1
|
Cao EY, Burrows K, Chiaranunt P, Popovic A, Zhou X, Xie C, Thakur A, Britton G, Spindler M, Ngai L, Tai SL, Dasoveanu DC, Nguyen A, Faith JJ, Parkinson J, Gommerman JL, Mortha A. The protozoan commensal Tritrichomonas musculis is a natural adjuvant for mucosal IgA. J Exp Med 2024; 221:e20221727. [PMID: 39535524 DOI: 10.1084/jem.20221727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/29/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Immunoglobulin (Ig) A supports mucosal immune homeostasis and host-microbiota interactions. While commensal bacteria are known for their ability to promote IgA, the role of non-bacterial commensal microbes in the induction of IgA remains elusive. Here, we demonstrate that permanent colonization with the protozoan commensal Tritrichomonas musculis (T.mu) promotes T cell-dependent, IgA class-switch recombination, and intestinal accumulation of IgA-secreting plasma cells (PC). T.mu colonization specifically drives the expansion of T follicular helper cells and a unique ICOS+ non-Tfh cell population, accompanied by an increase in germinal center B cells. Blockade of ICOS:ICOSL co-stimulation or MHCII-expression on B cells is central for the induction of IgA following colonization by T.mu, implicating a previously underappreciated mode of IgA induction following protozoan commensal colonization. Finally, T.mu further improves the induction of IgA-secreting PC specific to orally ingested antigens and their peripheral dissemination, identifying T.mu as a "natural adjuvant" for IgA. Collectively, these findings propose a protozoa-driven mode of IgA induction to support intestinal immune homeostasis.
Collapse
Affiliation(s)
- Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, Canada
| | - Xueyang Zhou
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Cong Xie
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Ayushi Thakur
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Graham Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Matthew Spindler
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai , New York, NY, USA
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024; 11:4421-4448. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
3
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
4
|
Camarini R, Marianno P, Hanampa-Maquera M, Oliveira SDS, Câmara NOS. Prenatal Stress and Ethanol Exposure: Microbiota-Induced Immune Dysregulation and Psychiatric Risks. Int J Mol Sci 2024; 25:9776. [PMID: 39337263 PMCID: PMC11431796 DOI: 10.3390/ijms25189776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Changes in maternal gut microbiota due to stress and/or ethanol exposure can have lasting effects on offspring's health, particularly regarding immunity, inflammation response, and susceptibility to psychiatric disorders. The literature search for this review was conducted using PubMed and Scopus, employing keywords and phrases related to maternal stress, ethanol exposure, gut microbiota, microbiome, gut-brain axis, diet, dysbiosis, progesterone, placenta, prenatal development, immunity, inflammation, and depression to identify relevant studies in both preclinical and human research. Only a limited number of reviews were included to support the arguments. The search encompassed studies from the 1990s to the present. This review begins by exploring the role of microbiota in modulating host health and disease. It then examines how disturbances in maternal microbiota can affect the offspring's immune system. The analysis continues by investigating the interplay between stress and dysbiosis, focusing on how prenatal maternal stress influences both maternal and offspring microbiota and its implications for susceptibility to depression. The review also considers the impact of ethanol consumption on gut dysbiosis, with an emphasis on the effects of prenatal ethanol exposure on both maternal and offspring microbiota. Finally, it is suggested that maternal gut microbiota dysbiosis may be significantly exacerbated by the combined effects of stress and ethanol exposure, leading to immune system dysfunction and chronic inflammation, which could increase the risk of depression in the offspring. These interactions underscore the potential for novel mental health interventions that address the gut-brain axis, especially in relation to maternal and offspring health.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Maylin Hanampa-Maquera
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Samuel Dos Santos Oliveira
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
5
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
6
|
Yang F, Shang S, Qi M, Xiang Y, Wang L, Wang X, Lin T, Hao D, Chen J, Liu J, Wu Q. Yeast glucan particles: An express train for oral targeted drug delivery systems. Int J Biol Macromol 2023; 253:127131. [PMID: 37776921 DOI: 10.1016/j.ijbiomac.2023.127131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
As an emerging drug delivery vehicle, yeast glucan particles (YGPs) derived from yeast cells could be specifically taken up by macrophages. Therefore, these vehicles could rely on the recruitment of macrophages at the site of inflammation and tumors to enable targeted imaging and drug delivery. This review summarizes recent advances in the application of YGPs in oral targeted delivery systems, covering the basic structure of yeast cells, methods for pre-preparation, drug encapsulation and characterization. The mechanism and validation of the target recognition interaction of YGPs with macrophages are highlighted, and some inspiring cases are presented to show that yeast cells have promising applications. The future chances and difficulties that YGPs will confront are also emphasized throughout this essay. YGPs are not only the "armor" but also the "compass" of drugs in the process of targeted drug transport. This system is expected to provide a new idea about the oral targeted delivery of anti-inflammatory and anti-tumor drugs, and furthermore offer an effective delivery strategy for targeted therapy of other macrophage-related diseases.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shang Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengfei Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajinjing Xiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lingmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tao Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Doudou Hao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiajia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jia Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Dong QQ, Wu Q, Lu Y, Shi Y, Yang KD, Xu XL, Chen W. Exploring β-glucan as a micro-nano system for oral delivery targeted the colon. Int J Biol Macromol 2023; 253:127360. [PMID: 37827417 DOI: 10.1016/j.ijbiomac.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The critical role of oral colon-specific delivery systems (OCDDS) is important for delivering active agents to the colon and rectum specifically via the oral route. The use of micro/nanostructured OCDDS further improves drug stability, bioavailability, and retention time, leading to enhanced therapeutic effects. However, designing micro/nanoscale OCDDSs is challenging due to pH changes, enzymatic degradation, and systemic absorption and metabolism. Biodegradable natural polysaccharides are a promising solution to these problems, and β-glucan is one of the most promising natural polysaccharides due to its unique structural features, conformational flexibility, and specific processing properties. This review covers the diverse chemical structures of β-glucan, its benefits (biocompatibility, easy modification, and colon-specific degradation), and various β-glucan-based micro/nanosized OCDDSs, as well as their drawbacks. The potential of β-glucan offers exciting new opportunities for colon-specific drug delivery.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Qian Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
8
|
Muso-Cachumba JJ, Feng S, Belaid M, Zhang Y, de Oliveira Rangel-Yagui C, Vllasaliu D. Polymersomes for protein drug delivery across intestinal mucosa. Int J Pharm 2023; 648:123613. [PMID: 37977286 DOI: 10.1016/j.ijpharm.2023.123613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The oral administration is the route preferred by patients due to its multiple advantages. In the case of biopharmaceuticals, due to their low stability and absorption in the intestine, these molecules must be administered by injectable routes. To circumvent these problems, several strategies have been studied, among which the use of nanosystems, such as polymersomes, can be highlighted. In this work the potential of poloxamer 401 polymersomes as a system for oral delivery of antibodies was evaluated. IgG-FITC-loaded poloxamer 401 polymerosomes were initially used to assess whether it improves intestinal epithelial permeation in Caco-2 cell monolayers. Subsequently, epithelial/macrophage co-culture model was used to evaluate the ability of poloxamer 401 polymersomes containing adalimumab to reduce proinflammatory cytokine levels. The data showed that polymersome-encapsulated IgG increased the transport across intestinal Caco-2 monolayers 2.7-fold compared to the antibody in solution. Also, when comparing the groups of blank polymersomes with polymersomes containing adalimumab, decreases of 1.5-, 5.5-, and 2.4-fold in TNF-α concentrations were observed for the polymersomes containing 1.5, 3.75, and 15 µg/mL of adalimumab, respectively. This could indicate a possibility for the oral administration of biopharmaceuticals which would revolutionize many conditions that require the systemic administration such as in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jorge Javier Muso-Cachumba
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil
| | - Sa Feng
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Mona Belaid
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Yunyue Zhang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Carlota de Oliveira Rangel-Yagui
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK; Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Tecnologia Bioquímico-Farmacêutica, São Paulo, SP, Brazil.
