1
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
2
|
Lee J, Roh JL. Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Lett 2024; 597:217046. [PMID: 38852702 DOI: 10.1016/j.canlet.2024.217046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis, a novel form of regulated cell death characterized by iron-mediated lipid peroxidation, holds immense potential in cancer therapeutics due to its role in tumor progression and resistance. This review predominantly explores the intricate relationship between ferroptosis and cholesterol metabolism pathways, mainly focusing on the cholesterol biosynthesis pathway. This review highlights the therapeutic implications of targeting cholesterol metabolism pathways for cancer treatment by delving into the mechanisms underlying ferroptosis regulation. Strategies such as inhibiting HMG-CoA reductase and suppressing squalene synthesis offer promising avenues for inducing ferroptosis in cancer cells. Moreover, insights into targeting the 7-dehydrocholesterol pathway provide novel perspectives on modulating ferroptosis susceptibility and managing ferroptosis-associated diseases. Understanding the interplay between ferroptosis and cholesterol metabolism pathways underscores the potential of lipid metabolism modulation as an innovative therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
3
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
4
|
Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13:970292. [PMID: 36203933 PMCID: PMC9531345 DOI: 10.3389/fphys.2022.970292] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism disorders are the primary causes for the occurrence and progression of various liver diseases, including non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and ethanol. AMPK signaling pathway plays an important role in ameliorating lipid metabolism disorders. Progressive research has clarified that AMPK signal axes are involved in the prevention and reduction of liver injury. Upregulation of AMK can alleviate FLD in mice induced by alcohol or insulin resistance, type 2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid metabolism, inflammation, and oxidative stress in hepatocytes, consequently regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can inhibit the synthesis of fatty acids and cholesterol by down-regulating the expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR); Simultaneously, by increasing the expression of fatty acid oxidation and lipid decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid oxidation and lipid decomposition, the body’s natural lipid balance can be maintained. At present, some AMPK activators are thought to be beneficial during therapeutic treatment. Therefore, activation of AMPK signaling pathway is a potential therapeutic target for disorders of the liver. We summarized the most recent research on the role of the AMPK pathway in FLD in this review. Simultaneously, we performed a detailed description of each signaling axis of the AMPK pathway, as well as a discussion of its mechanism of action and therapeutic significance.
Collapse
Affiliation(s)
- Chunqiu Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jianheng Pan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Ning Qu
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yuting Lei
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jiajun Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
| | - Jingzhou Zhang
- College of Traditional Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Dong Han
- College of Pharmacy, Changchun University of Chinese Medicine, Changchunn, China
- *Correspondence: Dong Han,
| |
Collapse
|
5
|
Lu Z, Huang L, Li Y, Xu Y, Zhang R, Zhou Q, Sun Q, Lu Y, Chen J, Shen Y, Li J, Zhao B. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102669. [PMID: 34739188 PMCID: PMC8805577 DOI: 10.1002/advs.202102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Lipid metabolism is essential for stemness maintenance, self-renewal, and differentiation of stem cells, however, the regulatory function of cholesterol metabolism in erythroid differentiation is poorly studied. In the present study, a critical role for cholesterol homeostasis in terminal erythropoiesis is uncovered. The master transcriptional factor GATA1 binds to Sterol-regulatory element binding protein 2 (SREBP2) to downregulate cholesterol biosynthesis, leading to a gradual reduction in intracellular cholesterol levels. It is further shown that reduced cholesterol functions to block erythroid proliferation via the cholesterol/mTORC1/ribosome biogenesis axis, which coordinates cell cycle exit in the late stages of erythroid differentiation. The interaction of GATA1 and SREBP2 also provides a feedback loop for regulating globin expression through the transcriptional control of NFE2 by SREBP2. Importantly, it is shown that disrupting intracellular cholesterol hemostasis resulted in defect of terminal erythroid differentiation in vivo. These findings demonstrate that fine-tuning of cholesterol homeostasis emerges as a key mechanism for regulating erythropoiesis.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Lixia Huang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yan Xu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ruihao Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qi Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yi Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Junjie Chen
- Analysis and Measurement CenterSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361001China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jian Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Department of PharmacologySchool of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
6
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
7
|
The CC Genotype of Insulin-Induced Gene 2 rs7566605 Is a Protective Factor of Hypercholesteremia Susceptible to Mild Cognitive Impairment, Especially to the Executive Function of Patients with Type 2 Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2020:4935831. [PMID: 32596317 PMCID: PMC7303749 DOI: 10.1155/2020/4935831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/04/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Methods 233 T2DM patients with MCI or without MCI were recruited. Baseline data and genotype frequency were compared between MCI and non-MCI groups. Demographic parameters and neuropsychological tests results were analyzed among patients with different genotypes. Further correlation and regression analysis were conducted to find the association between cognition and cholesterol. Results Despite no significant statistical difference was detected, we observed higher levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) in patients with MCI than those without MCI. In addition, we observed higher TC and LDL levels in patients with GG or GC genotypes than those with CC genotype (P < 0.001, P = 0.004, or P < 0.001, P = 0.002). Interestingly, increased MoCA and decreased TMTB scores were found in patients with CC genotype, compared to those with GG or CG genotype (P = 0.009, P = 0.024, or P = 0.005, P = 0.109). Moreover, partial correlation (P = 0.030 and P = 0.004, respectively) and multiple linear regression (P = 0.030 and P = 0.005, respectively) showed that TC and LDL levels are associated with the TMTB score, indicating the executive function. Conclusions CC genotype of INSIG-2 rs7566605 may be a protective factor of hypercholesteremia susceptible to MCI, especially to the executive function of T2DM. This trial is registered with ChiCTROCC15006060.
