1
|
Barghi M, Heidari Z, Haghighatdoost F, Feizi A, Hashemipour M. New insights into the relationship of antimüllerian hormone with polycystic ovary syndrome and its diagnostic accuracy: an updated and extended meta-analysis using a marginal beta-binomial model. Am J Obstet Gynecol 2025; 232:164-187.e31. [PMID: 39393481 DOI: 10.1016/j.ajog.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVE This study aimed to investigate the diagnostic role of antimüllerian hormone in polycystic ovary syndrome using an advanced marginal beta-binomial statistical model, and present the optimal cutoff by different age groups, geographical locations, body mass indexes, and other relevant factors. DATA SOURCES A comprehensive and systematic literature search was conducted in Web of Science, PubMed/Medline, Scopus, Cochrane Library, Embase, and ProQuest until August 2024. STUDY ELIGIBILITY CRITERIA Epidemiologic studies that used the Androgen Excess and Polycystic Ovary Syndrome Society, National Institutes of Health, or Rotterdam diagnostic criteria for polycystic ovary syndrome were included in this meta-analysis. Studies were eligible for inclusion if they provided information on the sensitivity and specificity of antimüllerian hormone or related data that allowed for the calculation of these parameters, and/or data on odds ratios and means. METHODS The diagnostic efficacy of antimüllerian hormone was assessed using the marginal beta-binomial statistical model and the summary receiver operating characteristic method in terms of pooled sensitivity, specificity, and diagnostic odds ratio with 95% confidence interval. Pooled weighted mean difference and pooled odds ratios with 95% confidence interval were estimated using a random effects model. RESULTS A total of 202 observational studies were included in the pooled analysis, of which 106 studies (including 19,465 cases and 29,318 controls) were used for meta-analysis of sensitivity/specificity and 186 studies (including 30,656 cases and 34,360 controls) for meta-analysis of mean difference. The pooled sensitivity, specificity, and diagnostic odds ratio for antimüllerian hormone were 0.79 (95% confidence interval, 0.52-0.97), 0.82 (95% confidence interval, 0.64-0.99), and 17.12 (95% confidence interval, 14.37-20.32), respectively. The area under the curve based on the summary receiver operating characteristic model was 0.90 (95% confidence interval, 0.87-0.93). Antimüllerian hormone levels were significantly higher in women with polycystic ovary syndrome than in control women (weighted mean difference, 4.91; 95% confidence interval, 4.57-5.27). In addition, individuals with higher antimüllerian hormone levels were more likely to be affected by polycystic ovary syndrome (odds ratio, 23.17; 95% confidence interval, 18.74-28.66; I2=94%; P<.001). A serum antimüllerian hormone concentration of >5.39 ng/mL was associated with polycystic ovary syndrome (sensitivity, 88.6%; specificity, 92.75%; likelihood ratio for a positive test result, 12.21; likelihood ratio for a negative test result, 0.12). CONCLUSION According to the results of this meta-analysis, serum antimüllerian hormone concentration is a valuable biomarker for the diagnosis of polycystic ovary syndrome. The cutoff points suggested by the current meta-analysis need to be evaluated and validated by future studies before their implementation into clinical practice.
Collapse
Affiliation(s)
- Mostafa Barghi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Wu R, Mai Z, Song X, Zhao W. Hotspots and research trends of gut microbiome in polycystic ovary syndrome: a bibliometric analysis (2012-2023). Front Microbiol 2025; 15:1524521. [PMID: 39845049 PMCID: PMC11753182 DOI: 10.3389/fmicb.2024.1524521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Polycystic ovary syndrome (PCOS) is a common gynecological condition affecting individuals of reproductive age and is linked to the gut microbiome. This study aimed to identify the hotspots and research trends within the domain of the gut microbiome in PCOS through bibliometric analysis. Methods Utilizing bibliometric techniques, we examined the literature on the gut microbiome in PCOS from the Web of Science Core Collection spanning the period from 2012 to 2023. Analytical tools such as CiteSpace, VOSviewer, and Bibliometric R packages were employed to evaluate various metrics, including countries/regions, institutions, authors, co-cited authors, authors' H-index, journals, co-references, and keywords. Results A total of 191 publications were identified in the field of gut microbiome in PCOS, with an increase in annual publications from 2018 to 2023. People's Republic of China was the most productive country, followed by the United States of America (USA), India. Shanghai Jiao Tong University, Fudan University, and Beijing University of Chinese Medicine were the top three most publications institutions. Thackray VG was identified as the most prolific author, holding the highest H-index, while Liu R received the highest total number of citations. The journal "Frontiers in Endocrinology" published the most articles in this domain. The most frequently co-cited reference was authored by Qi XY. The analysis of keyword burst detection identified "bile acids" (2021-2023) as the leading frontier keyword. Additionally, "gut dysbiosis," "phenotypes," "adolescents," "metabolomics," "metabolites," "fecal microbiota transplantation," and "IL-22" have emerged as the primary keywords reflecting recent research trends. Conclusion This bibliometric analysis explores how the gut microbiome influences endocrine and metabolic disorders related to PCOS, emphasizing its role in the development of PCOS and treatments targeting the gut microbiome. The findings serve as a valuable resource for researchers, enabling them to identify critical hotspots and emerging areas of investigation in this field.
Collapse
Affiliation(s)
- Ruishan Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Zhensheng Mai
- Department of Obstetrics and Gynecology, First People’s Hospital of Foshan, Foshan, China
| | - Xiaoyan Song
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Wenzhong Zhao
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| |
Collapse
|
3
|
Guo D, Ning X, Bai T, Tan L, Zhou Y, Guo Z, Li X. Interaction between Vitamin D homeostasis, gut microbiota, and central precocious puberty. Front Endocrinol (Lausanne) 2024; 15:1449033. [PMID: 39717097 PMCID: PMC11663660 DOI: 10.3389/fendo.2024.1449033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Central precocious puberty (CPP) is an endocrine disease in children, characterized by rapid genital development and secondary sexual characteristics before the age of eight in girls and nine in boys. The premature activation of the hypothalamic-pituitary-gonadal axis (HPGA) limits the height of patients in adulthood and is associated with a higher risk of breast cancer. How to prevent and improve the prognosis of CPP is an important problem. Vitamin D receptor (VDR) is widely expressed in the reproductive system, participates in the synthesis and function of regulatory sex hormones, and affects the development and function of gonads. In addition, gut microbiota plays an important role in human health by mainly regulating metabolites, energy homeostasis, and hormone regulation. This review aims to clarify the effect of vitamin D deficiency on the occurrence and development of CPP and explore the role of gut microbiota in it. Although evidence on the interaction between vitamin D deficiency, gut microbiota, and sexual development remains limited, vitamin D supplementation and gut microbiota interventions offer a promising, non-invasive strategy for managing CPP.
Collapse
Affiliation(s)
- Doudou Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ning
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingfang Tan
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Zhou
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhichen Guo
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kim N, Yang C. Butyrate as a Potential Modulator in Gynecological Disease Progression. Nutrients 2024; 16:4196. [PMID: 39683590 DOI: 10.3390/nu16234196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation. In PCOS, butyrate aids in restoring hormonal balance, enhancing insulin sensitivity, and reducing chronic inflammation. For endometriosis, butyrate appears to suppress immune dysregulation and minimize lesion proliferation. Additionally, in cervical and ovarian cancers, butyrate demonstrates anticancer effects through mechanisms such as cell cycle arrest, apoptosis induction, and suppression of tumor progression. Dietary interventions, particularly high-fiber and Mediterranean diets, that increase butyrate production are proposed as complementary approaches, supporting natural microbiota modulation to enhance therapeutic outcomes. However, butyrate's short half-life limits its clinical application, spurring interest in butyrate analogs and probiotics to maintain stable levels and extend its benefits. This review consolidates current findings on butyrate's multifaceted impact across gynecological health, highlighting the potential for microbiota-centered therapies in advancing treatment strategies and improving women's reproductive health.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Changwon Yang
- Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
5
|
Yu L, Chen X, Bai X, Fang J, Sui M. Microbiota Alters and Its Correlation with Molecular Regulation Underlying Depression in PCOS Patients. Mol Neurobiol 2024; 61:9977-9992. [PMID: 37995075 DOI: 10.1007/s12035-023-03744-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Depression is one of the complications in patients with polycystic ovary syndrome (PCOS) that leads to considerable mental health. Accumulating evidence suggests that human gut microbiomes are associated with the progression of PCOS and depression. However, whether microbiota influences depression development in PCOS patients is still uncharacterized. In this study, we employed metagenomic sequencing and transcriptome sequencing (RNA-seq) to profile the composition of the fecal microbiota and gene expression of peripheral blood mononuclear cells in depressed women with PCOS (PCOS-DP, n = 27) in comparison to mentally healthy women with PCOS (PCOS, n = 18) and compared with healthy control (HC, n = 27) and patients with major depressive disorder (MDD, n = 29). Gut microbiota assessment revealed distinct patterns in the relative abundance in the PCOS-DP compared to HC, MDD, and PCOS groups. Several gut microbes exhibited uniquely and significantly higher abundance in the PCOS-DP compared to PCOS patients, inducing EC Ruminococcus torques, Coprococcus comes, Megasphaera elsdenii, Acidaminococcus intestini, and Barnesiella viscericola. Bacteroides eggerthii was a potential gut microbial biomarker for the PCOS-DP. RNA-seq profiling identified that 35 and 37 genes were significantly elevated and downregulated in the PCOS-DP, respectively. The enhanced differential expressed genes (DEGs) in the PCOS-DP were enriched in pathways involved in signal transduction and endocrine and metabolic diseases, whereas several lipid metabolism pathways were downregulated. Intriguingly, genes correlated with the gut microbiota were found to be significantly enriched in pathways of neurodegenerative diseases and the immune system, suggesting that changes in the microbiota may have a systemic impact on the expression of neurodegenerative diseases and immune genes. Gut microbe-related DEGs of CREB3L3 and CCDC173 were possible molecular biomarkers and therapeutic targets of women with PCOS-DP. Our multi-omics data indicate shifts in the gut microbiome and host gene regulation in PCOS patients with depression, which is of possible etiological and diagnostic importance.