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK.
| |
Collapse
|
9
|
Zhou X, Gao M, De X, Sun T, Bai Z, Luo J, Wang F, Ge J. Bacterium-like particles derived from probiotics: progress, challenges and prospects. Front Immunol 2023; 14:1263586. [PMID: 37868963 PMCID: PMC10587609 DOI: 10.3389/fimmu.2023.1263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade Lactococcus lactis inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization. This review has attempted to gather a full understanding of the technical composition, characteristics, applications. The mechanism by which BLPs induces superior adaptive immune responses is also discussed. Besides, this review tracked the latest developments in the field of BLPs, including Lactobacillus-derived BLPs and novel anchors. Finally, the main limitations and proposed breakthrough points to further enhance the immunogenicity of BLPs vaccines were discussed, providing directions for future research. We hope that further developments in the field of antigen delivery of subunit vaccines or others will benefit from BLPs.
Collapse
Affiliation(s)
- Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| |
Collapse
|
10
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
11
|
Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine. Colloids Surf B Biointerfaces 2023; 222:113111. [PMID: 36586237 DOI: 10.1016/j.colsurfb.2022.113111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Throughout decades, the intrinsic power of the immune system to fight pathogens has inspired researchers to develop techniques that enable the prevention or treatment of infections via boosting the immune response against the target pathogens, which has led to the evolution of vaccines. The recruitment of Lipid nanoparticles (LNPs) as either vaccine delivery platforms or immunogenic modalities has witnessed a breakthrough recently, which has been crowned with the development of effective LNPs-based vaccines against COVID-19. In the current article, we discuss some principles of such a technology, with a special focus on the technical aspects from a translational perspective. Representative examples of LNPs-based vaccines against cancer, COVID-19, as well as other infectious diseases, autoimmune diseases, and allergies are highlighted, considering the challenges and promises. Lastly, the key features that can improve the clinical translation of this area of endeavor are inspired.
Collapse
|
12
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
13
|
Loppinet E, Besser HA, Sewa AS, Yang FC, Jabri B, Khosla C. LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific T cell antigens. Cell Chem Biol 2023; 30:55-68.e10. [PMID: 36608691 PMCID: PMC9868102 DOI: 10.1016/j.chembiol.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.
Collapse
Affiliation(s)
- Elise Loppinet
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnele Sylvia Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fu-Chen Yang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Type II taste cells participate in mucosal immune surveillance. PLoS Biol 2023; 21:e3001647. [PMID: 36634039 PMCID: PMC9836272 DOI: 10.1371/journal.pbio.3001647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/10/2022] [Indexed: 01/13/2023] Open
Abstract
The oral microbiome is second only to its intestinal counterpart in diversity and abundance, but its effects on taste cells remains largely unexplored. Using single-cell RNASeq, we found that mouse taste cells, in particular, sweet and umami receptor cells that express taste 1 receptor member 3 (Tas1r3), have a gene expression signature reminiscent of Microfold (M) cells, a central player in immune surveillance in the mucosa-associated lymphoid tissue (MALT) such as those in the Peyer's patch and tonsils. Administration of tumor necrosis factor ligand superfamily member 11 (TNFSF11; also known as RANKL), a growth factor required for differentiation of M cells, dramatically increased M cell proliferation and marker gene expression in the taste papillae and in cultured taste organoids from wild-type (WT) mice. Taste papillae and organoids from knockout mice lacking Spib (SpibKO), a RANKL-regulated transcription factor required for M cell development and regeneration on the other hand, failed to respond to RANKL. Taste papillae from SpibKO mice also showed reduced expression of NF-κB signaling pathway components and proinflammatory cytokines and attracted fewer immune cells. However, lipopolysaccharide-induced expression of cytokines was strongly up-regulated in SpibKO mice compared to their WT counterparts. Like M cells, taste cells from WT but not SpibKO mice readily took up fluorescently labeled microbeads, a proxy for microbial transcytosis. The proportion of taste cell subtypes are unaltered in SpibKO mice; however, they displayed increased attraction to sweet and umami taste stimuli. We propose that taste cells are involved in immune surveillance and may tune their taste responses to microbial signaling and infection.
Collapse
|
15
|
Tsai CJY, Loh JMS, Fujihashi K, Kiyono H. Mucosal vaccination: onward and upward. Expert Rev Vaccines 2023; 22:885-899. [PMID: 37817433 DOI: 10.1080/14760584.2023.2268724] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION The unique mucosal immune system allows the generation of robust protective immune responses at the front line of pathogen encounters. The needle-free delivery route and cold chain-free logistic requirements also provide additional advantages in ease and economy. However, the development of mucosal vaccines faces several challenges, and only a handful of mucosal vaccines are currently licensed. These vaccines are all in the form of live attenuated or inactivated whole organisms, whereas no subunit-based mucosal vaccine is available. AREAS COVERED The selection of antigen, delivery vehicle, route and adjuvants for mucosal vaccination are highly important. This is particularly crucial for subunit vaccines, as they often fail to elicit strong immune responses. Emerging research is providing new insights into the biological and immunological uniqueness of mucosal tissues. However, many aspects of the mucosal immunology still await to be investigated. EXPERT OPINION This article provides an overview of the current understanding of mucosal vaccination and discusses the remaining knowledge gaps. We emphasize that because of the potential benefits mucosal vaccines can bring from the biomedical, social and economic standpoints, the unmet goal to achieve mucosal vaccine success is worth the effort.
