1
|
Tang D, Xu J, Bao W, Xu F, Qi J, Tan Z, Li C, Luo X, You X, Rong M, Liu Z, Tang C. Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels. Eur J Pharmacol 2025; 988:177213. [PMID: 39706465 DOI: 10.1016/j.ejphar.2024.177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.2 in our previous study. Alanine-scanning mutagenesis analysis identified key molecular determinants on the SsTx-4 toxin interacting with these Kir channels, as well as those on the Kir6.2 channel interacting with the toxin. However, the key residues on Kir1.1 and Kir4.1 channels responsible for binding SsTx-4 remain unclear. Here, using a combination of site-directed mutagenesis, patch-clamp analysis, molecular docking with AlphaFold 3, and molecular dynamic simulations, we revealed that SsTx-4 acted on the Kir channels as a pore blocker, with K13 on toxin serving as the functional pore-blocking residue and other residues on it contributing to stabilize the toxin-channel complex by binding to multiple residues on the wall of the channels' outer vestibule, involving E104 on Kir1.1; D100, L115, and F133 on Kir4.1; and E108, S113, H115, and M137 on Kir6.2. Collectively, these findings advanced our understanding on the interaction between Kir channels and this prototype Kir antagonist, providing insights that could inspire the development of more potent and specific Kir subtype blockers in the future.
Collapse
Affiliation(s)
- Dongfang Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhu Bao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Fanping Xu
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jieqiong Qi
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zheni Tan
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chuanli Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xia You
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Cardenas SMC, Baker TA, Shimoda LA, Bernal-Mizrachi E, Punjabi NM. L-type calcium channel blockade worsens glucose tolerance and β-cell function in C57BL6/J mice exposed to intermittent hypoxia. Am J Physiol Endocrinol Metab 2025; 328:E161-E172. [PMID: 39763275 DOI: 10.1152/ajpendo.00423.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for the treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated. Adult male C57BL6/J mice were exposed to either nifedipine or vehicle concurrently with IH or intermittent air (IA) over 5 days. IH exposure entailed cycling fractional-inspired oxygen levels between 0.21 and 0.055 at a rate of 60 events/h. Nifedipine (20 mg/kg/day) or vehicle was administered via subcutaneous osmotic pumps resulting in four groups of mice: IA-vehicle (control), IA-nifedipine, IH-vehicle, and IH-nifedipine. Compared with IA (control), IH increased fasting glucose (mean Δ: 33.0 mg/dL; P < 0.001) and insulin (mean Δ: 0.53 ng/mL; P < 0.001) with nifedipine having no independent effect. Furthermore, glucose tolerance was worse with nifedipine alone, and IH further exacerbated the impairment in glucose disposal (P = 0.013 for interaction). Nifedipine also decreased glucose-stimulated insulin secretion and the insulinogenic index, with addition of IH attenuating those measures further. There were no discernible alterations in insulin biosynthesis/processing, insulin content, or islet morphology. These findings underscore the detrimental impact of IH on insulin sensitivity and glucose tolerance while highlighting that nifedipine exacerbates these disturbances through impaired β-cell function. Consequently, cautious use of L-type calcium channel blockers is warranted in patients with OSA, particularly in those at risk for type 2 diabetes.NEW & NOTEWORTHY The results of this study demonstrate the interaction between intermittent hypoxemia (IH) and nifedipine in a murine model. IH raises fasting glucose and insulin levels, with nifedipine exacerbating these disturbances. Glucose tolerance worsens when nifedipine is administered alone, and IH magnifies the impairment in glucose disposal. These findings raise the possibility of potential deleterious effects of L-type calcium channel blockers in patients with obstructive sleep apnea (OSA).
Collapse
Affiliation(s)
- Stanley M Chen Cardenas
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tess A Baker
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Larissa A Shimoda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Naresh M Punjabi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida, United States
| |
Collapse
|
3
|
Dai Y, Pan R, Pan Q, Wu X, Cai Z, Fu Y, Shi C, Sheng Y, Li J, Lin Z, Liu G, Zhu P, Li M, Li G, Zhou X. Single-cell profiling of the amphioxus digestive tract reveals conservation of endocrine cells in chordates. SCIENCE ADVANCES 2024; 10:eadq0702. [PMID: 39705360 DOI: 10.1126/sciadv.adq0702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Despite their pivotal role, the evolutionary origins of vertebrate digestive systems remain enigmatic. We explored the cellular characteristics of the amphioxus (Branchiostoma floridae) digestive tract, a model for the presumed primitive chordate digestive system, using bulk tissue companioned with single-cell RNA sequencing. Our findings reveal segmentation and a rich diversity of cell clusters, and we highlight the presence of epithelial-like, ciliated cells in the amphioxus midgut and describe three types of endocrine-like cells that secrete insulin-like, glucagon-like, and somatostatin-like peptides. Furthermore, Pdx, Ilp1, Ilp2, and Ilpr knockout amphioxus lines revealed that, in amphioxus, Pdx does not influence Ilp expression. We also unravel similarity between amphioxus Ilp1 and vertebrate insulin-like growth factor 1 (Igf1) in terms of predicted structure, effects on body growth and amino acid metabolism, and interactions with Igf-binding proteins. These findings indicate that the evolutionary alterations involving the regulatory influence of Pdx over insulin gene expression could have been instrumental in the development of the vertebrate digestive system.
Collapse
Affiliation(s)
- Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongrong Pan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zexin Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yongheng Fu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Yuyu Sheng
- Becton Dickinson Medical Devices (Shanghai) Co. Ltd., Beijing 100000, China
| | - Jingjing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Patra S, McMillan CJ, Snead ER, Warren AL, Cosford K, Chelikani PK. Feline Diabetes Is Associated with Deficits in Markers of Insulin Signaling in Peripheral Tissues. Int J Mol Sci 2024; 25:13195. [PMID: 39684905 DOI: 10.3390/ijms252313195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Like humans, cats have a strong relationship between decreasing insulin sensitivity and the development of diabetes with obesity. However, the underlying molecular mechanisms of impaired insulin secretion and signaling in cats remain largely unknown. A total of 54 client-owned nondiabetic lean (n = 15), overweight (n = 15), and diabetic (n = 24) cats were included in the study. The pancreas, liver, and skeletal muscle were quantified for mRNA and protein abundances of insulin and incretin signaling markers. Diabetic cats showed increased liver and muscle adiposity. The pancreas of diabetic cats had decreased transcript abundances of insulin, insulin receptor, insulin-receptor substrate (IRS)-1, glucose transporters (GLUT), and protein abundance of mitogen-activated protein kinase. In treated diabetics, protein abundance of glucagon-like peptide-1 and glucose-dependent insulinotropic peptide receptors, total and phosphorylated Akt, and GLUT-1 were increased in the pancreas, whereas untreated diabetics had downregulation of markers of insulin and incretin signaling. In the muscle and liver, diabetic cats had reduced mRNA abundances of insulin receptor, IRS-1/2, and phosphatidylinositol-3-kinase, and reduced protein abundances of GLUT-4 and phosphatidylinositol-3-kinase-p85α in muscle. We demonstrate that feline diabetes is associated with ectopic lipid deposition in the liver and skeletal muscle, deficits in insulin synthesis and incretin signaling in the pancreas, and impaired insulin signaling in the muscle and liver. These findings have implications for understanding the pathophysiological mechanisms of obesity and diabetes in humans and pets.