Collapse
Affiliation(s)
- Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Xiaoyu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Ming Sui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
6
|
Wydra J, Szlendak-Sauer K, Zgliczyńska M, Żeber-Lubecka N, Ciebiera M. Gut Microbiota and Oral Contraceptive Use in Women with Polycystic Ovary Syndrome: A Systematic Review. Nutrients 2024; 16:3382. [PMID: 39408349 PMCID: PMC11478613 DOI: 10.3390/nu16193382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine syndromes affecting women at reproductive age. With increasing knowledge of the role of the microbiota in the pathogenesis of PCOS, new management strategies began to emerge. However, data on the impact of established treatment regimens, such as metformin and oral contraceptive agents, on the gut microbiota composition are scarce. This study aimed to evaluate the specificity of the gut microbiota in women with PCOS before and after treatment with oral contraceptives. Methods: We have systematically searched the following databases: PubMed/MEDLINE, Scopus, Web of Science and Google Scholar. The last search was performed on 13 May 2024. We included only full-text original research articles written in English. The risk of bias was assessed using a modified version of the Newcastle-Ottawa Scale. Results: The above described search strategy retrieved 46 articles. Additionally, 136 articles were identified and screened through Google Scholar. After removing duplicates, we screened the titles and abstracts, resulting in three eligible articles constituting the final pool. They were published between 2020 and 2022 and are based on three ethnically distinct study populations: Turkish, Spanish and American. The studies included a total of 37 women diagnosed with PCOS and using OCs. Conclusions: OC treatment does not seem to affect the gut microbiota in a significant way in patients with PCOS in short observation. Well-designed randomized controlled studies with adequate, unified sample size are lacking.
Collapse
Affiliation(s)
- Jakub Wydra
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Katarzyna Szlendak-Sauer
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Magdalena Zgliczyńska
- Department of Obstetrics, Perinatology and Neonatology, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| |
Collapse
|
7
|
Salehi S, Allahverdy J, Pourjafar H, Sarabandi K, Jafari SM. Gut Microbiota and Polycystic Ovary Syndrome (PCOS): Understanding the Pathogenesis and the Role of Probiotics as a Therapeutic Strategy. Probiotics Antimicrob Proteins 2024; 16:1553-1565. [PMID: 38421576 DOI: 10.1007/s12602-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common disorders among women in modern societies. A variety of factors can contribute to the development of PCOS. These women often exhibit high insulin resistance (IR), hyperandrogenism, irregular periods, and infertility. Dysbiosis of the gut microbiota (GMB) in women with PCOS has attracted the attention of many researchers. Porphyromonas spp., B. coprophilus, and F. prausnitzii are found in higher numbers in the gut of women with PCOS. Short-chain fatty acids (SCFAs), produced by the intestinal microbiota through fermentation, play an essential role in regulating metabolic activities and are helpful in reducing insulin resistance and improving PCOS symptoms. According to studies, the bacteria producing SCFAs in the gut of these women are less abundant than in healthy women. The effectiveness of using probiotic supplements has been proven to improve the condition of women with PCOS. Daily consumption of probiotics improves dysbiosis of the intestinal microbiome and increases the production of SCFAs.
Collapse
Affiliation(s)
- Samaneh Salehi
- Department of Food Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Javad Allahverdy
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Students' Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Khashayar Sarabandi
- Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box 91895, Mashhad, 157-356, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Singh V, Mahra K, Jung D, Shin JH. Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics. Probiotics Antimicrob Proteins 2024; 16:1744-1761. [PMID: 38647957 DOI: 10.1007/s12602-024-10262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme β-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Kanika Mahra
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - DaRyung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
9
|
Wang M, Zheng LW, Ma S, Zhao DH, Xu Y. The gut microbiota: emerging biomarkers and potential treatments for infertility-related diseases. Front Cell Infect Microbiol 2024; 14:1450310. [PMID: 39391885 PMCID: PMC11464459 DOI: 10.3389/fcimb.2024.1450310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infertility is a disease of impaired fertility. With socioeconomic development, changes in human lifestyles, and increased environmental pollution, the problem of low human fertility has become increasingly prominent. The incidence of global infertility is increasing every year. Many factors lead to infertility, and common female factors include tubal factors, ovulation disorders, endometriosis, and immune factors. The gut microbiota is involved in many physiological processes, such as nutrient absorption, intestinal mucosal growth, glycolipid metabolism, and immune system regulation. An altered gut flora is associated with female infertility disorders such as polycystic ovary syndrome (PCOS), endometriosis (EMs), and premature ovarian failure (POF). Dysbiosis of the gut microbiota directly or indirectly contributes to the development of female infertility disorders, which also affect the homeostasis of the gut microbiota. Identifying the etiology and pathogenesis of infertility in patients is the focus of reproductive medicine physicians. We studied the developmental mechanism between the gut microbiota and PCOS, EMs, and POF from a new perspective, providing new ideas for diagnosing and treating female infertility diseases and specific reference values for eugenics.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Ravat FK, Goswami JR, Nair SM, Thummar KN. A review of metabolic and microbial influences on women with polycystic ovarian syndrome. Steroids 2024; 212:109512. [PMID: 39278517 DOI: 10.1016/j.steroids.2024.109512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting reproductive-aged women worldwide. Characterized by irregular menstruation, signs of hyperandrogenism, polycystic ovaries via ultrasound ovarian dysfunction. AREA COVERED The review delves into the intricate pathophysiological mechanisms underlying the syndrome. Dysregulation of the hypothalamic-pituitary-ovarian axis, IR, obesity, and hyperandrogenism contribute to anovulation and follicular dysfunction which is associated with gut dysbiosis, bile metabolites, and an unhealthy diet. Metabolomics and genomics analyses offer insights into the metabolism of bile acids (BAs) and gut microbiota dysbiosis in PCOS. BAs, crucial for metabolic regulation, are influenced by microbes, impacting hormonal balance. Disruptions in gut microbiota contribute to hormonal dysregulation. Interconnected pathways involving BAs and gut microbiota are pivotal in PCOS. Therapeutic implications include a healthy diet, exercise, and interventions targeting gut microbiota modulation and BAs metabolite to alleviate PCOS symptoms and improve metabolic health. CONCLUSION PCOS requires a multifaceted, multidisciplinary approach for effective management, including lifestyle changes, medications, and emerging therapies. Tailored strategies considering individual needs and personalized treatment plans are crucial for successful PCOS management. Despite existing knowledge, comprehensive investigations are needed to bridge research gaps and discern the interconnected pathways linking the development of PCOS and the gut-bile axis which are interconnected with metabolic disorders and the development of PCOS. Gut microbiota and hormonal regulation offer promising avenues for innovative therapeutic strategies aimed at addressing the root causes of PCOS and improving patient outcomes.
Collapse
Affiliation(s)
- Foram K Ravat
- Gujarat Technological University School of Pharmacy, Gandhinagar, Gujarat, India.
| | - Janki R Goswami
- Gujarat Technological University School of Pharmacy, Gandhinagar, Gujarat, India.
| | - Sneha M Nair
- Gujarat Technological University School of Pharmacy, Gandhinagar, Gujarat, India.
| | - Kashyap N Thummar
- Gujarat Technological University School of Pharmacy, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Wang B, Hu L, Dong P. Meta-analysis of gut microbiota biodiversity in patients with polycystic ovary syndrome based on medical images. SLAS Technol 2024; 29:100178. [PMID: 39159747 DOI: 10.1016/j.slast.2024.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
PCOS is thought to be associated with metabolic disorders, endocrine disorders, and reproductive system problems. By collecting relevant literature and conducting meta-analyses, we integrated data from multiple studies to enhance the reliability of the analysis results. Studies with medical image data were selected to ensure the accuracy and credibility of the studies. A statistical framework was employed to examine the biodiversity indicators associated with the gut microbiota. These findings provide robust support for the notion that PCOS is intricately linked to notable alterations within the gut microbial community. The utilization of a statistical approach and the systematic synthesis of research findings in this meta-analysis contribute to a more comprehensive understanding of the substantial impact of PCOS on the gut microbiota landscape. PCOS patients showed significant changes in the relative abundance of certain bacteria in their gut microbiota. This imbalance will lead to the instability of intestinal microecological environment, and then affect the health of the body.
Collapse
Affiliation(s)
- Baimiao Wang
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Lanyawen Hu
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| | - Panpan Dong
- Department of Reproductive Immunology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Zhu Q, Zhang N. Gut Microbiome Composition in Polycystic Ovary Syndrome Adult Women: A Systematic Review and Meta-analysis of Observational Studies. Reprod Sci 2024; 31:1800-1818. [PMID: 38212581 DOI: 10.1007/s43032-023-01440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder that is frequently linked to anovulation in women who are experiencing infertility. Intestinal flora, also known as the "second genome" of the host, is closely associated with chronic metabolic diseases. Recently, there has been increasing attention on the connection between PCOS and the gut microbiome, and experiments have been conducted. However, the results were unsatisfactory and inconsistent. This review aims to provide a comprehensive overview of the literature investigating the associations between the gut microbiome and PCOS in adults. The goal is to identify whether there are changes in the composition of the gut microbiome in individuals with PCOS. This is the first systematic review to focus on functional alterations in the gut microbiome, which could provide insights into potential mechanisms of microbial involvement in the development of PCOS. We found that there was no significant change in gut microbiome biodiversity in PCOS. Meta-analyses of three studies revealed a significantly higher abundance of Proteobacteria (1.12, 95% CI, 0.21, 2.02, I2 = 0%) in adults with PCOS. At the genus level, Bacteroides, Enterococcus, and Escherichia-Shigella were found to be enriched in patients with PCOS. Species such as Ruminococcus gnavus group, Parabacteroides distasonis, and Bacteroides fragilis showed an increase in PCOS. Metabolic pathways associated with glucose, lipid metabolism, bile acid metabolism, and protein absorption were found to be enriched in individuals with PCOS. The gut microbiome in PCOS is not characterized by lower diversity, but the composition is altered at the phylum, family, genus, or species level. Consequently, the metabolic pathway differs according to the phenotype of PCOS.
Collapse
Affiliation(s)
- Qiaoying Zhu
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Chang'an District, Shijiazhuang City, Hebei Province, China
| | - Na Zhang
- Department of Reproductive Medicine, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Chang'an District, Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
13
|
Wang Y, Jin C, Li H, Liang X, Zhao C, Wu N, Yue M, Zhao L, Yu H, Wang Q, Ge Y, Huo M, Lv X, Zhang L, Zhao G, Gai Z. Gut microbiota-metabolite interactions meditate the effect of dietary patterns on precocious puberty. iScience 2024; 27:109887. [PMID: 38784002 PMCID: PMC11112371 DOI: 10.1016/j.isci.2024.109887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Precocious puberty, a pediatric endocrine disorder classified as central precocious puberty (CPP) or peripheral precocious puberty (PPP), is influenced by diet, gut microbiota, and metabolites, but the specific mechanisms remain unclear. Our study found that increased alpha-diversity and abundance of short-chain fatty acid-producing bacteria led to elevated levels of luteinizing hormone and follicle-stimulating hormone, contributing to precocious puberty. The integration of specific microbiota and metabolites has potential diagnostic value for precocious puberty. The Prevotella genus-controlled interaction factor, influenced by complex carbohydrate consumption, mediated a reduction in estradiol levels. Interactions between obesity-related bacteria and metabolites mediated the beneficial effect of seafood in reducing luteinizing hormone levels, reducing the risk of obesity-induced precocious puberty, and preventing progression from PPP to CPP. This study provides valuable insights into the complex interplay between diet, gut microbiota and metabolites in the onset, development and clinical classification of precocious puberty and warrants further investigation.
