1
|
Jarvis M, Hamzah KA, Nichols D, Ney LJ. Hair and Saliva Endocannabinoid and Steroid Hormone Analysis by Liquid Chromatography Paired with Tandem Mass Spectrometry. Methods Mol Biol 2025; 2868:135-147. [PMID: 39546229 DOI: 10.1007/978-1-0716-4200-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Endocannabinoids are lipid neurotransmitters that play an important part in human health. Recent methods have found that quantification of endocannabinoids in hair and saliva samples is possible using liquid chromatography paired with tandem mass spectrometry (LC-MS/MS). This chapter describes two simple sample preparation methods that can be used to prepare hair and saliva samples for analysis using LC-MS/MS. Our LC-MS/MS method can be applied to both hair and saliva samples and is sufficiently sensitive for endocannabinoid, as well as steroid hormone, quantification in both of these sample matrices. This chapter provides a comprehensive description of how this can be achieved and provides tips and tricks for troubleshooting problems users may experience.
Collapse
Affiliation(s)
- Madeline Jarvis
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Khalisa Amir Hamzah
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Kamsrijai U, Charoensup R, Jaidee W, Hawiset T, Thaweethee-Sukjai B, Praman S. Cannabidiol/cannabidiolic acid-rich hemp (Cannabis sativa L.) extract attenuates cognitive impairments and glial activations in rats exposed to chronic stress. JOURNAL OF ETHNOPHARMACOLOGY 2024:119113. [PMID: 39551282 DOI: 10.1016/j.jep.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemp (Cannabis sativa L.) is increasingly being recognized for its medicinal properties beside utilizing it for food, oil, and textile fibers. The high level of cannabidiol (CBD) content in hemp's flowers shows promising neuroprotective properties without causing psychotomimetic or addictive effects. Recently, products containing CBD and its precursor, cannabidiolic acid (CBDA), have been used to treat stress-related cognitive impairment. However, the therapeutic potential of hemp extract remains inadequately explored. AIM OF THE STUDY To investigate the effect of CBD/CBDA-rich hemp extract on learning and memory, neuroendocrine alterations, and hippocampal neuropathological changes in the chronic restraint stress model. MATERIALS AND METHODS Chronic restraint stress (CRS) was induced in male Wistar rats by immobilizing them in a restrainer for 6 hours per day for 21 consecutive days. CBD/CBDA-rich hemp extract (10 and 30 mg/kg, intraperitoneal injection) was administered daily, 1 hour before restraint. After the last day of CRS, behavioral tests for cognition were conducted using the Y-maze and object recognition tests. Serum corticosterone (CORT) levels were measured by ELISA. Histopathological changes, neuronal density, and the activation of microglia and astrocytes were visualized using cresyl violet and immunohistochemical staining. RESULTS A high dose of CBD/CBDA-rich hemp extract effectively ameliorated CRS-induced cognitive impairment and reversed HPA axis hyperactivity in CRS rats by reducing CORT levels and adrenal gland weight. Additionally, CBD/CBDA-rich hemp extract protected CRS-induced damage to hippocampal neurons. Further analysis showed that CBD/CBDA-rich hemp extract reduced specific markers of microglial activation (ionized calcium-binding adaptor molecule-1, Iba-1) and astrocytic structural protein (glial fibrillary acidic protein, GFAP) in CRS rats. CONCLUSION CBD/CBDA-rich hemp extracts remarkably reversed the stress-induced behavioral perturbations and hippocampal damage, suggesting its ameliorative effect on stress response.
Collapse
Affiliation(s)
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, Thailand, 57100; School of Integrative Medicine, Major of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, Thailand, 57100
| | - Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand, 57100
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand, 57100
| |
Collapse
|
3
|
Jeong YY, Yoo JH, Jeong SY, Lee M, Park SJ, Lim NY, Son SW, Han KS, Woo DH. LY-2183240 enhances reward-seeking behavior with inducing neuronal excitation and early apoptosis in mouse. iScience 2024; 27:111069. [PMID: 39524361 PMCID: PMC11543910 DOI: 10.1016/j.isci.2024.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Cannabinoids interact with cannabinoid receptors, influencing diverse central nervous system (CNS) and peripheral functions, including anxiety, depression, and cognition. CB1 and CB2 receptors modulate signaling cascades via G-protein coupling, with anandamide acting as an endogenous ligand for CB1 receptors. LY-2183240, a putative endocannabinoid transport blocker, elevates brain anandamide levels, showing therapeutic potential in pain management and alcohol-related behaviors. LY-2183240 enhances neuronal excitability and is classified as a new psychoactive substance (NPS). However, its precise cellular mechanisms within the CNS remain poorly understood. In this study, the effect of LY-2183240 on cortical neurons and reward-seeking behavior is investigated. Our results indicate enhanced neuronal excitability and reward-seeking behavior induction by LY-2183240, shedding light on its pharmacological profile and NPS-associated risks. Our research underscores the importance of further understanding the cellular mechanisms of LY-2183240 to inform regulatory efforts and mitigate public health risks.
Collapse
Affiliation(s)
- Yu Yeong Jeong
- Center for Global Biopharmaceutical Research Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Seo Yule Jeong
- Center for Global Biopharmaceutical Research Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
| | - Myunghoon Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Su Jeong Park
- Pharmacology and Narcotics Research Division, National Institute of Food & Drug Safety Evaluation, Cheongju-si, South Korea
| | - Na Young Lim
- Pharmacology and Narcotics Research Division, National Institute of Food & Drug Safety Evaluation, Cheongju-si, South Korea
| | - Seung Won Son
- Pharmacology and Narcotics Research Division, National Institute of Food & Drug Safety Evaluation, Cheongju-si, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Dong Ho Woo
- Center for Global Biopharmaceutical Research Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea
| |
Collapse
|
4
|
Demaili A, Portugalov A, Maroun M, Akirav I, Braun K, Bock J. Early life stress induces decreased expression of CB1R and FAAH and epigenetic changes in the medial prefrontal cortex of male rats. Front Cell Neurosci 2024; 18:1474992. [PMID: 39503008 PMCID: PMC11534599 DOI: 10.3389/fncel.2024.1474992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Several studies in both animal models and in humans have provided substantial evidence that early life stress (ELS) induces long-term changes in behavior and brain function, making it a significant risk factor in the aetiology of various mental disorders, including anxiety and depression. In this study, we tested the hypothesis that ELS in male rats (i) leads to increased anxiety and depressive-like symptoms; and (ii) that these behavioral changes are associated with functional alterations in the endocannabinoid system of the medial prefrontal cortex (mPFC). We further assessed whether the predicted changes in the gene expression of two key components of the endocannabinoid system, cannabinoid receptor 1 (CB1R) and the fatty acid amide hydrolase (FAAH), are regulated by epigenetic mechanisms. Behavioral profiling revealed that the proportion of behaviorally affected animals was increased in ELS exposed male rats compared to control animals, specifically showing symptoms of anhedonia and impaired social behavior. On the molecular level we observed a decrease in CB1R and FAAH mRNA expression in the mPFC of adult ELS exposed animals. These gene expression changes were accompanied by reduced global histone 3 acetylation in the mPFC, while no significant changes in DNA methylation and no significant changes of histone-acetylation at the promoter regions of the analyzed genes were detected. Taken together, our data provide evidence that ELS induces a long-term reduction of CB1R and FAAH expression in the mPFC of adult male rats, which may partially contribute to the ELS-induced changes in adult socio-emotional behavior.
Collapse
Affiliation(s)
- Arijana Demaili
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Anna Portugalov
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Mouna Maroun
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Jörg Bock
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- PG Epigenetics and Structural Plasticity, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Shin J, Kim DU, Bae GS, Han JY, Lim DW, Lee YM, Kim E, Kwon E, Han D, Kim S. Antidepressant-like Effects of Cannabis sativa L. Extract in an Lipopolysaccharide Model: Modulation of Mast Cell Activation in Deep Cervical Lymph Nodes and Dura Mater. Pharmaceuticals (Basel) 2024; 17:1409. [PMID: 39459047 PMCID: PMC11510560 DOI: 10.3390/ph17101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS)-induced neuroinflammation is a well-established model for studying depression-like behavior, driven by pro-inflammatory cytokines such as TNF-α and IL-1β. Mast cells (MCs) contribute to neuroinflammation by releasing mediators that exacerbate depressive-like symptoms. This study evaluates the antidepressant-like and anti-inflammatory effects of Cannabis sativa L. inflorescence extract (CSL) in an LPS-induced neuroinflammation model. METHODS Male C57BL/6 mice were intraperitoneally injected with CSL at doses of 10, 20, and 30 mg/kg, 30 min prior to LPS (0.83 mg/kg) administration. Depressive behaviors were assessed using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). The neutrophil-to-lymphocyte ratio (NLR) was measured to assess systemic inflammation. Cytokine levels in the prefrontal cortex (PFC) were measured, and mast cell degranulation in the lymph nodes and dura mater was analyzed histologically (approval number: WKU24-64). RESULTS CSL significantly improved depressive-like behaviors and decreased the NLR, indicating reduced systemic inflammation. CSL also significantly reduced TNF-α and IL-1β levels in the PFC. Furthermore, CSL inhibited MC degranulation in the deep cervical lymph nodes and dura mater, with the strongest effects observed at 30 mg/kg. CONCLUSIONS CSL demonstrated antidepressant-like and anti-inflammatory effects in an LPS-induced neuroinflammation model, likely through the modulation of cytokine expression and mast cell activity. These results suggest the potential of CSL as a therapeutic option for treating inflammation-related depression.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (D.-U.K.); (G.-S.B.)
| | - Ji-Ye Han
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Do-Won Lim
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Young-Mi Lee
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea; (J.-Y.H.); (D.-W.L.); (Y.-M.L.)
| | - Eunjae Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (E.K.)