Collapse
Affiliation(s)
- Catherine J Y Tsai
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, New Zealand, Auckland
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Vaccines, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hiroshi Kiyono
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba University, Chiba, Japan
- Division of Infectious Disease Vaccine R&D, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
M cells of mouse and human Peyer's patches mediate the lymphatic absorption of an Astragalus hyperbranched heteroglycan. Carbohydr Polym 2022; 296:119952. [DOI: 10.1016/j.carbpol.2022.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
|
17
|
Nguyen NH, Chen M, Chak V, Balu-Iyer SV. Biophysical Characterization of Tolerogenic Lipid-Based Nanoparticles Containing Phosphatidylcholine and Lysophosphatidylserine. J Pharm Sci 2022; 111:2072-2082. [PMID: 35108564 PMCID: PMC11075660 DOI: 10.1016/j.xphs.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022]
Abstract
Autoimmune conditions, allergies, and immunogenicity against therapeutic proteins are initiated by the unwanted immune response against self and non-self proteins. The development of tolerance induction approaches can offer an effective treatment modality for these clinical conditions. We recently showed that oral administration of lipidic nanoparticles containing phosphatidylcholine (PC) and lysophosphatidylserine (Lyso-PS) converted an immunogen to a tolerogen and induced immunological tolerance towards several antigens. While the biophysical properties such as lamellar characteristics of this binary lipid system are critical for stability, therapeutic delivery, and mechanism of tolerance induction, such information has not been thoroughly investigated. In the current study, we evaluated the lamellar phase properties of PC/Lyso-PS system using orthogonal biophysical methods such as fluorescence (steady-state, anisotropy, PSvue, and Laurdan), dynamic light scattering, and differential scanning calorimetry. The results showed that Lyso-PS partitioned into the PC bilayers and led to changes in the particles' lamellar phase properties, lipid-packing, and lipid-water dynamics. Additionally, the biophysical characteristics of PC/Lyso-PS system are different from the well-studied PC/double-chain phosphatidylserine (PS) system. Notably, the incorporation of Lyso-PS significantly reduced the hydrodynamic diameter of PC particles. Results from the in vivo uptake study and intestinal loop assay utilizing flow cytometry analysis also indicated that the uptake of Lyso-PS-containing nanoparticles by immune cells in the gut and Peyer's patches is significantly higher than that of double-chain PS due to the differential transport through microfold cells. It was also found that the acyl chain mismatch between PC and Lyso-PS is critical for the miscibility and particle stability. Collectively, the results suggest that these biophysical characteristics likely influence the in vivo behaviors and contribute to the oral tolerance property of PC/Lyso-PS system.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Manlin Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Vincent Chak
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
18
|
Bodnar TS, Mak DY, Hill LA, Ellis L, Yu W, Weinberg J. Modulatory role of prenatal alcohol exposure and adolescent stress on the response to arthritis challenge in adult female rats. EBioMedicine 2022; 77:103876. [PMID: 35183867 PMCID: PMC8857653 DOI: 10.1016/j.ebiom.2022.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 12/05/2022] Open
Abstract
Background There are known environmental risk factors associated with rheumatoid arthritis; however, less is known regarding how the prenatal environment impacts later-life risk for rheumatoid arthritis. Based on preliminary clinical data suggesting that individuals with fetal alcohol spectrum disorder (FASD) are at higher risk for autoimmune disorders, this study investigated the modulatory impact of prenatal alcohol exposure (PAE) on the inflammatory disease profile in an adjuvant-induced arthritis rat model. Methods Pregnant rats received liquid ethanol or control diet throughout gestation. To model the increased exposure to stressors often experienced by individuals with FASD, adolescent offspring were exposed to chronic mild stress (CMS) or remained undisturbed. In adulthood, experimental arthritis was initiated and rats terminated either at the peak or following resolution from inflammation to assess endocrine, immune, and histopathological outcomes. Findings PAE rats had an increased incidence and severity of, and impaired recovery from, arthritis. Increased joint damage was observed in PAE animals, even in the face of apparent recovery from the clinical signs of arthritis, while it appeared that oestradiol may have a protective role. Moreover, with the combination of PAE and adolescent stress, increased macrophage density was detected in the synovium of PAE but not control rats. Interpretation These findings demonstrate that PAE alters the severity and course of arthritis, highlighting the potential immunomodulatory impact of adverse prenatal exposures. In particular, these data have implications for understanding preliminary data that suggest a heightened propensity for autoimmune disorders in individuals with FASD.
Collapse
|
19
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
James KR, Elmentaite R, Teichmann SA, Hold GL. Redefining intestinal immunity with single-cell transcriptomics. Mucosal Immunol 2022; 15:531-541. [PMID: 34848830 PMCID: PMC8630196 DOI: 10.1038/s41385-021-00470-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal immune system represents the largest collection of immune cells in the body and is continually exposed to antigens from food and the microbiota. Here we discuss the contribution of single-cell transcriptomics in shaping our understanding of this complex system. We consider the impact on resolving early intestine development, engagement with the neighbouring microbiota, diversity of intestinal immune cells, compartmentalisation within the intestines and interactions with non-immune cells. Finally, we offer a perspective on open questions about gut immunity that evolving single-cell technologies are well placed to address.
Collapse
Affiliation(s)
- Kylie Renee James
- grid.415306.50000 0000 9983 6924Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Medical Sciences, University of New South Wales, Sydney, NSW 2006 Australia
| | - Rasa Elmentaite
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK
| | - Sarah Amalia Teichmann
- grid.10306.340000 0004 0606 5382Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA UK ,grid.5335.00000000121885934Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, NSW CB3 0HE UK
| | - Georgina Louise Hold
- grid.1005.40000 0004 4902 0432University of New South Wales Microbiome Research Centre, Sydney, NSW 2217 Australia
| |
Collapse
|
21
|
Rochereau N, Michaud E, Waeckel L, Killian M, Gayet R, Goguyer-Deschaumes R, Roblin X, Biolley G, Corthésy B, Paul S. Essential role of TOSO/FAIM3 in intestinal IgM reverse transcytosis. Cell Rep 2021; 37:110006. [PMID: 34788614 DOI: 10.1016/j.celrep.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/17/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Secretory immunoglobulin A (SIgA) can travel to and from the lumen and transport antigen to subepithelial cells. However, IgM can also multimerize into functional secretory component-bound immunoglobulin. While it is already known that both SIgA and SIgM undergo transcytosis to be secreted at the mucosal surface, only SIgA has been shown to perform retrotranscytosis through microfold cells (M cells) of the Peyer's patch. Here, we investigate whether SIgM could also be taken up by M cells via retrotranscytosis. This transport involves FcμR binding at the apical membrane of M cells. We then demonstrate that SIgM can be exploited by SIgM-p24 (HIV-capsid protein) complexes during immunization in the nasal- or gut-associated lymphoid tissue (NALT or GALT), conferring efficient immune responses against p24. Our data demonstrate a mucosal function of SIgM, which could play a role in the regulation of mucosal immunity.