Collapse
Affiliation(s)
- Ying Wang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Chuandi Jin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hongying Li
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Xiangrong Liang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Changying Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Nan Wu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Min Yue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lu Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Central Laboratory, Weifang People’s Hospital/The First Affiliated Hospital of Shandong Second Medical university, Weifang 261000, China
- Shandong Laibo Biotechnology Co., Ltd., Jinan 250101, China
| | - Han Yu
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Qian Wang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Yongsheng Ge
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Meiling Huo
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Xin Lv
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Lehai Zhang
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| | - Guoping Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Microbiome-X, National Institute of Health Data Science of China, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Zhongtao Gai
- Children’s Hospital Affiliated to Shandong University, Shandong University, Jinan 250022, China
- Jinan Children’s Hospital, Jinan 250022, China
| |
Collapse
|
14
|
Lee S, Tejesvi MV, Hurskainen E, Aasmets O, Plaza-Díaz J, Franks S, Morin-Papunen L, Tapanainen JS, Ruuska TS, Altmäe S, Org E, Salumets A, Arffman RK, Piltonen TT. Gut bacteriome and mood disorders in women with PCOS. Hum Reprod 2024; 39:1291-1302. [PMID: 38614956 PMCID: PMC11145006 DOI: 10.1093/humrep/deae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
STUDY QUESTION How does the gut bacteriome differ based on mood disorders (MDs) in women with polycystic ovary syndrome (PCOS), and how can the gut bacteriome contribute to the associations between these two conditions? SUMMARY ANSWER Women with PCOS who also have MDs exhibited a distinct gut bacteriome with reduced alpha diversity and a significantly lower abundance of Butyricicoccus compared to women with PCOS but without MDs. WHAT IS KNOWN ALREADY Women with PCOS have a 4- to 5-fold higher risk of having MDs compared to women without PCOS. The gut bacteriome has been suggested to influence the pathophysiology of both PCOS and MDs. STUDY DESIGN, SIZE, DURATION This population-based cohort study was derived from the Northern Finland Birth Cohort 1966 (NFBC1966), which includes all women born in Northern Finland in 1966. Women with PCOS who donated a stool sample at age 46 years (n = 102) and two BMI-matched controls for each case (n = 205), who also responded properly to the MD criteria scales, were included. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 102 women with PCOS and 205 age- and BMI-matched women without PCOS were included. Based on the validated MD criteria, the subjects were categorized into MD or no-MD groups, resulting in the following subgroups: PCOS no-MD (n = 84), PCOS MD (n = 18), control no-MD (n = 180), and control MD (n = 25). Clinical characteristics were assessed at age 31 years and age 46 years, and stool samples were collected from the women at age 46 years, followed by the gut bacteriome analysis using 16 s rRNA sequencing. Alpha diversity was assessed using observed features and Shannon's index, with a focus on genera, and beta diversity was characterized using principal components analysis (PCA) with Bray-Curtis Dissimilarity at the genus level. Associations between the gut bacteriome and PCOS-related clinical features were explored by Spearman's correlation coefficient. A P-value for multiple testing was adjusted with the Benjamini-Hochberg false discovery rate (FDR) method. MAIN RESULTS AND THE ROLE OF CHANCE We observed changes in the gut bacteriome associated with MDs, irrespective of whether the women also had PCOS. Similarly, PCOS MD cases showed a lower alpha diversity (Observed feature, PCOS no-MD, median 272; PCOS MD, median 208, FDR = 0.01; Shannon, PCOS no-MD, median 5.95; PCOS MD, median 5.57, FDR = 0.01) but also a lower abundance of Butyricicoccus (log-fold changeAnalysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC)=-0.90, FDRANCOM-BC=0.04) compared to PCOS no-MD cases. In contrast, in the controls, the gut bacteriome did not differ based on MDs. Furthermore, in the PCOS group, Sutterella showed positive correlations with PCOS-related clinical parameters linked to obesity (BMI, r2=0.31, FDR = 0.01; waist circumference, r2=0.29, FDR = 0.02), glucose metabolism (fasting glucose, r2=0.46, FDR < 0.001; fasting insulin, r2=0.24, FDR = 0.05), and gut barrier integrity (zonulin, r2=0.25, FDR = 0.03). LIMITATIONS, REASONS FOR CAUTION Although this was the first study to assess the link between the gut bacteriome and MDs in PCOS and included the largest PCOS dataset for the gut microbiome analysis, the number of subjects stratified by the presence of MDs was limited when contrasted with previous studies that focused on MDs in a non-selected population. WIDER IMPLICATIONS OF THE FINDINGS The main finding is that gut bacteriome is associated with MDs irrespective of the PCOS status, but PCOS may also modulate further the connection between the gut bacteriome and MDs. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement (MATER, No. 813707), the Academy of Finland (project grants 315921, 321763, 336449), the Sigrid Jusélius Foundation, Novo Nordisk Foundation (NNF21OC0070372), grant numbers PID2021-12728OB-100 (Endo-Map) and CNS2022-135999 (ROSY) funded by MCIN/AEI/10.13039/501100011033 and ERFD A Way of Making Europe. The study was also supported by EU QLG1-CT-2000-01643 (EUROBLCS) (E51560), NorFA (731, 20056, 30167), USA/NIH 2000 G DF682 (50945), the Estonian Research Council (PRG1076, PRG1414), EMBO Installation (3573), and Horizon 2020 Innovation Grant (ERIN, No. EU952516). The funders did not participate in any process of the study. We have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- S Lee
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - M V Tejesvi
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - E Hurskainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - O Aasmets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - J Plaza-Díaz
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - S Franks
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - L Morin-Papunen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - J S Tapanainen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynaecology, HFR—Cantonal Hospital of and University of Fribourg, Fribourg, Switzerland
| | - T S Ruuska
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | - S Altmäe
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - E Org
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - A Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - R K Arffman
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Babu A, Devi Rajeswari V, Ganesh V, Das S, Dhanasekaran S, Usha Rani G, Ramanathan G. Gut Microbiome and Polycystic Ovary Syndrome: Interplay of Associated Microbial-Metabolite Pathways and Therapeutic Strategies. Reprod Sci 2024; 31:1508-1520. [PMID: 38228976 DOI: 10.1007/s43032-023-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a multifaceted disease with an intricate etiology affecting reproductive-aged women. Despite attempts to unravel the pathophysiology, the molecular mechanism of PCOS remains unknown. There are no effective or suitable therapeutic strategies available to ameliorate PCOS; however, the symptoms can be managed. In recent years, a strong association has been found between the gut microbiome and PCOS, leading to the formulation of novel ideas on the genesis and pathological processes of PCOS. Further, gut microbiome dysbiosis involving microbial metabolites may trigger PCOS symptoms via many mechanistic pathways including those associated with carbohydrates, short-chain fatty acids, lipopolysaccharides, bile acids, and gut-brain axis. We present the mechanistic pathways of PCOS-related microbial metabolites and therapeutic opportunities available to treat PCOS, such as prebiotics, probiotics, and fecal microbiota therapy. In addition, the current review highlights the emerging treatment strategies available to alleviate the symptoms of PCOS.
Collapse
Affiliation(s)
- Achsha Babu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - V Ganesh
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Soumik Das
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sivaraman Dhanasekaran
- Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - G Usha Rani
- Department of Obstetrics And Gynecology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Pérez-Prieto I, Rodríguez-Santisteban A, Altmäe S. Beyond the reproductive tract: gut microbiome and its influence on gynecological health. Curr Opin Obstet Gynecol 2024:00075197-990000000-00151. [PMID: 38598655 DOI: 10.1097/gco.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The analysis of microbiome in association with female health is today a "hot topic" with the main focus on microbes in the female reproductive tract. Nevertheless, recent studies are providing novel information of the possible influence of the gut microbiome on gynecological health outcomes, especially as we start to understand that the gut microbiome is an extended endocrine organ influencing female hormonal levels. This review summarizes the current knowledge of the gut microbes in association with gynecological health. RECENT FINDINGS The gut microbiome has been associated with endometriosis, polycystic ovary syndrome, gynecological cancers, and infertility, although there is a lack of consistency and consensus among studies due to different study designs and protocols used, and the studies in general are underpowered. SUMMARY The interconnection between the gut microbiome and reproductive health is complex and further research is warranted. The current knowledge in the field emphasizes the link between the microbiome and gynecological health outcomes, with high potential for novel diagnostic and treatment tools via modulation of the microenvironment.
Collapse
Affiliation(s)
- Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Sun J, Wang M, Kan Z. Causal relationship between gut microbiota and polycystic ovary syndrome: a literature review and Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1280983. [PMID: 38362275 PMCID: PMC10867277 DOI: 10.3389/fendo.2024.1280983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Numerous studies have suggested an association between gut microbiota and polycystic ovarian syndrome (PCOS). However, the causal relationship between these two factors remains unclear. Methods A review of observational studies was conducted to compare changes in gut microbiota between PCOS patients and controls. The analysis focused on four levels of classification, namely, phylum, family, genus, and species/genus subgroups. To further investigate the causal relationship, Mendelian randomization (MR) was employed using genome-wide association study (GWAS) data on gut microbiota from the MiBioGen consortium, as well as GWAS data from a large meta-analysis of PCOS. Additionally, a reverse MR was performed, and the results were verified through sensitivity analyses. Results The present review included 18 observational studies that met the inclusion and exclusion criteria. The abundance of 64 gut microbiota taxa significantly differed between PCOS patients and controls. Using the MR method, eight bacteria were identified as causally associated with PCOS. The protective effects of the genus Sellimonas on PCOS remained significant after applying Bonferroni correction. No significant heterogeneity or horizontal pleiotropy was found in the instrumental variables (IVs). Reverse MR analyses did not reveal a significant causal effect of PCOS on gut microbiota. Conclusion The differences in gut microbiota between PCOS patients and controls vary across observational studies. However, MR analyses identified specific gut microbiota taxa that are causally related to PCOS. Future studies should investigate the gut microbiota that showed significant results in the MR analyses, as well as the underlying mechanisms of this causal relationship and its potential clinical significance.