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
- Department of Global Health and Development, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (D.H.)
| |
Collapse
|
6
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
7
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Micha JP, Rettenmaier MA, Bohart RD, Goldstein BH. Medical marijuana in the treatment of cancer-associated symptoms. J Oncol Pharm Pract 2024; 30:1240-1244. [PMID: 38899936 DOI: 10.1177/10781552241262963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Previous cancer studies have indicated that medical marijuana addresses a significant unmet need, namely chronic pain treatment and conferring oncology supportive care. However, the clinical research evaluating medical marijuana is preliminary and requires further consideration. DATA SOURCES We conducted a PubMed search primarily comprising retrospective and prospective studies, systematic reviews, and randomized clinical trials (RCTs) from approximately 2020-2023. The search included specific terms that incorporated medical marijuana, cancer treatment, cancer-related symptoms, pain management, and side effects. DATA SUMMARY A total of 40 studies were included in the review, many of which were either of acceptable or good quality. Select investigations indicated that medical marijuana was associated with decreased overall pain levels and improvements in nausea and vomiting. Alternatively, the results from RCTs have found that the benefits from a placebo were equivalent to medical marijuana in both the treatment of cancer-related pain and providing an opioid-sparing effect. CONCLUSIONS Despite the potential cancer-related benefits derived from medical marijuana, the study design and results for many of the investigations on which the evidence is based, were neither uniform nor conducted via RCTs; hence, the efficacy and appropriateness of medical marijuana in treating cancer-related conditions remain indeterminate.
Collapse
Affiliation(s)
- John P Micha
- Women's Cancer Research Foundation, Laguna Beach, CA, USA
| | | | | | | |
Collapse
|
9
|
Di Bartolomeo M, Čerňanová A, Petrušová V, Di Martino S, Hodosy J, Drago F, Micale V, D'Addario C. DNA methylation at cannabinoid type 1 and dopamine D2 receptor genes in saliva samples of psychotic subjects: Is there an effect of Cannabis use? Pharmacol Res 2024; 208:107343. [PMID: 39127265 DOI: 10.1016/j.phrs.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Psychosis is a characterizing feature of many mental disorders that dramatically affects human thoughts and perceptions, influencing the ability to distinguish between what is real and what is not. Both genetic and environmental factors, such as stressful events or drug use, play a pivotal role in the development of symptomatology and therefore changes in the epigenome may be of relevance in modeling a psychotic phenotype. According to the well-documented dysregulation of endocannabinoid and dopaminergic system genes in schizophrenia, we investigated DNA methylation cannabinoid type 1 receptor (CNR1) and dopamine D2 receptor (DRD2) genes in saliva samples from psychotic subjects using pyrosequencing. The epigenetic mark was significantly higher and directly correlated for both genes in psychotic subjects compared to healthy controls. We also showed that these DNA methylation levels were lower in psychotic subjects reporting current delta-9-tetrahydrocannabinol (THC) consumption, a well-known risk factor for developing psychosis throughout the lifespan, resembling those of controls at least for the DRD2 gene. Overall, our data confirm the key role of CNR1 and DRD2 gene regulation in psychosis and suggest DNA methylation levels at specific CpG sites as potential biomarkers, but just in those psychotic subjects not consuming THC.
Collapse
Affiliation(s)
- Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy.
| | - Andrea Čerňanová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Veronika Petrušová
- Psychiatric Department SMU, Slovak Medical University and University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Július Hodosy
- Emergency Department, University Hospital Bratislava, Ružinov, Bratislava 82101, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
10
|
Brown K, Funk K, Figueroa Barrientos A, Bailey A, Shrader S, Feng W, McClain CJ, Song ZH. The Modulatory Effects and Therapeutic Potential of Cannabidiol in the Gut. Cells 2024; 13:1618. [PMID: 39404382 PMCID: PMC11475737 DOI: 10.3390/cells13191618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cannabidiol (CBD) is a major non-psychotropic phytocannabinoid that exists in the Cannabis sativa plant. CBD has been found to act on various receptors, including both cannabinoid and non-cannabinoid receptors. In addition, CBD has antioxidant effects that are independent of receptors. CBD has demonstrated modulatory effects at different organ systems, such as the central nervous system, immune system, and the gastrointestinal system. Due to its broad effects within the body and its safety profile, CBD has become a topic of therapeutic interest. This literature review summarizes previous research findings with regard to the effect of CBD on the gastrointestinal (GI) system, including its effects at the molecular, cellular, organ, and whole-body levels. Both pre-clinical animal studies and human clinical trials are reviewed. The results of the studies included in this literature review suggest that CBD has significant impact on intestinal permeability, the microbiome, immune cells and cytokines. As a result, CBD has been shown to have therapeutic potential for GI disorders such as inflammatory bowel disease (IBD). Furthermore, through interactions with the gut, CBD may also be helpful in the treatment of disorders outside the GI system, such as non-alcoholic liver disease, postmenopausal disorders, epilepsy, and multiple sclerosis. In the future, more mechanistic studies are warranted to elucidate the detailed mechanisms of action of CBD in the gut. In addition, more well-designed clinical trials are needed to explore the full therapeutic potential of CBD on and through the gut.
Collapse
Affiliation(s)
- Kevin Brown
- College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kyle Funk
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alexa Figueroa Barrientos
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ashly Bailey
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sarah Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Wenke Feng
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Craig J. McClain
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
11
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
12
|
Huang J, Huang H, Liu M, Yang W, Wang H. Involvement of the TRPV1 receptor and the endocannabinoid system in schizophrenia. Brain Res Bull 2024; 215:111007. [PMID: 38852650 DOI: 10.1016/j.brainresbull.2024.111007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe mental disorder, but its pathogenesis is still unknown, and its clinical treatment effect is very limited. Transient receptor potential vanilloid 1 (TRPV1) channel and the Endocannabinoid System (ECS)have been confirmed to be involved in the pathogenesis of SCZ, although their actions have not been fully clarified yet. The objective is to examine TRPV1 and ECS expression in the blood of schizophrenia patients and investigate their correlation with disease severity. METHODS This is a cross-sectional investigation. Peripheral blood samples were gathered from normal controls (NC, n=37), as well as individuals with schizophrenia, including first episode (n=30) and recurrent (n=30) cases. We employed western blot and ELISA techniques to quantify TRPV1, cannabinoid receptors 1(CB1), anandamide (AEA), and 2-arachidonoylglycerol (2-AG), and assess the severity of the patient's symptoms by means of the PANSS scale. RESULTS Compared to NC, TRPV1 levels showed a noticeable decrease in both first episode schizophrenia (f-SCZ group) and recurrent schizophrenia (r-SCZ group) subjects. Additionally, CB1 levels appeared increased in f-SCZ group. Furthermore, 2-AG levels were found to be elevated in both f-SCZ group and r-SCZ group compared to NC, whereas AEA levels were decreased in f-SCZ group but increased in r-SCZ group. Moreover, among schizophrenia patients, TRPV1 demonstrated a negative correlation with negative symptoms. Within r-SCZ subjects, CB1 displayed a negative correlation with relapse number, while 2-AG showed a correlation in the opposite direction. CONCLUSIONS This study provides initial clinical evidence of changed TRPV1 expression in schizophrenia, potentially linked to negative symptoms. These results suggest a possible dysfunction of TRPV1 and the endocannabinoid system (ECS), which might offer new avenues for medical interventions.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Moyin Liu
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Wanlin Yang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
13
|
Jieu B, Sykorova EB, Rohleder C, Marcolini E, Hoffmann AE, Koethe D, Leweke FM, Couttas TA. Alterations to sphingolipid metabolism from antipsychotic administration in healthy volunteers are restored following the use of cannabidiol. Psychiatry Res 2024; 339:116005. [PMID: 38950483 DOI: 10.1016/j.psychres.2024.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Randomized clinical trials substantiate cannabidiol (CBD) as a next-generation antipsychotic, effective in alleviating positive and negative symptoms associated with psychosis, while minimising the adverse effects seen with established treatments. Although the mechanisms remain debated, CBD is known to induce drug-responsive changes in lipid-based retrograde neurotransmitters. Lipid aberrations are also frequently observed with antipsychotics, which may contribute to their efficacy or increase the risk of undesirables, including metabolic dysfunction, obesity and dyslipidaemia. Our study investigated CBD's impact following lipid responses triggered by interaction with second-generation antipsychotics (SGA) in a randomized phase I safety study. Untargeted mass spectrometry assessed the lipidomic profiles of human sera, collected from 38 healthy volunteers. Serum samples were obtained prior to commencement of any medication (t = 0), 3 days after consecutive administration of one of the five, placebo-controlled, treatment arms designed to achieve steady-state concentrations of each SGA (amisulpride, 150 mg/day; quetiapine, 300 mg/day; olanzapine 10 mg/day; risperidone, 3 mg/day), and after six successive days of SGA treatment combined with CBD (800 mg/day). Receiver operating characteristics (ROC) refined 3712 features to a putative list of 15 lipids significantly altered (AUC > 0.7), classified into sphingolipids (53 %), glycerolipids (27 %) and glycerophospholipids (20 %). Targeted mass spectrometry confirmed reduced sphingomyelin and ceramide levels with antipsychotics, which mapped along their catabolic pathway and were restored by CBD. These sphingolipids inversely correlated with body weight after olanzapine, quetiapine, and risperidone treatment, where CBD appears to have arrested or attenuated these effects. Herein, we propose CBD may alleviate aberrant sphingolipid metabolism and that further investigation into sphingolipids as markers for monitoring side effects of SGAs and efficacy of CBD is warranted.
