1
|
Bulut EC, Erol Kutucu D, Üstünova S, Ağırbaşlı M, Dedeakayoğulları H, Tarhan Ç, Kapucu A, Yeğen BÇ, Demirci Tansel C, Gürel Gürevin E. Synbiotic supplementation ameliorates anxiety and myocardial ischaemia-reperfusion injury in hyperglycaemic rats by modulating gut microbiota. Exp Physiol 2024; 109:1882-1895. [PMID: 39264256 PMCID: PMC11522816 DOI: 10.1113/ep092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.
Collapse
Affiliation(s)
- Erman Caner Bulut
- Department of Biology, Institute of Graduate Studies in SciencesIstanbul UniversityIstanbulTurkey
| | - Deniz Erol Kutucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Savaş Üstünova
- Department of Physiology, School of MedicineBezmialem Vakıf UniversityIstanbulTurkey
| | - Mehmet Ağırbaşlı
- Department of Cardiology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Huri Dedeakayoğulları
- Department of Medical Biochemistry, Faculty of MedicineBiruni UniversityIstanbulTurkey
| | - Çağatay Tarhan
- Department of Molecular Biology and Genetics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Ayşegül Kapucu
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| | - Berrak Ç. Yeğen
- Department of Physiology, School of MedicineMarmara UniversityIstanbulTurkey
| | | | - Ebru Gürel Gürevin
- Department of Biology, Faculty of ScienceIstanbul UniversityIstanbulTurkey
| |
Collapse
|
2
|
Jiang N, He Y, Wu J, You Q, Zhang R, Cheng M, Liu B, Cai Y, Lyu R, Wu Z. 6-Thioguanine inhibits severe fever with thrombocytopenia syndrome virus through suppression of EGR1. Antiviral Res 2024; 227:105916. [PMID: 38777095 DOI: 10.1016/j.antiviral.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus, recently being officially renamed as Dabie bandavirus, and a causative agent for an emerging infectious disease associated with high fatality. Effective therapeutics and vaccines are lacking and disease pathogenesis is yet to be fully elucidated. In our effort to identify new SFTSV inhibitory molecules, 6-Thioguanine (6-TG) was found to potently inhibit SFTSV infection. 6-TG has been widely used as therapeutic agent since the approval of the Food and Drug Administration in the 1960s. In the current study, we showed that 6-TG was a potent inhibitor of SFTSV infection with 50% effective concentrations (EC50) of 3.465 μM in VeroE6 cells, and 1.848 μM in HUVEC cells. The selectivity index (SI) was >57 in VeroE6 cells and >108 in HUVEC cells, respectively. The SFTSV RNA transcription, protein synthesis, and progeny virions were reduced in a dose dependent manner by the presence of 6-TG in the in vitro infection assay. Further study on the mechanism of the anti-SFTSV activity showed that 6-TG downregulated the production of early growth response gene-1 (EGR1). Using gene silencing and overexpression, we further confirmed that EGR1 was a host restriction factor against SFTSV. Meanwhile, treatment of infected experimental animals with 6-TG inhibited SFTSV infection and alleviated multi-organ dysfunction. In conclusion, we have identified 6-TG as an effective inhibitor of SFTSV replication via the inhibition of EGR1 expression. Further studies are needed to evaluate of 6-TG as a potential therapeutic for treating SFTS.