Collapse
Affiliation(s)
- Nicolas Rochereau
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Eva Michaud
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Louis Waeckel
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Martin Killian
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Rémi Gayet
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Xavier Roblin
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | - Gilles Biolley
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066 Epalinges, Switzerland
| | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, CHUV, Centre des Laboratoires d'Epalinges, 1066 Epalinges, Switzerland
| | - Stéphane Paul
- Centre International de Recherche en Infectiologie (CIRI), Team GIMAP, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France.
| |
Collapse
|
22
|
Nguyen NH, Glassman FY, Dingman RK, Shenoy GN, Wohlfert EA, Kay JG, Bankert RB, Balu-Iyer SV. Rational design of a nanoparticle platform for oral prophylactic immunotherapy to prevent immunogenicity of therapeutic proteins. Sci Rep 2021; 11:17853. [PMID: 34497305 PMCID: PMC8426360 DOI: 10.1038/s41598-021-97333-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
The safety and efficacy of several life-saving therapeutic proteins are compromised due to their immunogenicity. Once a sustained immune response against a protein-based therapy is established, clinical options that are safe and cost-effective become limited. Prevention of immunogenicity of therapeutic proteins prior to their initial use is critical as it is often difficult to reverse an established immune response. Here, we discuss a rational design and testing of a phosphatidylserine-containing nanoparticle platform for novel oral prophylactic reverse vaccination approach, i.e., pre-treatment of a therapeutic protein in the presence of nanoparticles to prevent immunogenicity of protein therapies.
Collapse
Affiliation(s)
- Nhan H Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
| | - Fiona Y Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
- CSL Behring, King of Prussia, PA, USA
| | - Robert K Dingman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Gautam N Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Richard B Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, SUNY-University at Buffalo, Buffalo, NY, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, SUNY-University at Buffalo, 359 Pharmacy Building, Buffalo, NY, 14214, USA.
| |
Collapse
|
23
|
Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol 2021; 14:793-802. [PMID: 33753873 DOI: 10.1038/s41385-021-00389-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023]
Abstract
Gut-associated lymphoid tissues (GALT) are the key antigen sampling and adaptive immune inductive sites within the intestinal wall. Human GALT includes the multi-follicular Peyer's patches of the ileum, the vermiform appendix, and the numerous isolated lymphoid follicles (ILF) which are distributed along the length of the intestine. Our current understanding of GALT diversity and function derives primarily from studies in mice, and the relevance of many of these findings to human GALT remains unclear. Here we review our current understanding of human GALT diversity, structure, and composition as well as their potential for regulating intestinal immune responses during homeostasis and inflammatory bowel disease (IBD). Finally, we outline some key remaining questions regarding human GALT, the answers to which will advance our understanding of intestinal immune responses and provide potential opportunities to improve the treatment of intestinal diseases.
Collapse
|
24
|
Maghool F, Valiani A, Safari T, Emami MH, Mohammadzadeh S. Gastrointestinal and renal complications in SARS-CoV-2-infected patients: Role of immune system. Scand J Immunol 2021; 93:e12999. [PMID: 33190306 PMCID: PMC7744842 DOI: 10.1111/sji.12999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease has been accompanied by various gastrointestinal (GI) and renal manifestations in significant portion of infected patients. Beside studies on the respiratory complications of coronavirus infection, understanding the essential immunological processes underlying the different clinical manifestations of virus infection is crucial for the identification and development of effective therapies. In addition to the respiratory tract, the digestive and urinary systems are the major sources of virus transmission. Thus, knowledge about the invasion mechanisms of SARS-CoV-2 in these systems and the immune system responses is important for implementing the infection prevention strategies. This article presents an overview of the gut and renal complications in SARS-CoV-2 infection. We focus on how SARS-CoV-2 interacts with the immune system and the consequent contribution of immune system, gut, and renal dysfunctions in the development of disease.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Ali Valiani
- Department of Anatomical SciencesMedical SchoolIsfahan University of Medical SciencesIsfahanIran
| | - Tahereh Safari
- Department of PhysiologyZahedan University of Medical SciencesZahedanIran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
25
|
Razim A, Pyclik M, Pacyga K, Górska S, Xu J, Olszewski MA, Gamian A, Myc A. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines (Basel) 2021; 9:vaccines9030234. [PMID: 33800507 PMCID: PMC7999606 DOI: 10.3390/vaccines9030234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023] Open
Abstract
Many conventional vaccines are administered via a needle injection, while most pathogens primarily invade the host via mucosal surfaces. Moreover, protective IgA antibodies are insufficiently induced by parenteral vaccines. Mucosal immunity induces both local and systemic response to pathogens and typically lasts for long periods of time. Therefore, vaccination via mucosal routes has been increasingly explored. However, mucosal vaccines require potent adjuvants to become efficacious. Despite many efforts to develop safe and robust adjuvants for mucosal vaccines, only a few have been approved for use in human formulations. The aim of our study was to design, develop and characterize new silicone oil-based nanoadjuvant candidates for intranasal vaccines with potential to become mucosal adjuvants. We have developed an array of nanoadjuvant candidates (NACs), based on well-defined ingredients. NAC1, 2 and 3 are based on silicone oil, but differ in the used detergents and organic solvents, which results in variations in their droplet size and zeta potential. NACs' cytotoxicity, Tumor Necrosis Factor α (TNF-α) induction and their effect on antigen engulfment by immune cells were tested in vitro. Adjuvant properties of NACs were verified by intranasal vaccination of mice together with ovalbumin (OVA). NACs show remarkable stability and do not require any special storage conditions. They exhibit bio-adhesiveness and influence the degree of model protein engulfment by epithelial cells. Moreover, they induce high specific anti-OVA IgG antibody titers after two intranasal administrations. Nanoadjuvant candidates composed of silicone oil and cationic detergents are stable, exhibit remarkable adjuvant properties and can be used as adjuvants for intranasal immunization.
Collapse
Affiliation(s)
- Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
- Correspondence:
| | - Marcelina Pyclik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Abstract
Among antibodies, IgA is unique because it has evolved to be secreted onto mucosal surfaces. The structure of IgA and the associated secretory component allow IgA to survive the highly proteolytic environment of mucosal surfaces but also substantially limit IgA's ability to activate effector functions on immune cells. Despite these characteristics, IgA is critical for both preventing enteric infections and shaping the local microbiome. IgA's function is determined by a distinct antigen-binding repertoire, composed of antibodies with a variety of specificities, from permissive polyspecificity to cross-reactivity to exquisite specificity to a single epitope, which act together to regulate intestinal bacteria. Development of the unique function and specificities of IgA is shaped by local cues provided by the gut-associated lymphoid tissue, driven by the constantly changing environment of the intestine and microbiota.