Collapse
Affiliation(s)
- Souvik Patra
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX 79106, USA
| | - Chantal J McMillan
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| | - Elisabeth R Snead
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Amy L Warren
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| | - Kevin Cosford
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Prasanth K Chelikani
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Drive, Amarillo, TX 79106, USA
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
5
|
Bisht S, Singh MF. The triggering pathway, the metabolic amplifying pathway, and cellular transduction in regulation of glucose-dependent biphasic insulin secretion. Arch Physiol Biochem 2024; 130:854-865. [PMID: 38196246 DOI: 10.1080/13813455.2023.2299920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Insulin secretion is a highly regulated process critical for maintaining glucose homeostasis. This abstract explores the intricate interplay between three essential pathways: The Triggering Pathway, The Metabolic Amplifying Pathway, and Cellular Transduction, in orchestrating glucose-dependent biphasic insulin secretion. MECHANISM During the triggering pathway, glucose metabolism in pancreatic beta-cells leads to ATP production, closing ATP-sensitive potassium channels and initiating insulin exocytosis. The metabolic amplifying pathway enhances insulin secretion via key metabolites like NADH and glutamate, enhancing calcium influx and insulin granule exocytosis. Additionally, the cellular transduction pathway involves G-protein coupled receptors and cyclic AMP, modulating insulin secretion. RESULT AND CONCLUSION These interconnected pathways ensure a dynamic insulin response to fluctuating glucose levels, with the initial rapid phase and the subsequent sustained phase. Understanding these pathways' complexities provides crucial insights into insulin dysregulation in diabetes and highlights potential therapeutic targets to restore glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- Shradha Bisht
- Amity Institute of Pharmacy, Amity University, Lucknow, Uttar Pradesh, India
| | - Mamta F Singh
- School of Pharmaceutical Sciences, SBS University, Balawala, Uttarakhand, India
| |
Collapse
|
6
|
Kwak J, Kim W, Cho H, Han J, Sim SJ, Song HG, Pak Y, Song HS. Label-free optical detection of calcium ion influx in cell-derived nanovesicles using a conical Au/PDMS biosensor. LAB ON A CHIP 2024; 24:4138-4146. [PMID: 39072370 DOI: 10.1039/d4lc00421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Ion channels, which are key to physiological regulation and drug discovery, control ion flux across membranes, and their dysregulation leads to various diseases. Ca2+ monitoring is crucial for cellular signaling when performing Ca-based assays in ion channel research; these assays are widely utilized in both academic and pharmaceutical contexts for drug screening and pharmacological profiling. However, existing detection methods are limited by slow detection speeds, low throughput, complex processes, and low analyte viability. In this study, we developed a label-free optical biosensing method using a conical Au/polydimethylsiloxane platform tailored to detect Ca2+ influx in A549-originated nanovesicles facilitated by the transient receptor potential ankyrin 1 (TRPA1) channel. Nanovesicles expressing cellular signaling components mimic TRPA1 signal transduction in cell membranes and improve analyte viability. The conical Au/polydimethylsiloxane sensor converted Ca2+ influx events induced by specific agonist exposure into noticeable changes in relative transmittance under visible light. The optical transmittance change accompanying Ca2+ influx resulted in an enhanced sensing response, high accuracy and reliability, and rapid detection (∼5 s) without immobilization or ligand treatments. In the underlying sensing mechanism, morphological variations in nanovesicles, which depend on Ca2+ influx, induce a considerable light scattering change at an interface between the nanovesicle and Au, revealed by optical simulation. This study provides a foundation for developing biosensors based on light-matter interactions. These sensors are simple and cost-effective with superior performance and diverse functionality.
Collapse
Affiliation(s)
- Jisung Kwak
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woochul Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyerim Cho
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jiyun Han
- Center of Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Gyu Song
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yusin Pak
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Xu Y, Yang T, Xu Q, Tang Y, Yang Q. Vesicle-associated membrane protein 8 knockdown exerts anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on colorectal cancer cells by inhibition of the JAK/STAT3 pathway. J Bioenerg Biomembr 2024; 56:419-431. [PMID: 38720136 DOI: 10.1007/s10863-024-10019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/20/2024] [Indexed: 07/03/2024]
Abstract
Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.
Collapse
Affiliation(s)
- Yi Xu
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Tianyao Yang
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province, Taizhou, China
| | - Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China
- Nanyang Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
| | - Yan Tang
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, China
| | - Qiong Yang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
An M, Akyuz M, Capik O, Yalcin C, Bertram R, Karatas EA, Karatas OF, Yildirim V. Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca 2+ oscillations in pancreatic ß-cells. Math Biosci 2024; 374:109224. [PMID: 38821258 DOI: 10.1016/j.mbs.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.
Collapse
Affiliation(s)
- Murat An
- Department of Basic Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Cigdem Yalcin
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Vehpi Yildirim
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Caspi I, Tremmel DM, Pulecio J, Yang D, Liu D, Yan J, Odorico JS, Huangfu D. Glucose Transporters Are Key Components of the Human Glucostat. Diabetes 2024; 73:1336-1351. [PMID: 38775784 PMCID: PMC11262048 DOI: 10.2337/db23-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/16/2024] [Indexed: 07/21/2024]
Abstract
Mouse models are extensively used in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human β-cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult β-cells and is expressed to a greater extent in fetal β-cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of β-cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SC-islets and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human β-cells, and identify them as key components in establishing species-specific glycemic set points. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Daniel M. Tremmel
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jon S. Odorico
- Transplantation Division, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
10
|
Jaffredo M, Krentz NA, Champon B, Duff CE, Nawaz S, Beer N, Honore C, Clark A, Rorsman P, Lang J, Gloyn AL, Raoux M, Hastoy B. Electrophysiological Characterization of Inducible Pluripotent Stem Cell-Derived Human β-Like Cells and an SLC30A8 Disease Model. Diabetes 2024; 73:1255-1265. [PMID: 38985991 PMCID: PMC11262041 DOI: 10.2337/db23-0776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Inducible pluripotent stem cell-derived human β-like cells (BLCs) hold promise for both therapy and disease modeling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single-cell electrophysiological tools to evaluate function of BLCs from pioneer protocols that can be easily adapted to more differentiated BLCs. The multi-electrode arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs, like primary β-cells, are electrically coupled and produce slow potential (SP) signals that are closely linked to insulin secretion. We also used high-resolution single-cell patch clamp measurements to capture the exocytotic properties, and characterize voltage-gated sodium and calcium currents, and found that they were comparable with those in primary β- and EndoC-βH1 cells. The KATP channel conductance is greater than in human primary β-cells, which may account for the limited glucose responsiveness observed with MEA. We used MEAs to study the impact of the type 2 diabetes-protective SLC30A8 allele (p.Lys34Serfs50*) and found that BLCs with this allele have stronger electrical coupling activity. Our data suggest that BLCs can be used to evaluate the functional impact of genetic variants on β-cell function and coupling. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Manon Jaffredo
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Nicole A.J. Krentz
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Claire E. Duff
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- King Abdulaziz University and University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), University of Oxford, Oxford, U.K
| | - Nicola Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | | | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Jochen Lang
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, U.K
- Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Matthieu Raoux
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- King Abdulaziz University and University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), University of Oxford, Oxford, U.K
| |
Collapse
|
11
|
Shahwar D, Baqai S, Khan F, Khan MI, Javaid S, Hameed A, Raza A, Saleem Uddin S, Hazrat H, Rahman MH, Musharraf SG, Chotani MA. Proteomic Analysis of Rap1A GTPase Signaling-Deficient C57BL/6 Mouse Pancreas and Functional Studies Identify an Essential Role of Rap1A in Pancreas Physiology. Int J Mol Sci 2024; 25:8013. [PMID: 39125590 PMCID: PMC11312117 DOI: 10.3390/ijms25158013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
Ras-related Rap1A GTPase is implicated in pancreas β-cell insulin secretion and is stimulated by the cAMP sensor Epac2, a guanine exchange factor and activator of Rap1 GTPase. In this study, we examined the differential proteomic profiles of pancreata from C57BL/6 Rap1A-deficient (Null) and control wild-type (WT) mice with nanoLC-ESI-MS/MS to assess targets of Rap1A potentially involved in insulin regulation. We identified 77 overlapping identifier proteins in both groups, with 8 distinct identifier proteins in Null versus 56 distinct identifier proteins in WT mice pancreata. Functional enrichment analysis showed four of the eight Null unique proteins, ERO1-like protein β (Ero1lβ), triosephosphate isomerase (TP1), 14-3-3 protein γ, and kallikrein-1, were exclusively involved in insulin biogenesis, with roles in insulin metabolism. Specifically, the mRNA expression of Ero1lβ and TP1 was significantly (p < 0.05) increased in Null versus WT pancreata. Rap1A deficiency significantly affected glucose tolerance during the first 15-30 min of glucose challenge but showed no impact on insulin sensitivity. Ex vivo glucose-stimulated insulin secretion (GSIS) studies on isolated Null islets showed significantly impaired GSIS. Furthermore, in GSIS-impaired islets, the cAMP-Epac2-Rap1A pathway was significantly compromised compared to the WT. Altogether, these studies underscore an essential role of Rap1A GTPase in pancreas physiological function.