Collapse
|
8
|
Kong M, Zhu Y, Shao J, Fan Z, Xu Y. The Chromatin Remodeling Protein BRG1 Regulates SREBP Maturation by Activating SCAP Transcription in Hepatocytes. Front Cell Dev Biol 2021; 9:622866. [PMID: 33718362 PMCID: PMC7947303 DOI: 10.3389/fcell.2021.622866] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Sterol response element binding protein (SREBP) is a master regulator of cellular lipogenesis. One key step in the regulation of SREBP activity is its sequential cleavage and trans-location by several different proteinases including SREBP cleavage activating protein (SCAP). We have previously reported that Brahma related gene 1 (BRG1) directly interacts with SREBP1c and SREBP2 to activate pro-lipogenic transcription in hepatocytes. We report here that BRG1 deficiency resulted in reduced processing and nuclear accumulation of SREBP in the murine livers in two different models of non-alcoholic steatohepatitis (NASH). Exposure of hepatocytes to lipopolysaccharide (LPS) and palmitate (PA) promoted SREBP accumulation in the nucleus whereas BRG1 knockdown or inhibition blocked SREBP maturation. Further analysis revealed that BRG1 played an essential role in the regulation of SCAP expression. Mechanistically, BRG1 interacted with Sp1 and directly bound to the SCAP promoter to activate SCAP transcription. Forced expression of exogenous SCAP partially rescued the deficiency in the expression of SREBP target genes in BRG1-null hepatocytes. In conclusion, our data uncover a novel mechanism by which BRG1 contributes to SREBP-dependent lipid metabolism.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jing Shao
- Wu Medical School, Jiangnan University, Wuxi, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Pool F, Currie R, Sweby PK, Salazar JD, Tindall MJ. A mathematical model of the mevalonate cholesterol biosynthesis pathway. J Theor Biol 2018; 443:157-176. [DOI: 10.1016/j.jtbi.2017.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
|
10
|
Buck TM, Jordahl AS, Yates ME, Preston GM, Cook E, Kleyman TR, Brodsky JL. Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochem J 2017; 474:357-376. [PMID: 27903760 PMCID: PMC5423784 DOI: 10.1042/bcj20160760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emily Cook
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
11
|
Wu KX, Phuektes P, Kumar P, Goh GYL, Moreau D, Chow VTK, Bard F, Chu JJH. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication. Nat Commun 2016; 7:13150. [PMID: 27748395 PMCID: PMC5071646 DOI: 10.1038/ncomms13150] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Enterovirus 71 (EV71) is a neurotropic enterovirus without antivirals or vaccine, and its host-pathogen interactions remain poorly understood. Here we use a human genome-wide RNAi screen to identify 256 host factors involved in EV71 replication in human rhabdomyosarcoma cells. Enrichment analyses reveal overrepresentation in processes like mitotic cell cycle and transcriptional regulation. We have carried out orthogonal experiments to characterize the roles of selected factors involved in cell cycle regulation and endoplasmatic reticulum-associated degradation. We demonstrate nuclear egress of CDK6 in EV71 infected cells, and identify CDK6 and AURKB as resistance factors. NGLY1, which co-localizes with EV71 replication complexes at the endoplasmatic reticulum, supports EV71 replication. We confirm importance of these factors for EV71 replication in a human neuronal cell line and for coxsackievirus A16 infection. A small molecule inhibitor of NGLY1 reduces EV71 replication. This study provides a comprehensive map of EV71 host factors and reveals potential antiviral targets. Enterovirus 71 (EV71) infection causes a spectrum of symptoms including neurological disease. To improve our understanding of EV71-host interactions, Wu et al. here perform a genome-wide RNAi screen, which implicates cell cycle regulation and ER-associated degradation as important factors in EV71 replication.
Collapse
Affiliation(s)
- Kan Xing Wu
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Patchara Phuektes
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Pankaj Kumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Germaine Yen Lin Goh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Dimitri Moreau
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
12
|
Bolatto C, Parada C, Revello F, Zuñiga A, Cabrera P, Cambiazo V. Spatial and temporal distribution of Patched-related protein in the Drosophila embryo. Gene Expr Patterns 2015; 19:120-8. [PMID: 26506022 DOI: 10.1016/j.gep.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/08/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
Patched-related (Ptr) encodes a protein with 12 potential transmembrane domains and a sterol-sensing domain that is closely related in predicted topology and domain organization to Patched, the canonical receptor of the Hedgehog pathway. Here we describe the production of an antibody specific for Drosophila Ptr and analyse its spatial and temporal distribution in the embryo. We find that at early developmental stages Ptr is predominantly localized at cell periphery but later on it becomes strongly and almost exclusively expressed in hemocytes. Interestingly Ptr null mutant embryos died without hatching. Our findings suggest that Ptr plays an essential function in Drosophila development, perhaps as a new receptor of embryonic hemocytes.
Collapse
Affiliation(s)
- Carmen Bolatto
- Laboratorio de Biología del Desarrollo, Departamento de Histología y Embriología, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| | - Cristina Parada
- Laboratorio de Biología del Desarrollo, Departamento de Histología y Embriología, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| | - Fiorella Revello
- Laboratorio de Biología del Desarrollo, Departamento de Histología y Embriología, Facultad de Medicina-Universidad de la República, Montevideo, Uruguay.
| | - Alejandro Zuñiga
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile and Fondap Center for Genome Regulation (CGR), Santiago, Chile.
| | - Pablo Cabrera
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile and Fondap Center for Genome Regulation (CGR), Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile and Fondap Center for Genome Regulation (CGR), Santiago, Chile.
| |
Collapse
|
13
|
Nakatsukasa K, Okumura F, Kamura T. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast. Crit Rev Biochem Mol Biol 2015; 50:489-502. [PMID: 26362128 DOI: 10.3109/10409238.2015.1081869] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Fumihiko Okumura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| | - Takumi Kamura
- a Division of Biological Sciences , Graduate School of Science, Nagoya University , Nagoya , Aichi , Japan
| |
Collapse
|
14
|
Puth K, Hofbauer HF, Sáenz JP, Ernst R. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors. Biol Chem 2015; 396:1043-58. [DOI: 10.1515/hsz-2015-0130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/31/2015] [Indexed: 11/15/2022]
Abstract
Abstract
Biological membranes are dynamic and complex assemblies of lipids and proteins. Eukaryotic lipidomes encompass hundreds of distinct lipid species and we have only begun to understand their role and function. This review focuses on recent advances in the field of lipid sensors and discusses methodical approaches to identify and characterize putative sensor domains. We elaborate on the role of integral and conditionally membrane-associated sensor proteins, their molecular mechanisms, and identify open questions in the emerging field of membrane homeostasis.
