1
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
2
|
Huang S, Abutaleb K, Mishra S. Glycosphingolipids in Cardiovascular Disease: Insights from Molecular Mechanisms and Heart Failure Models. Biomolecules 2024; 14:1265. [PMID: 39456198 PMCID: PMC11506000 DOI: 10.3390/biom14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the crucial role of glycosphingolipids (GSLs) in the context of cardiovascular diseases (CVDs), focusing on their biosynthesis, metabolic pathways, and implications for clinical outcomes. GSLs are pivotal in regulating a myriad of cellular functions that are essential for heart health and disease progression. Highlighting findings from both human cohorts and animal models, this review emphasizes the potential of GSLs as biomarkers and therapeutic targets. We advocate for more detailed mechanistic studies to deepen our understanding of GSL functions in cardiovascular health, which could lead to innovative strategies for diagnosis, treatment, and personalized medicine in cardiovascular care.
Collapse
Affiliation(s)
- Sarah Huang
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Karima Abutaleb
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
| | - Sumita Mishra
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences, Virginia Tech, Roanoke, VA 24061, USA
| |
Collapse
|
3
|
Farooqui AA, Farooqui T. Phospholipids, Sphingolipids, and Cholesterol-Derived Lipid Mediators and Their Role in Neurological Disorders. Int J Mol Sci 2024; 25:10672. [PMID: 39409002 PMCID: PMC11476704 DOI: 10.3390/ijms251910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. In response to cell stimulation or injury, the metabolism of lipids generates various lipid mediators, which perform many cellular functions. Thus, phospholipids release arachidonic acid or docosahexaenoic acid from the sn-2 position of the glycerol moiety by the action of phospholipases A2. Arachidonic acid is a precursor for prostaglandins, leukotrienes, thromboxane, and lipoxins. Among these mediators, prostaglandins, leukotrienes, and thromboxane produce neuroinflammation. In contrast, lipoxins produce anti-inflammatory and pro-resolving effects. Prostaglandins, leukotrienes, and thromboxane are also involved in cell proliferation, differentiation, blood clotting, and blood vessel permeability. In contrast, DHA-derived lipid mediators are called specialized pro-resolving lipid metabolites (SPMs). They include resolvins, protectins, and maresins. These mediators regulate immune function by producing anti-inflammatory, pro-resolving, and cell protective effects. Sphingolipid-derived metabolites are ceramide, ceramide1-phosphate, sphingosine, and sphingosine 1 phosphate. They regulate many cellular processes, including enzyme activities, cell migration and adhesion, inflammation, and immunity. Cholesterol is metabolized into hydroxycholesterols and 7-ketocholesterol, which not only disrupts membrane fluidity, but also promotes inflammation, oxidative stress, and apoptosis. These processes lead to cellular damage.
Collapse
Affiliation(s)
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
4
|
Moggio M, La Noce M, Tirino V, Papaccio G, Lepore M, Diano N. Sphingolipidomic profiling of human Dental Pulp Stem Cells undergoing osteogenic differentiation. Chem Phys Lipids 2024; 263:105420. [PMID: 39053614 DOI: 10.1016/j.chemphyslip.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
It is now recognized that sphingolipids are involved in the regulation and pathophysiology of several cellular processes such as proliferation, migration, and survival. Growing evidence also implicates them in regulating the behaviour of stem cells, the use of which is increasingly finding application in regenerative medicine. A shotgun lipidomic study was undertaken to determine whether sphingolipid biomarkers exist that can regulate the proliferation and osteogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). Sphingolipids were extracted and identified by direct infusion into an electrospray mass spectrometer. By using cells cultured in osteogenic medium and in medium free of osteogenic stimuli, as a control, we analyzed and compared the SPLs profiles. Both cellular systems were treated at different times (72 hours, 7 days, and 14 days) to highlight any changes in the sphingolipidomic profiles in the subsequent phases of the differentiation process. Signals from sphingolipid species demonstrating clear differences were selected, their relative abundance was determined, and statistical differences were analyzed. Thus, our work suggests a connection between sphingolipid metabolism and hDPSC osteogenic differentiation and provides new biomarkers for improving hDPSC-based orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Martina Moggio
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Marcella La Noce
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Virginia Tirino
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Maria Lepore
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy
| | - Nadia Diano
- Department of Experimental Medicine - University of Campania "L. Vanvitelli", Via S. M. di Costantinopoli, 16, Naples 80138, Italy.
| |
Collapse
|
5
|
Ahmad S, Single S, Liu Y, Hough KP, Wang Y, Thannickal VJ, Athar M, Goliwas KF, Deshane JS. Heavy Metal Exposure-Mediated Dysregulation of Sphingolipid Metabolism. Antioxidants (Basel) 2024; 13:978. [PMID: 39199224 DOI: 10.3390/antiox13080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Exposure to heavy metals (HMs) is often associated with inflammation and cell death, exacerbating respiratory diseases including asthma. Most inhaled particulate HM exposures result in the deposition of HM-bound fine particulate matter, PM2.5, in pulmonary cell populations. While localized high concentrations of HMs may be a causative factor, existing studies have mostly evaluated the effects of systemic or low-dose chronic HM exposures. This report investigates the impact of local high concentrations of specific HMs (NaAsO2, MnCl2, and CdCl2) on sphingolipid homeostasis and oxidative stress, as both play a role in mediating responses to HM exposure and have been implicated in asthma. Utilizing an in vitro model system and three-dimensional ex vivo human tissue models, we evaluated the expression of enzymatic regulators of the salvage, recycling, and de novo synthesis pathways of sphingolipid metabolism, and observed differential modulation in these enzymes between HM exposures. Sphingolipidomic analyses of specific HM-exposed cells showed increased levels of anti-apoptotic sphingolipids and reduced pro-apoptotic sphingolipids, suggesting activation of the salvage and de novo synthesis pathways. Differential sphingolipid regulation was observed within HM-exposed lung tissues, with CdCl2 exposure and NaAsO2 exposure activating the salvage and de novo synthesis pathway, respectively. Additionally, using spatial transcriptomics and quantitative real-time PCR, we identified HM exposure-induced transcriptomic signatures of oxidative stress in epithelial cells and human lung tissues.