Collapse
Affiliation(s)
- Durrey Shahwar
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Baqai
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Faisal Khan
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M. Israr Khan
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
| | - Shafaq Javaid
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Abdul Hameed
- Ziauddin College of Molecular Medicine, Ziauddin University, Clifton, Karachi 75600, Pakistan;
| | - Aisha Raza
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Sadaf Saleem Uddin
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - Hina Hazrat
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| | - M. Hafizur Rahman
- Molecular Diabetology Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (M.I.K.); (M.H.R.)
- Daffodil International University, Birulia, Savar, Dhaka 1216, Bangladesh
- Dhaka International University, Satarkul, Badda, Dhaka 1212, Bangladesh
| | - Syed Ghulam Musharraf
- Mass Spectrometry Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (F.K.); (S.G.M.)
- Husein Ebrahim Jamal (H.E.J.) Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maqsood A. Chotani
- Molecular Signaling Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (D.S.); (S.B.); (S.J.); (A.R.); (S.S.U.); (H.H.)
| |
Collapse
|
12
|
Rivera Nieves AM, Wauford BM, Fu A. Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes. Front Mol Biosci 2024; 11:1354199. [PMID: 38404962 PMCID: PMC10884328 DOI: 10.3389/fmolb.2024.1354199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In Type 1 and Type 2 diabetes, pancreatic β-cell survival and function are impaired. Additional etiologies of diabetes include dysfunction in insulin-sensing hepatic, muscle, and adipose tissues as well as immune cells. An important determinant of metabolic health across these various tissues is mitochondria function and structure. This review focuses on the role of mitochondria in diabetes pathogenesis, with a specific emphasis on pancreatic β-cells. These dynamic organelles are obligate for β-cell survival, function, replication, insulin production, and control over insulin release. Therefore, it is not surprising that mitochondria are severely defective in diabetic contexts. Mitochondrial dysfunction poses challenges to assess in cause-effect studies, prompting us to assemble and deliberate the evidence for mitochondria dysfunction as a cause or consequence of diabetes. Understanding the precise molecular mechanisms underlying mitochondrial dysfunction in diabetes and identifying therapeutic strategies to restore mitochondrial homeostasis and enhance β-cell function are active and expanding areas of research. In summary, this review examines the multidimensional role of mitochondria in diabetes, focusing on pancreatic β-cells and highlighting the significance of mitochondrial metabolism, bioenergetics, calcium, dynamics, and mitophagy in the pathophysiology of diabetes. We describe the effects of diabetes-related gluco/lipotoxic, oxidative and inflammation stress on β-cell mitochondria, as well as the role played by mitochondria on the pathologic outcomes of these stress paradigms. By examining these aspects, we provide updated insights and highlight areas where further research is required for a deeper molecular understanding of the role of mitochondria in β-cells and diabetes.
Collapse
Affiliation(s)
- Alejandra María Rivera Nieves
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Brian Michael Wauford
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Accalia Fu
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
13
|
Li X, Feng L, Kuang Q, Wang X, Yang J, Niu X, Gao L, Huang L, Luo P, Li L. Microplastics cause hepatotoxicity in diabetic mice by disrupting glucolipid metabolism via PP2A/AMPK/HNF4A and promoting fibrosis via the Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1018-1030. [PMID: 38064261 DOI: 10.1002/tox.24034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 01/09/2024]
Abstract
In recent years, microplastics (MPs) have gained significant attention as a persistent environmental pollutant resulting from the decomposition of plastics, leading to their accumulation in the human body. The liver, particularly of individuals with type 2 diabetes mellitus (T2DM), is known to be more susceptible to the adverse effects of environmental pollutants. Therefore, to investigate the potential impact of MPs on the liver of diabetic mice and elucidate the underlying toxicological mechanisms, we exposed db/db mice to 0.5 μm MPs for 3 months. Our results revealed that MPs exposure resulted in several harmful effects, including decreased body weight, disruption of liver structure and function, elevated blood glucose levels, impaired glucose tolerance, and increased glycogen accumulation in the hepatic tissue of the mice. Furthermore, MPs exposure was found to promote hepatic gluconeogenesis by perturbing the PP2A/AMPK/HNF4A signaling pathway. In addition, MPs disrupt redox balance, leading to oxidative damage in the liver. This exposure also disrupted hepatic lipid metabolism, stimulating lipid synthesis while inhibiting catabolism, ultimately resulting in the development of fatty liver. Moreover, MPs were found to induce liver fibrosis by activating the Wnt/β-catenin signaling pathway. Furthermore, MPs influenced adaptive thermogenesis in brown fat by modulating the expression of uncoupling protein 1 (UCP1) and genes associated with mitochondrial oxidative respiration thermogenesis in brown fat. In conclusion, our study demonstrates that MPs induce oxidative damage in the liver, disturb glucose and lipid metabolism, promote hepatic fibrosis, and influence adaptive thermogenesis in brown fat in diabetic mice. These findings underscore the potential adverse effects of MPs on liver health in individuals with T2DM and highlight the importance of further research in this area.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lixiang Feng
- Department of Urology, Wuhan Third Hospital, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Qihui Kuang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Jun Yang
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lizhi Huang
- School of Civil Engineering, Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Wuhan Third Hospital, Medical School of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
15
|
Wang X, Ma Z, Gao L, Yuan L, Ye Z, Cui F, Guo X, Liu W, Yan X. Genome-wide survey reveals the genetic background of Xinjiang Brown cattle in China. Front Genet 2024; 14:1348329. [PMID: 38283146 PMCID: PMC10811208 DOI: 10.3389/fgene.2023.1348329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Xinjiang Brown cattle are a famous dual-purpose (dairy-beef) cultivated breed in China that occupy a pivotal position within the cattle breeding industry in Xinjiang, China. However, little information is available on the genetic background of this breed. To fill this research gap, we conducted a whole-genome screen using specific-locus amplified fragment sequencing to examine the genetic structure and diversity of 130 Xinjiang Brown cattle-grazing type (XBG, traditional type) cattle. Methods: A subsequent joint analysis incorporating two ancestral breeds, specifically 19 Brown Swiss (BS) foreign and nine Kazakh (KZ) Chinese cattle, as well as 20 Xinjiang Brown cattle-housing type (XBH) cattle, was used to explore the genetic background of the Xinjiang Brown cattle. Results: The results showed that, after nearly a century of crossbreeding, XBG cattle formed a single population with a stable genetic performance. The genetic structure, genetic diversity, and selection signature analysis of the two ancestral types showed highly different results compared to that of XBH cattle. Local ancestry inference showed that the average proportions of XGB cattle within the BS and KZ cattle lineages were 37.22% and 62.78%, respectively, whereas the average proportions of XBH cattle within the BS and KZ cattle lineages were 95.14% and 4.86%, respectively. Thus, XGB cattle are more representative of all Xinjiang Brown cattle, in line with their breeding history, which involves crossbreeding. Two complementary approaches, fixation index and mean nucleotide diversity, were used to detect selection signals in the four aforementioned cattle breeds. Finally, the analysis of 26 candidate genes in Xinjiang Brown cattle revealed significant enrichment in 19 Gene Ontology terms, and seven candidate genes were enriched in three pathways related to disease resistance (CDH4, SIRPB1, and SIRPα) and the endocrine system (ADCY5, ABCC8, KCNJ11, and KCNMA1). Finally, development of the core SNPs in XBG cattle yielded 8,379 loci. Conclusion: The results of this study detail the evolutionary process of crossbreeding in Xinjiang Brown cattle and provide guidance for selecting and breeding new strains of this species.
Collapse
Affiliation(s)
- Xiao Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
- Yili Vocational and Technical College, Yili, China
| | - Zhen Ma
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Lixin Yuan
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Zhibing Ye
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Fanrong Cui
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xiaoping Guo
- Yili Kazakh Autonomous Prefecture General Animal Husbandry Station, Yili, China
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Xiangmin Yan
- Institute of Animal Science, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
16
|
Zhao R, Lu S, Li S, Shen H, Wang Y, Gao Y, Shen X, Wang F, Wu J, Liu W, Chen K, Yao X, Li J. Enzymatic Preparation and Processing Properties of DPP-IV Inhibitory Peptides Derived from Wheat Gluten: Effects of Pretreatment Methods and Protease Types. Foods 2024; 13:216. [PMID: 38254517 PMCID: PMC10814021 DOI: 10.3390/foods13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The choice of appropriate proteases and pretreatment methods significantly influences the preparation of bioactive peptides. This study aimed to investigate the effects of different pretreatment methods on the hydrolytic performance of diverse proteases during the production of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides derived from wheat and their foaming and emulsion properties. Dry heating, aqueous heating, and ultrasound treatment were employed as pretreatments for the protein prior to the enzymatic hydrolysis of wheat gluten. FTIR analysis results indicated that all pretreatment methods altered the secondary structure of the protein; however, the effects of dry heating treatment on the secondary structure content were opposite to those of aqueous heating and ultrasound treatment. Nevertheless, all three methods enhanced the protein solubility and surface hydrophobicity. By using pretreated proteins as substrates, five different types of proteases were employed for DPP-IV inhibitory peptide production. The analysis of the DPP-IV inhibitory activity, degree of hydrolysis, and TCA-soluble peptide content revealed that the specific pretreatments had a promoting or inhibiting effect on DPP-IV inhibitory peptide production depending on the protease used. Furthermore, the pretreatment method and the selected type of protease collectively influenced the foaming and emulsifying properties of the prepared peptides.