Collapse
Affiliation(s)
- Junwei Sun
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingyu Wang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhisheng Kan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
18
|
Zhou Z, Feng Y, Xie L, Ma S, Cai Z, Ma Y. Alterations in gut and genital microbiota associated with gynecological diseases: a systematic review and meta-analysis. Reprod Biol Endocrinol 2024; 22:13. [PMID: 38238814 PMCID: PMC10795389 DOI: 10.1186/s12958-024-01184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Increasing number of studies have demonstrated certain patterns of microbial changes in gynecological diseases; however, the interaction between them remains unclear. To evaluate the consistency or specificity across multiple studies on different gynecological diseases and microbial alterations at different sites of the body (gut and genital tract), we conducted a systematic review and meta-analysis. METHODS We searched PubMed, Embase, Web of Science, and Cochrane Library up to December 5, 2022(PROSPERO: CRD42023400205). Eligible studies focused on gynecological diseases in adult women, applied next-generation sequencing on microbiome, and reported outcomes including alpha or beta diversity or relative abundance. The random-effects model on standardized mean difference (SMD) was conducted using the inverse-variance method for alpha diversity indices. RESULTS Of 3327 unique articles, 87 eligible studies were included. Significant decreases were found in gut microbiome of patients versus controls (observed species SMD=-0.35; 95%CI, -0.62 to -0.09; Shannon index SMD=-0.23; 95%CI, -0.40 to -0.06), whereas significant increases were observed in vaginal microbiome (Chao1 SMD = 1.15; 95%CI, 0.74 to 1.56; Shannon index SMD = 0.51; 95%CI, 0.16 to 0.86). Most studies of different diagnostic categories showed no significant differences in beta diversity. Disease specificity was observed, but almost all the changes were only replicated in three studies, except for the increased Aerococcus in bacterial vaginosis (BV). Patients with major gynecological diseases shared the enrichment of Prevotella and depletion of Lactobacillus, and an overlap in microbes was implied between BV, cervical intraepithelial neoplasia, and cervical cancer. CONCLUSIONS These findings demonstrated an association between alterations in gut and genital microbiota and gynecological diseases. The most observed results were shared alterations across diseases rather than disease-specific alterations. Therefore, further investigation is required to identify specific biomarkers for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Ziwei Zhou
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifei Feng
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lishan Xie
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaoxia Cai
- Guangzhou Liwan Maternal and Child Health Hospital, Guangzhou, China
| | - Ying Ma
- Obstetrics and Gynecology Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Kim N. Colorectal Diseases and Gut Microbiome. SEX/GENDER-SPECIFIC MEDICINE IN CLINICAL AREAS 2024:137-208. [DOI: 10.1007/978-981-97-0130-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Guo H, Luo J, Lin H. Exploration of the pathogenesis of polycystic ovary syndrome based on gut microbiota: A review. Medicine (Baltimore) 2023; 102:e36075. [PMID: 38115365 PMCID: PMC10727628 DOI: 10.1097/md.0000000000036075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorde7r influenced by genetic, neuroendocrine, metabolic, environmental, and lifestyle factors. This paper delves into the increasingly recognized role of gut microbiota dysbiosis in the onset and progression of PCOS. Utilizing advances in next-generation sequencing and metabolomics, the research examines the intricate interaction between the gut microbiota and the central nervous system via the gut-brain axis. The paper highlights how disruptions in gut microbiota contribute significantly to PCOS by modulating the release of gut-brain peptides and activating inflammatory pathways. Through such mechanisms, gut microbiota dysbiosis is implicated in hyperandrogenism, insulin resistance, chronic inflammation, and metabolic disorders associated with PCOS. While the relationship between gut microbiota and PCOS has begun to be elucidated, this paper underscores the need for further research to identify specific bacterial strains and their metabolic byproducts as potential therapeutic targets. Therefore, comprehensive studies are urgently needed to understand and fundamentally treat the pathophysiological processes of PCOS, offering valuable insights for future treatment and prevention strategies.
Collapse
Affiliation(s)
- Hua Guo
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Jing Luo
- Graduate School of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| | - Hanmei Lin
- Department of Gynaecology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning City, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
21
|
Zou Y, Liao R, Cheng R, Chung H, Zhu H, Huang Y. Alterations of gut microbiota biodiversity and relative abundance in women with PCOS: A systematic review and meta-analysis. Microb Pathog 2023; 184:106370. [PMID: 37739322 DOI: 10.1016/j.micpath.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Numerous studies have implicated that the gut microbiota is associated with polycystic ovary syndrome (PCOS). However, a comprehensive data-based summary shown that the effects of the PCOS on the gut microbiota is minimal. We aim to assess the alterations of gut microbiota in women with PCOS. METHODS An electronic search of PubMed, Web of Science, Embase, Cochrane Library and Ovid was conducted for eligible studies published from inception to 28 March 2023, without any language or regional restrictions. We used Newcastle-Ottawa Quality Assessment Scale (NOS) to complete the assessment of the risk of bias and Stata 15.1 software to performed meta-analysis. RESULTS There were 19 human observational studies in total with 617 women with PCOS and 439 healthy individuals were identified. Compared to the control group, the Chao index (WMD -28.88, 95% CI -45.78 to -11.98, I2 = 100%), Shannon index (WMD -0.11, 95% CI -0.18 to 0.00, I2 = 92.2%); and observed operational taxonomic units (OTUs) counts (WMD - 23.48, 95% CI -34.44 to -12. 53, I2 = 99.6%) were significantly lower in women with PCOS. The relative abundance of Bacteroidaceae was significantly higher (WMD 0.12, 95% CI 0.02 to 0.22, I2 = 9.2%), however there were no statistical differences in Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, Alcaligenaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Lachnospiraceae, Prevotellaceae, Ruminococcaceae, Veillonellaceae, Bacteroides, Bifidobacterium, Blautia, Dialister, Escherichia-Shigella, Faecalibacterium, Lachnoclostridium, Lachnospira, Megamonas, Phascolarctobacterium, Prevotella, Roseburia, and Subdoligranulum. CONCLUSION We demonstrated the alpha diversity of gut microbiota and the relative abundance of Bacteroidaceae in women with PCOS are altered. The results indicates that dysbiosis may be a potential pathogenetic factor in PCOS and provided reliable information to investigate the role of gut microbiota in the development and progression of PCOS.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Ruoyuan Liao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Rui Cheng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Huiyee Chung
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hongqiu Zhu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
22
|
Canha-Gouveia A, Di Nisio V, Salumets A, Damdimopoulou P, Coy P, Altmäe S, Sola-Leyva A. The Upper Reproductive System Microbiome: Evidence beyond the Uterus. Semin Reprod Med 2023; 41:190-199. [PMID: 38320577 DOI: 10.1055/s-0043-1778056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The microbiome of the female upper reproductive system has garnered increasing recognition and has become an area of interest in the study of women's health. This intricate ecosystem encompasses a diverse consortium of microorganisms (i.e., microbiota) and their genomes (i.e., microbiome) residing in the female upper reproductive system, including the uterus, the fallopian tubes, and ovaries. In recent years, remarkable advancements have been witnessed in sequencing technologies and microbiome research, indicating the potential importance of the microbial composition within these anatomical sites and its impact in women's reproductive health and overall well-being. Understanding the composition, dynamics, and functions of the microbiome of the female upper reproductive system opens up exciting avenues for improving fertility, treating gynecological conditions, and advancing our comprehension of the intricate interplay between the microbiome and the female reproductive system. The aim of this study is to compile currently available information on the microbial composition of the female upper reproductive system in humans, with a focus beyond the uterus, which has received more attention in recent microbiome studies compared with the fallopian tubes and ovaries. In conclusion, this review underscores the potential role of this microbiome in women's physiology, both in health and disease.
Collapse
Affiliation(s)
- Analuce Canha-Gouveia
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital "Virgen de la Arrixaca," Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Alberto Sola-Leyva
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| |
Collapse
|
23
|
Sola-Leyva A, Pérez-Prieto I, Molina NM, Vargas E, Ruiz-Durán S, Leonés-Baños I, Canha-Gouveia A, Altmäe S. Microbial composition across body sites in polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biomed Online 2023; 47:129-150. [PMID: 37208218 DOI: 10.1016/j.rbmo.2023.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder affecting reproductive-aged women, but the cause remains unclear. Recent evidence has linked microbial composition with PCOS; however, the results are inconsistent. The aim of this systematic review was to gather current knowledge of the microbes across body sites (oral cavity, blood, vagina/cervix, gut) in women with PCOS, and meta-analyse the microbial diversity in PCOS. For this purpose, a systematic search using PubMed, Web of Science, Cochrane and Scopus was carried out. After selection, 34 studies met the inclusion criteria. Most of the studies associated changes in the microbiome with PCOS, whereas heterogeneity of the studies in terms of ethnicity, body mass index (BMI) and methodology, among other confounders, made it difficult to corroborate this relationship. In fact, 19 out of 34 of the studies were categorised as having high risk of bias when the quality assessment was conducted. Our meta-analysis on the gut microbiome of 14 studies demonstrated that women with PCOS possess significantly lower microbial alpha diversity compared with controls (SMD = -0.204; 95% CI -0.360 to -0.048; P = 0.010; I2 = 5.508, by Shannon Index), which may contribute to the development of PCOS. Nevertheless, future studies should specifically overcome the shortcomings of the current studies by through well planned and conducted studies with larger sample sizes, proper negative and positive controls and adequate case-control matching.
Collapse
Affiliation(s)
- Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Inmaculada Pérez-Prieto
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Susana Ruiz-Durán
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; UGC Obstetricia y Ginecología. HU Virgen de las Nieves, Granada, Spain
| | - Irene Leonés-Baños
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Analuce Canha-Gouveia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Zhang H, Butoyi C, Yuan G, Jia J. Exploring the role of Gut Microbiota in Obesity and PCOS: Current updates and Future Prospects. Diabetes Res Clin Pract 2023:110781. [PMID: 37331521 DOI: 10.1016/j.diabres.2023.110781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine gynecological disorder, and the specific pathogenesis of PCOS has not been elucidated. Obesity is a current major public health problem, which is also vital to PCOS. It can exacerbate PCOS symptoms via insulin resistance and hyperandrogenemia. The treatment of PCOS patients depends on the prevailing symptoms. Lifestyle interventions and weight loss remain first-line treatments for women with PCOS. The gut microbiota, which is a current research hot spot, has a substantial influence on PCOS and is closely related to obesity. The present study aimed to elucidate the function of the gut microbiota in obesity and PCOS to provide new ideas for the treatment of PCOS.
Collapse
Affiliation(s)
- Hui Zhang
- First Clinical Medical College, Jiangsu University, Zhenjiang, Jiangsu, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Claudette Butoyi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; School of Medicine , Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
25
|
Zhang S, He H, Wang Y, Wang X, Liu X. Transcutaneous auricular vagus nerve stimulation as a potential novel treatment for polycystic ovary syndrome. Sci Rep 2023; 13:7721. [PMID: 37173458 PMCID: PMC10182028 DOI: 10.1038/s41598-023-34746-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of childbearing age. The etiology of PCOS is multifactorial, and current treatments for PCOS are far from satisfactory. Recently, an imbalanced autonomic nervous system (ANS) with sympathetic hyperactivity and reduced parasympathetic nerve activity (vagal tone) has aroused increasing attention in the pathogenesis of PCOS. In this paper, we review an innovative therapy for the treatment of PCOS and related co-morbidities by targeting parasympathetic modulation based on non-invasive transcutaneous auricular vagal nerve stimulation (ta-VNS). In this work, we present the role of the ANS in the development of PCOS and describe a large number of experimental and clinical reports that support the favorable effects of VNS/ta-VNS in treating a variety of symptoms, including obesity, insulin resistance, type 2 diabetes mellitus, inflammation, microbiome dysregulation, cardiovascular disease, and depression, all of which are also commonly present in PCOS patients. We propose a model focusing on ta-VNS that may treat PCOS by (1) regulating energy metabolism via bidirectional vagal signaling; (2) reversing insulin resistance via its antidiabetic effect; (3) activating anti-inflammatory pathways; (4) restoring homeostasis of the microbiota-gut-brain axis; (5) restoring the sympatho-vagal balance to improve CVD outcomes; (6) and modulating mental disorders. ta-VNS is a safe clinical procedure and it might be a promising new treatment approach for PCOS, or at least a supplementary treatment for current therapeutics.