Collapse
Affiliation(s)
- Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Miura T, Etani Y, Noguchi T, Hirao M, Takami K, Goshima A, Kurihara T, Fukuda Y, Ochiai N, Kanamoto T, Nakata K, Okada S, Ebina K. Iguratimod suppresses sclerostin and receptor activator of NF-κB ligand production via the extracellular signal-regulated kinase/early growth response protein 1/tumor necrosis factor alpha pathway in osteocytes and ameliorates disuse osteoporosis in mice. Bone 2024; 181:117026. [PMID: 38325651 DOI: 10.1016/j.bone.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Disuse osteoporosis is a prevalent complication among patients afflicted with rheumatoid arthritis (RA). Although reports have shown that the antirheumatic drug iguratimod (IGU) ameliorates osteoporosis in RA patients, details regarding its effects on osteocytes remain unclear. The current study examined the effects of IGU on osteocytes using a mouse model of disuse-induced osteoporosis, the pathology of which crucially involves osteocytes. A reduction in distal femur bone mass was achieved after 3 weeks of hindlimb unloading in mice, which was subsequently reversed by intraperitoneal IGU treatment (30 mg/kg; five times per week). Histology revealed that hindlimb-unloaded (HLU) mice had significantly increased osteoclast number and sclerostin-positive osteocyte rates, which were suppressed by IGU treatment. Moreover, HLU mice exhibited a significant decrease in osteocalcin-positive cells, which was attenuated by IGU treatment. In vitro, IGU suppressed the gene expression of receptor activator of NF-κB ligand (RANKL) and sclerostin in MLO-Y4 and Saos-2 cells, which inhibited osteoclast differentiation of mouse bone marrow cells in cocultures. Although IGU did not affect the nuclear translocation or transcriptional activity of NF-κB, RNA sequencing revealed that IGU downregulated the expression of early growth response protein 1 (EGR1) in osteocytes. HLU mice showed significantly increased EGR1- and tumor necrosis factor alpha (TNFα)-positive osteocyte rates, which were decreased by IGU treatment. EGR1 overexpression enhanced the gene expression of TNFα, RANKL, and sclerostin in osteocytes, which was suppressed by IGU. Contrarily, small interfering RNA-mediated suppression of EGR1 downregulated RANKL and sclerostin gene expression. These findings indicate that IGU inhibits the expression of EGR1, which may downregulate TNFα and consequently RANKL and sclerostin in osteocytes. These mechanisms suggest that IGU could potentially be used as a treatment option for disuse osteoporosis by targeting osteocytes.
Collapse
Affiliation(s)
- Taihei Miura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuki Etani
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takaaki Noguchi
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Makoto Hirao
- Department of Orthopaedic Surgery, National Hospital Organization Osaka Minami Medical Center, 2-1 Kidohigashimachi, Kawachinagano, Osaka 586-8521, Japan
| | - Kenji Takami
- Department of Orthopaedic Surgery, Nippon Life Hospital, 2-1-54 Enokojima, Nishi-ku, Osaka, Osaka 550-0006, Japan
| | - Atsushi Goshima
- Department of Orthopaedic Surgery, Osaka Rosai Hospital, 1179-3 Nagasone-cho, Kita-ku, Sakai, Osaka 591-8025, Japan
| | - Takuya Kurihara
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuji Fukuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nagahiro Ochiai
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Kanamoto
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ebina
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Ghatpande N, Harrer A, Azoulay-Botzer B, Guttmann-Raviv N, Bhushan S, Meinhardt A, Meyron-Holtz EG. Iron regulatory proteins 1 and 2 have opposing roles in regulating inflammation in bacterial orchitis. JCI Insight 2024; 9:e175845. [PMID: 38301068 PMCID: PMC11143929 DOI: 10.1172/jci.insight.175845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Acute bacterial orchitis (AO) is a prevalent cause of intrascrotal inflammation, often resulting in sub- or infertility. A frequent cause eliciting AO is uropathogenic Escherichia coli (UPEC), a gram negative pathovar, characterized by the expression of various iron acquisition systems to survive in a low-iron environment. On the host side, iron is tightly regulated by iron regulatory proteins 1 and 2 (IRP1 and -2) and these factors are reported to play a role in testicular and immune cell function; however, their precise role remains unclear. Here, we showed in a mouse model of UPEC-induced orchitis that the absence of IRP1 results in less testicular damage and a reduced immune response. Compared with infected wild-type (WT) mice, testes of UPEC-infected Irp1-/- mice showed impaired ERK signaling. Conversely, IRP2 deletion led to a stronger inflammatory response. Notably, differences in immune cell infiltrations were observed among the different genotypes. In contrast with WT and Irp2-/- mice, no increase in monocytes and neutrophils was detected in testes of Irp1-/- mice upon UPEC infection. Interestingly, in Irp1-/- UPEC-infected testes, we observed an increase in a subpopulation of macrophages (F4/80+CD206+) associated with antiinflammatory and wound-healing activities compared with WT. These findings suggest that IRP1 deletion may protect against UPEC-induced inflammation by modulating ERK signaling and dampening the immune response.