Collapse
Affiliation(s)
- Shaheer Ahmad
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Sierra Single
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yuelong Liu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Kenneth P Hough
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Yong Wang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine and Southeast Veterans Healthcare System, New Orleans, LA 70119-6535, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kayla F Goliwas
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| | - Jessy S Deshane
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
6
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Tallima H, Mahmoud SS. Mechanisms of Arachidonic Acid In Vitro Schistosomicidal Potential. ACS OMEGA 2024; 9:23316-23328. [PMID: 38854551 PMCID: PMC11154912 DOI: 10.1021/acsomega.3c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024]
Abstract
Arachidonic acid (ARA) was shown to possess safe and effective schistosomicidal impact on larval and adult Schistosoma mansoni and Schistosoma hematobium in vitro and in vivo in laboratory rodents and in children residing in low and high endemicity regions. We herein examine mechanisms underlying ARA schistosomicidal potential over two experiments, using in each pool a minimum of 50 adult male, female, or mixed-sex freshly recovered, ex vivo S. mansoni. Worms incubated in fetal calf serum-free medium were exposed to 0 or 10 mM ARA for 1 h at 37 °C and immediately processed for preparation of surface membrane and whole worm body homogenate extracts. Mixed-sex worms were additionally used for evaluating the impact of ARA exposure on the visualization of outer membrane cholesterol, sphingomyelin (SM), and ceramide in immunofluorescence assays. Following assessment of protein content, extracts of intact and ARA-treated worms were examined and compared for SM content, neutral sphingomyelinase activity, reactive oxygen species levels, and caspase 3/7 activity. Arachidonic acid principally led to perturbation of the organization, integrity, and SM content of the outer membrane of male and female worms and additionally impacted female parasites via stimulating neutral sphingomyelinase activity and oxidative stress. Arachidonic powerful action on female worms combined with its previously documented ovocidal activities supports its use as safe and effective therapy against schistosomiasis, provided implementation of the sorely needed and long waited-for chemical synthesis.
Collapse
Affiliation(s)
- Hatem Tallima
- Department
of Chemistry, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt
| | - Soheir S. Mahmoud
- Department
of Parasitology, Theodore Bilharz Research
Institute, Warrak El-Hadar, Imbaba,Giza 12411, Egypt
| |
Collapse
|
9
|
Zhou Y, Yue S, Li L, Zhang J, Chen L, Chen J. SMPDL3B is palmitoylated and stabilized by ZDHHC5, and its silencing aggravates diabetic retinopathy of db/db mice: Activation of NLRP3/NF-κB pathway. Cell Signal 2024; 116:111064. [PMID: 38266744 DOI: 10.1016/j.cellsig.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/12/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Abnormal inflammation of vascular endothelial cells occurs frequently in diabetic retinopathy (DR). Sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B) is a lipid raft enzyme and plays an anti-inflammatory role in various diseases but its function in DR-related vascular endothelial dysfunction remains unknown. We first found that SMPDL3B expression was upregulated from week 10 to 18 in the retinal tissues of db/db mice. Particularly, the high expression of SMPDL3B was mainly observed in retinal vascular endothelium of DR mice. To interfere retinal SMPDL3B expression, adeno-associated viruses 2 (AAV-2) containing SMPDL3B specific shRNA (1233-1253 bp) were injected into the vitreous cavity of db/db mice. SMPDL3B silencing exacerbated the spontaneous DR by further activating the NF-κB/NLRP3 pro-inflammatory pathway. In vitro, human retinal microvascular endothelial cells (HRVECs) were infected with SMPDL3B-shRNA lentiviruses and then stimulated with 30 mM glucose (HG) for 24 h. SMPDL3B-silenced HRVECs secreted more interleukin-1β and had enhanced nuclear p65 translocation. Notably, HG treatment induced the palmitoylation of SMPDL3B. Zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) is a palmitoyltransferase that catalyzes the palmitoylation of its substrates, HG exposure increased the interaction between ZDHHC5 and SMPDL3B in HRVECs. 2-BP, a palmitoylation inhibitor, accelerated the protein degradation of SMPDL3B, whereas palmostatin B, a depalmitoylation inhibitor, decreased its turnover rate in HRVECs. Collectively, the present study suggests a compensatory increase of SMPDL3B in HG-treated HRVECs and the retinal tissues of DR mice, indicating that SMPDL3B may be a potential target for DR treatment.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lihua Li
- Eye Center, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, People's Republic of China
| | - Jiahua Zhang
- Department of Ophthalmology (Diabetic Eye Disease Prevention and Treatment Center), The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Lei Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jun Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
11
|
Lantzanaki M, Vavilis T, Harizopoulou VC, Bili H, Goulis DG, Vavilis D. Ceramides during Pregnancy and Obstetrical Adverse Outcomes. Metabolites 2023; 13:1136. [PMID: 37999232 PMCID: PMC10673483 DOI: 10.3390/metabo13111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Ceramides are a group of sphingolipids located in the external plasma membrane layer and act as messengers in cellular pathways such as inflammatory processes and apoptosis. Plasma ceramides are biomarkers of cardiovascular disease, type 2 diabetes mellitus, Alzheimer's disease, various autoimmune conditions and cancer. During pregnancy, ceramides play an important role as stress mediators, especially during implantation, delivery and lactation. Based on the current literature, plasma ceramides could be potential biomarkers of obstetrical adverse outcomes, although their role in metabolic pathways under such conditions remains unclear. This review aims to present current studies that examine the role of ceramides during pregnancy and obstetrical adverse outcomes, such as pre-eclampsia, gestational diabetes mellitus and other complications.