Collapse
Affiliation(s)
- Rui Zhao
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Shaozhen Li
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yang Gao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Wenhui Liu
- Beijing Huiyuan Food & Beverage Co., Ltd., Beijing 101305, China; (S.L.); (W.L.)
| | - Kaixin Chen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.); (H.S.); (Y.W.); (Y.G.); (X.S.); (F.W.); (J.W.); (K.C.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Jian Li
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, No. 33 Fucheng Road, Beijing 100048, China;
| |
Collapse
|
17
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
18
|
Cohrs CM, Chen C, Atkinson MA, Drotar DM, Speier S. Bridging the Gap: Pancreas Tissue Slices From Organ and Tissue Donors for the Study of Diabetes Pathogenesis. Diabetes 2024; 73:11-22. [PMID: 38117999 PMCID: PMC10784654 DOI: 10.2337/dbi20-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2023] [Indexed: 12/22/2023]
Abstract
Over the last two decades, increased availability of human pancreatic tissues has allowed for major expansions in our understanding of islet biology in health and disease. Indeed, studies of fixed and frozen pancreatic tissues, as well as efforts using viable isolated islets obtained from organ donors, have provided significant insights toward our understanding of diabetes. However, the procedures associated with islet isolation result in distressed cells that have been removed from any surrounding influence. The pancreas tissue slice technology was developed as an in situ approach to overcome certain limitations associated with studies on isolated islets or fixed tissue. In this Perspective, we discuss the value of this novel platform and review how pancreas tissue slices, within a short time, have been integrated in numerous studies of rodent and human islet research. We show that pancreas tissue slices allow for investigations in a less perturbed organ tissue environment, ranging from cellular processes, over peri-islet modulations, to tissue interactions. Finally, we discuss the considerations and limitations of this technology in its future applications. We believe the pancreas tissue slices will help bridge the gap between studies on isolated islets and cells to the systemic conditions by providing new insight into physiological and pathophysiological processes at the organ level. ARTICLE HIGHLIGHTS Human pancreas tissue slices represent a novel platform to study human islet biology in close to physiological conditions. Complementary to established technologies, such as isolated islets, single cells, and histological sections, pancreas tissue slices help bridge our understanding of islet physiology and pathophysiology from single cell to intact organ. Diverse sources of viable human pancreas tissue, each with distinct characteristics to be considered, are available to use in tissue slices for the study of diabetes pathogenesis.
Collapse
Affiliation(s)
- Christian M. Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Chunguang Chen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mark A. Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Denise M. Drotar
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Munich at the University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
19
|
Kolic J, Sun WG, Johnson JD, Guess N. Amino acid-stimulated insulin secretion: a path forward in type 2 diabetes. Amino Acids 2023; 55:1857-1866. [PMID: 37966501 DOI: 10.1007/s00726-023-03352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
Qualitative and quantitatively appropriate insulin secretion is essential for optimal control of blood glucose. Beta-cells of the pancreas produce and secrete insulin in response to glucose and non-glucose stimuli including amino acids. In this manuscript, we review the literature on amino acid-stimulated insulin secretion in oral and intravenous in vivo studies, in addition to the in vitro literature, and describe areas of consensus and gaps in understanding. We find promising evidence that the synergism of amino acid-stimulated insulin secretion could be exploited to develop novel therapeutics, but that a systematic approach to investigating these lines of evidence is lacking. We highlight evidence that supports the relative preservation of amino acid-stimulated insulin secretion compared to glucose-stimulated insulin secretion in type 2 diabetes, and make the case for the therapeutic potential of amino acids. Finally, we make recommendations for research and describe the potential clinical utility of nutrient-based treatments for type 2 diabetes including remission services.
Collapse
Affiliation(s)
- Jelena Kolic
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - WenQing Grace Sun
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Nicola Guess
- Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Rd, Oxford, OX2 6GG, UK.
| |
Collapse
|
20
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
21
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Vaganova AN, Shemyakova TS, Lenskaia KV, Rodionov RN, Steenblock C, Gainetdinov RR. Trace Amine-Associated Receptors and Monoamine-Mediated Regulation of Insulin Secretion in Pancreatic Islets. Biomolecules 2023; 13:1618. [PMID: 38002300 PMCID: PMC10669413 DOI: 10.3390/biom13111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, metabolic syndrome treatment includes predominantly pharmacological symptom relief and complex lifestyle changes. Trace amines and their receptor systems modulate signaling pathways of dopamine, norepinephrine, and serotonin, which are involved in the pathogenesis of this disorder. Trace amine-associated receptor 1 (TAAR1) is expressed in endocrine organs, and it was revealed that TAAR1 may regulate insulin secretion in pancreatic islet β-cells. For instance, accumulating data demonstrate the positive effect of TAAR1 agonists on the dynamics of metabolic syndrome progression and MetS-associated disease development. The role of other TAARs (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9) in the islet's function is much less studied. In this review, we summarize the evidence of TAARs' contribution to the metabolic syndrome pathogenesis and regulation of insulin secretion in pancreatic islets. Additionally, by the analysis of public transcriptomic data, we demonstrate that TAAR1 and other TAAR receptors are expressed in the pancreatic islets. We also explore associations between the expression of TAARs mRNA and other genes in studied samples and demonstrate the deregulation of TAARs' functional associations in patients with metabolic diseases compared to healthy donors.
Collapse
Affiliation(s)
- Anastasia N. Vaganova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Taisiia S. Shemyakova
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
| | - Karina V. Lenskaia
- Department of Medicine, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia;
| | - Roman N. Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (R.N.R.); (C.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.N.V.); (T.S.S.)
- St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
23
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Olsen C, Wang C, Aizenshtadt A, Abadpour S, Lundanes E, Skottvoll FS, Golovin A, Busek M, Krauss S, Scholz H, Wilson SR. Simultaneous LC-MS determination of glucose regulatory peptides secreted by stem cell-derived islet organoids. Electrophoresis 2023; 44:1682-1697. [PMID: 37574258 DOI: 10.1002/elps.202300095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
For studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip (OoC) platform, we have developed a reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of insulin, somatostatin-14, and glucagon, with improved matrix robustness compared to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner diameter LC columns and triple quadrupole mass spectrometry, identification and quantification were secured with negligible variance in retention time and quantifier/qualifier ratios, negligible levels of carryover (<2%), and sufficient precision (±10% RSD) and accuracy (±15% relative error) with and without use of an internal standard. The obtained lower limits of quantification were 0.2 µg/L for human insulin, 0.1 µg/L for somatostatin-14, and 0.05 µg/L for glucagon. The here-developed RPLC-MS/MS method showed that the SC-islets have an insulin response dependent on glucose concentration, and the SC-islets produce and release somatostatin-14 and glucagon. The RPLC-MS/MS method for these peptide hormones was compatible with an unfiltered offline sample collection from SC-islets cultivated on a pumpless, recirculating OoC (rOoC) platform. The SC-islets background secretion of insulin was not significantly different on the rOoC device compared to a standard cell culture well-plate. Taken together, RPLC-MS/MS method is well suited for multi-hormone measurements of SC-islets on an OoC platform.