Collapse
Affiliation(s)
- Shike Zhang
- Southern University of Science and Technology Yantian Hospital, Shenzhen, 518081, China
- Shenzhen Yantian District People's Hospital, Shenzhen, 518081, China
| | - Hui He
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Yu Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiao Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaofang Liu
- Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| |
Collapse
|
26
|
Katrib M, Haddad R, Hamdan Z, Rida MA. The dynamic relationship of gut microbiota with sex hormones in systemic lupus erythematosus. Reumatologia 2023; 61:130-136. [PMID: 37223365 PMCID: PMC10201382 DOI: 10.5114/reum/163091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 05/25/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease. The sex hormones estrogen and testosterone may have an influence on the production of antibodies. In addition, the gut microbiota also shows an effect on the onset and progression of SLE. Hence, the molecular interplay between sex hormones in terms of gender difference, gut microbiota and SLE is being clarified day after day. The aim of this review is to investigate the dynamic relationship of the gut microbiota with sex hormones in systemic lupus erythematosus taking into account the bacterial strains shown to be affected, effects of antibiotics and other factors that affect the gut microbiome, which itself strongly affects the pathogenesis of SLE.
Collapse
Affiliation(s)
- Marcel Katrib
- Faculty of Medicine and Medical Sciences, University of Balamand, Lebanon
| | - Rafi Haddad
- Faculty of Medicine and Medical Sciences, University of Balamand, Lebanon
| | - Zahi Hamdan
- Faculty of Medicine and Medical Sciences, University of Balamand, Lebanon
| | - Mohamad Ali Rida
- Faculty of Medicine and Medical Sciences, University of Balamand, Lebanon
- Department of Rheumatology, Clemenceau Medical Center, Beirut, Lebanon
| |
Collapse
|
27
|
Interaction between gut microbiota and sex hormones and their relation to sexual dimorphism in metabolic diseases. Biol Sex Differ 2023; 14:4. [PMID: 36750874 PMCID: PMC9903633 DOI: 10.1186/s13293-023-00490-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Metabolic diseases, such as obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D), are now a widespread pandemic in the developed world. These pathologies show sex differences in their development and prevalence, and sex steroids, mainly estrogen and testosterone, are thought to play a prominent role in this sexual dimorphism. The influence of sex hormones on these pathologies is not only reflected in differences between men and women, but also between women themselves, depending on the hormonal changes associated with the menopause. The observed sex differences in gut microbiota composition have led to multiple studies highlighting the interaction between steroid hormones and the gut microbiota and its influence on metabolic diseases, ultimately pointing to a new therapy for these diseases based on the manipulation of the gut microbiota. This review aims to shed light on the role of sexual hormones in sex differences in the development and prevalence of metabolic diseases, focusing on obesity, MetS and T2D. We focus also the interaction between sex hormones and the gut microbiota, and in particular the role of microbiota in aspects such as gut barrier integrity, inflammatory status, and the gut-brain axis, given the relevance of these factors in the development of metabolic diseases.
Collapse
|
28
|
Suturina L, Belkova N, Igumnov I, Lazareva L, Danusevich I, Nadeliaeva I, Sholokhov L, Rashidova M, Belenkaya L, Belskikh A, Sharifulin E, Ievleva K, Babaeva N, Egorova I, Salimova M, Kuzmin M, Tiumentseva D, Klimenko E, Sidorova T, Atalyan A. Polycystic Ovary Syndrome and Gut Microbiota: Phenotype Matters. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010007. [PMID: 36675956 PMCID: PMC9861125 DOI: 10.3390/life13010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Abnormalities in gut microbiota diversity are considered important mechanisms in metabolic disorders in polycystic ovarian syndrome (PCOS). However, the data on the association of these disorders with the PCOS phenotype remain controversial. The objectives of this study were to estimate the alpha diversity of the gut microbiota of healthy women and PCOS patients depending on phenotype. The study participants (184 premenopausal women: 63 with PCOS, 121 without PCOS) were recruited during the annual employment assessment in the Irkutsk Region and the Buryat Republic (Russia) in 2016-2019. For PCOS diagnosis, we used the Rotterdam (2003) criteria and definitions of PCOS phenotypes. Five indexes of alpha diversity (ASV, Shannon, Simpson, Chao, and ACE) were estimated for the gut microbiota in all participants using amplicon metasequencing. As a result, two out of five alpha diversity indexes showed a statistical difference between the non-PCOS and PCOS groups. We did not find a significant difference in the alpha diversity of gut microbiota in the subgroups of women with hyperandrogenic PCOS phenotypes vs non-androgenic phenotype D and the group of women with the presence of only one of the PCOS criteria. Nevertheless, "classic" PCOS phenotypes demonstrated the most significant decrease in alpha diversity compared with healthy women without any signs of PCOS.
Collapse
|
29
|
da Silva TCA, dos Santos Gonçalves JA, Souza LACE, Lima AA, Guerra-Sá R. The correlation of the fecal microbiome with the biochemical profile during menopause: a Brazilian cohort study. BMC Womens Health 2022; 22:499. [PMID: 36474222 PMCID: PMC9724392 DOI: 10.1186/s12905-022-02063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hormonal, biochemical, and metabolic changes after menopause may alter the quality of life of women, leading to vasomotor, psychological, and genitourinary symptoms, and changes in their gut microbiota, which regulates estrogen levels through the estroboloma. Fecal samples were used to investigate the changes in the gut microbiota during aging and hormonal changes in women. A balanced gut microbiota has been associated with health or disease conditions and remains poorly understood after menopause. This study identified the fecal microbiota, and their association with biochemical and hormonal parameters of a cohort of women in the climacteric in the city of Ouro Preto-MG, Brazil. METHODS A total of 102 women aged 40 to 65 years old were recruited and distributed into three groups according to the STRAW criteria for reproductive stage: reproductive (n = 18), premenopausal (n = 26), and postmenopausal (n = 58). Blood samples were collected to measure their serum biochemical and hormone levels, and the participants answered a questionnaire. The gut microbiota was analyzed from fecal samples by qPCR using the genera Bifidobacterium, Bacteroides, Lactobacillus, and Clostridium. RESULTS The following parameters showed differences among the groups: total cholesterol, triglycerides, VLDL, ApoB, urea, calcium, uric acid, and alkaline phosphatase (p < 0.05). qPCR revealed the genus Clostridium to be the most abundant in all three groups. In the reproductive age group, the significant correlations were: Bacteroides with glucose (r = -0.573 p = 0.0129), and SDHEA (r = -0.583 p = 0.0111). For the premenopausal group, they were: Bifidobacteria with total cholesterol (r = 0.396 p = 0.0451), LDL (r = 0.393 p = 0.0468), ApoB (r = 0.411 p = 0.0368); Lactobacillus and calcium (r = 0.443 p = 0.0232), ALP (r = 0.543 p = 0.0041), LPa (r =-0.442 p = 0.02336); and Bacteroides and urea (r =-0.461 p = 0.0176). In the postmenopausal group, they were Bifidobacterium and ALP (r =-0.315 p = 0.0159), Lactobacillus and urea (r =-0.276 p = 0.0356), and Clostridium and beta estradiol (r =-0.355 p = 0.0062). CONCLUSION In conclusion, the hormonal and metabolic changes during menopause in the population studied were accompanied by a significant change in the fecal microbiota, especially of the genus Clostridium.
Collapse
Affiliation(s)
- Thayane Christine Alves da Silva
- grid.411213.40000 0004 0488 4317Graduate Program in Biological Sciences - Biological Sciences Research Center, Federal University of Ouro Preto, Morro Do Cruzeiro, Ouro Preto, Minas Gerais Brazil ,grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Jennefer Aparecida dos Santos Gonçalves
- grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Laura Alves Cota e Souza
- grid.411213.40000 0004 0488 4317Graduate Program in Pharmaceutical Sciences (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - Angélica Alves Lima
- grid.411213.40000 0004 0488 4317Graduate Program in Pharmaceutical Sciences (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| | - R. Guerra-Sá
- grid.411213.40000 0004 0488 4317Graduate Program in Biological Sciences - Biological Sciences Research Center, Federal University of Ouro Preto, Morro Do Cruzeiro, Ouro Preto, Minas Gerais Brazil ,grid.411213.40000 0004 0488 4317Laboratory of Biochemistry and Molecular Biology (LBBM), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais Brazil
| |
Collapse
|
30
|
Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem Biol Interact 2022; 368:110223. [DOI: 10.1016/j.cbi.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
31
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
32
|
Noroozzadeh M, Amiri M, Farhadi-Azar M, Ramezani Tehrani F. Bone Health in Women With Polycystic Ovary Syndrome: A Narrative Review. J Clin Densitom 2022; 25:606-614. [PMID: 35430131 DOI: 10.1016/j.jocd.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Bone as an active connective and endocrine tissue is influenced by hormones, physical activity, inflammatory factors, minerals, dietary components, and body weight. Bone fractures are a major cause of decreased quality of life and mortality in humans. Polycystic ovary syndrome (PCOS), is one of the most common endocrine disorders in women of reproductive age worldwide. PCOS is associated with disturbances in androgen and estrogen levels, insulin resistance (IR), obesity, as well as low-grade chronic inflammation, and gut microbiota (GM) dysbiosis, all of which may negatively or positively affect bone metabolism. However, it has not yet been well clarified whether PCOS is bone-protective or bone-destructive. This study aimed to review the association between bone health and PCOS, and summarize its related factors. PubMed, Scopus, and Web of Science databases were searched to retrieve relevant English publications investigating the relationship between bone health and PCOS. Several disorders associated with PCOS can negatively or positively affect bone metabolism. Despite some positive effects of insulin, androgens, estrogens, and obesity on bone, IR, estrogen deficiency, low-grade chronic inflammation, and GM dysbiosis may adversely affect the bone metabolism in PCOS women. Studies comparing bone mineral density or bone metabolism and the risk of bone fractures in women with PCOS have controversial results. Further studies are required to understand the mechanisms underlying bone metabolism in PCOS subjects. Moreover, prospective studies are needed to estimate the risk of bone fractures and osteoporosis in PCOS subjects.