Collapse
Affiliation(s)
- Timothy W Hand
- R.K. Mellon Institute for Pediatric Research, Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, USA;
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
27
|
De Pessemier B, Grine L, Debaere M, Maes A, Paetzold B, Callewaert C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021; 9:353. [PMID: 33670115 PMCID: PMC7916842 DOI: 10.3390/microorganisms9020353] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome plays an important role in a wide variety of skin disorders. Not only is the skin microbiome altered, but also surprisingly many skin diseases are accompanied by an altered gut microbiome. The microbiome is a key regulator for the immune system, as it aims to maintain homeostasis by communicating with tissues and organs in a bidirectional manner. Hence, dysbiosis in the skin and/or gut microbiome is associated with an altered immune response, promoting the development of skin diseases, such as atopic dermatitis, psoriasis, acne vulgaris, dandruff, and even skin cancer. Here, we focus on the associations between the microbiome, diet, metabolites, and immune responses in skin pathologies. This review describes an exhaustive list of common skin conditions with associated dysbiosis in the skin microbiome as well as the current body of evidence on gut microbiome dysbiosis, dietary links, and their interplay with skin conditions. An enhanced understanding of the local skin and gut microbiome including the underlying mechanisms is necessary to shed light on the microbial involvement in human skin diseases and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Britta De Pessemier
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Lynda Grine
- Department of Head & Skin, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Melanie Debaere
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | - Aglaya Maes
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| | | | - Chris Callewaert
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (B.D.P.); (M.D.); (A.M.)
| |
Collapse
|
28
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
29
|
Incorporating natural anti-inflammatory compounds into yeast glucan particles increases their bioactivity in vitro. Int J Biol Macromol 2020; 169:443-451. [PMID: 33340625 DOI: 10.1016/j.ijbiomac.2020.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
Yeast glucan particles (GPs) are promising agents for the delivery of biologically active compounds as drugs. GPs possess their own biological activities and can act synergistically with their cargo. This study aimed to determine how incorporating artemisinin, ellagic acid, (-)-epigallocatechin gallate, morusin, or trans-resveratrol into GPs affects their anti-inflammatory and antioxidant potential in vitro. Two different methods - slurry evaporation and spray drying - were used to prepare composites (GPs + bioactive compound) and the anti-inflammatory and antioxidative properties of the resultant products were compared. Several of the natural compounds showed the beneficial effects of being combined with GPs. The materials prepared by spray drying showed greater activity than those made using a rotary evaporator. Natural compounds incorporated into yeast GPs showed greater anti-inflammatory potential in vitro than simple suspensions of these compounds as demonstrated by their inhibition of the activity of transcription factors NF-κB/AP-1 and the secretion of the pro-inflammatory cytokine TNF-α.
Collapse
|
30
|
Nakamura Y, Mimuro H, Kunisawa J, Furusawa Y, Takahashi D, Fujimura Y, Kaisho T, Kiyono H, Hase K. Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity. Mucosal Immunol 2020; 13:679-690. [PMID: 32042052 DOI: 10.1038/s41385-020-0263-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 12/31/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023]
Abstract
Infectious colitis is one of the most common health issues worldwide. Microfold (M) cells actively transport luminal antigens to gut-associated lymphoid tissue to induce IgA responses; however, it remains unknown whether M cells contribute to the induction of cellular immune responses. Here we report that M cell-dependent antigen transport plays a critical role in the induction of Th1, Th17, and Th22 responses against gut commensals in the steady state. The establishment of commensal-specific cellular immunity was a prerequisite for preventing bacterial dissemination during enteropathogenic Citrobacter rodentium infection. Therefore, M cell-null mice developed severe colitis with increased bacterial dissemination. This abnormality was associated with mucosal barrier dysfunction. These observations suggest that antigen transport by M cells may help maintain gut immune homeostasis by eliciting antigen-specific cellular immune responses.
Collapse
Affiliation(s)
- Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-0011, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hitomi Mimuro
- Division of Bacteriology, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan.,Division of Infectious Diseases, Research Institute of Microbial Diseases (RIMD), Osaka University, Osaka, 565-0871, Japan
| | - Jun Kunisawa
- International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan.,Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-0011, Japan.,Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, 939-0398, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-0011, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-0011, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan.,Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, 108-8639, Japan.,Division of Gastroenterology, Department of Medicine, School of Medicine and Chiba University-UCSD Center for Mucosal Immunology, Allergy and Vaccines (cMAV), University of California, San Diego, CA, 92093, USA.,Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-0856, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-0011, Japan. .,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan.
| |
Collapse
|
31
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
32
|
Kolesnikov M, Curato C, Zupancic E, Florindo H, Shakhar G, Jung S. Intravital visualization of interactions of murine Peyer's patch-resident dendritic cells with M cells. Eur J Immunol 2020; 50:537-547. [PMID: 31856298 DOI: 10.1002/eji.201948332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022]
Abstract
The small intestine hosts specialized lymphoid structures, the Peyer's patches, that face the gut lumen and are overlaid with unique epithelial cells, called microfold (M) cells. M cells are considered to constitute an important route for antigen uptake in the mucosal immune system. Here, we used intravital microscopy to define immune cell populations, which are in close contact with M cells and potentially sample antigen. We present live evidence that DCs enter M cell pockets and highlight the abundance of mononuclear phagocytes in these structures. Taking advantage of the respective reporter animals, we focused on classical DCs that express Zbtb46 and analyzed how these cells interact with M cells in steady state and sample antigen for T cell activation in the Peyer's patches following challenge.
Collapse
Affiliation(s)
- Masha Kolesnikov
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Caterina Curato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eva Zupancic
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Helena Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Guy Shakhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
33
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
34
|
Nutritional Regulation of Gut Barrier Integrity in Weaning Piglets. Animals (Basel) 2019; 9:ani9121045. [PMID: 31795348 PMCID: PMC6940750 DOI: 10.3390/ani9121045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Weaning is a very stressful period in the piglet’s life in intensive farming: it is a sudden process occurring between three to four weeks of age, when the gastrointestinal tract (GIT) is still immature. The GIT is formed by the epithelial, immune and enteric nervous system which controls epithelial barrier integrity as well as gut functions including the transport of luminal nutrients, water and electrolytes. Early weaning is characterized by a breakdown of these gut functions, an increase in intestinal permeability and the appearance of gastrointestinal functional disorders, which can have long-lasting consequences in the pig’s life. Weaning, therefore, requires the correct level of nutrients, high quality ingredients, and management, which are directed primarily at encouraging rapid feed intake whilst reducing mortality and morbidity. This review describes the organization of the GIT and highlights the interactions between feed components and the morphology and physiology of the epithelial barrier. Novel dietary strategies focused on improving gut health are also discussed, considering the impacts of selected feed ingredients or additives on the GIT such as functional amino acids, phytochemicals and organic acids. Abstract Weaning is very stressful for piglets and leads to alterations in the intestinal barrier, a reduction in nutrient absorption and a higher susceptibility to intestinal diseases with heavy economic losses. This review describes the structures involved in the intestinal barrier: the epithelial barrier, immune barrier and the enteric nervous system. Here, new insights into the interactions between feed components and the physiology and morphology of the epithelial barrier are highlighted. Dietary strategies focused on improving gut health are also described including amino acids, phytochemicals and organic acids.
Collapse
|
35
|
Karimi Bavandpour A, Bakhshi B, Najar-Peerayeh S. The roles of mesoporous silica and carbon nanoparticles in antigen stability and intensity of immune response against recombinant subunit B of cholera toxin in a rabbit animal model. Int J Pharm 2019; 573:118868. [PMID: 31765785 DOI: 10.1016/j.ijpharm.2019.118868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
Vaccines are the front line in the fight against diseases. However, setbacks with existing cholera vaccines have ignited a considerable effort to develop more suitable vaccine formulations. In this study, we aim to investigate the effect of antigen stability and controlled release in inducing an immune response. Therefore, two types of silica and carbon mesoporous nanoparticles of the same size and shape but different pore architectures were synthesized and loaded with recombinant cholera toxin subunit B to serve as a model for antigen stability and controlled release of antigenic CTB. In order to evaluate immune response efficacy for these model formulations, IgG and IgA responses and fluid accumulation (FA) index were measured in immunized rabbits, which were challenged with wild-type Vibrio cholerae. Our result suggests that mesoporous silica nanoparticles have greater efficacy in inducing mucosal immune responses, and it proved more proficiency in overall immune responses in challenge experiments and FA index (p < 0.05). These findings indicate that mesoporous nanoparticles and, in particular, mesoporous silica nanoparticles, could be used in oral vaccine formulation against cholera.