Collapse
Affiliation(s)
- Maria Lantzanaki
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Theofanis Vavilis
- Department of Dentistry, School of Medicine, European University of Cyprus, Nicosia 2404, Cyprus;
- Laboratory of Medical Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vikentia C. Harizopoulou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Helen Bili
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios G. Goulis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
| | - Dimitrios Vavilis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (V.C.H.); (H.B.); (D.G.G.); (D.V.)
- Medical School, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
12
|
Abdel-Megied AM, Monreal IA, Zhao L, Apffel A, Aguilar HC, Jones JW. Characterization of the cellular lipid composition during SARS-CoV-2 infection. Anal Bioanal Chem 2023; 415:5269-5279. [PMID: 37438564 PMCID: PMC10981079 DOI: 10.1007/s00216-023-04825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Emerging and re-emerging zoonotic viral diseases continue to significantly impact public health. Of particular interest are enveloped viruses (e.g., SARS-CoV-2, the causative pathogen of COVID-19), which include emerging pathogens of highest concern. Enveloped viruses contain a viral envelope that encapsulates the genetic material and nucleocapsid, providing structural protection and functional bioactivity. The viral envelope is composed of a coordinated network of glycoproteins and lipids. The lipid composition of the envelope consists of lipids preferentially appropriated from host cell membranes. Subsequently, changes to the host cell lipid metabolism and an accounting of what lipids are changed during viral infection provide an opportunity to fingerprint the host cell's response to the infecting virus. To address this issue, we comprehensively characterized the lipid composition of VeroE6-TMPRSS2 cells infected with SARS-CoV-2. Our approach involved using an innovative solid-phase extraction technique to efficiently extract cellular lipids combined with liquid chromatography coupled to high-resolution tandem mass spectrometry. We identified lipid changes in cells exposed to SARS-CoV-2, of which the ceramide to sphingomyelin ratio was most prominent. The identification of a lipid profile (i.e., lipid fingerprint) that is characteristic of cellular SARS-CoV-2 infection lays the foundation for targeting lipid metabolism pathways to further understand how enveloped viruses infect cells, identifying opportunities to aid antiviral and vaccine development.
Collapse
Affiliation(s)
- Ahmed M Abdel-Megied
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafr El-Sheikh University, Kafr El-Sheikh City, Egypt
| | - Isaac A Monreal
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Room N721, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Lidgard B, Bansal N, Zelnick LR, Hoofnagle AN, Fretts AM, Longstreth WT, Shlipak MG, Siscovick DS, Umans JG, Lemaitre RN. Evaluation of plasma sphingolipids as mediators of the relationship between kidney disease and cardiovascular events. EBioMedicine 2023; 95:104765. [PMID: 37634384 PMCID: PMC10474367 DOI: 10.1016/j.ebiom.2023.104765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Sphingolipids are a family of circulating lipids with regulatory and signaling roles that are strongly associated with both eGFR and cardiovascular disease. Patients with chronic kidney disease (CKD) are at high risk for cardiovascular events, and have different plasma concentrations of certain plasma sphingolipids compared to patients with normal kidney function. We hypothesize that circulating sphingolipids partially mediate the associations between eGFR and cardiovascular events. METHODS We measured the circulating concentrations of 8 sphingolipids, including 4 ceramides and 4 sphingomyelins with the fatty acids 16:0, 20:0, 22:0, and 24:0, in plasma from 3,463 participants in a population-based cohort (Cardiovascular Health Study) without prevalent cardiovascular disease. We tested the adjusted mediation effects by these sphingolipids of the associations between eGFR and incident cardiovascular disease via quasi-Bayesian Monte Carlo method with 2,000 simulations, using a Bonferroni correction for significance. FINDINGS The mean (±SD) eGFR was 70 (±16) mL/min/1.73 m2; 62% of participants were women. Lower eGFR was associated with higher plasma ceramide-16:0 and sphingomyelin-16:0, and lower ceramides and sphingomyelins-20:0 and -22:0. Lower eGFR was associated with risk of incident heart failure and ischemic stroke, but not myocardial infarction. Five of eight sphingolipids partially mediated the association between eGFR and heart failure. The sphingolipids associated with the greatest proportion mediated were ceramide-16:0 (proportion mediated 13%, 95% CI 8-22%) and sphingomyelin-16:0 (proportion mediated 10%, 95% CI 5-17%). No sphingolipids mediated the association between eGFR and ischemic stroke. INTERPRETATION Plasma sphingolipids partially mediated the association between lower eGFR and incident heart failure. Altered sphingolipids metabolism may be a novel mechanism for heart failure in patients with CKD. FUNDING This study was supported by T32 DK007467 and a KidneyCure Ben J. Lipps Research Fellowship (Dr. Lidgard). Sphingolipid measurements were supported by R01 HL128575 (Dr. Lemaitre) and R01 HL111375 (Dr. Hoofnagle) from the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Benjamin Lidgard
- Department of Medicine, University of Washington, United States.
| | - Nisha Bansal
- Department of Medicine, University of Washington, United States
| | - Leila R Zelnick
- Department of Medicine, University of Washington, United States
| | | | - Amanda M Fretts
- Department of Medicine, University of Washington, United States
| | | | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System and University of California San Francisco, United States
| | | | | | | |
Collapse
|
14
|
Pilátová MB, Solárová Z, Mezencev R, Solár P. Ceramides and their roles in programmed cell death. Adv Med Sci 2023; 68:417-425. [PMID: 37866204 DOI: 10.1016/j.advms.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Programmed cell death plays a crucial role in maintaining the homeostasis and integrity of multicellular organisms, and its dysregulation contributes to the pathogenesis of many diseases. Programmed cell death is regulated by a range of macromolecules and low-molecular messengers, including ceramides. Endogenous ceramides have different functions, that are influenced by their localization and the presence of their target molecules. This article provides an overview of the current understanding of ceramides and their impact on various types of programmed cell death, including apoptosis, anoikis, macroautophagy and mitophagy, and necroptosis. Moreover, it highlights the emergence of dihydroceramides as a new class of bioactive sphingolipids and their downstream targets as well as their future roles in cancer cell growth, drug resistance and tumor metastasis.