Collapse
Affiliation(s)
- Niraj Ghatpande
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Aileen Harrer
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Bar Azoulay-Botzer
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Noga Guttmann-Raviv
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Esther G. Meyron-Holtz
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| |
Collapse
|
6
|
Socodato R, Rodrigues-Santos A, Tedim-Moreira J, Almeida TO, Canedo T, Portugal CC, Relvas JB. RhoA balances microglial reactivity and survival during neuroinflammation. Cell Death Dis 2023; 14:690. [PMID: 37863874 PMCID: PMC10589285 DOI: 10.1038/s41419-023-06217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Artur Rodrigues-Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
7
|
Liu J, Zhang B, Zhu G, Liu C, Wang S, Zhao Z. Discovering genetic linkage between periodontitis and type 1 diabetes: A bioinformatics study. Front Genet 2023; 14:1147819. [PMID: 37051594 PMCID: PMC10083320 DOI: 10.3389/fgene.2023.1147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Relationship between periodontitis (PD) and type 1 diabetes (T1D) has been reported, but the detailed pathogenesis requires further elucidation. This study aimed to reveal the genetic linkage between PD and T1D through bioinformatics analysis, thereby providing novel insights into scientific research and clinical treatment of the two diseases.Methods: PD-related datasets (GSE10334, GSE16134, GSE23586) and T1D-related datasets(GSE162689)were downloaded from NCBI Gene Expression Omnibus (GEO). Following batch correction and merging of PD-related datasets as one cohort, differential expression analysis was performed (adjusted p-value <0.05 and ∣log2 fold change| > 0.5), and common differentially expressed genes (DEGs) between PD and T1D were extracted. Functional enrichment analysis was conducted via Metascape website. The protein-protein interaction (PPI) network of common DEGs was generated in The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Hub genes were selected by Cytoscape software and validated by receiver operating characteristic (ROC) curve analysis.Results: 59 common DEGs of PD and T1D were identified. Among these DEGs, 23 genes were commonly upregulated, and 36 genes were commonly downregulated in both PD- and T1D-related cohorts. Functional enrichment analysis indicated that common DEGs were mainly enriched in tube morphogenesis, supramolecular fiber organization, 9 + 0 non-motile cilium, plasma membrane bounded cell projection assembly, glomerulus development, enzyme-linked receptor protein signaling pathway, endochondral bone morphogenesis, positive regulation of kinase activity, cell projection membrane and regulation of lipid metabolic process. After PPI construction and modules selection, 6 hub genes (CD34, EGR1, BBS7, FMOD, IGF2, TXN) were screened out and expected to be critical in linking PD and T1D. ROC analysis showed that the AUC values of hub genes were all greater than 70% in PD-related cohort and greater than 60% in T1D-related datasets.Conclusion: Shared molecular mechanisms between PD and T1D were revealed in this study, and 6 hub genes were identified as potential targets in treating PD and T1D.