Collapse
Affiliation(s)
- Ali Karimi Bavandpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
36
|
Dillon A, Lo DD. M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front Immunol 2019; 10:1499. [PMID: 31312204 PMCID: PMC6614372 DOI: 10.3389/fimmu.2019.01499] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
M cells are specialized intestinal epithelial cells that provide the main machinery for sampling luminal microbes for mucosal immune surveillance. M cells are usually found in the epithelium overlying organized mucosal lymphoid tissues, but studies have identified multiple distinct lineages of M cells that are produced under different conditions, including intestinal inflammation. Among these lineages there is a common morphology that helps explain the efficiency of M cells in capturing luminal bacteria and viruses; in addition, M cells recruit novel cellular mechanisms to transport the particles across the mucosal barrier into the lamina propria, a process known as transcytosis. These specializations used by M cells point to a novel engineering of cellular machinery to selectively capture and transport microbial particles of interest. Because of the ability of M cells to effectively violate the mucosal barrier, the circumstances of M cell induction have important consequences. Normal immune surveillance insures that transcytosed bacteria are captured by underlying myeloid/dendritic cells; in contrast, inflammation can induce development of new M cells not accompanied by organized lymphoid tissues, resulting in bacterial transcytosis with the potential to amplify inflammatory disease. In this review, we will discuss our own perspectives on the life history of M cells and also raise a few questions regarding unique aspects of their biology among epithelia.
Collapse
Affiliation(s)
- Andrea Dillon
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
37
|
Komban RJ, Strömberg A, Biram A, Cervin J, Lebrero-Fernández C, Mabbott N, Yrlid U, Shulman Z, Bemark M, Lycke N. Activated Peyer's patch B cells sample antigen directly from M cells in the subepithelial dome. Nat Commun 2019; 10:2423. [PMID: 31160559 PMCID: PMC6547658 DOI: 10.1038/s41467-019-10144-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
The germinal center (GC) reaction in Peyer's patches (PP) requires continuous access to antigens, but how this is achieved is not known. Here we show that activated antigen-specific CCR6+CCR1+GL7- B cells make close contact with M cells in the subepithelial dome (SED). Using in situ photoactivation analysis of antigen-specific SED B cells, we find migration of cells towards the GC. Following antigen injection into ligated intestinal loops containing PPs, 40% of antigen-specific SED B cells bind antigen within 2 h, whereas unspecifc cells do not, indicating B cell-receptor involvment. Antigen-loading is not observed in M cell-deficient mice, but is unperturbed in mice depleted of classical dendritic cells (DC). Thus, we report a M cell-B cell antigen-specific transporting pathway in PP that is independent of DC. We propose that this antigen transporting pathway has a critical role in gut IgA responses, and should be taken into account when developing mucosal vaccines.
Collapse
Affiliation(s)
- Rathan Joy Komban
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden
| | - Anneli Strömberg
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden
| | - Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jakob Cervin
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden
| | - Cristina Lebrero-Fernández
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden
| | - Neil Mabbott
- The Roslin Institute, Edinburgh University, Edinburgh, EH25 9RG, Scotland
| | - Ulf Yrlid
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mats Bemark
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden.
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, S405 30, Sweden.
| |
Collapse
|
38
|
Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. LAB ON A CHIP 2018; 18:3272-3284. [PMID: 30225496 DOI: 10.1039/c8lc00355f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of infectious diseases enter the body through mucosal membranes that line the ocular, nasal, oral, vaginal and rectal surfaces. As infections can be effectively prevented by instigating a local immune response in the immunocyte-rich regions of the mucosa, an efficacious route of vaccine administration is to directly target their delivery to these surfaces. It is nevertheless challenging to provide sufficient driving force to penetrate both the mucus lining as well as the epithelial barrier of the mucosal surfaces, which are designed to effectively keep foreign entities out, but not excessively such that the therapeutic agent penetrates deeper into the vascularised submucosal regions where they are mostly taken up by the systemic circulation, thus resulting in a far weaker immune response. In this work, we demonstrate the possibility of controllably localising and hence maximising the delivery of both small and large molecule model therapeutic agents in the mucosa of a porcine buccal model using high frequency acoustics. Unlike their low (kHz order) frequency bulk ultrasonic counterpart, these high frequency (>10 MHz) surface waves do not generate cavitation, which leads to large molecular penetration depths beyond the 100 μm order thick mucosal layer, and which has been known to cause considerable cellular/tissue damage and hence scarring. Through system parameters such as the acoustic irradiation frequency, power and exposure duration, we show that it is possible to tune the penetration depth such that over 95% of the delivered drug are localised within the mucosal layer, whilst preserving their structural integrity.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
39
|
Bhide Y, Tomar J, Dong W, de Vries-Idema J, Frijlink HW, Huckriede A, Hinrichs WLJ. Pulmonary delivery of influenza vaccine formulations in cotton rats: site of deposition plays a minor role in the protective efficacy against clinical isolate of H1N1pdm virus. Drug Deliv 2018; 25:533-545. [PMID: 29451040 PMCID: PMC6058687 DOI: 10.1080/10717544.2018.1435748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Administration of influenza vaccines to the lungs could be an attractive alternative to conventional parenteral administration. In this study, we investigated the deposition site of pulmonary delivered liquid and powder influenza vaccine formulations and its relation to their immunogenicity and protective efficacy. In vivo deposition studies in cotton rats revealed that, the powder formulation was mainly deposited in the trachea ( ∼ 65%) whereas the liquid was homogenously distributed throughout the lungs ( ∼ 96%). In addition, only 60% of the antigen in the powder formulation was deposited in the respiratory tract with respect to the liquid formulation. Immunogenicity studies showed that pulmonary delivered liquid and powder influenza formulations induced robust systemic and mucosal immune responses (significantly higher by liquids than by powders). When challenged with a clinical isolate of homologous H1N1pdm virus, all animals pulmonary administered with placebo had detectable virus in their lungs one day post challenge. In contrast, none of the vaccinated animals had detectable lung virus titers, except for two out of eight animals from the powder immunized group. Also, pulmonary vaccinated animals showed no or little signs of infection like increase in breathing frequency or weight loss upon challenge as compared to animals from the negative control group. In conclusion, immune responses induced by liquid formulation were significantly higher than responses induced by powder formulation, but the overall protective efficacy of both formulations was comparable. Thus, pulmonary immunization is capable of inducing protective immunity and the site of antigen deposition seems to be of minor relevance in inducing protection.