Collapse
Affiliation(s)
- Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic
| | - Roman Mezencev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, P.J. Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
15
|
Shen HH, Zhao Q, Wen YP, Wu R, Du SY, Huang XB, Wen XT, Cao SJ, Zeng L, Yan QG. Porcine reproductive and respiratory syndrome virus upregulates SMPDL3B to promote viral replication by modulating lipid metabolism. iScience 2023; 26:107450. [PMID: 37583552 PMCID: PMC10424083 DOI: 10.1016/j.isci.2023.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a severe threat to the health of pigs globally. Host factors play a critical role in PRRSV replication. Using PRRSV as a model for genome-scale CRISPR knockout (KO) screening, we identified a host factor critical to PRRSV infection: sphingomyelin phosphodiesterase acid-like 3B (SMPDL3B). Our findings show that SMPDL3B restricted PRRSV attachment, entry, replication, and secretion and that its depletion significantly inhibited PRRSV proliferation, indicating that SMPDL3B plays a positive role in PRRSV replication. Our data also show that SMPDL3B deficiency resulted in an accumulation of intracellular lipid droplets (LDs). The expression level of key genes (ACC, SCD-1, and FASN) involved in lipogenesis was increased, whereas the fundamental lipolysis gene, ATGL, was inhibited when SMPDL3B was knocked down. Overall, our findings suggest that SMPDL3B deficiency can effectively inhibit viral infection through the modulation of lipid metabolism.
Collapse
Affiliation(s)
- Huan-Huan Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Qin Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Yi-Ping Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Rui Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Sen-Yan Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xiao-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Xin-Tian Wen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - San-Jie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Qi-Gui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
16
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
17
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
19
|
Santiago Valtierra FX, Aveldaño MI, Oresti GM. Differentiation-linked changes in the biosynthesis and turnover of sphingomyelins in rat male germ cells: Genes involved and effects of testosterone. J Biol Chem 2023; 299:103058. [PMID: 36841478 PMCID: PMC10074206 DOI: 10.1016/j.jbc.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.
Collapse
Affiliation(s)
- Florencia X Santiago Valtierra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Marta I Aveldaño
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
20
|
Guzman G, Creek C, Farley S, Tafesse FG. Genetic Tools for Studying the Roles of Sphingolipids in Viral Infections. Methods Mol Biol 2022; 2610:1-16. [PMID: 36534277 DOI: 10.1007/978-1-0716-2895-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.
Collapse
Affiliation(s)
- Gaelen Guzman
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Cameron Creek
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Scotland Farley
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
21
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
22
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
23
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
24
|
Fan J, Liu J, Liu J, Angel PM, Drake RR, Wu Y, Fan H, Koutalos Y, Crosson CE. Sphingomyelinases in retinas and optic nerve heads: Effects of ocular hypertension and ischemia. Exp Eye Res 2022; 224:109250. [PMID: 36122624 PMCID: PMC10694736 DOI: 10.1016/j.exer.2022.109250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Sphingomyelinases (SMase), enzymes that catalyze the hydrolysis of sphingomyelin to ceramide, are important sensors for inflammatory cytokines and apoptotic signaling. Studies have provided evidence that increased SMase activity can contribute to retinal injury. In most tissues, two major SMases are responsible for stress-induced increases in ceramide: acid sphingomyelinase (ASMase) and Mg2+-dependent neutral sphingomyelinase (NSMase). The purposes of the current study were to determine the localization of SMases and their substrates in the retina and optic nerve head and to investigate the effects of ocular hypertension and ischemia on ASMase and NSMase activities. Tissue and cellular localization of ASMase and NSMase were determined by immunofluorescence imaging. Tissue localization of sphingomyelin in retinas was further determined by Matrix-Assisted Laser Desorption/Ionization mass spectrometry imaging. Tissue levels of sphingomyelins and ceramide were determined by liquid chromatography with tandem mass spectrometry. Sphingomyelinase activities under basal conditions and following acute ischemic and ocular hypotensive stress were measured using the Amplex Red Sphingomyelinase Assay Kit. Our data show that ASMase is in the optic nerve head and the retinal ganglion cell layer. NSMase is in the optic nerve head, photoreceptor and retinal ganglion cell layers. Both ASMase and NSMase were identified in human induced pluripotent stem cell-derived retinal ganglion cells and optic nerve head astrocytes. The retina and optic nerve head each exhibited unique distribution of sphingomyelins with the abundance of very long chain species being higher in the optic nerve head than in the retina. Basal activities for ASMase in retinas and optic nerve heads were 54.98 ± 2.5 and 95.6 ± 19.5 mU/mg protein, respectively. Ocular ischemia significantly increased ASMase activity to 86.2 ± 15.3 mU/mg protein in retinas (P = 0.03) but not in optic nerve heads (81.1 ± 15.3 mU/mg protein). Ocular hypertension significantly increased ASMase activity to 121.6 ± 7.3 mU/mg protein in retinas (P < 0.001) and 267.0 ± 66.3 mU/mg protein in optic nerve heads (P = 0.03). Basal activities for NSMase in retinas and optic nerve heads were 12.3 ± 2.1 and 37.9 ± 8.7 mU/mg protein, respectively. No significant change in NSMase activity was measured following ocular ischemia or hypertension. Our results provide evidence that both ASMase and NSMase are expressed in retinas and optic nerve heads; however, basal ASMase activity is significantly higher than NSMase activity in retinas and optic nerve heads. In addition, only ASMase activity was significantly increased in ocular ischemia or hypertension. These data support a role for ASMase-mediated sphingolipid metabolism in the development of retinal ischemic and hypertensive injuries.