Collapse
|
15
|
Ness GC. Physiological feedback regulation of cholesterol biosynthesis: Role of translational control of hepatic HMG-CoA reductase and possible involvement of oxylanosterols. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:667-73. [DOI: 10.1016/j.bbalip.2015.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/26/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
16
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
17
|
Needham PG, Brodsky JL. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2447-57. [PMID: 23557783 DOI: 10.1016/j.bbamcr.2013.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022]
Abstract
All newly synthesized proteins are subject to quality control check-points, which prevent aberrant polypeptides from harming the cell. For proteins that ultimately reside in the cytoplasm, components that also reside in the cytoplasm were known for many years to mediate quality control. Early biochemical and genetic data indicated that misfolded proteins were selected by molecular chaperones and then targeted to the proteasome (in eukaryotes) or to proteasome-like particles (in bacteria) for degradation. What was less clear was how secreted and integral membrane proteins, which in eukaryotes enter the endoplasmic reticulum (ER), were subject to quality control decisions. In this review, we highlight early studies that ultimately led to the discovery that secreted and integral membrane proteins also utilize several components that constitute the cytoplasmic quality control machinery. This component of the cellular quality control pathway is known as ER associated degradation, or ERAD. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
18
|
Abstract
The chaperone-related, ubiquitin-selective AAA (ATPase associated with a variety of cellular activities) protein Cdc48 (also known as TER94, p97 and VCP) is a key regulator of intracellular proteolysis in eukaryotes. It uses the energy derived from ATP hydrolysis to segregate ubiquitylated proteins from stable assemblies with proteins, membranes and chromatin. Originally characterized as essential factor in proteasomal degradation pathways, Cdc48 was recently found to control lysosomal protein degradation as well. Moreover, impaired lysosomal proteolysis due to mutational inactivation of Cdc48 causes protein aggregation diseases in humans. This review introduces the major systems of intracellular proteolysis in eukaryotes and the role of protein ubiquitylation. It then discusses in detail structure, mechanism and cellular functions of Cdc48 with an emphasis on protein degradation pathways in yeast.
Collapse
Affiliation(s)
- Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| |
Collapse
|
19
|
Dong XY, Tang SQ, Chen JD. Dual functions of Insig proteins in cholesterol homeostasis. Lipids Health Dis 2012; 11:173. [PMID: 23249523 PMCID: PMC3564778 DOI: 10.1186/1476-511x-11-173] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/05/2012] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of how cells maintain cholesterol homeostasis has become clearer for the understanding of complicated association between sterol regulatory element-binding proteins (SREBPs), SREBP cleavage-activating protein (SCAP), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) and Insuin induced-genes (Insigs). The pioneering researches suggested that SREBP activated the transcription of genes encoding HMG-CoA reductase and all of the other enzymes involved in the synthesis of cholesterol and lipids. However, SREBPs can not exert their activities alone, they must form a complex with another protein, SCAP in the endoplasmic reticulum (ER) and translocate to Golgi. Insigs are sensors and mediators that regulate cholesterol homeostasis through binding to SCAP and HMG-CoA reductase in diverse tissues such as adipose tissue and liver, as well as the cultured cells. In this article, we aim to review on the dual functions of Insig protein family in cholesterol homeostasis.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Veterinary Medicine, South China Agricultural University, No,483 Wu Shan Road, Tian He District, Guangzhou, 510642, China.
| | | | | |
Collapse
|
20
|
Singh M, Chaudhry P, Parent S, Asselin E. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I. Endocrinology 2012; 153:426-37. [PMID: 22109885 DOI: 10.1210/en.2011-1438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.
Collapse
Affiliation(s)
- Mohan Singh
- Department of Chemistry-Biology, University of Québec at Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
21
|
Dong XY, Tang SQ. Insulin-induced gene: a new regulator in lipid metabolism. Peptides 2010; 31:2145-50. [PMID: 20817058 DOI: 10.1016/j.peptides.2010.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
Insulin-induced genes (Insigs) including Insig-1 and Insig-2, are proteins that mediate sterol regulation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase). Insigs perform distinct tasks in the regulation of these effectors: they promote the endoplasmic reticulum (ER) retention of SCAP, but ubiquitin-mediated degradation of HMG-CoA reductase. Through these activities, Insig-1 and Insig-2 influence cholesterol metabolism, lipogenesis, and glucose homeostasis in diverse tissues such as adipose tissue and liver. In this article, we focus on the functions, expression and regulation, gene polymorphisms of Insigs, and their deficiency with diseases.
Collapse
Affiliation(s)
- Xiao-Ying Dong
- College of Yingdong Agricultural Science and Engineering, Shaoguan University, Daxue Avenue, Zhenjiang District, Shaoguan 512005, PR China
| | | |
Collapse
|
22
|
Ali BR, Xu H, Akawi NA, John A, Karuvantevida NS, Langer R, Al-Gazali L, Leitinger B. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients. Hum Mol Genet 2010; 19:2239-50. [PMID: 20223752 PMCID: PMC2865377 DOI: 10.1093/hmg/ddq103] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.
Collapse
Affiliation(s)
- Bassam R Ali
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab 2010; 11:47-57. [PMID: 20074527 DOI: 10.1016/j.cmet.2009.11.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 09/30/2009] [Accepted: 11/03/2009] [Indexed: 12/11/2022]
Abstract
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.
Collapse
|
24
|
Huang K, Diener DR, Rosenbaum JL. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. ACTA ACUST UNITED AC 2009; 186:601-13. [PMID: 19704024 PMCID: PMC2733750 DOI: 10.1083/jcb.200903066] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The disassembly of cilia and flagella is linked to the cell cycle and environmental cues. We have found that ubiquitination of flagellar proteins is an integral part of flagellar disassembly. Free ubiquitin and the ubiquitin-conjugating enzyme CrUbc13 are detected in flagella, and several proteins are ubiquitinated in isolated flagella when exogenous ubiquitin and adenosine triphosphatase are added, suggesting that the ubiquitin conjugation system operates in flagella. Levels of ubiquitinated flagellar proteins increase during flagellar resorption, especially in intraflagellar transport (IFT) mutants, suggesting that disassembly products are labeled with ubiquitin and transported to the cell body by IFT. Substrates of the ubiquitin conjugation system include α-tubulin (but not β-tubulin), a dynein subunit (IC2), two signaling proteins involved in the mating process, cyclic guanosine monophosphate–dependent kinase, and the cation channel polycystic kidney disease 2. Ubiquitination of flagellar proteins is enhanced early in mating, suggesting that ubiquitination also plays an active role in regulating signaling pathways in flagella.