Collapse
Affiliation(s)
- Beverly Jieu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Eliska B Sykorova
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cathrin Rohleder
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Elisabeth Marcolini
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna E Hoffmann
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Dagmar Koethe
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F Markus Leweke
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Endosane Pharmaceuticals GmbH, Berlin, Germany
| | | |
Collapse
|
14
|
Chu T, Si X, Xie H, Ma H, Shi Y, Yao W, Xing D, Zhao F, Dong F, Gai Q, Che K, Guo Y, Chen D, Ming D, Mao N. Regional Structural-Functional Connectivity Coupling in Major Depressive Disorder Is Associated With Neurotransmitter and Genetic Profiles. Biol Psychiatry 2024:S0006-3223(24)01555-5. [PMID: 39218135 DOI: 10.1016/j.biopsych.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms that underlie regional SC-FC coupling patterns are not well understood. METHODS We enrolled 182 patients with MDD and 157 healthy control participants and quantified the intergroup differences in regional SC-FC coupling. Extreme gradient boosting (XGBoost), support vector machine, and random forest models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS We observed increased regional SC-FC coupling in the default mode network (t337 = 3.233) and decreased coupling in the frontoparietal network (t337 = -3.471) in patients with MDD compared with healthy control participants. XGBoost (area under the receiver operating characteristic curve = 0.853), support vector machine (area under the receiver operating characteristic curve = 0.832), and random forest (p < .05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of 4 neurotransmitters (p < .05) and expression maps of specific genes. These enriched genes were implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on 2 brain atlases. CONCLUSIONS This work enhances our understanding of MDD and paves the way for the development of additional targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tongpeng Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Wei Yao
- Department of Neurology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Dong Xing
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business, University, Yantai, Shandong, China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yuting Guo
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Danni Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
15
|
Happer JP, Courtney KE, Baca RE, Andrade G, Thompson C, Shen Q, Liu TT, Jacobus J. Nicotine use during late adolescence and young adulthood is associated with changes in hippocampal volume and memory performance. Front Neurosci 2024; 18:1436951. [PMID: 39221006 PMCID: PMC11361958 DOI: 10.3389/fnins.2024.1436951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background With the advent of electronic nicotine delivery systems, the use of nicotine and tobacco products (NTPs) among adolescents and young adults remains high in the US. Use of e-cigarettes additionally elevates the risk of problematic use of other substances like cannabis, which is often co-used with NTPs. However, their effects on brain health, particularly the hippocampus, and cognition during this neurodevelopmental period are poorly understood. Methods Healthy late adolescents/young adults (N = 223) ages 16-22 completed a structural MRI to examine right and left hippocampal volumes. Memory was assessed with the NIH Toolbox Picture Sequence Memory Test (PSMT) and Rey Auditory Verbal Learning Test (RAVLT). Cumulative 6-month NTP and cannabis episodes were assessed and modeled continuously on hippocampal volumes. Participants were then grouped based on 6-month NTP use to examine relationships with the hippocampus and memory: current users (CU) endorsed weekly or greater use; light/abstinent users (LU) endorsed less than weekly; and never users (NU). Results NTP use predicted larger hippocampal volumes bilaterally while cannabis use had no impact nor interacted with NTP use. For memory, larger left hippocampal volumes were positively associated with PSMT performance, RAVLT total learning, short delay and long delay recall for the NU group. In contrast, there was a negative relationship between hippocampal volumes and performances for LU and CU groups. No differences were detected between NTP-using groups. Conclusion These results suggest that the hippocampus is sensitive to NTP exposure during late adolescence/young adulthood and may alter typical hippocampal morphometry in addition to brain-behavior relationships underlying learning and memory processes.
Collapse
Affiliation(s)
- Joseph P. Happer
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Kelly E. Courtney
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Rachel E. Baca
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Gianna Andrade
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Courtney Thompson
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Qian Shen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Thomas T. Liu
- Center for Functional MRI, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
17
|
Fuentes JJ, Mayans J, Guarro M, Canosa I, Mestre-Pintó JI, Fonseca F, Torrens M. Peripheral endocannabinoids in major depressive disorder and alcohol use disorder: a systematic review. BMC Psychiatry 2024; 24:551. [PMID: 39118031 PMCID: PMC11308641 DOI: 10.1186/s12888-024-05986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) are two high-prevalent conditions where the Endocannabinoid system (ECS) is believed to play an important role. The ECS regulates how different neurotransmitters interact in both disorders, which is crucial for controlling emotions and responses to stress and reward stimuli. Measuring peripheral endocannabinoids (eCBs) in human serum and plasma can help overcome the limitations of detecting endocannabinoid levels in the brain. This systematic review aims to identify levels of peripheral eCBs in patients with MDD and/or AUD and find eCBs to use as diagnostic, prognostic biomarkers, and potential therapeutic targets. METHODS We conducted a systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines from the earliest manuscript until October 22, 2023, in three electronic databases. We included studies of human adults who had a current diagnosis of AUD and/or MDD and evaluated plasma or serum endocannabinoids. We carefully considered known variables that may affect endocannabinoid levels. RESULTS We included 17 articles in this systematic review, which measured peripheral eCBs in 170 AUD and 359 MDD patients. Stressors increase peripheral 2-arachidonyl-glycerol (2-AG) concentrations, and 2-AG may be a particular feature of depression severity and chronicity. Anxiety symptoms are negatively correlated with anandamide (AEA) concentrations, and AEA significantly increases during early abstinence in AUD. Studies suggest a negative correlation between Oleoylethanolamide (OEA) and length of abstinence in AUD patients. They also show a significant negative correlation between peripheral levels of AEA and OEA and fatty acid amide hydrolase (FAAH) activity. Eicosapentaenoylethanolamide (EPEA) is correlated to clinical remission rates in depression. Included studies show known variables such as gender, chronicity, symptom severity, comorbid psychiatric symptoms, length of abstinence in the case of AUD, and stress-inducibility that can affect peripheral eCBs. CONCLUSIONS This systematic review highlights the important role that the ECS plays in MDD and AUD. Peripheral eCBs appear to be useful biomarkers for these disorders, and further research may identify potential therapeutic targets. Using accessible biological samples such as blood in well-designed clinical studies is crucial to develop novel therapies for these disorders.
Collapse
Affiliation(s)
- J J Fuentes
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallés, Spain
| | - J Mayans
- Department of Psychiatry, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - M Guarro
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
| | - I Canosa
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
| | - J I Mestre-Pintó
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - F Fonseca
- Mental Health Institute, Hospital del Mar, Barcelona, Spain.
- Hospital del Mar Research Institute, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - M Torrens
- Mental Health Institute, Hospital del Mar, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
18
|
Zhu SH, Tedeschi GJ, Li S, Wang J, Aughinbaugh E, Pratt AS, Zhuang YL. Tobacco Quitline Callers Who Use Cannabis and Their Likelihood of Quitting Cigarette Smoking. Am J Prev Med 2024; 67:241-248. [PMID: 38484902 DOI: 10.1016/j.amepre.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Cigarette smoking continues to decline in the U.S., but cannabis use is increasing. Many people who smoke cigarettes also use cannabis. This study examines the characteristics of persons who co-use and those who do not co-use and the likelihood of quitting cigarettes for callers to Kick It California, a large state tobacco quitline. METHODS Data were examined from Kick It California callers from January 2020 through December 2023 (N=45,151), including those from a subgroup randomly sampled and reached for evaluation at 7 months after quitline enrollment (n=3,545). The rate of cigarette smoking cessation at 7 months after enrollment for people who co-use cannabis was compared with that for people who do not. Analyses started in 2023 and concluded in January 2024. RESULTS More than a quarter (27.2%) of Kick It California callers co-used cannabis. They were more likely to be male, to be younger, and to have a mental health condition than those who did not. Those who co-use cannabis and those who do not have similar rates of receiving quitline counseling or using Food and Drug Administration-approved cessation aids. Controlled for effects of personal characteristics and use of smoking-cessation services, people who co-use cannabis were less likely to quit cigarette smoking 7 months after enrollment (23.2% vs 28.9%; p<0.001). Among those who co-use, 42.9% intended to quit using cannabis in the next 30 days. CONCLUSIONS A substantial percentage of tobacco quitline callers use cannabis. Those who do co-use quit cigarette smoking at a lower rate than those who do not. Over 40% of people who co-use reported intention to quit cannabis, making tobacco quitlines a rich environment to learn about people who co-use and develop strategies for intervention.