Collapse
Affiliation(s)
- Junqi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenlu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuangcheng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Zhihe Zhao,
| |
Collapse
|
8
|
Jangam A, Tirunavalli SK, Adimoolam BM, Kasireddy B, Patnaik SS, Erukkambattu J, Thota JR, Andugulapati SB, Addlagatta A. Anti-inflammatory and antioxidant activities of Gymnema Sylvestre extract rescue acute respiratory distress syndrome in rats via modulating the NF-κB/MAPK pathway. Inflammopharmacology 2023; 31:823-844. [PMID: 36662401 PMCID: PMC9864508 DOI: 10.1007/s10787-022-01133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is one of the major causes of mortality in COVID-19 patients, due to limited therapeutic options. This prompted us to explore natural sources to mitigate this condition. Gymnema Sylvestre (GS) is an ancient medicinal plant known to have various therapeutic effects. This investigation examined the therapeutic effect of hydroalcoholic extract of Gymnema Sylvestre (HAEGS) against lipopolysaccharide (LPS)-induced lung injury and ARDS in in vitro and in vivo models. UHPLC-HRMS/GC-MS was employed for characterizing the HAEGS and identified several active derivatives including gymnemic acid, gymnemasaponins, gymnemoside, gymnemasin, quercetin, and long fatty acids. Gene expression by RT-qPCR and DCFDA analysis by flow cytometry revealed that several inflammatory cytokine/chemokine, cell injury markers, and reactive oxygen species (ROS) levels were highly upregulated in LPS control and were significantly reduced upon HAEGS treatment. Consistent with the in vitro studies, we found that in LPS-induced ARDS model, pre-treatment with HAEGS significantly suppressed the LPS-induced elevation of inflammatory cell infiltrations, cytokine/chemokine marker expression, ROS levels, and lung injury in a dose-dependent manner. Further mechanistic studies demonstrated that HAEGS suppressed oxidative stress by modulating the NRF2 pathway and ameliorated the ARDS through the NF-κB/MAPK signalling pathway. Additional fractionation results revealed that fraction 6 which has the exclusive composition of gymnemic acid derivatives showed better anti-inflammatory effects (inhibition of IL-6 and IL-1β) at lower concentrations compared to HAEGS. Overall, HAEGS significantly mitigated LPS-induced lung injury and ARDS by targeting the NF-κB/MAPK signalling pathway. Thus, our work unravels the protective role of HAEGS for the first time in managing ARDS.
Collapse
Affiliation(s)
- Aruna Jangam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Satya Krishna Tirunavalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bala Manikantha Adimoolam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Bhavana Kasireddy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India
| | - Samata Sai Patnaik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India
| | - Jayashankar Erukkambattu
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020 India
| | - Jagadeshwar Reddy Thota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India ,Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Anthony Addlagatta
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
9
|
Patoine D, Bouchard K, Lemay AM, Bissonnette EY, Lauzon-Joset JF. Specificity of CD200/CD200R pathway in LPS-induced lung inflammation. Front Immunol 2022; 13:1092126. [PMID: 36591265 PMCID: PMC9797531 DOI: 10.3389/fimmu.2022.1092126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction At lung mucosal surfaces, immune cells must initiate inflammatory response against pathogen without inducing tissue damage. Loss of this equilibrium can lead to acute respiratory distress syndrome (ARDS), a severe lung inflammatory disease characterized by excessive inflammation and dysregulation of anti-inflammatory pathways. Methods To investigate the role of anti-inflammatory pathway CD200/CD200R in lung inflammatory response, we administered LPS intratracheally in CD200 KO and wild type (WT) rats. Inflammation was evaluated using bronchoalveolar lavage (BAL) cellularity. Lung injury was measured by total protein level in BAL fluid, and levels of proinflammatory cytokines (TNF, IL-6) and chemokines (CXCL2, CCL2) were determined in BAL supernatants. In a second series of experiments, recombinant CD200Fc was administered to KO rats to restore the anti-inflammatory response. Results At baseline, CD200 KO rats did not show sign of inflammation, however KO rats had lower number of alveolar macrophages. In addition, LPS administration induced greater pulmonary edema in CD200 KO rats. This was accompanied with a higher recruitment of neutrophils as well as levels of TNF, IL-6, CXCL2, and CCL2 in BAL compared to WT rats. CD200Fc administration in KO rats reduced neutrophil accumulation and TNF and CXCL2 levels in BAL. Interestingly, the increased inflammatory response of CD200 KO rats could be attributed to greater activation potential of alveolar macrophages with higher levels of ERK and P-ERK MAPK. Conclusion This study shows that lung inflammatory response is exacerbated in absence of CD200 in an experimental model of ARDS in rats. In addition, CD200/CD200R pathway shows selective regulation of acute lung inflammation and cannot completely abrogate the complex LPS-induced inflammatory response. However, addition of CD200 agonist in a multi-target therapy strategy could have beneficial impacts.