Collapse
Affiliation(s)
- Kaiyao Huang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
25
|
Sato BK, Schulz D, Do PH, Hampton RY. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell 2009; 34:212-22. [PMID: 19394298 DOI: 10.1016/j.molcel.2009.03.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/12/2008] [Accepted: 03/20/2009] [Indexed: 01/05/2023]
Abstract
Quality control pathways such as ER-associated degradation (ERAD) employ a small number of factors to specifically recognize a wide variety of protein substrates. Delineating the mechanisms of substrate selection is a principle goal in studying quality control. The Hrd1p ubiquitin ligase mediates ERAD of numerous misfolded proteins including soluble, lumenal ERAD-L and membrane-anchored ERAD-M substrates. We tested if the Hrd1p multispanning membrane domain was involved in ERAD-M specificity. In this work, we have identified site-directed membrane domain mutants of Hrd1p impaired only for ERAD-M and normal for ERAD-L. Furthermore, other Hrd1p variants were specifically deficient for degradation of individual ERAD-M substrates. Thus, the Hrd1p transmembrane region bears determinants of high specificity in the ERAD-M pathway. From in vitro and interaction studies, we suggest a model in which the Hrd1p membrane domain employs intramembrane residues to evaluate substrate misfolding, leading to selective ubiquitination of appropriate ERAD-M clients.
Collapse
Affiliation(s)
- Brian K Sato
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
26
|
Cadmium-mediated rescue from ER-associated degradation induces expression of its exporter. Proc Natl Acad Sci U S A 2009; 106:10189-94. [PMID: 19515821 DOI: 10.1073/pnas.0812114106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadmium is a highly toxic environmental contaminant that has been implicated in various disorders. A major mechanism for cadmium detoxification in the yeast Saccharomyces cerevisiae relies on extrusion via Pca1, a P-type ATPase. While an N-terminal degron targets Pca1 for degradation before its secretion to the plasma membrane, cadmium in the growth media rapidly up-regulates Pca1 by preventing its turnover. Here we show that the endoplasmic reticulum-associated degradation (ERAD) system, known for its role in quality control of secretory proteins, is unexpectedly responsible for the regulation of Pca1 expression by cadmium. Direct cadmium sensing at the ER by a degron in Pca1 leads to an escape of Pca1 from ERAD. This regulated conversion of an ERAD substrate to a secretory competent state in response to a cellular need illustrates a mechanism for expressional control of a plasma membrane protein. Yeast has likely evolved this mode of regulation for a rapid response against cadmium toxicity at the expense of constant synthesis and degradation of Pca1. ERAD of a portion of secretory proteins might occur via signal-dependent regulatory mechanisms as demonstrated for Pca1.
Collapse
|
27
|
Hampton RY, Garza RM. Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev 2009; 109:1561-74. [PMID: 19243134 DOI: 10.1021/cr800544v] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Randolph Y Hampton
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
28
|
Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis 2009; 35:251-7. [PMID: 19464372 PMCID: PMC3778879 DOI: 10.1016/j.nbd.2009.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/02/2009] [Accepted: 05/10/2009] [Indexed: 11/24/2022] Open
Abstract
Post-translational modification of small GTPases by farnesyl- (FPP) and geranylgeranylpyrophosphate (GGPP) has generated much attention due to their potential contribution to cancer, cardiovascular and neurodegenerative diseases. Prenylated proteins have been identified in numerous cell functions and elevated levels of FPP and GGPP have been previously proposed to occur in Alzheimer disease (AD) but have never been quantified. In the present study, we determined if the mevalonate derived compounds FPP and GGPP are increased in brain grey and white matter of male AD patients as compared with control samples. This study demonstrates for the first time that FPP and GGPP levels are significantly elevated in human AD grey and white matter but not cholesterol, indicating a potentially disease-specific targeting of isoprenoid regulation independent of HMG-CoA-reductase. Further suggesting a selective disruption of FPP and GGPP homeostasis in AD, we show that inhibition of HMG-CoA reductase in vivo significantly reduced FPP, GGPP and cholesterol abundance in mice with the largest effect on the isoprenoids. A tentative conclusion is that if indeed regulation of FPP and GGPP is altered in AD brain such changes may stimulate protein prenylation and contribute to AD neuropathophysiology.
Collapse
|
29
|
Abstract
As proteins travel through the endoplasmic reticulum (ER), a quality-control system retains newly synthesized polypeptides and supports their maturation. Only properly folded proteins are released to their designated destinations. Proteins that cannot mature are left to accumulate, impairing the function of the ER. To maintain homeostasis, the protein-quality-control system singles out aberrant polypeptides and delivers them to the cytosol, where they are destroyed by the proteasome. The importance of this pathway is evident from the growing list of pathologies associated with quality-control defects in the ER.
Collapse
|
30
|
Garza RM, Sato BK, Hampton RY. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J Biol Chem 2009; 284:14710-22. [PMID: 19324879 DOI: 10.1074/jbc.m809607200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.
Collapse
Affiliation(s)
- Renee M Garza
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | | | |
Collapse
|
31
|
Adle DJ, Lee J. Expressional control of a cadmium-transporting P1B-type ATPase by a metal sensing degradation signal. J Biol Chem 2008; 283:31460-8. [PMID: 18753133 DOI: 10.1074/jbc.m806054200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cadmium is a highly toxic environmental contaminant implicated in various diseases. Our previous data demonstrated that Pca1, a P1B-type ATPase, plays a critical role in cadmium resistance in yeast S. cerevisiae by extruding intracellular cadmium. This illustrates the first cadmium-specific efflux pump in eukaryotes. In response to cadmium, yeast cells rapidly enhance expression of Pca1 by a post-transcriptional mechanism. To gain mechanistic insights into the cadmium-dependent control of Pca1 expression, we have characterized the pathway for Pca1 turnover and the mechanism of cadmium sensing that leads to up-regulation of Pca1. Pca1 is a short-lived protein (t1/2 < 5 min) and is subject to ubiquitination when cells are growing in media lacking cadmium. Distinct from many plasma membrane transporters targeted to the vacuole for degradation via endocytosis, cells defective in this pathway did not stabilize Pca1. Rather, Pca1 turnover was dependent on the proteasome. These data suggest that, in the absence of cadmium, Pca1 is targeted for degradation before reaching the plasma membrane. Mapping of the N terminus of Pca1 identified a metal-responding degradation signal encompassing amino acids 250-350. Fusion of this domain to a stable protein demonstrated that it functions autonomously in a metal-responsive manner. Cadmium sensing by cysteine residues within this domain circumvents ubiquitination and degradation of Pca1. These data reveal a new mechanism for substrate-mediated control of P1B-type ATPase expression. Cells have likely evolved this mode of regulation for a rapid and specific cellular response to cadmium.