Collapse
Affiliation(s)
- Yoshita Bhide
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jasmine Tomar
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Wei Dong
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jacqueline de Vries-Idema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Anke Huckriede
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| |
Collapse
|
40
|
Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018; 15:759-770. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Research into oral delivery of biologics has a long and rich history but has not produced technologies used in the clinic. The area has evolved in terms of strategies to promote oral biologics delivery from early chemical absorption enhancers to nanomedicine to devices. Continued activity in this area is justifiable considering the remarkable proliferation of biologics. AREAS COVERED The article discusses some physiological barriers to oral delivery of biologics, with a special focus on less characterized barriers such as the basement membrane. Recent progress in oral delivery of biologics via nanomedicine is subsequently covered. Finally, the emerging field of device-mediated gastrointestinal delivery of biotherapeutics is discussed EXPERT OPINION Oral delivery of biologics is considered a 'panacea' in drug delivery. Almost century-old approaches of utilizing chemical absorption enhancers have not produced clinically translated technologies. Nanomedicine for oral biologics delivery has demonstrated potential, but the field is relatively new, and technologies have not progressed to the clinic. Device-mediated oral biologics delivery (e.g. ultrasound or microneedles) is in its infancy. However, this space is likely to intensify owing to advances in electronics and materials, as well as the challenges and history related to clinical translation of alternative approaches.
Collapse
Affiliation(s)
- Driton Vllasaliu
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Maya Thanou
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Snjezana Stolnik
- b Division of Drug Delivery and Tissue Engineering, Boots Science Building , University of Nottingham , Nottingham , United Kingdom
| | - Robyn Fowler
- c SuccinctChoice Medical Communications , London , United Kingdom
| |
Collapse
|
41
|
Tan K, Li R, Huang X, Liu Q. Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants. Front Microbiol 2018; 9:783. [PMID: 29755431 PMCID: PMC5932156 DOI: 10.3389/fmicb.2018.00783] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 02/03/2023] Open
Abstract
Adjuvants have been of great interest to vaccine formulation as immune-stimulators. Prior to the recent research in the field of immune stimulation, conventional adjuvants utilized for aluminum-based vaccinations dominated the adjuvant market. However, these conventional adjuvants have demonstrated obvious defects, including poor protective efficiency and potential side effects, which hindered their widespread circulation. Outer membrane vesicles (OMVs) naturally exist in gram-negative bacteria and are capable of engaging innate and adaptive immunity and possess intrinsic adjuvant capacity. They have shown tremendous potential for adjuvant application and have recently been successfully applied in various vaccine platforms. Adjuvants could be highly effective with the introduction of OMVs, providing complete immunity and with the benefits of low toxicity; further, OMVs might also be designed as an advanced mucosal delivery vehicle for use as a vaccine carrier. In this review, we discuss adjuvant development, and provide an overview of novel OMV adjuvants and delivery vehicles. We also suggest future directions for adjuvant research. Overall, we believe that OMV adjuvants would find high value in vaccine formulation in the future.
Collapse
Affiliation(s)
| | | | | | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Immunological and physical evaluation of the multistage tuberculosis subunit vaccine candidate H56/CAF01 formulated as a spray-dried powder. Vaccine 2018; 36:3331-3339. [PMID: 29699790 DOI: 10.1016/j.vaccine.2018.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/11/2023]
Abstract
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4+ T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine.
Collapse
|
43
|
Tokuhara D. Challenges in developing mucosal vaccines and antibodies against infectious diarrhea in children. Pediatr Int 2018; 60:214-223. [PMID: 29290097 DOI: 10.1111/ped.13497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea in children can be life-threatening and imposes a large economic burden on healthcare systems, therefore more effective prophylactic and therapeutic drugs are needed urgently. Because most of the pathogens responsible for childhood diarrhea infect the gastrointestinal mucosa, providing protective immunity at the mucosal surface is an ideal way to control pathogen invasion and toxic activity. Mucosal (e.g. oral, nasal) vaccines are superior to systemic (subcutaneous or intramuscular) vaccination for conferring both mucosal and systemic pathogen-specific immune responses. Therefore, great efforts has been focused on the development of cost-effective mucosal vaccines for the past 50 years. Recent progress in plant genetic engineering has revolutionized the production of inexpensive and safe recombinant vaccine antigens. For example, rice plant biotechnology has facilitated the development of a cold-chain-free rice-based oral subunit vaccine against Vibrio cholerae. Furthermore, this technology has led to the creation of a rice-based oral antibody for prophylaxis and treatment of rotavirus gastroenteritis. This review summarizes current perspectives regarding the mucosal immune system and the development of mucosal vaccines and therapeutic antibodies, particularly rice-based products, and discusses future prospects regarding mucosal vaccines for children.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Department of Pediatrics, Osaka City University Graduate School of Medicine, Abenoku, Osaka, Japan
| |
Collapse
|
44
|
Lichtenstein D, Meyer T, Böhmert L, Juling S, Fahrenson C, Selve S, Thünemann A, Meijer J, Estrela-Lopis I, Braeuning A, Lampen A. Dosimetric Quantification of Coating-Related Uptake of Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13087-13097. [PMID: 28918629 DOI: 10.1021/acs.langmuir.7b01851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose-response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Thomas Meyer
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Linda Böhmert
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Sabine Juling
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christoph Fahrenson
- ZELMI, Technical University Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Sören Selve
- ZELMI, Technical University Berlin , Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Andreas Thünemann
- German Federal Institute for Materials Research and Testing , Unter den Eichen 87, 12205 Berlin, Germany
| | - Jan Meijer
- Nuclear Solid State Physics, Leipzig University , Linnéstraße 5, 04103 Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment , Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
45
|
Klećkowska-Nawrot JE, Goździewska-Harłajczuk K, Łupicki D, Marycz K, Nawara T, Barszcz K, Kowalczyk A, Rosenberger J, Łukaszewicz E. The differences in the eyelids microstructure and the conjunctiva-associated lymphoid tissue between selected ornamental and wild birds as a result of adaptation to their habitat. ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanna E. Klećkowska-Nawrot
- Department of Animal Physiology and Biostructure; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Goździewska-Harłajczuk
- Department of Animal Physiology and Biostructure; Faculty of Veterinary Medicine; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Dariusz Łupicki
- Museum of Natural History of the Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Krzysztof Marycz
- Electron Microscopy Laboratory; Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Tomasz Nawara
- Electron Microscopy Laboratory; Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Karolina Barszcz
- Department of Morphological Sciences; Faculty of Veterinary Medicine; Warsaw University of Life Sciences; Warsaw Poland
| | - Artur Kowalczyk
- Division of Poultry Breeding; Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Joanna Rosenberger
- Division of Poultry Breeding; Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| | - Ewa Łukaszewicz
- Division of Poultry Breeding; Faculty of Biology and Animal Science; Wroclaw University of Environmental and Life Sciences; Wroclaw Poland
| |
Collapse
|
46
|
Vigilance or Subversion? Constitutive and Inducible M Cells in Mucosal Tissues. Trends Immunol 2017; 39:185-195. [PMID: 28958392 DOI: 10.1016/j.it.2017.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Microfold (M) cells are epithelial cells present in mucosal tissues and specialized for the capture of luminal microparticles and their delivery to underlying immune cells; thus, they are crucial participants in mucosal immune surveillance. Multiple phenotypic subsets of M cells have now been described, all sharing a unique apical morphology that provides clues to their ability to capture microbial particles. The existence of diverse M cell phenotypes, especially inflammation-inducible M cells, provides an intriguing puzzle: some variants may augment luminal surveillance to boost mucosal immunity, while others may promote microbial access to tissues. Here, I consider the unique induction requirements of each M cell subset and functional differences, highlighting the potentially distinct consequences in mucosal immunity.