Collapse
Affiliation(s)
- Shu-Hong Zhu
- Moores Cancer Center, University of California, San Diego, San Diego, California; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California.
| | - Gary J Tedeschi
- Moores Cancer Center, University of California, San Diego, San Diego, California
| | - Shuwen Li
- Moores Cancer Center, University of California, San Diego, San Diego, California
| | - Jijiang Wang
- Moores Cancer Center, University of California, San Diego, San Diego, California
| | - Emily Aughinbaugh
- Moores Cancer Center, University of California, San Diego, San Diego, California
| | - Andrea S Pratt
- Moores Cancer Center, University of California, San Diego, San Diego, California
| | - Yue-Lin Zhuang
- Moores Cancer Center, University of California, San Diego, San Diego, California
| |
Collapse
|
19
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
20
|
Khan A, Richardson B, Roeder N, Hamilton J, Marion M, Fearby N, White O, Owada Y, Kagawa Y, Thanos PK. The role of fatty acid-binding protein 5 and 7 on locomotor, anxiety and social behavior: Interaction with NMDA signaling. Neurosci Lett 2024; 836:137862. [PMID: 38851448 DOI: 10.1016/j.neulet.2024.137862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The endocannabinoid system has been shown to be a powerful mediator of anxiety, learning and memory, as well as nociception behaviors. Exogenous cannabinoids like delta-9-tetrahydrocannabinol mimic the naturally occurring endogenous cannabinoids found in the mammalian central and peripheral nervous system. The hydrophobic properties of endocannabinoids mean that these psychoactive compounds require help with cellular transport. A family of lipid intracellular carriers called fatty acid-binding proteins (FABPs) can bind to endocannabinoids. Pharmacological inhibition or genetic deletion of FABP subtypes 5 and 7 elevates whole-brain anandamide (AEA) levels, a type of endocannabinoid. This study examined locomotor behavior, anxiety-like behavior, and social behavior in FABP5-/- and FABP7-/- mice. Furthermore, we measured N-methyl-D-aspartate (NMDA) receptor levels in the brain to help identify potential underlying mechanisms related to the behavioral findings. Results showed that both male and female FABP5-/- mice exhibited significantly lower activity when compared with both FABP5/7+/+ (control) and FABP7-/-. For social behavior, male, but not female, FABP5-/- mice spent more time interacting with novel mice compared with controls (FABP5/7+/+) and FABP7-/- mice. No significant difference was found for anxiety-like behavior. Results from the NMDA autoradiography revealed [3H] MK-801 binding to be significantly increased within sub-regions of the striatum in FABP7-/- compared with control. In summary, these results show that FABP5 deficiency plays a significant role in locomotion activity, exploratory behavior, as well as social interaction. Furthermore, FABP7 deficiency is shown to play an important role in NMDA receptor expression, while FABP5 does not.
Collapse
Affiliation(s)
- Anas Khan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Nicole Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Nathan Fearby
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Seiryo-cho 2-1, Aobaku, Sendai 980-8575, Japan
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States; Department of Psychology, State University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
21
|
Göntér K, Dombi Á, Kormos V, Pintér E, Pozsgai G. Examination of the Effect of Dimethyl Trisulfide in Acute Stress Mouse Model with the Potential Involvement of the TRPA1 Ion Channel. Int J Mol Sci 2024; 25:7701. [PMID: 39062944 PMCID: PMC11277546 DOI: 10.3390/ijms25147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Polysulfides are endogenously produced in mammals and generally associated with protective functions. Our aim was to investigate the effect of dimethyl trisulfide (DMTS) in a mouse model of acute stress. DMTS activates transient receptor potential ankyrin 1 (TRPA1) channels and leads to neuropeptide release, potentially that of substance P (SP). We hypothesize that DMTS might inhibit the degrading enzymes of endocannabinoids, so this system was also investigated as another possible pathway for mediating the effects of DMTS. Trpa1 gene wild-type (WT) and knockout (KO) mice were used to confirm the role of the TRPA1 ion channel in mediating the effects of DMTS. C57BL/6J, NK1 gene KO, and Tac1 gene KO mice were used to evaluate the effect of DMTS on the release and expression of SP. Some C57BL/6J animals were treated with AM251, an inhibitor of the cannabinoid CB1 receptor, to elucidate the role of the endocannabinoid system in these processes. Open field test (OFT) and forced swim test (FST) were performed in each mouse strain. A tail suspension test (TST) was performed in Trpa1 WT and KO animals. C-FOS immunohistochemistry was carried out on Trpa1 WT and KO animals. The DMTS treatment increased the number of highly active periods and decreased immobility time in the FST in WT animals, but had no effect on the Trpa1 KO mice. The DMTS administration induced neuronal activation in the Trpa1 WT mice in the stress-related brain areas, such as the locus coeruleus, dorsal raphe nucleus, lateral septum, paraventricular nucleus of the thalamus, and paraventricular nucleus of the hypothalamus. DMTS may have a potential role in the regulation of stress-related processes, and the TRPA1 ion channel may also be involved in mediating the effects of DMTS. DMTS can be an ideal candidate for further study as a potential remedy for stress-related disorders.
Collapse
Affiliation(s)
- Kitti Göntér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktória Kormos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; (K.G.); (V.K.); (E.P.)
| | - Gábor Pozsgai
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| |
Collapse
|
22
|
Kouba BR, Altê GA, Rodrigues ALS. Putative Pharmacological Depression and Anxiety-Related Targets of Calcitriol Explored by Network Pharmacology and Molecular Docking. Pharmaceuticals (Basel) 2024; 17:893. [PMID: 39065743 PMCID: PMC11280388 DOI: 10.3390/ph17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Depression and anxiety disorders, prevalent neuropsychiatric conditions that frequently coexist, limit psychosocial functioning and, consequently, the individual's quality of life. Since the pharmacological treatment of these disorders has several limitations, the search for effective and secure antidepressant and anxiolytic compounds is welcome. Vitamin D has been shown to exhibit neuroprotective, antidepressant, and anxiolytic properties. Therefore, this study aimed to explore new molecular targets of calcitriol, the active form of vitamin D, through integrated bioinformatic analysis. Calcitriol targets were predicted in SwissTargetPrediction server (2019 version). The disease targets were collected by the GeneCards database searching the keywords "depression" and "anxiety". Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the intersections of targets. Network analyses were carried out using GeneMania server (2023 version) and Cytoscape (V. 3.9.1.) software. Molecular docking predicted the main targets of the network and Ligplot predicted the main intermolecular interactions. Our study showed that calcitriol may interact with multiple targets. The main targets found are the vitamin D receptor (VDR), histamine H3 receptor (H3R), endocannabinoid receptors 1 and 2 (CB1 and CB2), nuclear receptor NR1H3, patched-1 (PTCH1) protein, opioid receptor NOP, and phosphodiesterase enzymes PDE3A and PDE5A. Considering the role of these targets in the pathophysiology of depression and anxiety, our findings suggest novel putative mechanisms of action of vitamin D as well as new promising molecular targets whose role in these disorders deserves further investigation.
Collapse
Affiliation(s)
| | | | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88037-000, SC, Brazil; (B.R.K.); (G.A.A.)
| |
Collapse
|
23
|
Amir Hamzah K, Turner N, Nichols D, Ney LJ. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38958096 DOI: 10.1002/mas.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Department of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Natalie Turner
- The Centre for Children's Health Research, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - David Nichols
- Central Science Laboratory, Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Department of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
24
|
Shah P, Holmes K, Chibane F, Wang P, Chagas P, Salles E, Jones M, Palines P, Masoumy M, Baban B, Yu J. Cutaneous Wound Healing and the Effects of Cannabidiol. Int J Mol Sci 2024; 25:7137. [PMID: 39000244 PMCID: PMC11241632 DOI: 10.3390/ijms25137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6-mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing.
Collapse
Affiliation(s)
- Pearl Shah
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Kathryne Holmes
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Fairouz Chibane
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Phillip Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Pablo Chagas
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Evila Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Melanie Jones
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Patrick Palines
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Mohamad Masoumy
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Jack Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| |
Collapse
|
25
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
26
|
Shin J, Choi S, Park AY, Ju S, Kweon B, Kim DU, Bae GS, Han D, Kwon E, Hong J, Kim S. In Vitro and In Vivo Anti-Inflammatory and Antidepressant-like Effects of Cannabis sativa L. Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:1619. [PMID: 38931051 PMCID: PMC11207413 DOI: 10.3390/plants13121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Cannabis sativa L. has been widely used by humans for centuries for various purposes, such as industrial, ceremonial, medicinal, and food. The bioactive components of Cannabis sativa L. can be classified into two main groups: cannabinoids and terpenes. These bioactive components of Cannabis sativa L. leaf and inflorescence extracts were analyzed. Mice were systemically administered 30 mg/kg of Cannabis sativa L. leaf extract 1 h before lipopolysaccharide (LPS) administration, and behavioral tests were performed. We conducted an investigation into the oxygen saturation, oxygen tension, and degranulation of mast cells (MCs) in the deep cervical lymph nodes (DCLNs). To evaluate the anti-inflammatory effect of Cannabis sativa L. extracts in BV2 microglial cells, we assessed nitrite production and the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. The main bioactive components of the Cannabis sativa L. extracts were THCA (a cannabinoid) and β-caryophyllene (a terpene). Cannabis sativa L. leaf extract reduced the immobility time in the forced swimming test and increased sucrose preference in the LPS model, without affecting the total distance and time in the center in the open field test. Additionally, Cannabis sativa L. leaf extract improved oxygen levels and inhibited the degranulation of MCs in DCLNs. The Cannabis sativa L. extracts inhibited IL-1β, IL-6, TNF-α, nitrite, iNOS, and COX-2 expression in BV2 microglia cells. The efficacy of Cannabis sativa L. extracts was suggested to be due to the entourage effect of various bioactive phytochemicals. Our findings indicate that these extracts have the potential to be used as effective treatments for a variety of diseases associated with acute inflammatory responses.