Collapse
Affiliation(s)
- David J Adle
- Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
32
|
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 2008; 18:609-21. [PMID: 18504457 DOI: 10.1038/cr.2008.61] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, an important intermediate in the synthesis of cholesterol and essential nonsterol isoprenoids. The reductase is subject to an exorbitant amount of feedback control through multiple mechanisms that are mediated by sterol and nonsterol end-products of mevalonate metabolism. Here, I will discuss recent advances that shed light on one mechanism for control of reductase, which involves rapid degradation of the enzyme. Accumulation of certain sterols triggers binding of reductase to endoplasmic reticulum (ER) membrane proteins called Insig-1 and Insig-2. Reductase-Insig binding results in recruitment of a membrane-associated ubiquitin ligase called gp78, which initiates ubiquitination of reductase. This ubiquitination is an obligatory reaction for recognition and degradation of reductase from ER membranes by cytosolic 26S proteasomes. Thus, sterol-accelerated degradation of reductase represents an example of how a general cellular process (ER-associated degradation) is used to control an important metabolic pathway (cholesterol synthesis).
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
33
|
Pastenes L, Ibáñez F, Bolatto C, Pavéz L, Cambiazo V. Molecular characterization of a novel patched-related protein in Apis mellifera and Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:156-170. [PMID: 18563713 DOI: 10.1002/arch.20245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The molecular identification and characterization of the patched-related (ptr) gene and protein in Apis mellifera and Drosophila melanogaster are reported. Ptr proteins are closely related in predicted topology and domain organization to the protein encoded by the Drosophila segment polarity gene patched. Ptrs have 12 potential transmembrane domains arranged in two sets of 1+5 membrane-spanning segments containing a conserved sterol-sensing domain (SSD) and functional GxxxD and PPXY motifs. Phylogenetic analysis showed that Ptrs belong to a previously uncharacterized class of insect proteins that share a high level of sequence identity. Analysis using quantitative real-time polymerase chain reaction (qPCR) indicates that ptr gene is preferentially expressed during embryo stages of A. mellifera development; interestingly, this pattern of temporal expression was also observed for the D. melanogaster homologue, suggesting that these proteins might be involved in embryo morphogenesis. To understand Ptr function at the molecular level, we investigated the subcellular distribution of DmPtr. We have shown by biochemical analysis that DmPtr protein is tightly associated with membranes. Consistently, Ptr immunoreactivity appears to be localized at the sites of membrane furrow formation during cellularization of D. melanogaster embryos. These studies indicated that Ptrs belong to a previously uncharacterized class of insect transmembrane proteins that share a high level of sequence identity. Our analysis of ptr gene expression and protein localization suggest that Ptr might fulfil a developmental role by participating in processes that require growth and stabilization of plasma membrane.
Collapse
Affiliation(s)
- Luis Pastenes
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Macul 5540, CP 138-11, Santiago, Chile
| | | | | | | | | |
Collapse
|
34
|
Abstract
Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory element binding protein (SREBP) is the principal regulator of both sterol synthesis and uptake. In mammalian cells, the ER membrane protein Insig has emerged as a key component of homeostatic regulation by controlling both the activity of SREBP and the sterol-dependent degradation of the biosynthetic enzyme HMG-CoA reductase. In this review, we focus on recent advances in our understanding of the molecular mechanisms of the regulation of sterol synthesis. A comparative analysis of SREBP and HMG-CoA reductase regulation in mammals, yeast, and flies points toward an equilibrium model for how lipid signals regulate the activity of sterol-sensing proteins and their downstream effectors.
Collapse
Affiliation(s)
- Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
35
|
Nakatsukasa K, Brodsky JL. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 2008; 9:861-70. [PMID: 18315532 DOI: 10.1111/j.1600-0854.2008.00729.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secretory and membrane proteins that fail to fold in the endoplasmic reticulum (ER) are retained and may be sorted for ER-associated degradation (ERAD). During ERAD, ER-associated components such as molecular chaperones and lectins recognize folding intermediates and specific oligosaccharyl modifications on ERAD substrates. Substrates selected for ERAD are then targeted for ubiquitin- and proteasome-mediated degradation. Because the catalytic steps of the ubiquitin-proteasome system reside in the cytoplasm, soluble ERAD substrates that reside in the ER lumen must be retrotranslocated back to the cytoplasm prior to degradation. In contrast, it has been less clear how polytopic, integral membrane substrates are delivered to enzymes required for ubiquitin conjugation and to the proteasome. In this review, we discuss recent studies addressing how ERAD substrates are recognized, ubiquitinated and delivered to the proteasome and then survey current views of how soluble and integral membrane substrates may be retrotranslocated.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
36
|
Calì T, Vanoni O, Molinari M. The endoplasmic reticulum crossroads for newly synthesized polypeptide chains. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 83:135-79. [PMID: 19186254 DOI: 10.1016/s0079-6603(08)00604-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tito Calì
- Institute for Research in Biomedicine, Bellizona, Switzerland
| | | | | |
Collapse
|
37
|
Bailey D, O'Hare P. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid Redox Signal 2007; 9:2305-21. [PMID: 17887918 DOI: 10.1089/ars.2007.1796] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulated intramembrane proteolysis (RIP) of the transmembrane transcription factor ATF6 represents a key step in effecting adaptive response to the presence of unfolded or malfolded protein in the endoplasmic reticulum. Recent studies have highlighted new ATF6-related transmembrane transcription factors. It is likely that current models for ER stress signaling are incomplete and that the expansion of the bZIP transmembrane family reflects selectivity in many aspects of these responses, including the type and duration of any particular stress, the cell type in which it occurs, and the integration with other aspects of cell-type-specific organization or additional intrinsic pathways, and the integration and communication between these pathways, not only in a cell-type-specific manner, but also between different tissues and organs. This review summarizes current information on the bZIP-transmembrane proteins and discusses outstanding questions on the elucidation of the stress signals, the repertoire of components involved in regulating different aspects of the forward transport, cleavage, nuclear import, transcriptional activity, and turnover of each of these factors, and dissection of the integration of the various outputs into broad coordinated responses.