Collapse
Affiliation(s)
- Dany Patoine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Karine Bouchard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Anne-Marie Lemay
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Elyse Y. Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Jean-Francois Lauzon-Joset
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada,*Correspondence: Jean-Francois Lauzon-Joset,
| |
Collapse
|
10
|
Xu S, Yang X, Chen Q, Liu Z, Chen Y, Yao X, Xiao A, Tian J, Xie L, Zhou M, Hu Z, Zhu F, Xu X, Hou F, Nie J. Leukemia inhibitory factor is a therapeutic target for renal interstitial fibrosis. EBioMedicine 2022; 86:104312. [PMID: 36335669 PMCID: PMC9646860 DOI: 10.1016/j.ebiom.2022.104312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS Stated in the Acknowledgements section of the manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fanfan Hou
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Nie
- Corresponding author. Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Qin F, Chen G, Yu KN, Yang M, Cao W, Kong P, Peng S, Sun M, Nie L, Han W. Golgi Phosphoprotein 3 Mediates Radiation-Induced Bystander Effect via ERK/EGR1/TNF-α Signal Axis. Antioxidants (Basel) 2022; 11:2172. [PMID: 36358544 PMCID: PMC9686538 DOI: 10.3390/antiox11112172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
The radiation-induced bystander effect (RIBE), an important non-targeted effect of radiation, has been proposed to be associated with irradiation-caused secondary cancers and reproductive damage beyond the irradiation-treated area after radiotherapy. However, the mechanisms for RIBE signal(s) regulation and transduction are not well understood. In the present work, we found that a Golgi protein, GOLPH3, was involved in RIBE transduction. Knocking down GOLPH3 in irradiated cells blocked the generation of the RIBE, whereas re-expression of GOLPH3 in knockdown cells rescued the RIBE. Furthermore, TNF-α was identified as an important intercellular signal molecule in the GOLPH3-mediated RIBE. A novel signal axis, GOLPH3/ERK/EGR1, was discovered to modulate the transcription of TNF-α and determine the level of released TNF-α. Our findings provide new insights into the molecular mechanism of the RIBE and a potential target for RIBE modulation.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Scinece Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei 230061, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215006, China
| |
Collapse
|
12
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
13
|
Kerneur C, Cano CE, Olive D. Major pathways involved in macrophage polarization in cancer. Front Immunol 2022; 13:1026954. [PMID: 36325334 PMCID: PMC9618889 DOI: 10.3389/fimmu.2022.1026954] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages play an important role in tissue homeostasis, tissue remodeling, immune response, and progression of cancer. Consequently, macrophages exhibit significant plasticity and change their transcriptional profile and function in response to environmental, tissue, and inflammatory stimuli resulting in pro- and anti-tumor effects. Furthermore, the categorization of tissue macrophages in inflammatory situations remains difficult; however, there is an agreement that macrophages are predominantly polarized into two different subtypes with pro- and anti-inflammatory properties, the so-called M1-like and M2-like macrophages, respectively. These two macrophage classes can be considered as the extreme borders of a continuum of many intermediate subsets. On one end, M1 are pro-inflammatory macrophages that initiate an immunological response, damage tissue integrity, and dampen tumor progression by fostering robust T and natural killer (NK) cell anti-tumoral responses. On the other end, M2 are anti-inflammatory macrophages involved in tissue remodeling and tumor growth, that promote cancer cell proliferation, invasion, tumor metastasis, angiogenesis and that participate to immune suppression. These decisive roles in tumor progression occur through the secretion of cytokines, chemokines, growth factors, and matrix metalloproteases, as well as by the expression of immune checkpoint receptors in the case of M2 macrophages. Moreover, macrophage plasticity is supported by stimuli from the Tumor Microenvironment (TME) that are relayed to the nucleus through membrane receptors and signaling pathways that result in gene expression reprogramming in macrophages, thus giving rise to different macrophage polarization outcomes. In this review, we will focus on the main signaling pathways involved in macrophage polarization that are activated upon ligand-receptor recognition and in the presence of other immunomodulatory molecules in cancer.
