asserted uncritically, that the outbreak was due to a single infected person. STUDY DESIGN Review of original report and subsequent modelling and interpretations. METHODS We reviewed and analysed original outbreak data in relation to published data on incubation period, subsequent modelling drawing on the data, and interpretations of transmission characteristics of this incident. RESULTS We show it is vanishingly unlikely that this was a single point source outbreak as has been widely claimed and on which modelling has been based. CONCLUSION An unexamined assumption has led to erroneous policy conclusions about the risks of singing, and indoor spaces more generally, and the benefits of increased levels of ventilation. Although never publicly identified, one individual bears the moral burden of knowing what health outcomes have been attributed to their actions. We call for these claims to be re-examined and for greater ethical responsibility in the assumption of a point source in outbreak investigations.
Collapse
|
36
|
Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region. Front Public Health 2022; 10:1087087. [PMID: 36568748 PMCID: PMC9787545 DOI: 10.3389/fpubh.2022.1087087] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction While increasing the ventilation rate is an important measure to remove inhalable virus-laden respiratory particles and lower the risk of infection, direct validation in schools with population-based studies is far from definitive. Methods We investigated the strength of association between ventilation and SARS-CoV-2 transmission reported among the students of Italy's Marche region in more than 10,000 classrooms, of which 316 were equipped with mechanical ventilation. We used ordinary and logistic regression models to explore the relative risk associated with the exposure of students in classrooms. Results and discussion For classrooms equipped with mechanical ventilation systems, the relative risk of infection of students decreased at least by 74% compared with a classroom with only natural ventilation, reaching values of at least 80% for ventilation rates >10 L s-1 student-1. From the regression analysis we obtained a relative risk reduction in the range 12%15% for each additional unit of ventilation rate per person. The results also allowed to validate a recently developed predictive theoretical approach able to estimate the SARS-CoV-2 risk of infection of susceptible individuals via the airborne transmission route. We need mechanical ventilation systems to protect students in classrooms from airborne transmission; the protection is greater if ventilation rates higher than the rate needed to ensure indoor air quality (>10 L s-1 student-1) are adopted. The excellent agreement between the results from the retrospective cohort study and the outcome of the predictive theoretical approach makes it possible to assess the risk of airborne transmission for any indoor environment.
Collapse
Affiliation(s)
- Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Ricolfi
- Department of Psychology, University of Turin, Turin, Italy
- David Hume Foundation, Turin, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| |
Collapse
|
37
|
Schrarstzhaupt IN, Fontes-Dutra M, Diaz-Quijano FA. Early estimates of the incidence trend and the reproductive number of the monkeypox epidemic in Brazil. Travel Med Infect Dis 2022; 50:102484. [PMID: 36342036 PMCID: PMC9617678 DOI: 10.1016/j.tmaid.2022.102484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND We aimed to calculate the weekly growth of the incidence and the effective reproductive number (Rt) of the 2022 Monkeypox epidemic during its introduction in Brazil. METHOD We described the case distribution in the country and calculated the incidence trend and the Rt in the four geographical states with the highest case reports. By using two regression approaches, count model and the Prais-Winsten, we calculated the relative incidence increase. Moreover, we estimated the Rt for the period between the 24th and the 50th days after the first official report, using a serial interval reported in another population and two alternative values (± 3 days). RESULTS Up to August 22, 3.896 Monkeypox cases were confirmed in Brazil. The weekly incidence increases were between 37.5% (95% CI: 20.7% - 56,6%) and 82.1% (95% CI: 59.5%-107.8%), and all estimates of Rt were significantly higher than 1 in the four states analyzed. CONCLUSIONS The Monkeypox outbreak in Brazil is a significant public health emergency that requires coordinated public health strategies such as testing, contact tracing, and vaccination.
Collapse
Affiliation(s)
| | - Mellanie Fontes-Dutra
- University of Vale do Rio dos Sinos (UNISINOS), School of Health, Rio Grande do Sul, RS, Brazil
| | - Fredi Alexander Diaz-Quijano
- University of São Paulo, School of Public Health, Department of Epidemiology - Laboratory of Causal Inference in Epidemiology (LINCE-USP), São Paulo, SP, Brazil
| |
Collapse
|
38
|
Shrimpton AJ, Pickering AE. Aerosols: time to clear the air? Anaesthesia 2022; 77:1193-1196. [DOI: 10.1111/anae.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/30/2022]
Affiliation(s)
- A. J. Shrimpton
- Anaesthesia, Pain and Critical Care Sciences, School of Physiology, Pharmacology and Neuroscience University of Bristol UK
| | - A. E. Pickering
- Anaesthesia, Pain and Critical Care Sciences, School of Physiology, Pharmacology and Neuroscience University of Bristol UK
| |
Collapse
|
39
|
Schlechter Luftaustausch begünstigt SARS-CoV-2-Übertragung über lange Distanz. Dtsch Med Wochenschr 2022. [DOI: 10.1055/a-1899-6820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|