Collapse
Affiliation(s)
- Daniel Bailey
- Marie Curie Research Institute, The Chart, Oxted, Surrey, England
| | | |
Collapse
|
38
|
Bailey D, Barreca C, O'Hare P. Trafficking of the bZIP transmembrane transcription factor CREB-H into alternate pathways of ERAD and stress-regulated intramembrane proteolysis. Traffic 2007; 8:1796-1814. [PMID: 17875199 DOI: 10.1111/j.1600-0854.2007.00654.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CREB-H is an ATF6-related, transmembrane transcription factor that, in response to endoplasmic reticulum (ER)-associated stress, is cleaved by Golgi proteases and transported to the nucleus to effect appropriate adaptive responses. We characterize the ER processing and turnover of CREB-H with results which have important implications for ER stress regulation and signalling. We show that CREB-H is glycosylated and demonstrate that both the ER and nuclear forms of CREB-H have short half-lives. We also show that CREB-H is subject to cycles of retrotranslocation, deglycosylation and degradation through the ER-associated degradation (ERAD) pathway. Proteasome inhibition resulted in accumulation of a cytosolic intermediate but additionally, in contrast to inhibition of glycosylation, promoted specific cleavage of CREB-H and nuclear transport of the N-terminal-truncated product. Our data indicate that under normal conditions CREB-H is transported back from the ER to the cytosol, where it is subject to ERAD, but under conditions that repress proteasome function or promote load CREB-H is diverted from this pathway instead undergoing cleavage and nuclear transport. Finally, we identify a cytoplasmic determinant involved in CREB-H ER retention, deletion of which results in constitutive Golgi transport and corresponding cleavage. We present a model where cellular stresses may be sensed at different levels by different members of the basic and leucine zipper domain transmembrane proteins.
Collapse
Affiliation(s)
- Daniel Bailey
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, UK
| | - Cristina Barreca
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, UK
| | - Peter O'Hare
- Marie Curie Research Institute, The Chart, Oxted, Surrey, RH8 0TL, UK
| |
Collapse
|
39
|
Kase ET, Thoresen GH, Westerlund S, Højlund K, Rustan AC, Gaster M. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals. Diabetologia 2007; 50:2171-80. [PMID: 17661008 DOI: 10.1007/s00125-007-0760-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 05/24/2007] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Liver X receptors (LXRs) play important roles in lipid and carbohydrate metabolism. The purpose of the present study was to evaluate effects of the endogenous LXR agonist 22-R-hydroxycholesterol (22-R-HC) and its stereoisomer 22-S-hydroxycholesterol (22-S-HC), in comparison with the synthetic agonist T0901317 on lipid and glucose metabolism in human skeletal muscle cells (myotubes). METHODS Myotubes established from lean and obese control volunteers and from obese type 2 diabetic volunteers were treated with LXR ligands for 4 days. Lipid and glucose metabolisms were studied with labelled precursors, and gene expression was analysed using real-time PCR. RESULTS Treatment with T0901317 increased lipogenesis (de novo lipid synthesis) and lipid accumulation in myotubes, this increase being more pronounced in myotubes from type 2 diabetic volunteers than from lean volunteers. Furthermore, 22-S-HC efficiently counteracted the T0901317-induced enhancement of lipid formation. Moreover, synthesis of diacylglycerol, cholesteryl ester and free cholesterol from acetate was reduced below baseline by 22-S-HC, whereas glucose uptake and oxidation were increased. Both 22-S-HC and 22-R-HC, in contrast to T0901317, decreased the expression of genes involved in cholesterol synthesis, whereas only 22-R-HC, like T0901317, increased the expression of the gene encoding the reverse cholesterol transporter ATP-binding cassette subfamily A1 (ABCA1). CONCLUSIONS/INTERPRETATION T0901317-induced lipogenesis and lipid formation was more pronounced in myotubes from type 2 diabetic patients than from lean individuals. 22-S-HC counteracted these effects and reduced de novo lipogenesis below baseline, while glucose uptake and oxidation were increased.
Collapse
Affiliation(s)
- E T Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, Oslo, 0316, Norway
| | | | | | | | | | | |
Collapse
|
40
|
Seli E, Guzeloglu-Kayisli O, Kayisli UA, Kizilay G, Arici A. Estrogen increases apoptosis in the arterial wall in a murine atherosclerosis model. Fertil Steril 2007; 88:1190-6. [PMID: 17498707 DOI: 10.1016/j.fertnstert.2007.01.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effect of estrogen (E) on vascular apoptosis during atherosclerotic plaque formation. DESIGN Laboratory study using a murine atherosclerosis model. SETTING Academic research center. ANIMAL(S) Female mice homozygous for null alleles of LDL receptor (LDL-R(-/-)) in a C57BL/6 background. LDL-R(-/-) mice develop atherosclerosis in a predictable manner when fed a high cholesterol diet. INTERVENTION(S) Eight-week-old female LDL-R(-/-) mice (n = 68) were ovariectomized, and implanted subcutaneously with 90-day release pellets containing 0.5 mg of 17beta-estradiol (E(2)) or placebo. Four animals were evaluated at the initiation of the study. Thereafter, four animals from each group were sacrificed weekly for 8 weeks and their aortas studied. MAIN OUTCOME MEASURE(S) The effect of E(2) on atherosclerotic plaque development, apoptosis, and cell proliferation was examined in the aorta of ovariectomized LDL-R(-/-) mice that were fed a high cholesterol diet. RESULT(S) Mice treated with E(2) displayed a delay in atherosclerotic plaque formation, associated with an increase in DNA strand breaks in the arterial wall indicative of increased apoptosis, compared to placebo-treated mice. The two groups did not differ in mitotic activity. CONCLUSION(S) In female LDL-R(-/-) mice fed a high cholesterol diet, ovariectomy is associated with increased atherogenesis. The effect of ovariectomy on atherogenesis is reversed by E(2) treatment. In addition to delayed atherogenesis, E(2) treatment of ovariectomized LDL-R(-/-) mice results in an increase in apoptosis in the aortic wall without an effect on the mitotic activity. Our findings suggest that vascular effects of E may be in part mediated by a proapoptotic activity.