Collapse
Affiliation(s)
- Joonyoung Shin
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Sangheon Choi
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - A Yeong Park
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Suk Ju
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
| | - Bitna Kweon
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
| | - Dong-Uk Kim
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
| | - Gi-Sang Bae
- Department of Pharmacology, School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (B.K.); (D.-U.K.); (G.-S.B.)
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| | - Dongwoon Han
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
- Department of Global Health and Development, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (E.K.); (J.H.)
| | - Sungchul Kim
- Institute for Global Rare Disease Network, Professional Graduate School of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea; (J.S.); (S.C.); (A.Y.P.); (S.J.); (D.H.)
- Research Center of Traditional Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
27
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
28
|
Candib A, Lee N, Sam N, Cho E, Rojas J, Hastings R, DeAlva K, Khon D, Gonzalez A, Molina B, Torabzadeh G, Vu J, Hasenstab K, Sant K, Phillips JA, Finley K. The Influence of Cannabinoids on Drosophila Behaviors, Longevity, and Traumatic Injury Responses of the Adult Nervous System. Cannabis Cannabinoid Res 2024; 9:e886-e896. [PMID: 37158809 PMCID: PMC11295667 DOI: 10.1089/can.2022.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction: The legalization of cannabis products has increased their usage in the United States. Among the ∼500 active compounds, this is especially true for cannabidiol (CBD)-based products, which are being used to treat a range of ailments. Research is ongoing regarding the safety, therapeutic potential, and molecular mechanism of cannabinoids. Drosophila (fruit flies) are widely used to model a range of factors that impact neural aging, stress responses, and longevity. Materials and Methods: Adult wild-type Drosophila melanogaster cohorts (w1118/+) were treated with different Δ9-tetrahydrocannabinol (THC) and CBD dosages and examined for neural protective properties using established neural aging and trauma models. The therapeutic potential of each compound was assessed using circadian and locomotor behavioral assays and longevity profiles. Changes to NF-κB pathway activation were assessed by measuring expression levels of downstream targets using quantitative real-time polymerase chain reaction analysis of neural cDNAs. Results: Flies exposed to different CBD or THC dosages showed minimal effects to sleep and circadian-based behaviors or the age-dependent decline in locomotion. The 2-week CBD (3 μM) treatment did significantly enhance longevity. Flies exposed to different CBD and THC dosages were also examined under stress conditions, using the Drosophila mild traumatic brain injury (mTBI) model (10×). Pretreatment with either compound did not alter baseline expression of key inflammatory markers (NF-κB targets), but did reduce neural mRNA profiles at a key 4-h time point following mTBI exposure. Locomotor responses were also significantly improved 1 and 2 weeks following mTBI. After mTBI (10×) exposure, the 48-h mortality rate improved for CBD (3 μM)-treated flies, as were global average longevity profiles for other CBD doses tested. While not significant, THC (0.1 μM)-treated flies show a net positive impact on acute mortality and longevity profiles following mTBI (10×) exposure. Conclusions: This study shows that the CBD and THC dosages examined had at most a modest impact on basal neural function, while demonstrating that CBD treatments had significant neural protective properties for flies following exposure to traumatic injury.
Collapse
Affiliation(s)
- Alec Candib
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Nicholas Lee
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Natasha Sam
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Eddie Cho
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jesse Rojas
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Reina Hastings
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kyle DeAlva
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Diana Khon
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Andrea Gonzalez
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Brandon Molina
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Gina Torabzadeh
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Josephine Vu
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kyle Hasenstab
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Karylin Sant
- Division of Environmental Health, San Diego State University, San Diego, California, USA
| | - Joy A. Phillips
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
| | - Kim Finley
- Shiley Bioscience Center, San Diego State University, San Diego, California, USA
- Biology Department, San Diego State University, San Diego, California, USA
- Division of Environmental Health, San Diego State University, San Diego, California, USA
| |
Collapse
|
29
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Hickey JP, Collins AE, Nelson ML, Chen H, Kalisch BE. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4379-4402. [PMID: 38785534 PMCID: PMC11120237 DOI: 10.3390/cimb46050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.
Collapse
Affiliation(s)
| | | | | | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.H.); (A.E.C.); (M.L.N.); (H.C.)
| |
Collapse
|
31
|
Xie G, Qin Y, Wu N, Han X, Li J. Single-Nucleus Transcriptome Profiling from the Hippocampus of a PTSD Mouse Model and CBD-Treated Cohorts. Genes (Basel) 2024; 15:519. [PMID: 38674453 PMCID: PMC11050643 DOI: 10.3390/genes15040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is the most common psychiatric disorder after a catastrophic event; however, the efficacious treatment options remain insufficient. Increasing evidence suggests that cannabidiol (CBD) exhibits optimal therapeutic effects for treating PTSD. To elucidate the cell-type-specific transcriptomic pathology of PTSD and the mechanisms of CBD against this disease, we conducted single-nucleus RNA sequencing (snRNA-seq) in the hippocampus of PTSD-modeled mice and CBD-treated cohorts. We constructed a mouse model by adding electric foot shocks following exposure to single prolonged stress (SPS+S) and tested the freezing time, anxiety-like behavior, and cognitive behavior. CBD was administrated before every behavioral test. The PTSD-modeled mice displayed behaviors resembling those of PTSD in all behavioral tests, and CBD treatment alleviated all of these PTSD-like behaviors (n = 8/group). Three mice with representative behavioral phenotypes were selected from each group for snRNA-seq 15 days after the SPS+S. We primarily focused on the excitatory neurons (ExNs) and inhibitory neurons (InNs), which accounted for 68.4% of the total cell annotations. A total of 88 differentially upregulated genes and 305 differentially downregulated genes were found in the PTSD mice, which were found to exhibit significant alterations in pathways and biological processes associated with fear response, synaptic communication, protein synthesis, oxidative phosphorylation, and oxidative stress response. A total of 63 overlapping genes in InNs were identified as key genes for CBD in the treatment of PTSD. Subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the anti-PTSD effect of CBD was related to the regulation of protein synthesis, oxidative phosphorylation, oxidative stress response, and fear response. Furthermore, gene set enrichment analysis (GSEA) revealed that CBD also enhanced retrograde endocannabinoid signaling in ExNs, which was found to be suppressed in the PTSD group. Our research may provide a potential explanation for the pathogenesis of PTSD and facilitate the discovery of novel therapeutic targets for drug development. Moreover, it may shed light on the therapeutic mechanisms of CBD.
Collapse
Affiliation(s)
| | | | | | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (G.X.); (Y.Q.); (N.W.); (J.L.)
| | | |
Collapse
|
32
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
33
|
Casati S, Rota P, Bergamaschi RF, Palmisano E, La Rocca P, Ravelli A, Angeli I, Minoli M, Roda G, Orioli M. Hexahydrocannabinol on the Light Cannabis Market: The Latest "New" Entry. Cannabis Cannabinoid Res 2024; 9:622-628. [PMID: 36445181 DOI: 10.1089/can.2022.0253] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Introduction: Hexahydrocannabinols (HHCs), referred to as (9R)-HHC and (9S)-HHC diastereoisomers, are poorly studied cannabinoids naturally found in small concentrations in the pollen and the seeds of the hemp plants. Aim: In this study, for the first time, we describe the finding of (9R)-HHC and (9S)-HHC in two commercialized hemp derived products. Methods: The achievement of reference standards by semisynthetic or isolation approach allows us to develop and validate a gas chromatography mass spectrometry method for the identification and quantification of HHCs in hemp-derived resin. Results: The two analyzed samples showed percentage of 42.5 and 41.5 for (9R)-HHC and of 23.6 and 23.6 for (9S)-HHC. Conclusions: Despite the lack of in-depth studies about HHCs activity, potency, toxicity, and safety, these cannabinoids are emerging on the light-cannabis (hemp) market probably because legislations still do not clearly regulate them. Since analytical assay for hemp-derived products usually include only Δ9-THC, THC-A, CBD, and CBD-A, a thorough investigation could be carried out to reveal the possible addition of "new" compounds that might be a matter of safety.
Collapse
Affiliation(s)
- Sara Casati
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Paola Rota
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Roberta F Bergamaschi
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Erika Palmisano
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Paolo La Rocca
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Ravelli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Angeli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Mauro Minoli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Marica Orioli
- Laboratorio di Tossicologia Forense, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
34
|
Lowe DJE, Sorkhou M, George TP. Cannabis use in adolescents and anxiety symptoms and disorders: a systematic review and meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:150-161. [PMID: 38285048 DOI: 10.1080/00952990.2023.2299922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Background: The use of cannabis is highly prevalent during adolescence compared to the general adult population. In addition to the high comorbidity between cannabis use and anxiety disorders, early evidence suggests that cannabis may precede the development of anxiety. Moreover, adolescence represents a major developmental period for both neurobiological and psychological processes, placing these individuals at a heightened vulnerability to the influence of cannabis.Objectives: This systematic review and meta-analysis examined the prospective associations between adolescent cannabis use and subsequent anxiety outcomes (i.e. anxiety disorders and/or symptoms).Methods: Following PRISMA guidelines, a systematic review and meta-analysis were conducted encompassing data from articles published between database inception and September 2022.Results: Six longitudinal studies were identified for quantitative analysis, while twelve non-overlapping longitudinal studies were identified for qualitative review (total N = 18; 33380 subjects). Meta-analytical findings supported an association between adolescent cannabis use and the development of a subsequent anxiety disorder (Odds Ratio = 2.14, 95% CI: 1.37-3.36, p < .01). These findings were consistent with our qualitative synthesis where nine of the twelve longitudinal studies observed a significant relationship between adolescent cannabis use and exacerbation of anxiety symptoms later in life, irrespective of an anxiety disorder diagnosis.Discussion: In summary, the current evidence suggests a prospective association between adolescent cannabis use and later anxiety symptoms and disorders. These findings underscore the importance of refining research methodologies, considering sex-based differences and controlling for confounding factors, as well as implementing educational initiatives and developing clinical interventions to address the mental health risks associated with cannabis use among adolescents.