Collapse
|
47
|
Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and Replication of Prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:181-201. [PMID: 28838661 DOI: 10.1016/bs.pmbts.2017.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of progressive, invariably fatal diseases that affect the nervous system of many mammals including humans. The key molecular event in the pathogenesis of TSEs is the conversion of the cellular prion protein PrPC into a disease-associated isoform PrPSc. The "protein-only hypothesis" argues that PrPSc itself is the infectious agent. In effect, PrPSc can adopt several structures that represent different prion strains. The interspecies transmission of TSEs is difficult because of differences between the host and donor primary PrP sequence. However, transmission is not impossible as this occurred when bovine spongiform encephalopathy spread to humans causing variant Creutzfeldt-Jakob disease (vCJD). This event determined a need for a thorough understanding of prion replication and transmission so that we could be one step ahead of further threats for human health. This chapter focuses on these concepts and on new insights gained into prion propagation mechanisms.
Collapse
Affiliation(s)
| | | | - Juan C Espinosa
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain
| | - Olivier Andréoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Juan M Torres
- Centro de Investigación en Sanidad Animal, CISA-INIA, Madrid, Spain.
| |
Collapse
|
48
|
Kucki M, Diener L, Bohmer N, Hirsch C, Krug HF, Palermo V, Wick P. Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status. J Nanobiotechnology 2017; 15:46. [PMID: 28637475 PMCID: PMC5480125 DOI: 10.1186/s12951-017-0280-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Understanding the interaction of graphene-related materials (GRM) with human cells is a key to the assessment of their potential risks for human health. There is a knowledge gap regarding the potential uptake of GRM by human intestinal cells after unintended ingestion. Therefore the aim of our study was to investigate the interaction of label-free graphene oxide (GO) with the intestinal cell line Caco-2 in vitro and to shed light on the influence of the cell phenotype given by the differentiation status on cellular uptake behaviour. RESULTS Internalisation of two label-free GOs with different lateral size and thickness by undifferentiated and differentiated Caco-2 cells was analysed by scanning electron microscopy and transmission electron microscopy. Semi-quantification of cells associated with GRM was performed by flow cytometry. Undifferentiated Caco-2 cells showed significant amounts of cell-associated GRM, whereas differentiated Caco-2 cells exhibited low adhesion of GO sheets. Transmission electron microscopy analysis revealed internalisation of both applied GO (small and large) by undifferentiated Caco-2 cells. Even large GO sheets with lateral dimensions up to 10 µm, were found internalised by undifferentiated cells, presumably by macropinocytosis. In contrast, no GO uptake could be found for differentiated Caco-2 cells exhibiting an enterocyte-like morphology with apical brush border. CONCLUSIONS Our results show that the internalisation of GO is highly dependent on the cell differentiation status of human intestinal cells. During differentiation Caco-2 cells undergo intense phenotypic changes which lead to a dramatic decrease in GRM internalisation. The results support the hypothesis that the cell surface topography of differentiated Caco-2 cells given by the brush border leads to low adhesion of GO sheets and sterical hindrance for material uptake. In addition, the mechanical properties of GRM, especially flexibility of the sheets, seem to be an important factor for internalisation of large GO sheets by epithelial cells. Our results highlight the importance of the choice of the in vitro model to enable better in vitro-in vivo translation.
Collapse
Affiliation(s)
- Melanie Kucki
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Liliane Diener
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Nils Bohmer
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Harald F. Krug
- International Research Cooperations Manager, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Vincenzo Palermo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Richerche (CNR), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
49
|
Parnell EA, Walch EM, Lo DD. Inducible Colonic M Cells Are Dependent on TNFR2 but Not Ltβr, Identifying Distinct Signalling Requirements for Constitutive Versus Inducible M Cells. J Crohns Colitis 2017; 11:751-760. [PMID: 27932454 PMCID: PMC5881705 DOI: 10.1093/ecco-jcc/jjw212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS M cells associated with organised lymphoid tissues such as intestinal Peyer's patches provide surveillance of the intestinal lumen. Inflammation or infection in the colon can induce an M cell population associated with lymphoid infiltrates; paradoxically, induction is dependent on the inflammatory cytokine tumour necrosis factor [TNF]-α. Anti-TNFα blockade is an important therapeutic in inflammatory bowel disease, so understanding the effects of TNFα signalling is important in refining therapeutics. METHODS To dissect pro-inflammatory signals from M cell inductive signals, we used confocal microscopy image analysis to assess requirements for specific cytokine receptor signals using TNF receptor 1 [TNFR1] and 2 [TNFR2] knockouts [ko] back-crossed to the PGRP-S-dsRed transgene; separate groups were treated with soluble lymphotoxin β receptor [sLTβR] to block LTβR signalling. All groups were treated with dextran sodium sulphate [DSS] to induce colitis. RESULTS Deficiency of TNFR1 or TNFR2 did not prevent DSS-induced inflammation nor induction of stromal cell expression of receptor activator of nuclear factor kappa-B ligand [RANKL], but absence of TNFR2 prevented M cell induction. LTβR blockade had no effect on M cell induction, but it appeared to reduce RANKL induction below adjacent M cells. CONCLUSIONS TNFR2 is required for inflammation-inducible M cells, indicating that constitutive versus inflammation-inducible M cells depend on different triggers. The inducible M cell dependence on TNFR2 suggests that this specific subset is dependent on TNFα in addition to a presumed requirement for RANKL. Since inducible M cell function will influence immune responses, selective blockade of TNFα may affect colonic inflammation.
Collapse
Affiliation(s)
- Erinn A. Parnell
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - Erin M. Walch
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| | - David D. Lo
- Division of Biomedical Sciences, University of California Riverside School of Medicine,Riverside, CA, USA.
| |
Collapse
|
50
|
Li P, Liu Q, Huang C, Zhao X, Roland KL, Kong Q. Reversible synthesis of colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances induction of cross-immune responses and provides protection against heterologous Salmonella challenge. Vaccine 2017; 35:2862-2869. [PMID: 28412074 DOI: 10.1016/j.vaccine.2017.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/14/2017] [Accepted: 04/03/2017] [Indexed: 12/26/2022]
Abstract
Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity.
Collapse
Affiliation(s)
- Pei Li
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chun Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kenneth L Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5401, USA.
| |
Collapse
|