Collapse
Affiliation(s)
- Jie Fan
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA.
| | - Jian Liu
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| | - Jiali Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Department of Ophthalmology, 274 Middle Zhijiang Road, Jingan District, Shanghai, 200071, China
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC, USA
| | - Yan Wu
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hongkuan Fan
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yiannis Koutalos
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| | - Craig E Crosson
- Storm Eye Institute, Medical University of South Carolina, Department of Ophthalmology, Charleston, SC, USA
| |
Collapse
|
25
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:cells11182914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1−/−) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk−/− corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1−/− corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
- Correspondence:
| |
Collapse
|
26
|
Shi XX, Zhang H, Quais MK, Chen M, Wang N, Zhang C, Mao C, Zhu ZR. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). INSECT MOLECULAR BIOLOGY 2022; 31:391-402. [PMID: 35156743 DOI: 10.1111/imb.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Sphingomyelinases (SMases) are a group of enzymes that catalyse the hydrolysis of sphingomyelins into ceramides and phosphorylcholine. They have been intensively investigated for their pathophysiological roles in mammals whereas much remains unclear about their counterparts in insects. Herein we report the cloning and functional characterization of four SMase homologue genes, designated NlSMase1-4, from brown planthopper (BPH). The phylogenetic analysis revealed that NlSMase1 and NlSMase2 were clustered into acid SMase family, and NlSMase3 and NlSMase4 with neutral SMase family. NlSMase1, NlSMase3 and NlSMase4 were highly expressed in BPH females, and NlSMaes2 in the 5th instar nymph. All four NlSMases had the lowest transcription in BPH males. NlSMase1 and NlSMase4 were highly expressed in BPH ovaries, while NlSMase2 and NlSMase3 in midgut and wings, respectively. Knocking-down of each NlSMase individual by RNA interference (RNAi) caused the ovarian malformation in BPH. The transcriptomic analysis revealed that NlSMase4 knockdown could strongly affect diacylglycerol (DAG)-related metabolisms and their downstream pathways. Further, qRT-PCR analysis of vitellogenin (Vg) genes indicates that the DAG metabolism disorder could interrupt the essential Vg accumulation for BPH oogenesis. Our study demonstrates the vital role of NlSMases in BPH reproductive development and provides new insights into the mediated mechanism of how SMases function.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejian, China
| | - He Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Md Khairul Quais
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ming Chen
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Research Institute, Zhejiang University, Sanya, Hainan, China
| |
Collapse
|
27
|
Crivelli SM, Luo Q, Kruining DV, Giovagnoni C, Mané-Damas M, den Hoedt S, Berkes D, De Vries HE, Mulder MT, Walter J, Waelkens E, Derua R, Swinnen JV, Dehairs J, Wijnands EPM, Bieberich E, Losen M, Martinez-Martinez P. FTY720 decreases ceramides levels in the brain and prevents memory impairments in a mouse model of familial Alzheimer's disease expressing APOE4. Biomed Pharmacother 2022; 152:113240. [PMID: 35689862 DOI: 10.1016/j.biopha.2022.113240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The protection mediated by the bioactive sphingolipid sphingosine-1-phosphate (S1P) declines during Alzheimer's disease (AD) progression, especially in patients carrying the apolipoprotein E ε4 (APOE4) isoform. The drug FTY720 mimics S1P bioactivity, but its efficacy in treating AD is unclear. Two doses of FTY720 (0.1 mg / kg and 0.5 mg / kg daily) were given by oral gavage for 15 weeks to transgenic mouse models of familial AD carrying human apolipoprotein E (APOE) APOE3 (E3FAD) or APOE4 (E4FAD). After 12 weeks of treatment, animals were subjected to behavioral tests for memory, locomotion, and anxiety. Blood was withdrawn at different time points and brains were collected for sphingolipids analysis by mass spectrometry, gene expression by RT-PCR and Aβ quantification by ELISA. We discovered that low levels of S1P in the plasma is associated with a higher probability of failing the memory test and that FTY720 prevents memory impairments in E4FAD. The beneficial effect of FTY720 was induced by a shift of the sphingolipid metabolism in the brain towards a lower production of toxic metabolites, like ceramide d18:1/16:0 and d18:1/22:0, and reduction of amyloid-β burden and inflammation. In conclusion, we provide further evidence of the druggability of the sphingolipid system in AD.
Collapse
Affiliation(s)
- Simone M Crivelli
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands; Department of Physiology, University of Kentucky College of Medicine, Lexington 40506, KY, USA.
| | - Qian Luo
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands
| | - Daan van Kruining
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands
| | - Caterina Giovagnoni
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands
| | - Marina Mané-Damas
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Laboratory Vascular Medicine, Erasmus MC University Medical Center, Rotterdam 3000CA, the Netherlands
| | - Dusan Berkes
- Department of Organic Chemistry, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Helga E De Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam 1007MB, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Laboratory Vascular Medicine, Erasmus MC University Medical Center, Rotterdam 3000CA, the Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn D-53127, Germany
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Erwin P M Wijnands
- Department of Pathology, Maastricht University, Maastricht 6200MD, the Netherlands
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington 40506, KY, USA; Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Mario Losen
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands
| | - Pilar Martinez-Martinez
- Maastricht University, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht 6200MD, the Netherlands.
| |
Collapse
|
28
|
Aguirre RS, Kulkarni A, Becker MW, Lei X, Sarkar S, Ramanadham S, Phelps EA, Nakayasu ES, Sims EK, Mirmira RG. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Mol Metab 2022; 63:101545. [PMID: 35817393 PMCID: PMC9294332 DOI: 10.1016/j.molmet.2022.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. SCOPE OF REVIEW This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. MAJOR CONCLUSIONS Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
Collapse
Affiliation(s)
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily K. Sims
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA,Corresponding author. 900 E. 57th St., KCBD 8130, Chicago, IL, 60637, USA.
| |
Collapse
|
29
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
30
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Mallela SK, Merscher S, Fornoni A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23084244. [PMID: 35457062 PMCID: PMC9025012 DOI: 10.3390/ijms23084244] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022] Open
Abstract
Sphingolipids, which act as a bioactive signaling molecules, are involved in several cellular processes such as cell survival, proliferation, migration and apoptosis. An imbalance in the levels of sphingolipids can be lethal to cells. Abnormalities in the levels of sphingolipids are associated with several human diseases including kidney diseases. Several studies demonstrate that sphingolipids play an important role in maintaining proper renal function. Sphingolipids can alter the glomerular filtration barrier by affecting the functioning of podocytes, which are key cellular components of the glomerular filtration barrier. This review summarizes the studies in our understanding of the regulation of sphingolipid signaling in kidney diseases, especially in glomerular and tubulointerstitial diseases, and the potential to target sphingolipid pathways in developing therapeutics for the treatment of renal diseases.