Collapse
Affiliation(s)
- Darby J E Lowe
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Maryam Sorkhou
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Tony P George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Dos Santos Pereira M, Maitan Santos B, Gimenez R, Guimarães FS, Raisman-Vozari R, Del Bel E, Michel PP. The two synthetic cannabinoid compounds 4'-F-CBD and HU-910 efficiently restrain inflammatory responses of brain microglia and astrocytes. Glia 2024; 72:529-545. [PMID: 38013496 DOI: 10.1002/glia.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
To study the anti-inflammatory potential of the two synthetic cannabinoids 4'-F-CBD and HU-910, we used post-natal brain cultures of mouse microglial cells and astrocytes activated by reference inflammogens. We found that 4'-F-CBD and HU-910 efficiently curtailed the release of TNF-α, IL-6, and IL-1β in microglia and astrocytes activated by the bacterial Toll-Like Receptor (TLR)4 ligand LPS. Upon LPS challenge, 4'-F-CBD and HU-910 also prevented the activation of phenotypic activation markers specific to microglia and astrocytes, that is, Iba-1 and GFAP, respectively. In microglial cells, the two test compounds also efficiently restrained LPS-stimulated release of glutamate, a non-cytokine inflammation marker for these cells. The immunosuppressive effects of the two cannabinoid compounds were concentration-dependent and observable between 1 and 10 μM. These effects were not dependent on cannabinoid or cannabinoid-like receptors. Both 4'-F-CBD and HU-910 were also capable of restraining the inflammogenic activity of Pam3CSK4, a lipopeptide that activates TLR2, and of BzATP, a prototypic agonist of P2X7 purinergic receptors, suggesting that these two cannabinoids could exert immunosuppressive effects against a variety of inflammatory stimuli. Using LPS-stimulated microglia and astrocytes, we established that the immunosuppressive action of 4'-F-CBD and HU-910 resulted from the inhibition of ROS produced by NADPH oxidase and subsequent repression of NF-κB-dependent signaling events. Our results suggest that 4'-F-CBD and HU-910 may have therapeutic utility in pathological conditions where neuroinflammatory processes are prominent.
Collapse
Affiliation(s)
- Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Bruna Maitan Santos
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Rocio Gimenez
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- IREN Center, National Technological University, Buenos Aires, Argentina
| | | | - Rita Raisman-Vozari
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Elaine Del Bel
- Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick Pierre Michel
- Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
36
|
Boecker H, Daamen M, Maurer A, Bodensohn L, Werkhausen J, Lohaus M, Manunzio C, Manunzio U, Radbruch A, Attenberger U, Dukart J, Upadhyay N. Fractional amplitude of low-frequency fluctuations associated with μ-opioid and dopamine receptor distributions in the central nervous system after high-intensity exercise bouts. FRONTIERS IN NEUROIMAGING 2024; 3:1332384. [PMID: 38455686 PMCID: PMC10917966 DOI: 10.3389/fnimg.2024.1332384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024]
Abstract
Introduction Dopaminergic, opiod and endocannabinoid neurotransmission are thought to play an important role in the neurobiology of acute exercise and, in particular, in mediating positive affective responses and reward processes. Recent evidence indicates that changes in fractional amplitude of low-frequency fluctuations (zfALFF) in resting-state functional MRI (rs-fMRI) may reflect changes in specific neurotransmitter systems as tested by means of spatial correlation analyses. Methods Here, we investigated this relationship at different exercise intensities in twenty young healthy trained athletes performing low-intensity (LIIE), high-intensity (HIIE) interval exercises, and a control condition on three separate days. Positive And Negative Affect Schedule (PANAS) scores and rs-fMRI were acquired before and after each of the three experimental conditions. Respective zfALFF changes were analyzed using repeated measures ANOVAs. We examined the spatial correspondence of changes in zfALFF before and after training with the available neurotransmitter maps across all voxels and additionally, hypothesis-driven, for neurotransmitter maps implicated in the neurobiology of exercise (dopaminergic, opiodic and endocannabinoid) in specific brain networks associated with "reward" and "emotion." Results Elevated PANAS Positive Affect was observed after LIIE and HIIE but not after the control condition. HIIE compared to the control condition resulted in differential zfALFF decreases in precuneus, temporo-occipital, midcingulate and frontal regions, thalamus, and cerebellum, whereas differential zfALFF increases were identified in hypothalamus, pituitary, and periaqueductal gray. The spatial alteration patterns in zfALFF during HIIE were positively associated with dopaminergic and μ-opioidergic receptor distributions within the 'reward' network. Discussion These findings provide new insight into the neurobiology of exercise supporting the importance of reward-related neurotransmission at least during high-intensity physical activity.
Collapse
Affiliation(s)
- Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) Bonn, Bonn, Germany
| | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Luisa Bodensohn
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Judith Werkhausen
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marvin Lohaus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Christian Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Ursula Manunzio
- Sportsmedicine, Department of Paediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Juergen Dukart
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
37
|
Comai S, Nunez N, Atkin T, Ghabrash MF, Zakarian R, Fielding A, Saint-Laurent M, Low N, Sauber G, Ragazzi E, Hillard CJ, Gobbi G. Dysfunction in endocannabinoids, palmitoylethanolamide, and degradation of tryptophan into kynurenine in individuals with depressive symptoms. BMC Med 2024; 22:33. [PMID: 38273283 PMCID: PMC10809514 DOI: 10.1186/s12916-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Nicolas Nunez
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tobias Atkin
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Rita Zakarian
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Allan Fielding
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Marie Saint-Laurent
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Nancy Low
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada
| | - Garrett Sauber
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Department of Psychiatry, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
38
|
Pankratz B, Feige B, Runge K, Bechter K, Schiele MA, Domschke K, Prüss H, Tebartz van Elst L, Nickel K, Endres D. Cerebrospinal fluid findings in patients with obsessive-compulsive disorder, Tourette syndrome, and PANDAS: A systematic literature review. Brain Behav Immun 2024; 115:319-332. [PMID: 37748568 DOI: 10.1016/j.bbi.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are related mental disorders that share genetic, neurobiological, and phenomenological features. Pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections (PANDAS) is a neuropsychiatric autoimmune disorder with symptoms of OCD and/or TS associated with streptococcal infections. Therefore, PANDAS represents a strong link between OCD, TS, and autoimmunity. Notably, cerebrospinal fluid (CSF) analyses can provide insight into the central nervous processes in OCD, TS, and PANDAS. METHODS A systematic literature search according to the PRISMA criteria was conducted to collect all CSF studies in patients with OCD, TS, and PANDAS. The total number of cases and the heterogeneity of the low number of studies were not sufficient for a meta-analysis to provide a high level of evidence. Nevertheless, meta-analytical statistics could be performed for glutamate, 5-hydroxyindoleacetic acid (degradation product of serotonin), homovanillic acid (degradation product of dopamine), 3-methoxy-4-hydroxyphenylglycol (major metabolite of noradrenaline), and corticotropin-releasing hormone (CRH) in OCD. A risk-of-bias assessment was implemented using the Cochrane ROBINS-E tool. RESULTS Meta-analytical testing identified elevated glutamate levels in the CSF of OCD patients compared with healthy controls, while no significant differences were found in other neurotransmitters or CRH. Single studies detected novel neuronal antibodies in OCD patients and elevated oligoclonal bands in TS patients. For TS and PANDAS groups, there was a dearth of data. Risk of bias assessment indicated a substantial risk of bias in most of the included studies. CONCLUSIONS This systematic review of available CSF data shows that too few studies are currently available for conclusions with good evidence. The existing data indicates glutamate alterations in OCD and possible immunological abnormalities in OCD and TS. More CSF studies avoiding sources of bias are needed.