Collapse
Affiliation(s)
- Mahsa Noroozzadeh
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Amiri
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahbanoo Farhadi-Azar
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Prakash A, Nourianpour M, Senok A, Atiomo W. Polycystic Ovary Syndrome and Endometrial Cancer: A Scoping Review of the Literature on Gut Microbiota. Cells 2022; 11:3038. [PMID: 36231000 PMCID: PMC9563577 DOI: 10.3390/cells11193038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Gut dysbiosis has been associated with polycystic ovary syndrome (PCOS) and endometrial cancer (EC) but no studies have investigated whether gut dysbiosis may explain the increased endometrial cancer risk in polycystic ovary syndrome. The aim of this scoping review is to evaluate the extent and nature of published studies on the gut microbiota in polycystic ovary syndrome and endometrial cancer and attempt to find any similarities between the composition of the microbiota. We searched for publications ranging from the years 2016 to 2022, due to the completion date of the 'Human Microbiome Project' in 2016. We obtained 200 articles by inputting keywords such as 'gut microbiome', 'gut microbiota', 'gut dysbiosis', 'PCOS', and 'endometrial cancer' into search engines such as PubMed and Scopus. Of the 200 identified in our initial search, we included 25 articles in our final review after applying the exclusion and inclusion criteria. Although the literature is growing in this field, we did not identify enough published studies to investigate whether gut dysbiosis may explain the increased EC risk in PCOS. Within the studies identified, we were unable to identify any consistent patterns of the microbiome similarly present in studies on women with PCOS compared with women with EC. Although we found that the phylum Firmicutes was similarly decreased in women with PCOS and studies on women with EC, there was however significant variability within the studies identified making it highly likely that this may have arisen by chance. Further research pertaining to molecular and microbiological mechanisms in relation to the gut microbiome is needed to elucidate a greater understanding of its contribution to the pathophysiology of endometrial cancer in patients with polycystic ovarian syndrome.
Collapse
Affiliation(s)
| | - Milad Nourianpour
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai P.O. Box 505055, United Arab Emirates
| | | | - William Atiomo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
34
|
Positive Effects of α-Lactalbumin in the Management of Symptoms of Polycystic Ovary Syndrome. Nutrients 2022; 14:nu14153220. [PMID: 35956395 PMCID: PMC9370664 DOI: 10.3390/nu14153220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
To date, the involvement of α-Lactalbumin (α-LA) in the management of polycystic ovary syndrome (PCOS) refers to its ability to improve intestinal absorption of natural molecules like inositols, overcoming the inositol resistance. However, due to its own aminoacidic building blocks, α-LA is involved in various biological processes that can open new additional applications. A great portion of women with PCOS exhibit gastrointestinal dysbiosis, which is in turn one of the triggering mechanisms of the syndrome. Due to its prebiotic effect, α-LA can recover dysbiosis, also improving the insulin resistance, obesity and intestinal inflammation frequently associated with PCOS. Further observations suggest that altered gut microbiota negatively influence mental wellbeing. Depressive mood and low serotonin levels are indeed common features of women with PCOS. Thanks to its content of tryptophan, which is the precursor of serotonin, and considering the strict link between gut and brain, using α-LA contributes to preserving mental well-being by maintaining high levels of serotonin. In addition, considering women with PCOS seeking pregnancy, both altered microbiota and serotonin levels can induce later consequences in the offspring. Therefore, a deeper knowledge of potential applications of α-LA is required to transition to preclinical and clinical studies extending its therapeutic advantages in PCOS.
Collapse
|
35
|
Yao X, Zuo N, Guan W, Fu L, Jiang S, Jiao J, Wang X. Association of Gut Microbiota Enterotypes with Blood Trace Elements in Women with Infertility. Nutrients 2022; 14:3195. [PMID: 35956371 PMCID: PMC9370633 DOI: 10.3390/nu14153195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Infertility is defined as failure to achieve pregnancy within 12 months of unprotected intercourse in women. Trace elements, a kind of micronutrient that is very important to female reproductive function, are affected by intestinal absorption, which is regulated by gut microbiota. Enterotype is the classification of an intestinal microbiome based on its characteristics. Whether or not Prevotella-enterotype and Bacteroides-enterotype are associated with blood trace elements among infertile women remains unclear. The study aimed to explore the relationship between five main whole blood trace elements and these two enterotypes in women with infertility. This retrospective cross-sectional study recruited 651 Chinese women. Whole blood copper, zinc, calcium, magnesium, and iron levels were measured. Quantitative real-time PCR was performed on all fecal samples. Patients were categorized according to whole blood trace elements (low levels group, <5th percentile; normal levels group, 5th‒95th percentile; high levels group, >95th percentile). There were no significant differences in trace elements between the two enterotypes within the control population, while in infertile participants, copper (P = 0.033), zinc (P < 0.001), magnesium (P < 0.001), and iron (P < 0.001) in Prevotella-enterotype was significantly lower than in Bacteroides-enterotype. The Chi-square test showed that only the iron group had a significant difference in the two enterotypes (P = 0.001). Among infertile patients, Prevotella-enterotype (Log(P/B) > −0.27) predicted the low levels of whole blood iron in the obesity population (AUC = 0.894; P = 0.042). For the high levels of iron, Bacteroides-enterotype (Log(P/B) <−2.76) had a predictive power in the lean/normal group (AUC = 0.648; P = 0.041) and Log(P/B) <−3.99 in the overweight group (AUC = 0.863; P = 0.013). We can infer that these two enterotypes may have an effect on the iron metabolism in patients with infertility, highlighting the importance of further research into the interaction between enterotypes and trace elements in reproductive function.
Collapse
Affiliation(s)
- Xinrui Yao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Na Zuo
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Wenzheng Guan
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Lingjie Fu
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Jiao Jiao
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| | - Xiuxia Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang 110004, China
- Shenyang Reproductive Health Clinical Medicine Research Center, Shenyang 110004, China
| |
Collapse
|
36
|
Shan H, Luo R, Guo X, Li R, Ye Z, Peng T, Liu F, Yang Z. Abnormal Endometrial Receptivity and Oxidative Stress in Polycystic Ovary Syndrome. Front Pharmacol 2022; 13:904942. [PMID: 35959444 PMCID: PMC9357999 DOI: 10.3389/fphar.2022.904942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of childbearing age. Individual heterogeneity is evident, and the prevalence rate ranges between 6 and 15% globally. The prevalence rate of PCOS in Chinese women of childbearing age is 5.6%. The main manifestations are infertility, sparse menstruation, irregular vaginal bleeding, long-term endometrial hyperplasia, and endometrial cancer. PCOS is often associated with hyperandrogenemia, insulin resistance, hyperinsulinemia, obesity, metabolic syndrome, and intestinal flora disorder. Although there have been many studies in the past, the underlying pathophysiological mechanism of the disease is still unclear. Studies have shown that PCOS diseases and related complications are closely related to local oxidative stress imbalance in the endometrium, leading to poor endometrial receptivity and effects on pregnancy. Previous reviews have mainly focused on the abnormal mechanism of ovarian oxidative stress in women with PCOS, while reviews on endometrial receptivity and oxidative stress are relatively insufficient. This study reviews the abnormal cellular and molecular mechanisms of oxidative stress due to comorbidities in women with PCOS, leading to a downregulation of endometrial receptivity.
Collapse
Affiliation(s)
- Hongying Shan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- First Affiliated Hospital, School of Medicine, Shihezi University, Beijing, China
| | - Renxin Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xuanying Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Rong Li,
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianliu Peng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
37
|
Batra M, Bhatnager R, Kumar A, Suneja P, Dang AS. Interplay between PCOS and microbiome: The road less travelled. Am J Reprod Immunol 2022; 88:e13580. [PMID: 35598286 DOI: 10.1111/aji.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complicated neuro-endocrinal, reproductive, and metabolic condition. It encompasses patterns such as hyperandrogenism, recurrent cysts triggered by steroidogenic functional aberrations in the ovaries, overweight, chronic inflammation, and more. The underlying cause of this heterogeneous illness is obscure, although it is suspected to be driven by a blend of environmental and hereditary factors. In recent years, the connection between the microbiome and PCOS has been acknowledged and is thought to be involved in the genesis of the syndrome's emergence. Microbiota vary in different pathological features of PCOS, and fundamental pathways linked to their involvement in the commencement of diverse clinical presentations in PCOS open up a new avenue for its management. Prebiotic, probiotic, synbiotic, and fecal-microbiota-transplant, by promoting eubiosis and nullifying the effect caused by the altered microbial profile in PCOS women, can aid in management of diverse phenotypes associated with the syndrome. These microbiota-mediated treatments improve PCOS women's metabolic, inflammatory, and hormonal profiles. However, more studies are needed to elucidate the mechanisms that drive this positive effect.
Collapse
Affiliation(s)
- Manya Batra
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | | | - Anil Kumar
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre For Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
38
|
d’Afflitto M, Upadhyaya A, Green A, Peiris M. Association Between Sex Hormone Levels and Gut Microbiota Composition and Diversity-A Systematic Review. J Clin Gastroenterol 2022; 56:384-392. [PMID: 35283442 PMCID: PMC7612624 DOI: 10.1097/mcg.0000000000001676] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GOALS/BACKGROUND Animal studies have highlighted how the microbiota acts in a sex-specific manner with sex hormones demonstrating an association with the composition and diversity of the microbiota. This systematic review aimed to gather the available scientific evidence to explore the association between sex hormones and gut microbiota composition and diversity, in humans. STUDY Four bibliographic databases were searched in July 2020 using terms related to "microbiota," "microflora," "sex hormones," "testosterone," and "estrogen." Human studies that investigated the correlation between sex hormones and the microbiota composition or diversity using next-generation sequencing were included. RESULTS A total of 10,468 records were screened with 13 studies included in this review. In healthy women, higher estrogen levels were found to be associated with a higher abundance of Bacteroidetes, a lower abundance of Firmicutes, the Ruminococcaceae family and increased diversity. In healthy men, raised testosterone levels positively correlated with Ruminococcus, Acinetobacter, and an increased microbial diversity. Escherichia and Shigella spp. were correlated with raised testosterone in healthy women whereas Ruminococcus spp. was negatively associated with elevated testosterone levels. Women with altered testosterone/estrogen profiles (such as in polycystic ovary syndrome), had a differing gut microbiota compared with healthy women. CONCLUSIONS The findings gathered highlight an association between sex hormones and the gut microbiota composition/diversity and may contribute to the sex-based variations observed in disease pathogenesis. Factors such as age and medical conditions are implicated in the associations observed and should be accounted for in future studies. As the understanding of the complex symbiotic relationship between humans and their gut microbiota increases, microbiota modulation could be an attractive option for the prevention and treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Manfredi d’Afflitto
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Advait Upadhyaya
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Alicia Green
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - Madusha Peiris
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| |
Collapse
|
39
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Shared postulations between bipolar disorder and polycystic ovary syndrome pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110498. [PMID: 34929323 DOI: 10.1016/j.pnpbp.2021.110498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Women with bipolar disorder (BD) present a high prevalence of polycystic ovary syndrome (PCOS) and other reproductive disorders even before diagnosis or treatment of the disease. Postulations on the potential molecular mechanisms of comorbid PCOS in women with BD remain limited to influence of medications and need further extension. OBJECTIVES This review focuses on evidence suggesting that common metabolic and immune disorders may play an important role in the development of BD and PCOS. RESULTS The literature covered in this review suggests that metabolic and immune disorders, including the dysfunction of the hypothalamic-pituitary-adrenal axis, chronic inflammatory state, gut microbial alterations, adipokine alterations and circadian rhythm disturbance, are observed in patients with BD and PCOS. Such disorders may be responsible for the increased prevalence of PCOS in the BD population and indicate a susceptibility gene overlap between the two diseases. Current evidence supports postulations of common metabolic and immune disorders as endophenotype in BD as well as in PCOS. CONCLUSIONS Metabolic and immune disorders may be responsible for the comorbid PCOS in the BD population. The identification of hallmark metabolic and immune features common to these two diseases will contribute to the clarification of the effect of BD on the reproductive endocrine function and development of symptomatic treatments targeting the biomarkers of the two diseases.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
40
|
Benjamin JJ, K. M, Koshy T, K. N. M, R. P. DHEA and polycystic ovarian syndrome: Meta-analysis of case-control studies. PLoS One 2021; 16:e0261552. [PMID: 34932604 PMCID: PMC8691613 DOI: 10.1371/journal.pone.0261552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/04/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Polycystic ovarian syndrome is a heterogenous endocrine disorder characterized by irregular menstrual cycles, hirsuitism and polycystic ovaries. It is further complicated by metabolic syndrome, infertility and psychological stress. Although the etiopathogenesis is unclear, many studies have pointed out the role of stress in this syndrome. DHEA, being a stress marker is being used by scientists to compare the stress levels between polycystic ovarian cases and healthy controls. However, the results obtained from previous studies are equivocal. OBJECTIVE To perform meta-analysis and find the association between stress and the syndrome. DATA SOURCES Relevant data till January 2021 were retrieved from PubMed, Scopus, Embase and Web of Science using MeSH terms. STUDY SELECTION Case-control studies having PCOS subjects as cases and healthy women as controls were selected provided; their basal DHEA levels were mentioned in the published articles. DATA EXTRACTION Two authors independently extracted the articles and qualified the final studies. DATA SYNTHESI Pooled meta-analysis was done using random effect model and showed level of DHEA statistically significant in PCOS compared to healthy controls (SMD = 1.15, 95% CI = 0.59-1.71).Heterogeneity was statistically significant as well (I2 = 95%). CONCLUSION Thismeta-analysis on DHEA and PCOS has helped in generating evidence regarding the involvement of stress in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Jiby Jolly Benjamin
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - MaheshKumar K.