Collapse
Affiliation(s)
- Shamroop kumar Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (S.M.); (A.F.); Tel.: +1-305-243-6567 (S.M.); +1-305-243-3583 (A.F.); Fax: +1-305-243-3209 (S.M.); +1-305-243-3506 (A.F.)
| |
Collapse
|
32
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|
33
|
Bataller M, Sánchez-García A, Garcia-Mayea Y, Mir C, Rodriguez I, LLeonart ME. The Role of Sphingolipids Metabolism in Cancer Drug Resistance. Front Oncol 2022; 11:807636. [PMID: 35004331 PMCID: PMC8733468 DOI: 10.3389/fonc.2021.807636] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance continues to be one of the major challenges to cure cancer. As research in this field evolves, it has been proposed that numerous bioactive molecules might be involved in the resistance of cancer cells to certain chemotherapeutics. One well-known group of lipids that play a major role in drug resistance are the sphingolipids. Sphingolipids are essential components of the lipid raft domains of the plasma membrane and this structural function is important for apoptosis and/or cell proliferation. Dysregulation of sphingolipids, including ceramide, sphingomyelin or sphingosine 1-phosphate, has been linked to drug resistance in different types of cancer, including breast, melanoma or colon cancer. Sphingolipid metabolism is complex, involving several lipid catabolism with the participation of key enzymes such as glucosylceramide synthase (GCS) and sphingosine kinase 1 (SPHK1). With an overview of the latest available data on this topic and its implications in cancer therapy, this review focuses on the main enzymes implicated in sphingolipids metabolism and their intermediate metabolites involved in cancer drug resistance.
Collapse
Affiliation(s)
- Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Isabel Rodriguez
- Assistant Director of Nursing, Nursing Management Service Hospital Vall d'Hebron, Barcelona, Spain
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
34
|
Kolykhalov I, Androsova L, Gavrilova S. Clinical and immunological effects of choline alfoscerate in the treatment of amnestic type Mild Cognitive Impairment. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:59-66. [DOI: 10.17116/jnevro202212211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Acid sphingomyelinase promotes SGK1-dependent vascular calcification. Clin Sci (Lond) 2021; 135:515-534. [PMID: 33479769 PMCID: PMC7859357 DOI: 10.1042/cs20201122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.
Collapse
|
36
|
Jacobson JR. Sphingolipids as a Novel Therapeutic Target in Radiation-Induced Lung Injury. Cell Biochem Biophys 2021; 79:509-516. [PMID: 34370281 PMCID: PMC8551086 DOI: 10.1007/s12013-021-01022-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung injury (RILI) is a potential complication of thoracic radiotherapy that can result in pneumonitis or pulmonary fibrosis and is associated with significant morbidity and mortality. The pathobiology of RILI is complex and includes the generation of free radicals and DNA damage that precipitate oxidative stress, endothelial cell (EC), and epithelial cell injury and inflammation. While the cellular events involved continue to be elucidated and characterized, targeted and effective therapies for RILI remain elusive. Sphingolipids are known to mediate EC function including many of the cell signaling events associated with the elaboration of RILI. Sphingosine-1-phosphate (S1P) and S1P analogs enhance EC barrier function in vitro and have demonstrated significant protective effects in vivo in a variety of acute lung injury models including RILI. Similarly, statin drugs that have pleiotropic effects that include upregulation of EC S1P receptor 1 (S1PR1) have been found to be strongly protective in a small animal RILI model. Thus, targeting of EC sphingosine signaling, either directly or indirectly, to augment EC function and thereby attenuate EC permeability and inflammatory responses, represents a novel and promising therapeutic strategy for the prevention or treatment of RILI.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
37
|
Zarei Ghobadi M, Emamzadeh R, Teymoori-Rad M, Mozhgani SH. Decoding pathogenesis factors involved in the progression of ATLL or HAM/TSP after infection by HTLV-1 through a systems virology study. Virol J 2021; 18:175. [PMID: 34446027 PMCID: PMC8393454 DOI: 10.1186/s12985-021-01643-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Human T-cell Leukemia Virus type-1 (HTLV-1) is a retrovirus that causes two diseases including Adult T-cell Leukemia/Lymphoma (ATLL cancer) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP, a neurodegenerative disease) after a long latency period as an asymptomatic carrier (AC). There are no obvious explanations about how each of the mentioned diseases develops in the AC carriers. Finding the discriminative molecular factors and pathways may clarify the destiny of the infection. Methods To shed light on the involved molecular players and activated pathways in each state, differentially co-expressed modules (DiffCoEx) algorithm was employed to identify the highly correlated genes which were co-expressed differently between normal and ACs, ACs and ATLL, as well as ACs and HAM/TSP samples. Through differential pathway analysis, the dysregulated pathways and the specific disease-genes-pathways were figured out. Moreover, the common genes between the member of DiffCoEx and differentially expressed genes were found and the specific genes in ATLL and HAM/TSP were introduced as possible biomarkers. Results The dysregulated genes in the ATLL were mostly enriched in immune and cancer-related pathways while the ones in the HAM/TSP were enriched in immune, inflammation, and neurological pathways. The differential pathway analysis clarified the differences between the gene players in the common activated pathways. Eventually, the final analysis revealed the involvement of specific dysregulated genes including KIRREL2, RAB36, and KANK1 in HAM/TSP as well as LTB4R2, HCN4, FZD9, GRIK5, CREB3L4, TACR2, FRMD1, LHB, FGF3, TEAD3, GRIN2D, GNRH2, PRLH, GPR156, and CRHR2 in ATLL. Conclusion The identified potential prognostic biomarkers and therapeutic targets are proposed as the most important platers in developing ATLL or HAM/TSP. Moreover, the proposed signaling network clarifies the differences between the functional players in the activated pathways in ACs, ATLL, and HAM/TSP. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01643-8.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non‑Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
38
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
39
|
Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021; 595:1622-1638. [PMID: 33960414 DOI: 10.1002/1873-3468.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Ixodes scapularis ticks feed on humans and other vertebrate hosts and transmit several pathogens of public health concern. Tick saliva is a complex mixture of bioactive proteins, lipids and immunomodulators, such as I. scapularis sphingomyelinase (IsSMase)-like protein, an ortholog of dermonecrotoxin SMase D found in the venom of Loxosceles spp. of spiders. IsSMase modulates the host immune response towards Th2, which suppresses Th1-mediated cytokines to facilitate pathogen transmission. Arboviruses utilize exosomes for their transmission from tick to the vertebrate host, and exosomes derived from tick saliva/salivary glands suppress C-X-C motif chemokine ligand 12 and interleukin-8 immune response(s) in human skin to delay wound healing and repair processes. IsSMase affects also viral replication and exosome biogenesis, thereby inhibiting tick-to-vertebrate host transmission of pathogenic exosomes. In this review, we elaborate on exosomes and their biogenesis as potential candidates for developing novel control measure(s) to combat tick-borne diseases. Such targets could help with the development of an efficient anti-tick vaccine for preventing the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Kundave V Rajendran
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
40
|
Simon MV, Basu SK, Qaladize B, Grambergs R, Rotstein NP, Mandal N. Sphingolipids as critical players in retinal physiology and pathology. J Lipid Res 2021; 62:100037. [PMID: 32948663 PMCID: PMC7933806 DOI: 10.1194/jlr.tr120000972] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Indexed: 12/24/2022] Open
Abstract
Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established to participate in numerous processes, such as neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine-1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1-phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- M Victoria Simon
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina
| | - Sandip K Basu
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bano Qaladize
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Richard Grambergs
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Departamento De Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Argentine National Research Council (CONICET), Bahía Blanca, Argentina.
| | - Nawajes Mandal
- Departments of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
41
|
Mandal N, Grambergs R, Mondal K, Basu SK, Tahia F, Dagogo-Jack S. Role of ceramides in the pathogenesis of diabetes mellitus and its complications. J Diabetes Complications 2021; 35:107734. [PMID: 33268241 PMCID: PMC8663915 DOI: 10.1016/j.jdiacomp.2020.107734] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease that affects 463 million adults worldwide and is a leading cause of cardiovascular disease, blindness, nephropathy, peripheral neuropathy, and lower-limb amputation. Lipids have long been recognized as contributors to the pathogenesis and pathophysiology of DM and its complications, but recent discoveries have highlighted ceramides, a class of bioactive sphingolipids with cell signaling and second messenger capabilities, as particularly important contributors to insulin resistance and the underlying mechanisms of DM complications. Besides their association with insulin resistance and pathophysiology of type 2 diabetes, evidence is emerging that certain species of ceramides are mediators of cellular mechanisms involved in the initiation and progression of microvascular and macrovascular complications of DM. Advances in our understanding of these associations provide unique opportunities for exploring ceramide species as potential novel therapeutic targets and biomarkers. This review discusses the links between ceramides and the pathogenesis of DM and diabetic complications and identifies opportunities for novel discoveries and applications.
Collapse
Affiliation(s)
- Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA..
| | - Richard Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Koushik Mondal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Sandip K Basu
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Faiza Tahia
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Department of Pharmaceutical Sciences, College of Pharmacy, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- The University of Tennessee Health Science Center, Division of Endocrinology, Memphis, TN 38163, USA.; The University of Tennessee Health Science Center, Clinical Research Center, Memphis, TN 38163, USA..
| |
Collapse
|
42
|
Chung HY, Claus RA. Keep Your Friends Close, but Your Enemies Closer: Role of Acid Sphingomyelinase During Infection and Host Response. Front Med (Lausanne) 2021; 7:616500. [PMID: 33553211 PMCID: PMC7859284 DOI: 10.3389/fmed.2020.616500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Department for Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
43
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
44
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
45
|
Li L, Wang H, Jones JW. Sphingolipid metabolism as a marker of hepatotoxicity in drug-induced liver injury. Prostaglandins Other Lipid Mediat 2020; 151:106484. [PMID: 33007444 PMCID: PMC7669681 DOI: 10.1016/j.prostaglandins.2020.106484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/09/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) has a substantial impact on human health and is a major monetary burden on the drug development process. Presently, there is a lack of robust and analytically validated markers for predicting and early diagnosis of DILI. Sphingolipid metabolism and subsequent disruption of sphingolipid homeostasis has been documented to play a key role contributing to hepatocellular death and subsequent liver injury. A more comprehensive understanding of sphingolipid metabolism in response to liver toxicity has great potential to gain mechanistic insight into hepatotoxicity and define molecular markers that are responsible for hepatocyte dysfunction. Here, we present an analytical platform that provides multidimensional mass spectrometry-based datasets for comprehensive structure characterization of sphingolipids extracted from human primary hepatocytes (HPH) exposed to toxic levels of acetaminophen (APAP). Sphingolipid metabolism as measured by characterization of individual sphingolipid structure was sensitive to APAP toxicity displaying a concentration-dependent response. A number of sphingolipid structures were differentially expressed across varying APAP exposures highlighting the unique role sphingolipid metabolism has in response to hepatotoxicity and its potential use as a molecular marker in DILI.