Collapse
Affiliation(s)
- Benjamin Pankratz
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karl Bechter
- Department for Psychiatry and Psychotherapy II, Ulm University, Bezirkskrankenhaus Günzburg, Günzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
39
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
40
|
Leen N, de Weijer A, Boks M, Baas J, Vermetten E, Geuze E. The Role of Genetic Variations in the FAAH rs324420 Polymorphism and its Interaction with CRHR1 rs110402 and CNR1 rs2180619 in Anxiety and- Trauma Related Symptoms After Military Deployment. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2024; 8:24705470241285828. [PMID: 39484094 PMCID: PMC11526235 DOI: 10.1177/24705470241285828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/19/2024] [Indexed: 11/03/2024]
Abstract
Background During military deployment, stress regulation is vital to protect against the development of anxiety and trauma-related symptoms. Brain endocannabinoids play an important role in stress regulation and previous research has shown that genetic variations in the FAAH rs324420 polymorphism demonstrate protective effects during stress. In addition, this polymorphism shows interactions with the CRHR1 and CNR1 polymorphisms on anxiety. The present study examines whether genetic variations of the FAAH, CRHR1 and CNR1 polymorphisms interact with the development of anxiety and trauma related symptoms in military veterans. Methods Veterans (N = 949) who went on military deployment and experienced a stressful event were genotyped for FAAH rs324420, CRHR1 rs110402 and CNR1 rs2180619. Anxiety and trauma symptoms were measured pre-deployment and 6 months after deployment. Anxiety was measured with the anxiety subscale of the Symptom Checklist-90 (SCL-90) and trauma with the Self-Rating Inventory for PTSD (SRIP). Results Covariance Pattern Models demonstrated no significant relation of genetic variations in FAAH rs324420 on anxiety and PTSD symptoms from pre-deployment to 6 months after military deployment. Additionally, we investigated interactions between the FAAH s324420, CRHR1 rs110402 and CNR1 rs2180619 polymorphisms. This also demonstrated no significant effects on anxiety and PTSD symptoms pre- to post deployment. However, the covariate of childhood trauma that was included in the models was significant in all these models. Conclusion Genetic variations in FAAH rs324420 and its interactions with CRHR1 rs110402 and CNR1 rs2180619 are not related to the development of anxiety and trauma-related symptoms. The study however, indicates the importance of considering childhood trauma in the investigation of the effects of polymorphisms that are related to the endocannabinoid system on the development of anxiety and PTSD symptoms.
Collapse
Affiliation(s)
- Nadia Leen
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
- Faculty of Social and Behavioral Sciences, Utrecht University Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Antoin de Weijer
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Marco Boks
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Johanna Baas
- Faculty of Social and Behavioral Sciences, Utrecht University Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Experimental Psychology, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical CenterLeiden, Zuid-Holland, The Netherlands
| | - Elbert Geuze
- Department of Psychiatry, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| |
Collapse
|
41
|
Khoj L, Zagà V, Amram DL, Hosein K, Pistone G, Bisconti M, Serafini A, Cammarata LM, Cattaruzza MS, Mura M. Effects of cannabis smoking on the respiratory system: A state-of-the-art review. Respir Med 2024; 221:107494. [PMID: 38056532 DOI: 10.1016/j.rmed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
The diminished perception of the health risks associated with the consumption of cannabis (marijuana) lead to a progressive increase in its inhalational use in many countries. Cannabis can be smoked through the use of joints, spliffs and blunts, and it can be vaporised with the use of hookah or e-cigarettes. Delta-9 tetrahydrocannabinol (THC) is the main psychoactive component of cannabis smoke but contains numerous other substances. While the recreational use of cannabis smoking has been legalised in several countries, its health consequences have been underestimated and undervalued. The purpose of this review is to critically review the impact of cannabis smoke on the respiratory system. Cannabis smoke irritates the bronchial tree and is strongly associated with symptoms of chronic bronchitis, with histological signs of airway inflammation and remodelling. Altered fungicidal and antibacterial activity of alveolar macrophages, with greater susceptibility to respiratory infections, is also reported. The association with invasive pulmonary aspergillosis in immunocompromised subjects is particularly concerning. Although cannabis has been shown to produce a rapid bronchodilator effect, its chronic use is associated with poor control of asthma by numerous studies. Cannabis smoking also represents a risk factor for the development of bullous lung disease, spontaneous pneumothorax and hypersensitivity pneumonitis. On the other hand, no association with the development of chronic obstructive pulmonary disease was found. Finally, a growing number of studies report an independent association of cannabis smoking with the development of lung cancer. In conclusion, unequivocal evidence established that cannabis smoking is harmful to the respiratory system. Cannabis smoking has a wide range of negative effects on respiratory symptoms in both healthy subjects and patients with chronic lung disease. Given that the most common and cheapest way of assumption of cannabis is by smoking, healthcare providers should be prepared to provide counselling on cannabis smoking cessation and inform the public and decision-makers.
Collapse
Affiliation(s)
- Lugain Khoj
- Division of Respirology, Western University, London, ON, Canada; Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Daniel L Amram
- Ambulatorio per la Cessazione del Fumo di Tabacco, ASL Toscana Nord Ovest, Pontedera, Italy
| | - Karishma Hosein
- Division of Respirology, Western University, London, ON, Canada
| | - Giovanni Pistone
- Centro per il Trattamento del Tabagismo, Local Health Unit, Novara, Italy
| | - Mario Bisconti
- U.O.C. Pneumologia - Ospedale "Vito Fazzi", Lecce, Italy
| | | | | | - Maria Sofia Cattaruzza
- Italian Society of Tobaccology, Bologna, Italy; Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, ON, Canada
| |
Collapse
|
42
|
Vallée M. Advances in steroid research from the pioneering neurosteroid concept to metabolomics: New insights into pregnenolone function. Front Neuroendocrinol 2024; 72:101113. [PMID: 37993022 DOI: 10.1016/j.yfrne.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.
Collapse
Affiliation(s)
- Monique Vallée
- University Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
Mick I, Freger SM, van Keizerswaard J, Gholiof M, Leonardi M. Comprehensive endometriosis care: a modern multimodal approach for the treatment of pelvic pain and endometriosis. Ther Adv Reprod Health 2024; 18:26334941241277759. [PMID: 39376635 PMCID: PMC11457249 DOI: 10.1177/26334941241277759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/08/2024] [Indexed: 10/09/2024] Open
Abstract
Endometriosis is a prevalent gynecological disease, leading to chronic pain and inflammation, affecting 1 in 10 individuals presumed female at birth. The diagnostic journey is often arduous, marked by neglect of the right diagnosis and prolonged wait times, significantly compromising the quality of life among those affected. This review provides a nuanced exploration of endometriosis-associated pain management, encompassing medical, surgical, and holistic approaches, all guided by accurate and refined diagnostics. Our paramount goal is to empower physicians as key figures in confronting this intricate challenge with a patient-centric approach, ultimately aiming to improve treatment and quality of life. Acknowledging each patient's unique needs, we emphasize the importance of tailoring a spectrum of options informed by current literature and insights gleaned from our experience in a high-volume tertiary endometriosis center. It is imperative to recognize endometriosis as a complex and chronic disease, often occurring with co-morbid conditions and nuanced complexities, necessitating a long-term personalized multimodal approach for each case. In addition, incorporating principles such as patient autonomy, profound respect for diverse experiences, and practical education on treatment choices is pivotal in enhancing treatment outcomes and overall patient satisfaction.
Collapse
Affiliation(s)
- Ido Mick
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Shay M. Freger
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | - Mahsa Gholiof
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
44
|
Tzadok M, Gur-Pollack R, Florh H, Michaeli Y, Gilboa T, Lezinger M, Heyman E, Chernuha V, Gudis I, Nissenkorn A, Lerman-Sagie T, Ben Zeev B, Uliel-Sibony S. Real-Life Experience With Purified Cannabidiol Treatment for Refractory Epilepsy: A Multicenter Retrospective Study. Pediatr Neurol 2024; 150:91-96. [PMID: 37995414 DOI: 10.1016/j.pediatrneurol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Drug-resistant epilepsy (DRE) affects the development and quality of life of children and young adults. We analyzed the effectiveness and safety of purified CBD in this population. METHODS A retrospective analysis of medical records of 139 children and young adults (54.7% female, median age 12.0 years) with DRE treated with purified CBD from 2018 to 2022 at five medical centers in Israel. RESULTS The most common diagnosis was Lennox-Gastaut syndrome (37.4%) followed by Dravet syndrome (16.5%) and tuberous sclerosis complex (16.5%). Median purified CBD dose was 12.5 mg/kg (range 2.5 to 20.0), and median treatment duration was 9.0 months (range 0.5 to 48.0). Most patients (92.2%) had a reduced seizure frequency following treatment initiation; 41.1% had >50% reduction. Fifty-three patients (38.1%) had positive effects: improved alertness (31.7%), improved speech (10.1%), and achievement of new developmental milestones (2.2%). A multivariate linear model assessing predictive factors for seizure reduction demonstrated that patients previously treated with CBD oils, especially those with >50% seizure reduction on prior treatment, were also more likely to have a reduced seizure frequency while they were treated with purified CBD (P = 0.01, P < 0.0001). Development, diagnosis, age, purified CBD dose (0 to 10 mg/kg/day vs 10 to 20 mg/kg/day), and concomitant treatment with clobazam, valproic acid, or everolimus did not affect seizure reduction by purified CBD. The most common adverse events were irritability (20.9%) and drowsiness (12.9%). CONCLUSION Purified CBD is well-tolerated and effective in reducing seizure frequency in children and young adults with DRE.