- Department of Physiology, Government Yoga and Naturopathy Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Maruthy K. N.
- Department of Physiology, Narayana Medical College and Hospital, Nellore, Andra Pradesh, India
| | - Padmavathi R.
- Department of Physiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
41
|
Kaur S, Thukral SK, Kaur P, Samota MK. Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Kusamoto A, Harada M, Azhary JMK, Kunitomi C, Nose E, Koike H, Xu Z, Urata Y, Kaku T, Takahashi N, Wada-Hiraike O, Hirota Y, Koga K, Fujii T, Osuga Y. Temporal relationship between alterations in the gut microbiome and the development of polycystic ovary syndrome-like phenotypes in prenatally androgenized female mice. FASEB J 2021; 35:e21971. [PMID: 34653284 DOI: 10.1096/fj.202101051r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
It has been recently recognized that prenatal androgen exposure is involved in the development of polycystic ovary syndrome (PCOS) in adulthood. In addition, the gut microbiome in adult patients and rodents with PCOS differs from that of healthy individuals. Moreover, recent studies have suggested that the gut microbiome may play a causative role in the pathogenesis of PCOS. We wondered whether prenatal androgen exposure induces gut microbial dysbiosis early in life and is associated with the development of PCOS in later life. To test this hypothesis, we studied the development of PCOS-like phenotypes in prenatally androgenized (PNA) female mice and compared the gut microbiome of PNA and control offspring from 4 to 16 weeks of age. PNA offspring showed a reproductive phenotype from 6 weeks and a metabolic phenotype from 12 weeks of age. The α-diversity of the gut microbiome of the PNA group was higher at 8 weeks and lower at 12 and 16 weeks of age, and the β-diversity differed from control at 8 weeks. However, a significant difference in the composition of gut microbiome between the PNA and control groups was already apparent at 4 weeks. Allobaculum and Roseburia were less abundant in PNA offspring, and may therefore be targets for future interventional studies. In conclusion, abnormalities in the gut microbiome appear as early as or even before PCOS-like phenotypes develop in PNA mice. Thus, the gut microbiome in early life is a potential target for the prevention of PCOS in later life.
Collapse
Affiliation(s)
- Akari Kusamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jerilee M K Azhary
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chisato Kunitomi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Emi Nose
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Koike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zixin Xu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Urata
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomi Takahashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
43
|
Gut Metabolites Are More Predictive of Disease and Cohoused States than Gut Bacterial Features in a Polycystic Ovary Syndrome-Like Mouse Model. mSystems 2021; 6:e0114920. [PMID: 34519532 PMCID: PMC8547464 DOI: 10.1128/msystems.01149-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) impacts ∼10% of reproductive-aged women worldwide. In addition to infertility, women with PCOS suffer from metabolic dysregulation which increases their risk of developing type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Studies have shown differences in the gut microbiome of women with PCOS compared to controls, a pattern replicated in PCOS-like mouse models. Recently, using a letrozole (LET)-induced mouse model of PCOS, we demonstrated that cohousing was protective against development of metabolic and reproductive phenotypes and showed via 16S amplicon sequencing that this protection correlated with time-dependent shifts in gut bacteria. Here, we applied untargeted metabolomics and shotgun metagenomics approaches to further analyze the longitudinal samples from the cohousing experiment. Analysis of beta diversity found that untargeted metabolites had the strongest correlation to both disease and cohoused states and that shifts in metabolite diversity were detected prior to shifts in bacterial diversity. In addition, log2 fold analyses found numerous metabolite features, particularly bile acids (BAs), to be highly differentiated between placebo and LET, as well as LET cohoused with placebo versus LET. Our results indicate that changes in gut metabolites, particularly BAs, are associated with a PCOS-like phenotype as well as with the protective effect of cohousing. Our results also suggest that transfer of metabolites via coprophagy occurs rapidly and may precipitate changes in bacterial diversity. This study joins a growing body of research linking changes in primary and secondary BAs to host metabolism and gut microbes relevant to the pathology of PCOS. IMPORTANCE Using a combination of untargeted metabolomics and metagenomics, we performed a comparative longitudinal analysis of the feces collected in a cohousing study with a PCOS-like mouse model. Our results showed that gut metabolite composition experienced earlier and more pronounced differentiation in both the disease model and cohoused mice compared with the microbial composition. Notably, statistical and machine learning approaches identified shifts in the relative abundance of primary and secondary BAs, which have been implicated as modifiers of gut microbial growth and diversity. Network correlation analysis showed strong associations between particular BAs and bacterial species, particularly members of Lactobacillus, and that these correlations were time and treatment dependent. Our results provide novel insights into host-microbe relationships related to hyperandrogenism in females and indicate that focused research into small-molecule control of gut microbial diversity and host physiology may provide new therapeutic options for the treatment of PCOS.
Collapse
|
44
|
Yoon K, Kim N. Roles of Sex Hormones and Gender in the Gut Microbiota. J Neurogastroenterol Motil 2021; 27:314-325. [PMID: 33762473 PMCID: PMC8266488 DOI: 10.5056/jnm20208] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The distribution of gut microbiota varies according to age (childhood, puberty, pregnancy, menopause, and old age) and sex. Gut microbiota are known to contribute to gastrointestinal (GI) diseases such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer; however, the exact etiology remains elusive. Recently, sex and gender differences in GI diseases and their relation to gut microbiota has been suggested. Furthermore, the metabolism of estrogen and androgen was reported to be related to the gut microbiome. As gut microbiome is involved in the excretion and circulation process of sex hormones, the concept of “microgenderome” indicating the role of sex hormone on the gut microbiota has been suggested. However, further research is needed for this concept to be universally accepted. In this review, we summarize sex- and gender-differences in gut microbiota and the interplay of microbiota and GI diseases, focusing on sex hormones. We also describe the metabolic role of the microbiota in this regard. Finally, current subjects, such as medication including probiotics, are briefly discussed.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Wonkwang University Sanbon Medical Center, Gunpo, Gyeonggi-do, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Fan H, Hong X, Zeng J, Wang X, Chen J. Differences in the individual curative effect of acupuncture for obese women with polycystic ovary syndrome based on metagenomic analysis: study protocol for a randomized controlled trial. Trials 2021; 22:454. [PMID: 34266458 PMCID: PMC8281710 DOI: 10.1186/s13063-021-05426-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome is a common cause of infertility and shows a high incidence in women of reproductive age. Acupuncture is an appropriate adjunctive treatment for PCOS. However, the add-on effect of acupuncture as an adjunctive treatment for obese women with PCOS has not been studied, and previous studies indicate that there are individual differences in the curative effect of acupuncture, while deeper research on the mechanism of differences in the individual curative effect of acupuncture for obese women with PCOS is still lacking. This trial aims to assess the add-on treatment efficacy of acupuncture for obese women with PCOS and to explore the role of the gut microbiome on the differences in the individual curative effect of acupuncture based on metagenomic analysis. METHODS/DESIGN This is an open-label, randomized, controlled trial. A total of 86 obese women with PCOS will be recruited. Subjects will be randomly assigned to a study group and a control group in a 1:1 ratio, with 43 subjects in each group (10 patients from each group who meet the study criteria will participate in the metagenomic analysis). An additional 10 subjects who meet the study criteria will be recruited to a healthy control group. The study group will receive acupuncture and clomiphene citrate treatment; the control group will only receive clomiphene citrate. Acupuncture treatment will be conducted three times a week from the fifth day of menstruation or withdrawal bleeding until the start of the next menstruation, for up to three menstrual cycles. The primary outcome will be LH/FSH. The secondary outcomes will comprise biometric features, hormone biomarkers, metabolic biomarkers, inflammatory biomarkers, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and metagenomic analysis. The outcomes will be measured at baseline and post-intervention. Data will be analyzed using SPSS 19.0, and the gut microbiome will be analyzed using metagenomic analysis. DISCUSSION In this study, we are evaluating the add-on effects of acupuncture and exploring the mechanism of the differences in the individual curative effect of acupuncture based on the gut microbiome, which may provide evidence to explain the different outcomes of different trials on acupuncture for PCOS and hopefully to provide a new aspect to study the mechanism of acupuncture's treatment effect. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2000029882 . Registered on 16 February 2020.