Collapse
Affiliation(s)
- Christine Olsen
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Chencheng Wang
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| | | | - Alexey Golovin
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Mathias Busek
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Maity B, Moorthy H, Govindaraju T. Glucose-Responsive Self-Regulated Injectable Silk Fibroin Hydrogel for Controlled Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49953-49963. [PMID: 37847862 DOI: 10.1021/acsami.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Stimuli-responsive drug delivery systems are gaining importance in personalized medicine to deliver therapeutic doses in response to disease-specific stimulation. Pancreas-mimicking glucose-responsive insulin delivery systems offer improved therapeutic outcomes in the treatment of type 1 and advanced stage of type 2 diabetic conditions. Herein, we present a glucose-responsive smart hydrogel platform based on phenylboronic acid-functionalized natural silk fibroin protein for regulated insulin delivery. The modified protein was synergistically self-assembled and cross-linked through β-sheet and phenylboronate ester formation. The dynamic nature of the bonding confers smooth injectability through the needle. The cross-linked hydrogel structures firmly hold the glucose-sensing element and insulin in its pores and contribute to long-term sensing and drug storage. Under hyperglycemic conditions, the hydrogen peroxide generated from the sensing element induces hydrogel matrix degradation by oxidative cleavage, enabling insulin release. In vivo studies in a type 1 diabetic Wistar rat model revealed that the controlled insulin release from the hydrogel restored diabetic glucose level to physiological conditions for 36 h. This work establishes the functional modification of silk fibroin into a glucose-responsive hydrogel platform for regulated and functional insulin delivery application.
Collapse
Affiliation(s)
- Biswanath Maity
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
26
|
Jaffredo M, Krentz NAJ, Champon B, Duff CE, Nawaz S, Beer N, Honore C, Clark A, Rorsman P, Lang J, Gloyn AL, Raoux M, Hastoy B. Electrophysiological characterisation of iPSC-derived human β-like cells and an SLC30A8 disease model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.561014. [PMID: 37905040 PMCID: PMC10614917 DOI: 10.1101/2023.10.17.561014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
iPSC-derived human β-like cells (BLC) hold promise for both therapy and disease modelling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single cell electrophysiological tools to evaluate BLCs functions. The Multi-Electrode Arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs are electrically coupled, produce slow potential (SP) signals like primary β-cells that are closely linked to insulin secretion. We also used high-resolution single-cell patch-clamp measurements to capture the exocytotic properties, and characterize voltage-gated sodium and calcium currents. These were comparable to those in primary β and EndoC-βH1 cells. The KATP channel conductance is greater than in human primary β cells which may account for the limited glucose responsiveness observed with MEA. We used MEAs to study the impact of the type 2 diabetes protective SLC30A8 allele (p.Lys34Serfs*50) and found that BLCs with this allele have stronger electrical coupling. Our data suggest that with an adapted approach BLCs from pioneer protocol can be used to evaluate the functional impact of genetic variants on β-cell function and coupling.
Collapse
Affiliation(s)
- Manon Jaffredo
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Nicole A. J. Krentz
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, Stanford School of Medicine, Stanford University, CA, USA
| | - Benoite Champon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Claire E. Duff
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sameena Nawaz
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola Beer
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jochen Lang
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Anna L. Gloyn
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, Stanford School of Medicine, Stanford University, CA, USA
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Raoux
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Pessac, France
| | - Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Moon DO. A comprehensive review of the effects of resveratrol on glucose metabolism: unveiling the molecular pathways and therapeutic potential in diabetes management. Mol Biol Rep 2023; 50:8743-8755. [PMID: 37642760 DOI: 10.1007/s11033-023-08746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Resveratrol, a naturally occurring polyphenolic compound predominantly found in red wine and grapes, has garnered attention for its potential role in regulating carbohydrate digestion, glucose absorption, and metabolism. This review aims to deliver a comprehensive analysis of the molecular mechanisms and therapeutic potential of resveratrol in influencing vital processes in glucose homeostasis. These processes include carbohydrate digestion, glucose absorption, glycogen storage, insulin secretion, glucose metabolism in muscle cells, and triglyceride synthesis in adipocytes.The goal of this review is to offer an in-depth understanding of the multifaceted effects of resveratrol on glucose metabolism. By doing so, it presents valuable insights into its potential applications for preventing and treating metabolic disorders. This comprehensive examination of resveratrol's impact on glucose management will contribute to the growing body of knowledge on this promising natural compound, which may benefit researchers, healthcare professionals, and individuals interested in metabolic disorder prevention and treatment.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si, 38453, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
28
|
Luchetti N, Filippi S, Loppini A. Multilevel synchronization of human β-cells networks. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1264395. [PMID: 37808419 PMCID: PMC10557430 DOI: 10.3389/fnetp.2023.1264395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
β-cells within the endocrine pancreas are fundamental for glucose, lipid and protein homeostasis. Gap junctions between cells constitute the primary coupling mechanism through which cells synchronize their electrical and metabolic activities. This evidence is still only partially investigated through models and numerical simulations. In this contribution, we explore the effect of combined electrical and metabolic coupling in β-cell clusters using a detailed biophysical model. We add heterogeneity and stochasticity to realistically reproduce β-cell dynamics and study networks mimicking arrangements of β-cells within human pancreatic islets. Model simulations are performed over different couplings and heterogeneities, analyzing emerging synchronization at the membrane potential, calcium, and metabolites levels. To describe network synchronization, we use the formalism of multiplex networks and investigate functional network properties and multiplex synchronization motifs over the structural, electrical, and metabolic layers. Our results show that metabolic coupling can support slow wave propagation in human islets, that combined electrical and metabolic synchronization is realized in small aggregates, and that metabolic long-range correlation is more pronounced with respect to the electrical one.
Collapse
Affiliation(s)
- Nicole Luchetti
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
- National Institute of Optics, National Research Council, Florence, Italy
- International Center for Relativistic Astrophysics Network, Pescara, Italy
| | - Alessandro Loppini
- Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Engineering Department, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
29
|
Karwen T, Kolczynska‐Matysiak K, Gross C, Löffler MC, Friedrich M, Loza‐Valdes A, Schmitz W, Wit M, Dziaczkowski F, Belykh A, Trujillo‐Viera J, El‐Merahbi R, Deppermann C, Nawaz S, Hastoy B, Demczuk A, Erk M, Wieckowski MR, Rorsman P, Heinze KG, Stegner D, Nieswandt B, Sumara G. Platelet-derived lipids promote insulin secretion of pancreatic β cells. EMBO Mol Med 2023; 15:e16858. [PMID: 37490001 PMCID: PMC10493578 DOI: 10.15252/emmm.202216858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from β cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting β cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on β cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.
Collapse
Affiliation(s)
- Till Karwen
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | | | - Carina Gross
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Mona C Löffler
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mike Friedrich
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Angel Loza‐Valdes
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Werner Schmitz
- Theodor Boveri Institute, BiocenterUniversity of WürzburgWürzburgGermany
| | - Magdalena Wit
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Filip Dziaczkowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Andrei Belykh
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Jonathan Trujillo‐Viera
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Rabih El‐Merahbi
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Carsten Deppermann
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg‐UniversityMainzGermany
| | - Sameena Nawaz
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Benoit Hastoy
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
| | - Agnieszka Demczuk
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Manuela Erk
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - Mariusz R Wieckowski
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| | - Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and MetabolismChurchill HospitalOxfordUK
- Department of Physiology, Institute of Neuroscience and PhysiologyUniversity of GöteborgGöteborgSweden
- Oxford National Institute for Health Research, Biomedical Research CentreChurchill HospitalOxfordUK
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
| | - David Stegner
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Institute of Experimental Biomedicine IUniversity Hospital WürzburgWürzburgGermany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Integrative and Translational BioimagingJulius‐Maximilians University of WürzburgWürzburgGermany
- Nencki Institute of Experimental BiologyPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
30
|
Sekiya M, Ma Y, Kainoh K, Saito K, Yamazaki D, Tsuyuzaki T, Chen W, Adi Putri PIP, Ohno H, Miyamoto T, Takeuchi Y, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Yahagi N, Suzuki H, Motomura K, Matsuzaka T, Murata K, Mizuno S, Takahashi S, Shimano H. Loss of CtBP2 may be a mechanistic link between metabolic derangements and progressive impairment of pancreatic β cell function. Cell Rep 2023; 42:112914. [PMID: 37557182 DOI: 10.1016/j.celrep.2023.112914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
The adaptive increase in insulin secretion in early stages of obesity serves as a safeguard mechanism to maintain glucose homeostasis that cannot be sustained, and the eventual decompensation of β cells is a key event in the pathogenesis of diabetes. Here we describe a crucial system orchestrated by a transcriptional cofactor CtBP2. In cultured β cells, insulin gene expression is coactivated by CtBP2. Global genomic mapping of CtBP2 binding sites identifies a key interaction between CtBP2 and NEUROD1 through which CtBP2 decompacts chromatin in the insulin gene promoter. CtBP2 expression is diminished in pancreatic islets in multiple mouse models of obesity, as well as human obesity. Pancreatic β cell-specific CtBP2-deficient mice manifest glucose intolerance with impaired insulin secretion. Our transcriptome analysis highlights an essential role of CtBP2 in the maintenance of β cell integrity. This system provides clues to the molecular basis in obesity and may be targetable to develop therapeutic approaches.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
| | - Yang Ma
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kenji Saito
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Tomomi Tsuyuzaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Wanpei Chen
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Putu Indah Paramita Adi Putri
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan; Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
31
|
Deepa Maheshvare M, Raha S, König M, Pal D. A pathway model of glucose-stimulated insulin secretion in the pancreatic β-cell. Front Endocrinol (Lausanne) 2023; 14:1185656. [PMID: 37600713 PMCID: PMC10433753 DOI: 10.3389/fendo.2023.1185656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/08/2023] [Indexed: 08/22/2023] Open
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β-cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct a novel data-driven kinetic model of GSIS in the pancreatic β-cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β-cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and phenomenological equations for insulin secretion coupled to cellular energy state, ATP dynamics and (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β-cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and biphasic insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β-cell.