Collapse
Affiliation(s)
- Michal Tzadok
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | - Hadar Florh
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Be'er Ya'akov, Israel
| | - Yael Michaeli
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Tal Gilboa
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Pediatric Neurology Unit, Hadassah University Hospital, Jerusalem, Israel
| | - Mirit Lezinger
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Be'er Ya'akov, Israel
| | - Eli Heyman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Be'er Ya'akov, Israel
| | - Veronika Chernuha
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irina Gudis
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Andreea Nissenkorn
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Tally Lerman-Sagie
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Uliel-Sibony
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
45
|
Pandey K, Hoda W. Cannabinoids in anesthesia and chronic pain: Where do we stand? Saudi J Anaesth 2024; 18:100-104. [PMID: 38313715 PMCID: PMC10833032 DOI: 10.4103/sja.sja_710_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 02/06/2024] Open
Abstract
Cannabis derivatives have been conventionally employed globally for their curative and restorative properties for various ailments. However, its recreational use and consequent legal restrictions have substantially cramped its scientific research. An emerging interest regarding the profound therapeutic potential of cannabinoids has been observed among clinicians. Despite a rich cultural background, high-quality research on cannabinoids is lacking in the Indian scenario. This review readdresses the challenges on this front and brings an insight into the current status of cannabinoids and their utility in scientific exploration. Cannabinoids have a significant medicinal value in various clinical disorders. Its use so far has been based on scarce resources and corroborations, as evidence-based substantiation is limited. Through this review article, we emphasize the remarkable role enacted by cannabinoids in the treatment of various clinical disorders and an utterly significant need to formulate stringent research methodologies to promote its systematic investigation.
Collapse
Affiliation(s)
- Khushboo Pandey
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Wasimul Hoda
- Department of Anaesthesiology, Rajendra Institute of Medical Sciences, Bariatu, Ranchi, Jharkhand, India
| |
Collapse
|
46
|
Rodríguez-Serrano LM, Chávez-Hernández ME. Role of the CB2 Cannabinoid Receptor in the Regulation of Food Intake: A Systematic Review. Int J Mol Sci 2023; 24:17516. [PMID: 38139344 PMCID: PMC10743788 DOI: 10.3390/ijms242417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The CB2 cannabinoid receptor has been found in brain areas that are part of the reward system and has been shown to play a role in food intake regulation. Herein, we conducted a systematic review of studies assessing the role of the CB2 receptor in food intake regulation. Records from the PubMed, Scopus, and EBSCO databases were screened, resulting in 13 studies that were used in the present systematic review, following the PRISMA guidelines. A risk of bias assessment was carried out using the tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRCLE). The studies analyzed used two main strategies: (1) the intraperitoneal or intracerebroventricular administration of a CB2 agonist/antagonist; and (2) depletion of CB2 receptors via knockout in mice. Both strategies are useful in identifying the role of the CB2 receptor in food intake in standard and palatable diets. The conclusions derived from animal models showed that CB2 receptors are necessary for modulating food intake and mediating energy balance.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Serrano
- Facultad de Psicología, Universidad Anáhuac México, Universidad Anáhuac Avenue #46, Lomas Anáhuac, Huixquilucan 52786, Mexico;
| | | |
Collapse
|
47
|
Lu C, Li S, Li Y, Zhang X, Chi J, Jiang Q, Ma Y, Shi X, Wang L, Li J. Associations between polymorphisms in the cannabinoid receptor 1 gene, cognitive impairments and tardive dyskinesia in a Chinese population with schizophrenia. Brain Res 2023; 1821:148579. [PMID: 37739333 DOI: 10.1016/j.brainres.2023.148579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Tardive dyskinesia (TD) is a medically induced movement disorder that occurs as a result of long-term use of antipsychotic medications, commonly seen in patients with schizophrenia (SCZ). The study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) of the CNR1 gene, TD and cognitive impairments in a Chinese population with SCZ. METHODS A total of 216 SCZ patients were recruited. The participants were divided into TD and without TD (WTD) groups using the Schooler-Kane International Diagnostic Criteria. The severity of TD was assessed using the Abnormal Involuntary Movement Scale (AIMS). Cognitive function was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) scale. Hardy-Weinberg equilibrium tests, chained disequilibrium analyses and haplotype analyses were performed using SHE-sis software. To explore the main effects of TD diagnosis, genotype and cognitive function, as well as interaction effects, analysis of covariance (ANCOVA) was employed. RESULTS The prevalence of TD was approximately 27.3%. Significant differences were observed in the rs806368 CT genotype and rs806370 TC genotype within the hypercongenic pattern between the male TD and WTD groups (OR = 2.508, 95% CI: 1.055-5.961, p = 0.037; OR = 2.552, 95% CI: 1.073-6.069, p = 0.034). Among TD patients, those carrying the rs806368 CC genotype exhibited higher limb trunk scores (p < 0.05). Moreover, there was a statistically significant difference in visuospatial/construction between the TD and WTD groups (p = 0.04), and a borderline significant difference in visuospatial/construction when considering the interaction between TD diagnosis and genotype at the rs806368 locus (p = 0.05). CONCLUSION CNR1 rs806368 and rs806370 polymorphisms may play a role in TD susceptibility. Additionally, CNR1 gene polymorphisms were associated with the severity of involuntary movements and cognitive impairments in TD patients.
Collapse
Affiliation(s)
- Chenghao Lu
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Shen Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yanzhe Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xiaofei Zhang
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jinghui Chi
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Qiaona Jiang
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yanyan Ma
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xiaomei Shi
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Lili Wang
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| | - Jie Li
- Tianjin Mental Health Institute, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
48
|
Lee S, Kim EJ, Kwon E, Oh SJ, Cho M, Kim CM, Lee W, Hong J. Identification of Terpene Compositions in the Leaves and Inflorescences of Hybrid Cannabis Species Using Headspace-Gas Chromatography/Mass Spectrometry. Molecules 2023; 28:8082. [PMID: 38138572 PMCID: PMC10745826 DOI: 10.3390/molecules28248082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Although cannabidiol and tetrahydrocannabinol in Cannabis species exert their pharmacological effects via the endocannabinoid system, it is believed that other phytochemicals, particularly terpenes, can modulate therapeutic outcomes through the entourage effect. Therefore, to gain a better understanding of the pharmacological effects of Cannabis, obtaining information on phytochemical compositions, including mono-, di-, and sesqui-terpenes in Cannabis species is essential. Applying a sophisticated analytical method is indispensable. In this study, headspace-gas chromatography/mass spectrometry (HS-GC/MS) was employed to identify major terpenes in the leaves and inflorescences of hybrid Cannabis species. The incubation time and temperature conditions for HS-GC/MS were optimized. This method was successfully applied to the leaves (n = 9) and inflorescences (n = 7) of hybrid Cannabis species. A total of 26 terpenes in Cannabis species were detected, and six major components, such as α-pinene (9.8-2270 μg/g), β-pinene (2.6-930 μg/g), myrcene (0.7-17,400 μg/g), limonene (1.3-300 μg/g), β-caryophyllene (60-3300 μg/g), and α-humulene (40-870 μg/g), were quantified. Each sample showed different terpene compositions, but six major terpenes among all the terpenes detected were consistently found in both the leaves and inflorescences of hybrid Cannabis species. In this study, the six major terpenes' potential in hybrid Cannabis species was evaluated as biomarkers to distinguish hybrid Cannabis species samples. This study contributes to a better understanding of the entourage effect of Cannabis-based botanical drugs.
Collapse
Affiliation(s)
- Sangin Lee
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Eun Jae Kim
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Eunjeong Kwon
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Seo Jeong Oh
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| | - Mansoo Cho
- Graduate School of Techno Design, Kookmin University, Seoul 02707, Republic of Korea;
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Wonwoong Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (E.J.K.)
| |
Collapse
|
49
|
Martín-Llorente A, Serrano M, Bonilla-Del Río I, Lekunberri L, Ocerin G, Puente N, Ramos A, Rico-Barrio I, Gerrikagoitia I, Grandes P. Omega-3 Recovers Cannabinoid 1 Receptor Expression in the Adult Mouse Brain after Adolescent Binge Drinking. Int J Mol Sci 2023; 24:17316. [PMID: 38139145 PMCID: PMC10744058 DOI: 10.3390/ijms242417316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Adolescent binge drinking is a social problem with a long-lasting impact on cognitive functions. The cannabinoid type-1 (CB1) receptor of the endocannabinoid system (ECS) is involved in brain synaptic plasticity, cognition and behavior via receptor localization at specific subcellular compartments of the cortical, limbic and motor regions. Alcohol (EtOH) intake affects the ECS, CB1 and their functions. Evidence indicates that binge drinking during adolescence impairs memory via the abrogation of CB1-dependent synaptic plasticity in the hippocampus. However, the impact of EtOH consumption on global CB1 receptor expression in the adult brain is unknown. We studied this using optical density analysis throughout brain regions processed for light microscopy (LM) immunohistotochemistry. CB1 staining decreased significantly in the secondary motor cortex, cerebellum, cingulate cortex, amygdala and nucleus accumbens. Next, as omega-3 (n-3) polyunsaturated fatty acids (PUFAs) rescue synaptic plasticity and improve EtOH-impaired cognition, we investigated whether docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) had any effect on CB1 receptors. N-3 intake during EtOH abstinence restored CB1 immunostaining in the secondary motor cortex, cerebellum and amygdala, and ameliorated receptor density in the cingulate cortex. These results show that n-3 supplementation recovers CB1 receptor expression disrupted by EtOH in distinct brain regions involved in motor functions and cognition.
Collapse
Affiliation(s)
- Ane Martín-Llorente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
| | - Maitane Serrano
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Itziar Bonilla-Del Río
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Leire Lekunberri
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Garazi Ocerin
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Nagore Puente
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Almudena Ramos
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Irantzu Rico-Barrio
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Laboratory of Ultrastructural and Functional Neuroanatomy of the Synapse, Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.M.-L.); (M.S.); (I.B.-D.R.); (L.L.); (G.O.); (N.P.); (A.R.); (I.R.-B.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
50
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|