Collapse
Affiliation(s)
- Huaying Fan
- School of Acupuncture-Moxibustion and Tuina/The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Hong
- School of Acupuncture-Moxibustion and Tuina/The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuzhi Zeng
- Department of Reproductive Medicine, Sichuan Women’s and Children’s Hospital, Chengdu, China
| | - Xue Wang
- School of Acupuncture-Moxibustion and Tuina/The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao Chen
- School of Acupuncture-Moxibustion and Tuina/The Third Affiliated Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
46
|
Chen F, Chen Z, Chen M, Chen G, Huang Q, Yang X, Yin H, Chen L, Zhang W, Lin H, Ou M, Wang L, Chen Y, Lin C, Xu W, Yin G. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes 2021; 7:60. [PMID: 34267209 PMCID: PMC8282850 DOI: 10.1038/s41522-021-00231-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disease in females that is characterized by hyperandrogenemia, chronic anovulation, and polycystic ovaries. However, the exact etiology and pathogenesis of PCOS are still unknown. The aim of this study was to clarify the bacterial, stress status, and metabolic differences in the gut microbiomes of healthy individuals and patients with high body mass index (BMI) PCOS (PCOS-HB) and normal BMI PCOS (PCOS-LB), respectively. Here, we compared the gut microbiota characteristics of PCOS-HB, PCOS-LB, and healthy controls by 16S rRNA gene sequencing, FK506-binding protein 5 (FKBP5) DNA methylation and plasma metabolite determination. Clinical parameter comparisons indicated that PCOS patients had higher concentrations of total testosterone, androstenedione, dehydroepiandrosterone sulfate, luteinizing hormone, and HOMA-IR while lower FKBP5 DNA methylation. Significant differences in bacterial diversity and community were observed between the PCOS and healthy groups but not between the PCOS-HB and PCOS-LB groups. Bacterial species number was negatively correlated with insulin concentrations (both under fasting status and 120 min after glucose load) and HOMA-IR but positively related to FKBP5 DNA methylation. Compared to the healthy group, both PCOS groups had significant changes in bacterial genera, including Prevotella_9, Dorea, Maihella, and Slackia, and plasma metabolites, including estrone sulfate, lysophosphatidyl choline 18:2, and phosphatidylcholine (22:6e/19:1). The correlation network revealed the complicated interaction of the clinical index, bacterial genus, stress indices, and metabolites. Our work links the stress responses and gut microbiota characteristics of PCOS disease, which might afford perspectives to understand the progression of PCOS.
Collapse
Affiliation(s)
- Fu Chen
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Minjie Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guishan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Qingxia Huang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaoping Yang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Huihuang Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Lan Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weichun Zhang
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hong Lin
- Department of Reproductive Center, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Miaoqiong Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Luanhong Wang
- Department of Gynecological tumor, Tumor Hospital Affiliated to Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yongsong Chen
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Chujia Lin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Wencan Xu
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guoshu Yin
- Department of Endocrinology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| |
Collapse
|
47
|
Tokuhara D. Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Front Nutr 2021; 8:700058. [PMID: 34250000 PMCID: PMC8267179 DOI: 10.3389/fnut.2021.700058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in children and adolescents. Although obesity is the leading cause of NAFLD, the etiologies of NAFLD are multifactorial (e.g., high-fat diet, a lack of exercise, gender, maternal obesity, the antibiotic use), and each of these factors leads to dysbiosis of the gut microbiota community. The gut microbiota is a key player in the development and regulation of the gut mucosal immune system as well as the regulation of both NAFLD and obesity. Dysbiosis of the gut microbiota promotes the development of NAFLD via alteration of gut-liver homeostasis, including disruption of the gut barrier, portal transport of bacterial endotoxin (lipopolysaccharide) to the liver, altered bile acid profiles, and decreased concentrations of short-chain fatty acids. In terms of prevention and treatment, conventional approaches (e.g., dietary and exercise interventions) against obesity and NAFLD have been confirmed to recover the dysbiosis and dysbiosis-mediated altered metabolism. In addition, increased understanding of the importance of gut microbiota-mediated homeostasis in the prevention of NAFLD suggests the potential effectiveness of gut microbiota-targeted preventive and therapeutic strategies (e.g., probiotics and fecal transplantation) against NAFLD in children and adolescents. This review comprehensively summarizes our current knowledge of the gut microbiota, focusing on its interaction with NAFLD and its potential therapeutic role in obese children and adolescents with this disorder.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
48
|
López-Moreno A, Acuña I, Torres-Sánchez A, Ruiz-Moreno Á, Cerk K, Rivas A, Suárez A, Monteoliva-Sánchez M, Aguilera M. Next Generation Probiotics for Neutralizing Obesogenic Effects: Taxa Culturing Searching Strategies. Nutrients 2021; 13:1617. [PMID: 34065873 PMCID: PMC8151043 DOI: 10.3390/nu13051617] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
The combination of diet, lifestyle, and the exposure to food obesogens categorized into "microbiota disrupting chemicals" (MDC) could determine obesogenic-related dysbiosis and modify the microbiota diversity that impacts on individual health-disease balances, inducing altered pathogenesis phenotypes. Specific, complementary, and combined treatments are needed to face these altered microbial patterns and the specific misbalances triggered. In this sense, searching for next-generation beneficial microbes or next-generation probiotics (NGP) by microbiota culturing, and focusing on their demonstrated, extensive scope and well-defined functions could contribute to counteracting and repairing the effects of obesogens. Therefore, this review presents a perspective through compiling information and key strategies for directed searching and culturing of NGP that could be administered for obesity and endocrine-related dysbiosis by (i) observing the differential abundance of specific microbiota taxa in obesity-related patients and analyzing their functional roles, (ii) developing microbiota-directed strategies for culturing these taxa groups, and (iii) applying the successful compiled criteria from recent NGP clinical studies. New isolated or cultivable microorganisms from healthy gut microbiota specifically related to obesogens' neutralization effects might be used as an NGP single strain or in consortia, both presenting functions and the ability to palliate metabolic-related disorders. Identification of holistic approaches for searching and using potential NGP, key aspects, the bias, gaps, and proposals of solutions are also considered in this review.
Collapse
Affiliation(s)
- Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Inmaculada Acuña
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ángel Ruiz-Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
| | - Ana Rivas
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonio Suárez
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (Á.R.-M.); (K.C.); (M.M.-S.)
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Armilla, 18016 Granada, Spain; (I.A.); (A.S.)
- IBS, Instituto de Investigación Biosanitaria, 18012 Granada, Spain;
| |
Collapse
|
49
|
Ilias I, Goulas S, Zabuliene L. Polycystic ovary syndrome: Pathways and mechanisms for possible increased susceptibility to COVID-19. World J Clin Cases 2021; 9:2711-2720. [PMID: 33969054 PMCID: PMC8058679 DOI: 10.12998/wjcc.v9.i12.2711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In 75% of women with polycystic ovary syndrome (PCOS), insulin action is impaired. In obesity, visceral adipose tissue becomes dysfunctional: Chronic inflammation is favored over storage, contributing to the development of metabolic complications. PCOS, metabolic syndrome (MetSy) and non-alcoholic fatty liver disease (NAFLD) apparently share common pathogenic factors; these include abdominal adiposity, excess body weight and insulin resistance. Alterations in the gut microbiome have been noted in women with PCOS compared to controls; these may lead to deterioration of the intestinal barrier, increased gut mucosal permeability and immune system activation, hyperinsulinemia and glucose intolerance, which hamper normal ovarian function and follicular development (all being hallmarks of PCOS). It has been proposed that PCOS may entail higher susceptibility to coronavirus disease 2019 (COVID-19) via its associated comorbidities (NAFLD, obesity, MetSy and alterations in the gut microbiome). Studies have found an association between acute respiratory distress syndrome (seen in severe cases of COVID-19) and the intestinal microbiome. Furthermore, apparently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can gain entry to the gastrointestinal tract via locally-expressed angiotensin converting enzyme type 2 receptors. Excess body weight is associated with more severe COVID-19 and increased mortality. Although robust links between SARS-CoV-2 infection and PCOS/NAFLD/gut microbiome/metabolic consequences are yet to be confirmed, it seems that strategies for adapting the intestinal microbiome could help reduce the severity of COVID-19 in women with PCOS with or without NAFLD, MetSy or obesity.
Collapse
Affiliation(s)
- Ioannis Ilias
- Department of Endocrinology, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Spyridon Goulas
- Department of Gastroenterology Unit, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Lina Zabuliene
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| |
Collapse
|
50
|
Kong XJ, Wan G, Tian R, Liu S, Liu K, Clairmont C, Lin X, Zhang X, Sherman H, Zhu J, Wang Y, Fong M, Li A, Wang BK, Wang J, Liu J, Yu Z, Shen C, Cui X, Cao H, Du T, Cao X. The Effects of Probiotic Supplementation on Anthropometric Growth and Gut Microbiota Composition in Patients With Prader-Willi Syndrome: A Randomized Double-Blinded Placebo-Controlled Trial. Front Nutr 2021; 8:587974. [PMID: 33681271 PMCID: PMC7933553 DOI: 10.3389/fnut.2021.587974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Prader-Willi Syndrome (PWS) is a rare genetic disorder associated with developmental delay, obesity, and neuropsychiatric comorbidities. Bifidobacterium animalis subsp. lactis has demonstrated anti-obesity and anti-inflammatory effects in previous studies. Aim: To evaluate the effects of Bifidobacterium animalis subsp. lactis probiotics supplementation on anthropometric growth, behavioral symptoms, and gut microbiome composition in patients with PWS. Methods: Ethical Approval was issued by the Internal Review Board (IRB) of the Second Affiliated Hospital of Kunming Medical University (Review-YJ-2016-06). We conducted a 12-week, randomized, double-blind, placebo-controlled trial in 68 patients with Prader-Willi syndrome aged 11 months-16 years (mean = 4.2 years old) who were randomly assigned to receive daily B. lactis-11 probiotics (6 × 1010 CFUs) or a placebo sachet. Weight, height, ASQ-3, ABC, SRS-2, and CGI-I were compared between the two groups at baseline and at 6 and 12 weeks into treatment. Gut microbiome data were analyzed with the QIIME 2 software package, and functional gene analysis was conducted with PICRUSt-2. Results: We found a significant increase in height (mean difference = 2.68 cm, P < 0.05) and improvement in CGI-I (P < 0.05) in the probiotics group compared to the placebo group. No significant change in weight or psychological measures were observed. Probiotic treatment altered the microbiome composition to favor weight loss and gut health and increased the abundance of antioxidant production-related genes. Conclusions: The findings suggest a novel therapeutic potential for Bifidobacterium animalis subsp. lactis probiotics in Prader-Willi syndrome patients, although further investigation is warranted.
Collapse
Affiliation(s)
- Xue-Jun Kong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine and Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Guobin Wan
- Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Ruiyi Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Siyu Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Kevin Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Cullen Clairmont
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | | | - Hannah Sherman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Junli Zhu
- Yale University, New Haven, CT, United States
| | - Yelan Wang
- Bentley University, Waltham, MA, United States
| | - Michelle Fong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Alice Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | | | - Jinghan Wang
- New York University, New York, NY, United States
| | - Jun Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Zhehao Yu
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen Shen
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xianghua Cui
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hanyu Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ting Du
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xia Cao
- Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|