Collapse
Affiliation(s)
- Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063 , USA
| | | | | | | | | |
Collapse
|
41
|
Hampton RY. Fusion-based strategies to identify genes involved in degradation of a specific substrate. Methods Enzymol 2007; 399:310-23. [PMID: 16338365 DOI: 10.1016/s0076-6879(05)99021-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fusion proteins have been used in many instances to allow genetic screening for genes required for the degradation of a specific substrate. This straightforward, yet powerful, approach can be applied in many circumstances to facilitate gene characterization and discovery. Some general principles are discussed and then several successful uses of these tactics are described in detail.
Collapse
|
42
|
Suzuki M, Muranaka T. Molecular Genetics of Plant Sterol Backbone Synthesis. Lipids 2006; 42:47-54. [PMID: 17393210 DOI: 10.1007/s11745-006-1000-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Sterols, which are biosynthesized via the cytoplasmic mevalonate (MVA) pathway, are important structural components of the plasma membrane and precursors of steroid hormones in both vertebrates and plants. Ergosterol and cholesterol are the major sterols in yeast and vertebrates, respectively. In contrast, plants produce a wide variety of phytosterols, which have various functions in plant development. Although the general biosynthetic pathway to plant sterols has been defined, the details of the biochemical, physiological, and developmental functions of genes involved in the biosynthetic network and their regulation are not well understood. Molecular genetic analyses are an effective approach to use when studying these fascinating problems. Since three enzymes, 3-hydroxy-3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, and lanosterol synthase, have been functionally characterized in planta, we reviewed recent progress on these enzymes. Arabidopsis T-DNA and transposon insertion mutants are now widely available. The use of molecular genetics, molecular biology, and bioorganic chemical approaches on these mutants, as well as inhibitors of the MVA pathway, should help us to understand plant sterol biosynthesis comprehensively.
Collapse
Affiliation(s)
- Masashi Suzuki
- Metabolic Diversity Research Team, RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
43
|
Kase ET, Andersen B, Nebb HI, Rustan AC, Thoresen GH. 22-Hydroxycholesterols regulate lipid metabolism differently than T0901317 in human myotubes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1515-22. [PMID: 17055780 DOI: 10.1016/j.bbalip.2006.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 09/13/2006] [Indexed: 10/24/2022]
Abstract
The nuclear liver X receptors (LXRalpha and beta) are regulators of lipid and cholesterol metabolism. Oxysterols are known LXR ligands, but the functional role of hydroxycholesterols is at present unknown. In human myotubes, chronic exposure to the LXR ligand T0901317 promoted formation of diacylglycerol (DAG) and triacylglycerol (TAG), 22-R-hydroxycholesterol (22-R-HC) had no effect, and 22-S-hydroxycholesterol (22-S-HC) reduced the formation. In accordance with this, 22-HC and T0901317 regulated the expression of fatty acid transporter CD36, stearoyl-CoA desaturase-1, acyl-CoA synthetase long chain family member 1 and fatty acid synthase (FAS) differently; all genes were increased by T0901317, 22-R-HC did not change their expression level, while 22-S-HC reduced it. Transfection studies confirmed that the FAS promoter was activated by T0901317 and repressed by 22-S-HC through an LXR response element in the promoter. Both 22-R-HC and T0901317 increased gene expression of LXRalpha, sterol regulatory element-binding protein 1c and ATP-binding cassette transporter A1, while 22-S-HC had little effect. In summary, 22-R-HC regulated lipid metabolism and mRNA expression of some LXR target genes in human myotubes differently than T0901317. Moreover, 22-S-HC did not behave like an inactive ligand; it reduced synthesis of complex lipids and repressed certain genes involved in lipogenesis and lipid handling.
Collapse
Affiliation(s)
- Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo, Norway.
| | | | | | | | | |
Collapse
|
44
|
Hassink GC, Barel MT, Van Voorden SB, Kikkert M, Wiertz EJ. Ubiquitination of MHC class I heavy chains is essential for dislocation by human cytomegalovirus-encoded US2 but not US11. J Biol Chem 2006; 281:30063-71. [PMID: 16877758 DOI: 10.1074/jbc.m602248200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human cytomegalovirus-encoded glycoproteins US2 and US11 target newly synthesized major histocompatibility complex class I heavy chains for degradation by mediating their dislocation from the endoplasmic reticulum back into the cytosol, where they are degraded by proteasomes. A functional ubiquitin system is required for US2- and US11-dependent dislocation of the class I heavy chains. It has been assumed that the class I heavy chain itself is ubiquitinated during the dislocation reaction. To test this hypothesis, all lysines within the class I heavy chain were substituted. The lysine-less class I molecules could no longer be dislocated by US2 despite the fact that the interaction between the two proteins was maintained. Interestingly, US11 was still capable of dislocating the lysine-less heavy chains into the cytosol. Ubiquitination does not necessarily require lysine residues but can also occur at the N terminus of a protein. To investigate the potential role of N-terminal ubiquitination in heavy chain dislocation, a lysine-less ubiquitin moiety was fused to the N terminus of the class I molecule. This lysine-less fusion protein was still dislocated in the presence of US11. Ubiquitination could not be detected in vitro, either for the lysine-less heavy chains or for the lysine-less ubiquitin-heavy chain fusion protein. Our data show that although dislocation of the lysineless class I heavy chains requires a functional ubiquitin system, the heavy chain itself does not serve as the ubiquitin acceptor. This finding sheds new light on the role of the ubiquitin system in the dislocation process.
Collapse
Affiliation(s)
- Gerco C Hassink
- Department of Medical Microbiology, Leiden University Medical Center, Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Piwko W, Jentsch S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat Struct Mol Biol 2006; 13:691-7. [PMID: 16845392 DOI: 10.1038/nsmb1122] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 06/22/2006] [Indexed: 11/08/2022]
Abstract
The proteasome is a barrel-shaped protease that conceals its active sites within its central cavity. Proteasomes usually completely degrade substrates into small peptides, but in some cases, degradation yields biologically active protein fragments. Some transcription factors are generated from precursors by this activity, but the mechanism of proteasomal protein processing remains unclear. Here we show that proteasomal processing of the yeast NFkappaB-related transcription factors Spt23 and Mga2 is initiated by an internal cleavage, followed by bidirectional proteolysis of the polypeptides. Studies with protein fusions indicate that stable proteolytic fragments are generated if the protein contains tightly folded structures that prevent the complete degradation of the protein. Furthermore, we provide evidence that the ability of the proteasome to initiate proteolysis from an internal site and to proceed via bidirectional polypeptide degradation may be relevant for the complete degradation of proteins as well.