Collapse
Affiliation(s)
- M. Deepa Maheshvare
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Soumyendu Raha
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Matthias König
- Institute for Biology, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
32
|
Adlakha N. Disturbances in system dynamics of [Formula: see text] and [Formula: see text] perturbing insulin secretion in a pancreatic [Formula: see text]-cell due to type-2 diabetes. J Bioenerg Biomembr 2023:10.1007/s10863-023-09966-7. [PMID: 37418135 DOI: 10.1007/s10863-023-09966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/27/2023] [Indexed: 07/08/2023]
Abstract
The individual study of [Formula: see text] and [Formula: see text] dynamics respectively in a [Formula: see text]-cell has yielded limited information about the cell functions. But the systems biology approaches for such studies have received very little attention by the research workers in the past. In the present work, a system-dynamics model for the interdependent [Formula: see text] and [Formula: see text] signaling that controls insulin secretion in a [Formula: see text]-cell has been suggested. A two-way feedback system of [Formula: see text] and [Formula: see text] has been considered and one-way feedback between [Formula: see text] and insulin has been implemented in the model. The finite element method along with the Crank-Nicolson method have been applied for simulation. Numerical results have been used to analyze the impact of perturbations in [Formula: see text] and [Formula: see text] dynamics on insulin secretion for normal and Type-2 diabetic conditions. The results reveal that Type-2 diabetes comes from abnormalities in insulin secretion caused by the perturbation in buffers and pumps (SERCA and PMCA).
Collapse
Affiliation(s)
- Neeru Adlakha
- Department of Mathematics and Humanities, SVNIT, Surat, 395007, Gujarat, India
| |
Collapse
|
33
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
34
|
Mu-U-Min RBA, Diane A, Allouch A, Al-Siddiqi HH. Ca 2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines 2023; 11:1577. [PMID: 37371672 DOI: 10.3390/biomedicines11061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is a chronic disease affecting over 500 million adults globally and is mainly categorized as type 1 diabetes mellitus (T1DM), where pancreatic beta cells are destroyed, and type 2 diabetes mellitus (T2DM), characterized by beta cell dysfunction. This review highlights the importance of the divalent cation calcium (Ca2+) and its associated signaling pathways in the proper functioning of beta cells and underlines the effects of Ca2+ dysfunction on beta cell function and its implications for the onset of diabetes. Great interest and promise are held by human pluripotent stem cell (hPSC) technology to generate functional pancreatic beta cells from diabetic patient-derived stem cells to replace the dysfunctional cells, thereby compensating for insulin deficiency and reducing the comorbidities of the disease and its associated financial and social burden on the patient and society. Beta-like cells generated by most current differentiation protocols have blunted functionality compared to their adult human counterparts. The Ca2+ dynamics in stem cell-derived beta-like cells and adult beta cells are summarized in this review, revealing the importance of proper Ca2+ homeostasis in beta-cell function. Consequently, the importance of targeting Ca2+ function in differentiation protocols is suggested to improve current strategies to use hPSCs to generate mature and functional beta-like cells with a comparable glucose-stimulated insulin secretion (GSIS) profile to adult beta cells.
Collapse
Affiliation(s)
- Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Asma Allouch
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Heba H Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
35
|
Zhao X, Ma Y, Shi M, Huang M, Xin J, Ci S, Chen M, Jiang T, Hu Z, He L, Pan F, Guo Z. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1. Cell Mol Life Sci 2023; 80:159. [PMID: 37209177 PMCID: PMC11072990 DOI: 10.1007/s00018-023-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet β cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened β cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.
Collapse
Affiliation(s)
- Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Meimei Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Tao Jiang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
36
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. Angew Chem Int Ed Engl 2023; 62:e202302688. [PMID: 36917014 PMCID: PMC10947197 DOI: 10.1002/anie.202302688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
37
|
Ruiz-Otero N, Kuruvilla R. Role of Delta/Notch-like EGF-related receptor in blood glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1161085. [PMID: 37223028 PMCID: PMC10200888 DOI: 10.3389/fendo.2023.1161085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Cell-cell interactions are necessary for optimal endocrine functions in the pancreas. β-cells, characterized by the expression and secretion of the hormone insulin, are a major constituent of functional micro-organs in the pancreas known as islets of Langerhans. Cell-cell contacts between β-cells are required to regulate insulin production and glucose-stimulated insulin secretion, which are key determinants of blood glucose homeostasis. Contact-dependent interactions between β-cells are mediated by gap junctions and cell adhesion molecules such as E-cadherin and N-CAM. Recent genome-wide studies have implicated Delta/Notch-like EGF-related receptor (Dner) as a potential susceptibility locus for Type 2 Diabetes in humans. DNER is a transmembrane protein and a proposed Notch ligand. DNER has been implicated in neuron-glia development and cell-cell interactions. Studies herein demonstrate that DNER is expressed in β-cells with an onset during early postnatal life and sustained throughout adulthood in mice. DNER loss in adult β-cells in mice (β-Dner cKO mice) disrupted islet architecture and decreased the expression of N-CAM and E-cadherin. β-Dner cKO mice also exhibited impaired glucose tolerance, defects in glucose- and KCl-induced insulin secretion, and decreased insulin sensitivity. Together, these studies suggest that DNER plays a crucial role in mediating islet cell-cell interactions and glucose homeostasis.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
38
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202302688. [PMID: 38516305 PMCID: PMC10952496 DOI: 10.1002/ange.202302688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 03/17/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
39
|
Choi J, Shin E, Lee J, Devarasou S, Kim D, Shin JH, Choi JH, Heo WD, Han YM. Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells. Mol Ther 2023; 31:1480-1495. [PMID: 36932674 PMCID: PMC10188912 DOI: 10.1016/j.ymthe.2023.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Eunji Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | | | - Dongkyu Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
40
|
Koppes EA, Johnson MA, Moresco JJ, Luppi P, Lewis DW, Stolz DB, Diedrich JK, Yates JR, Wek RC, Watkins SC, Gollin SM, Park HJ, Drain P, Nicholls RD. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet 2023; 19:e1010710. [PMID: 37068109 PMCID: PMC10138222 DOI: 10.1371/journal.pgen.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS β-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS β-cells. Consistent with reduced ER chaperones levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS β-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic β-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and β-cell secretory pathway function.
Collapse
Affiliation(s)
- Erik A Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marie A Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Peter Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert D Nicholls
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
41
|
Galvis D, Hodson DJ, Wedgwood KC. Spatial distribution of heterogeneity as a modulator of collective dynamics in pancreatic beta-cell networks and beyond. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:fnetp.2023.1170930. [PMID: 36987428 PMCID: PMC7614376 DOI: 10.3389/fnetp.2023.1170930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We study the impact of spatial distribution of heterogeneity on collective dynamics in gap-junction coupled beta-cell networks comprised on cells from two populations that differ in their intrinsic excitability. Initially, these populations are uniformly and randomly distributed throughout the networks. We develop and apply an iterative algorithm for perturbing the arrangement of the network such that cells from the same population are increasingly likely to be adjacent to one another. We find that the global input strength, or network drive, necessary to transition the network from a state of quiescence to a state of synchronised and oscillatory activity decreases as network sortedness increases. Moreover, for weak coupling, we find that regimes of partial synchronisation and wave propagation arise, which depend both on network drive and network sortedness. We then demonstrate the utility of this algorithm for studying the distribution of heterogeneity in general networks, for which we use Watts-Strogatz networks as a case study. This work highlights the importance of heterogeneity in node dynamics in establishing collective rhythms in complex, excitable networks and has implications for a wide range of real-world systems that exhibit such heterogeneity.