Collapse
Affiliation(s)
- Linhao Li
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Hongbing Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States.
| |
Collapse
|
46
|
Tallima H, Hanna VS, El Ridi R. Arachidonic Acid Is a Safe and Efficacious Schistosomicide, and an Endoschistosomicide in Natural and Experimental Infections, and Cysteine Peptidase Vaccinated Hosts. Front Immunol 2020; 11:609994. [PMID: 33281832 PMCID: PMC7705376 DOI: 10.3389/fimmu.2020.609994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Blood flukes of the genus Schistosoma are covered by a protective heptalaminated, double lipid bilayer surface membrane. Large amounts of sphingomyelin (SM) in the outer leaflet form with surrounding water molecules a tight hydrogen bond barrier, which allows entry of nutrients and prevents access of host immune effectors. Excessive hydrolysis of SM to phosphoryl choline and ceramide via activation of the parasite tegument-associated neutral sphingomyelinase (nSMase) with the polyunsaturated fatty acid, arachidonic acid (ARA) leads to parasite death, via allowing exposure of apical membrane antigens to antibody-dependent cell-mediated cytotoxicity (ADCC), and accumulation of the pro-apoptotic ceramide. Surface membrane nSMase represents, thus, a worm Achilles heel, and ARA a valid schistosomicide. Several experiments conducted in vitro using larval, juvenile, and adult Schistosoma mansoni and Schistosoma haematobium documented ARA schistosomicidal potential. Arachidonic acid schistosomicidal action was shown to be safe and efficacious in mice and hamsters infected with S. mansoni and S. haematobium, respectively, and in children with light S. mansoni infection. A combination of praziquantel and ARA led to outstanding cure rates in children with heavy S. mansoni infection. Additionally, ample evidence was obtained for the powerful ARA ovocidal potential in vivo and in vitro against S. mansoni and S. haematobium liver and intestine eggs. Studies documented ARA as an endogenous schistosomicide in the final mammalian and intermediate snail hosts, and in mice and hamsters, immunized with the cysteine peptidase-based vaccine. These findings together support our advocating the nutrient ARA as the safe and efficacious schistosomicide of the future.
Collapse
Affiliation(s)
- Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.,Department of Chemistry, School of Science and Engineering, American University in Cairo, New Cairo, Cairo, Egypt
| | - Violette S Hanna
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
47
|
Yoo SW, Agarwal A, Smith MD, Khuder SS, Baxi EG, Thomas AG, Rojas C, Moniruzzaman M, Slusher BS, Bergles DE, Calabresi PA, Haughey NJ. Inhibition of neutral sphingomyelinase 2 promotes remyelination. SCIENCE ADVANCES 2020; 6:6/40/eaba5210. [PMID: 33008902 PMCID: PMC7852391 DOI: 10.1126/sciadv.aba5210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/20/2020] [Indexed: 05/05/2023]
Abstract
Myelination requires a highly organized synthesis of multiple lipid species that regulate myelin curvature and compaction. For reasons that are not understood, central nervous system remyelinated axons often have thin myelin sheaths with a disorganized structure susceptible to secondary demyelination. We found that expression of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) during the differentiation of oligodendrocyte progenitor cells (OPCs) to myelinating oligodendrocytes changes their response to inflammatory cytokines. OPCs do not express nSMase2 and exhibit a protective/regenerative response to tumor necrosis factor-α and interleukin-1β. Oligodendrocytes express nSMase2 and exhibit a stress response to cytokine challenge that includes an overproduction of ceramide, a sphingolipid that forms negative curvatures in membranes. Pharmacological inhibition or genetic deletion of nSMase2 in myelinating oligodendrocytes normalized the ceramide content of remyelinated fibers and increased thickness and compaction. These results suggest that inhibition of nSMase2 could improve the quality of myelin and stabilize structure.
Collapse
Affiliation(s)
- Seung-Wan Yoo
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amit Agarwal
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Matthew D Smith
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saja S Khuder
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily G Baxi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Department of Comparative Medicine and Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Comparative Medicine and Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21287, USA
| | - Peter A Calabresi
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Norman J Haughey
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
48
|
Burrello J, Biemmi V, Dei Cas M, Amongero M, Bolis S, Lazzarini E, Bollini S, Vassalli G, Paroni R, Barile L. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep 2020; 10:16182. [PMID: 32999414 PMCID: PMC7527456 DOI: 10.1038/s41598-020-73411-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are structural components of cell membrane, displaying several functions in cell signalling. Extracellular vesicles (EV) are lipid bilayer membrane nanoparticle and their lipid composition may be different from parental cells, with a significant enrichment in sphingolipid species, especially in pathological conditions. We aimed at optimizing EV isolation from plasma and describing the differential lipid content of EV, as compared to whole plasma. As pilot study, we evaluated the diagnostic potential of lipidomic signature of circulating EV in patients with a diagnosis of ST-segment-elevation myocardial infarction (STEMI). STEMI patients were evaluated before reperfusion and 24-h after primary percutaneous coronary intervention. Twenty sphingolipid species were quantified by liquid-chromatography tandem-mass-spectrometry. EV-ceramides, -dihydroceramides, and -sphingomyelins increased in STEMI vs. matched controls and decreased after reperfusion. Their levels correlated to hs-troponin, leucocyte count, and ejection fraction. Plasma sphingolipids levels were 500-to-700-fold higher as compared to EV content; nevertheless, only sphingomyelins differed in STEMI vs. control patients. Different sphingolipid species were enriched in EV and their linear combination by machine learning algorithms accurately classified STEMI patients at pre-PCI evaluation. In conclusion, EV lipid signature discriminates STEMI patients. These findings may contribute to the identification of novel biomarkers and signaling mechanisms related to cardiac ischemia.
Collapse
Affiliation(s)
- J Burrello
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - V Biemmi
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - M Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - M Amongero
- Department of Mathematical Sciences G. L. Lagrange, Polytechnic University of Torino, Torino, Italy
| | - S Bolis
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - E Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland
| | - S Bollini
- Regenerative Medicine Laboratory, Dept. of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - G Vassalli
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.,Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - R Paroni
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - L Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Via Tesserete 48, 6900, Lugano, Switzerland. .,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland. .,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
49
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
50
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|