Collapse
Affiliation(s)
- Wojciech Piwko
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
46
|
Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA. The emergence of yeast lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:241-54. [PMID: 16920401 DOI: 10.1016/j.bbalip.2006.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.
Collapse
Affiliation(s)
- Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The endoplasmic reticulum (ER) lumen, which actively monitors the synthesis, folding, and modification of newly synthesized transmembrane and secretory proteins as well as lipids, is quite sensitive to homeostatic perturbations. The biochemical, molecular, and physiological events that elevate cellular ER stress levels and disrupt Ca2+ homeostasis trigger secondary reactions. These reactions are factors in the ongoing neurological pathology contributing to the continual tissue loss. However, the cells are not without defensive systems. One of the reactive mechanisms, the unfolded protein response (UPR), when evoked, provides some measure of protection, unless the stress conditions become prolonged or overwhelming. UPR activation occurs when key ER membrane-bound sensor proteins detect the excess accumulation of misfolded or unfolded proteins within the ER lumen. The activation of these sensors leads to a general protein translation shut-down, transcriptional induction, and translation of select proteins to deal with the difficult and miscreant protein or to encourage their degradation so they will do no harm. If the stress is prolonged, caspase-12, along with other apoptotic proteins, are activated, triggering programmed cell death. UPR, once considered to be a rather simple response, can now be characterized as a multifaceted labyrinth of reactions that continues expanding as research intensifies. This review will examine what has been learned to date about how this highly efficient and specific signaling pathway copes with ER stress, by centering on the basic components, their roles, and the complex interactions engendered. Finally, the UPR impact in various central nervous system injuries is summarized.
Collapse
Affiliation(s)
- Stephen F Larner
- Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
48
|
García-Alai MM, Gallo M, Salame M, Wetzler DE, McBride AA, Paci M, Cicero DO, de Prat-Gay G. Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover. Structure 2006; 14:309-19. [PMID: 16472750 DOI: 10.1016/j.str.2005.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/26/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Proteasomal-mediated rapid turnover of proteins is often modulated by phosphorylation of PEST sequences. The E2 protein from papillomavirus participates in gene transcription, DNA replication, and episomal genome maintenance. Phosphorylation of a PEST sequence located in a flexible region accelerates its degradation. NMR analysis of a 29 amino acid peptide fragment derived from this region shows pH-dependent polyproline II and alpha helix structures, connected by a turn. Phosphorylation, in particular that at serine 301, disrupts the overall structure, and point mutations have either stabilizing or destabilizing effects. There is an excellent correlation between the thermodynamic stability of different peptides and the half-life of E2 proteins containing the same mutations in vivo. The structure around the PEST region appears to have evolved a marginal stability that is finely tunable by phosphorylation. Thus, conformational stability, rather than recognition of a phosphate modification, modulates the degradation of this PEST sequence by the proteasome machinery.
Collapse
|
49
|
Liao M, Faouzi S, Karyakin A, Correia MA. Endoplasmic Reticulum-Associated Degradation of Cytochrome P450 CYP3A4 inSaccharomyces cerevisiae: Further Characterization of Cellular Participants and Structural Determinants. Mol Pharmacol 2006; 69:1897-904. [PMID: 16556771 DOI: 10.1124/mol.105.021816] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The monotopic, endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) undergo variable proteolytic turnover. CYP3A4, the dominant human liver drug-metabolizing enzyme, is degraded via a ubiquitin (Ub)-dependent 26S proteasomal pathway after heterologous expression in Saccharomyces cerevisiae. This turnover involves the Ub-conjugating enzyme Ubc7p and the 19S proteasomal subunit Hrd2p but is independent of Hrd1p/Hrd3p, a major Ub-ligase (E3) involved in ER protein degradation. We now show that CYP3A4 ERAD also involves the Ubc7p-ER anchor Cue1p, because CYP3A4 is significantly stabilized at the stationary growth phase in Cue1p-deficient yeast. To determine whether the other major Ub-ligase Doa10p or Rsp5p involved in ER protein degradation functions in CYP3A4 ERAD, wild type and Doa10p- or Rsp5p-deficient yeast strains were also similarly examined. No appreciable CYP3A4 stabilization was detected in either Doa10p- or Rsp5p-deficient yeast, thereby excluding these E3s and revealing that CYP3A4 ERAD involves a novel or yet to be identified E3. Similar studies also revealed that the Cdc48p-Ufd1p-Hrd4p complex, responsible for the translocation of polyubiquitinated ER proteins was critical for CYP3A4 ERAD. We previously reported that grafting of the C-terminal (CT) CYP3A4 heptapeptide onto the CYP2B1 C terminus switched its proteolytic susceptibility from predominantly vacuolar to proteasomal degradation. To determine the relevance of this CT heptapeptide to CYP3A4 ERAD, CYP3A4 degradation after CT heptapeptide-deletion (CYP3A4DeltaCT) was similarly examined in yeast. These findings revealed that CYP3A4DeltaCT was also degraded by Ubc7p-26S proteasomal pathway, thereby indicating that this CT heptapeptide is not critical for CYP3A4 proteasomal degradation. Thus, unlike CYP2B1, CYP3A4 harbors additional/multiple structural degrons for its recruitment into the Ubproteasomal pathway.
Collapse
Affiliation(s)
- Mingxiang Liao
- Dept. of Cellular and Molecular Pharmacology, Box 2280, University of California-San Francisco, CA 94143-2280, USA
| | | | | | | |
Collapse
|
50
|
Kikkert M, Hassink G, Wiertz E. The role of the ubiquitination machinery in dislocation and degradation of endoplasmic reticulum proteins. Curr Top Microbiol Immunol 2006; 300:57-93. [PMID: 16573237 DOI: 10.1007/3-540-28007-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitination is essential for the dislocation and degradation of proteins from the endoplasmic reticulum (ER). How exactly this is regulated is unknown at present. This review provides an overview of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) with a role in the degradation of ER proteins. Their structure and functions are described, as well as their mutual interactions. Substrate specificity and functional redundancy of E3 ligases are discussed, and other components of the ER degradation machinery that may associate with the ubiquitination system are reviewed.
Collapse
Affiliation(s)
- M Kikkert
- Department of Medical Microbiology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | |
Collapse
|