Collapse
Affiliation(s)
- Daniel Galvis
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Correspondence: Daniel Galvis,
| | - David J. Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kyle C.A. Wedgwood
- Living Systems Institute, University of Exeter, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, UK
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
42
|
Xia AY, Zhu H, Zhao ZJ, Liu HY, Wang PH, Ji LD, Xu J. Molecular Mechanisms of the Melatonin Receptor Pathway Linking Circadian Rhythm to Type 2 Diabetes Mellitus. Nutrients 2023; 15:nu15061406. [PMID: 36986139 PMCID: PMC10052080 DOI: 10.3390/nu15061406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Night-shift work and sleep disorders are associated with type 2 diabetes (T2DM), and circadian rhythm disruption is intrinsically involved. Studies have identified several signaling pathways that separately link two melatonin receptors (MT1 and MT2) to insulin secretion and T2DM occurrence, but a comprehensive explanation of the molecular mechanism to elucidate the association between these receptors to T2DM, reasonably and precisely, has been lacking. This review thoroughly explicates the signaling system, which consists of four important pathways, linking melatonin receptors MT1 or MT2 to insulin secretion. Then, the association of the circadian rhythm with MTNR1B transcription is extensively expounded. Finally, a concrete molecular and evolutionary mechanism underlying the macroscopic association between the circadian rhythm and T2DM is established. This review provides new insights into the pathology, treatment, and prevention of T2DM.
Collapse
Affiliation(s)
- An-Yu Xia
- Department of Clinical Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhu
- Department of Internal Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Zhi-Jia Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hong-Yi Liu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Peng-Hao Wang
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Lin-Dan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
- Correspondence: (L.-D.J.); (J.X.)
| |
Collapse
|
43
|
Deepa Maheshvare M, Raha S, König M, Pal D. A Consensus Model of Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532028. [PMID: 36945414 PMCID: PMC10028967 DOI: 10.1101/2023.03.10.532028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
The pancreas plays a critical role in maintaining glucose homeostasis through the secretion of hormones from the islets of Langerhans. Glucose-stimulated insulin secretion (GSIS) by the pancreatic β -cell is the main mechanism for reducing elevated plasma glucose. Here we present a systematic modeling workflow for the development of kinetic pathway models using the Systems Biology Markup Language (SBML). Steps include retrieval of information from databases, curation of experimental and clinical data for model calibration and validation, integration of heterogeneous data including absolute and relative measurements, unit normalization, data normalization, and model annotation. An important factor was the reproducibility and exchangeability of the model, which allowed the use of various existing tools. The workflow was applied to construct the first consensus model of GSIS in the pancreatic β -cell based on experimental and clinical data from 39 studies spanning 50 years of pancreatic, islet, and β -cell research in humans, rats, mice, and cell lines. The model consists of detailed glycolysis and equations for insulin secretion coupled to cellular energy state (ATP/ADP ratio). Key findings of our work are that in GSIS there is a glucose-dependent increase in almost all intermediates of glycolysis. This increase in glycolytic metabolites is accompanied by an increase in energy metabolites, especially ATP and NADH. One of the few decreasing metabolites is ADP, which, in combination with the increase in ATP, results in a large increase in ATP/ADP ratios in the β -cell with increasing glucose. Insulin secretion is dependent on ATP/ADP, resulting in glucose-stimulated insulin secretion. The observed glucose-dependent increase in glycolytic intermediates and the resulting change in ATP/ADP ratios and insulin secretion is a robust phenomenon observed across data sets, experimental systems and species. Model predictions of the glucose-dependent response of glycolytic intermediates and insulin secretion are in good agreement with experimental measurements. Our model predicts that factors affecting ATP consumption, ATP formation, hexokinase, phosphofructokinase, and ATP/ADP-dependent insulin secretion have a major effect on GSIS. In conclusion, we have developed and applied a systematic modeling workflow for pathway models that allowed us to gain insight into key mechanisms in GSIS in the pancreatic β -cell.
Collapse
|
44
|
Gunasekar SK, Heebink J, Carpenter DH, Kumar A, Xie L, Zhang H, Schilling JD, Sah R. Adipose-targeted SWELL1 deletion exacerbates obesity- and age-related nonalcoholic fatty liver disease. JCI Insight 2023; 8:e154940. [PMID: 36749637 PMCID: PMC10077479 DOI: 10.1172/jci.insight.154940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Healthy expansion of adipose tissue is critical for the maintenance of metabolic health, providing an optimized reservoir for energy storage in the form of triacylglycerol-rich lipoproteins. Dysfunctional adipocytes that are unable to efficiently store lipid can result in lipodystrophy and contribute to nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. Leucine-rich repeat containing protein 8a/SWELL1 functionally encodes the volume-regulated anion channel complex in adipocytes, is induced in early obesity, and is required for normal adipocyte expansion during high-fat feeding. Adipose-specific SWELL1 ablation (Adipo KO) leads to insulin resistance and hyperglycemia during caloric excess, both of which are associated with NAFLD. Here, we show that Adipo-KO mice exhibited impaired adipose depot expansion and excess lipolysis when raised on a variety of high-fat diets, resulting in increased diacylglycerides and hepatic steatosis, thereby driving liver injury. Liver lipidomic analysis revealed increases in oleic acid-containing hepatic triacylglycerides and injurious hepatic diacylglyceride species, with reductions in hepatocyte-protective phospholipids and antiinflammatory free fatty acids. Aged Adipo-KO mice developed hepatic steatosis on a regular chow diet, and Adipo-KO male mice developed spontaneous, aggressive hepatocellular carcinomas (HCCs). These data highlight the importance of adipocyte SWELL1 for healthy adipocyte expansion to protect against NAFLD and HCC in the setting of overnutrition and with aging.
Collapse
Affiliation(s)
- Susheel K. Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Heebink
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Danielle H. Carpenter
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haixia Zhang
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel D. Schilling
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
45
|
Wen JJ, Li MZ, Chen CH, Hong T, Yang JR, Huang XJ, Geng F, Hu JL, Nie SP. Tea polyphenol and epigallocatechin gallate ameliorate hyperlipidemia via regulating liver metabolism and remodeling gut microbiota. Food Chem 2023; 404:134591. [DOI: 10.1016/j.foodchem.2022.134591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
|
46
|
The Role of Gut Microbiota in High-Fat-Diet-Induced Diabetes: Lessons from Animal Models and Humans. Nutrients 2023; 15:nu15040922. [PMID: 36839280 PMCID: PMC9963658 DOI: 10.3390/nu15040922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The number of diabetes mellitus patients is increasing rapidly worldwide. Diet and nutrition are strongly believed to play a significant role in the development of diabetes mellitus. However, the specific dietary factors and detailed mechanisms of its development have not been clearly elucidated. Increasing evidence indicates the intestinal microbiota is becoming abundantly apparent in the progression and prevention of insulin resistance in diabetes. Differences in gut microbiota composition, particularly butyrate-producing bacteria, have been observed in preclinical animal models as well as human patients compared to healthy controls. Gut microbiota dysbiosis may disrupt intestinal barrier functions and alter host metabolic pathways, directly or indirectly relating to insulin resistance. In this article, we focus on dietary fat, diabetes, and gut microbiome characterization. The promising probiotic and prebiotic approaches to diabetes, by favorably modifying the composition of the gut microbial community, warrant further investigation through well-designed human clinical studies.
Collapse
|
47
|
Giglio BM, Lobo PCB, Pimentel GD. Effects of whey protein supplementation on adiposity, body weight, and glycemic parameters: A synthesis of evidence. Nutr Metab Cardiovasc Dis 2023; 33:258-274. [PMID: 36543706 DOI: 10.1016/j.numecd.2022.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
AIMS The aim of this review was to analyze the evidence of whey protein supplementation on body weight, fat mass, lean mass and glycemic parameters in subjects with overweight or type 2 diabetes mellitus (T2DM) undergoing calorie restriction or with ad libitum intake. DATA SYNTHESIS Overweight and obesity are considered risk factors for the development of chronic noncommunicable diseases such as T2DM. Calorie restriction is a dietary therapy that reduces weight and fat mass, promotes the improvement of glycemic parameters, and decreases muscle mass. The maintenance of muscle mass during weight loss is necessary in view of its implication in preventing chronic diseases and improving functional capacity and quality of life. The effects of increased protein consumption on attenuating muscle loss and reducing body fat during calorie restriction or ad libitum intake in overweight individuals are discussed. Some studies have demonstrated the positive effects of whey protein supplementation on improving satiety and postprandial glycemic control in short term; however, it remains unclear whether long-term whey protein supplementation can positively affect glycemic parameters. CONCLUSIONS Although whey protein is considered to have a high nutritional quality, its effects in the treatment of overweight, obese individuals and those with T2DM undergoing calorie restriction or ad libitum intake are still inconclusive.
Collapse
Affiliation(s)
- Bruna M Giglio
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | - Patrícia C B Lobo
- Faculty of Nutrition, Federal University of Goias, Goiânia, GO, Brazil
| | | |
Collapse
|
48
|
Tripolt NJ, Hofer SJ, Pferschy PN, Aziz F, Durand S, Aprahamian F, Nirmalathasan N, Waltenstorfer M, Eisenberg T, Obermayer AMA, Riedl R, Kojzar H, Moser O, Sourij C, Bugger H, Oulhaj A, Pieber TR, Zanker M, Kroemer G, Madeo F, Sourij H. Glucose Metabolism and Metabolomic Changes in Response to Prolonged Fasting in Individuals with Obesity, Type 2 Diabetes and Non-Obese People-A Cohort Trial. Nutrients 2023; 15:511. [PMID: 36771218 PMCID: PMC9921960 DOI: 10.3390/nu15030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metabolic regulation of glucose can be altered by fasting periods. We examined glucose metabolism and metabolomics profiles after 12 h and 36 h fasting in non-obese and obese participants and people with type 2 diabetes using oral glucose tolerance (OGTT) and intravenous glucose tolerance testing (IVGTT). Insulin sensitivity was estimated by established indices and mass spectrometric metabolomics was performed on fasting serum samples. Participants had a mean age of 43 ± 16 years (62% women). Fasting levels of glucose, insulin and C-peptide were significantly lower in all cohorts after 36 h compared to 12 h fasting (p < 0.05). In non-obese participants, glucose levels were significantly higher after 36 h compared to 12 h fasting at 120 min of OGTT (109 ± 31 mg/dL vs. 79 ± 18 mg/dL; p = 0.001) but insulin levels were lower after 36 h of fasting at 30 min of OGTT (41.2 ± 34.1 mU/L after 36 h vs. 56.1 ± 29.7 mU/L; p < 0.05). In contrast, no significant differences were observed in obese participants or people with diabetes. Insulin sensitivity improved in all cohorts after 36 h fasting. In line, metabolomics revealed subtle baseline differences and an attenuated metabolic response to fasting in obese participants and people with diabetes. Our data demonstrate an improved insulin sensitivity after 36 h of fasting with higher glucose variations and reduced early insulin response in non-obese people only.
Collapse
Affiliation(s)
- Norbert J. Tripolt
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- Inserm U1138, Equipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Institut Universitaire de France, Sorbonne Université, Université de Paris, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Peter N. Pferschy
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Faisal Aziz
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| | - Sylvère Durand
- Inserm U1138, Equipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Institut Universitaire de France, Sorbonne Université, Université de Paris, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Fanny Aprahamian
- Inserm U1138, Equipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Institut Universitaire de France, Sorbonne Université, Université de Paris, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Nitharsshini Nirmalathasan
- Inserm U1138, Equipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Institut Universitaire de France, Sorbonne Université, Université de Paris, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Mara Waltenstorfer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anna M. A. Obermayer
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8010 Graz, Austria
| | - Harald Kojzar
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Othmar Moser
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
- Department of Sport Science, Division of Exercise Physiology and Metabolism, University of Bayreuth, 95440 Bayreuth, Germany
| | - Caren Sourij
- Division of Cardiology, Medical University of Graz, 8010 Graz, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, 8010 Graz, Austria
| | - Abderrahim Oulhaj
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University Abu Dhabi, Al-Ain P.O. Box 17666, United Arab Emirates
| | - Thomas R. Pieber
- BioTechMed Graz, 8010 Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
- Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| | - Matthias Zanker
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| | - Guido Kroemer
- Inserm U1138, Equipe Labellisée par la Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Institut Universitaire de France, Sorbonne Université, Université de Paris, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
49
|
Wan W, Qin Q, Xie L, Zhang H, Wu F, Stevens RC, Liu Y. GLP-1R Signaling and Functional Molecules in Incretin Therapy. Molecules 2023; 28:751. [PMID: 36677809 PMCID: PMC9866634 DOI: 10.3390/molecules28020751] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a critical therapeutic target for type 2 diabetes mellitus (T2DM). The GLP-1R cellular signaling mechanism relevant to insulin secretion and blood glucose regulation has been extensively studied. Numerous drugs targeting GLP-1R have entered clinical treatment. However, novel functional molecules with reduced side effects and enhanced therapeutic efficacy are still in high demand. In this review, we summarize the basis of GLP-1R cellular signaling, and how it is involved in the treatment of T2DM. We review the functional molecules of incretin therapy in various stages of clinical trials. We also outline the current strategies and emerging techniques that are furthering the development of novel therapeutic drugs for T2DM and other metabolic diseases.
Collapse
Affiliation(s)
- Wenwei Wan
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qikai Qin
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Fan Wu
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- Structure Therapeutics, South San Francisco, CA 94080, USA
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
50
|
Yang R, Zheng J, Qin J, Liu S, Liu X, Gu Y, Yang S, Du J, Li S, Chen B, Dong R. Dibutyl phthalate affects insulin synthesis and secretion by regulating the mitochondrial apoptotic pathway and oxidative stress in rat insulinoma cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114396. [PMID: 36508788 DOI: 10.1016/j.ecoenv.2022.114396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Dibutyl phthalate (DBP) is a typical phthalate (PAEs). The environmental health risks of DBP have gradually attracted attention due to the common use in the production of plastics, cosmetics and skin care products. DBP was associated with diabetes, but its mechanism is not clear. In this study, an in vitro culture system of rat insulinoma (INS-1) cells was established to explore the effect of DBP on insulin synthesis and secretion and the potential mechanisms. INS-1 cells were cultured in RPMI-1640 medium containing 10% fetal bovine serum and treated with 15, 30, 60 and 120 μmol/L of DBP and dimethyl sulfoxide (vehicle, < 0.1%) for 24 h. The contents of insulin in the intracellular fluid and the extracellular fluid of the cells were measured. The results showed that insulin synthesis and secretion in INS-1 cells were significantly decreased in 120 μmol/L DBP group. The apoptosis rate and mitochondrial membrane potential of INS-1 cells were measured by flow cytometry with annexin V-FITC conjugate and PI, and JC-1, respectively. The results showed that DBP caused an increase in the apoptosis rate and a significant decrease in the mitochondrial membrane potential in INS-1 cells in 60 μmol/L and 120 μmol/L DBP group. The results of western blot showed that the expression of Bax/Bcl-2, caspase-3, caspase-9 and Cyt-C were significantly increased. Meanwhile, the level of oxidative stress in INS-1 cells was detected by fluorescent probes DCFH-DA and western blot. With the increase of DBP exposure, the oxidative stress levels (MDA, GSH/GSSG) were increased; and the antioxidant index (SOD) levels were decreased. Our experimental results provide reliable evidence that DBP induced apoptosis and functional impairment in INS-1 cells through the mitochondrial apoptotic pathway and oxidative stress. Therefore, we hypothesized that interference with these two pathways could be considered in the development of preventive protection measures.
Collapse
Affiliation(s)
- Ruoru Yang
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | | | - Jin Qin
- Affiliated cancer hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450003, China.
| | - Shaojie Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Xinyuan Liu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yiying Gu
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Jun Du
- Nutrilite Health Institute, Shanghai 200023, China.
| | - Shuguang Li
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Bo Chen
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Ruihua Dong
- School of Public Health, Institute of Nutrition, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China.
| |
Collapse
|