Collapse
Affiliation(s)
- Clément Kerneur
- ImCheck Therapeutics, Marseille, France
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Carla E. Cano
- ImCheck Therapeutics, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli Calmettes, Marseille, France
- *Correspondence: Clément Kerneur, ; Carla E. Cano, ; Daniel Olive,
| |
Collapse
|
14
|
Yuan L, Fung TS, He J, Chen RA, Liu DX. Modulation of Viral Replication, Apoptosis and Antiviral Response by Induction and Mutual Regulation of EGR and AP-1 Family Genes During Coronavirus Infection. Emerg Microbes Infect 2022; 11:1717-1729. [PMID: 35727266 PMCID: PMC9262369 DOI: 10.1080/22221751.2022.2093133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Coronaviruses have evolved a variety of strategies to exploit normal cellular processes and signalling pathways for their efficient reproduction in a generally hostile cellular environment. One immediate-early response gene (IEG) family, the AP-1 gene family, was previously shown to be activated by coronavirus infection. In this study, we report that another IEG family, the EGR family, is also activated in cells infected with four different coronaviruses in three genera, i.e. gammacoronavirus infectious bronchitis virus (IBV), alphacoronaviruses porcine epidemic diarrhoea virus (PEDV) and human coronavirus-229E (HCoV-229E), and betacoronavirus HCoV-OC43. Knockdown of EGR1 reduced the expression of cJUN and cFOS, and knockdown of cJUN and/or cFOS reduced the expression of EGR1, demonstrating that these two IEG families may be cross-activated and mutual regulated. Furthermore, ERK1/2 was identified as an upstream kinase, and JNK and p38 as inhibitors of EGR1 activation in coronavirus-infected cells. However, upregulation of EGR family genes, in particular EGR1, appears to play a differential role in regulating viral replication, apoptosis and antiviral response. EGR1 was shown to play a limited role in regulation of coronavirus replication, and an anti-apoptotic role in cells infected with IBV or PEDV, but not in cells infected with HCoV-229E. Upregulation of EGR1 may also play a differential role in the regulation of antiviral response against different coronaviruses. This study reveals a novel regulatory network shared by different coronaviruses in the immediate-early response of host cells to infection.
Collapse
Affiliation(s)
- Lixia Yuan
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - To Sing Fung
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Jiawen He
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Rui Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| | - Ding Xiang Liu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, Guangdong, China
| |
Collapse
|
15
|
Lee KM, Park T, Kim MS, Park JS, Chi WJ, Kim SY. Anti-inflammatory Activities of 7,8-Dihydroxy-4-Methylcoumarin Acetylation Products via NF-κB and MAPK Pathways in LPS-Stimulated RAW 264.7 Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coumarins are phenolic compounds that are characterized by fused benzene and α-pyrone rings. Among coumarin-based compounds, 7,8-dihydroxy-4-methylcoumarin (DHMC) has anti-inflammatory activities, but whether the level of this activity varies according to the degree of acetylation remains unknown. Therefore, we acetylated DHMC to yield monoacetylated 8-acetoxy-4-methylcoumarin (8AMC) and 7,8-diacetoxy-4-methylcoumarin (DAMC). We then compared the anti-inflammatory activities of DHMC with its acetylated derivatives and discovered a novel anti-inflammatory agent. We evaluated whether DHMC, 8AMC, and DAMC could inhibit lipopolysaccharide (LPS)-induced stimulation in RAW 264.7 cells. We found that DHMC, 8AMC, and DAMC induced a dose-dependent downregulation of nitric oxide (NO), prostaglandin E2 (PGE2), pro-inflammatory cytokine, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) expression at the mRNA and protein levels. Western blotting showed that DHMC, 8AMC, and DAMC inhibited phosphorylated mitogen-activated protein kinase (MAK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) expression in a concentration-dependent manner. Furthermore, 8AMC was the most effective inhibitor with powerful anti-inflammatory activity. These results indicate that acetylation can improve the anti-inflammatory activity of natural precursors. We also discovered the new anti-inflammatory compounds 8AMC and DAMC.
Collapse
Affiliation(s)
| | | | - Min-Seon Kim
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST), Gangwon-do, Korea
| | - Won-Jae Chi
- Microorganism Resources Division Biological Resources Research Department, National Institute of Biological Resource, Incheon, South Korea
| | | |
Collapse
|
16
|
Sen-Kilic E, Huckaby AB, Damron FH, Barbier M. P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics 2022; 23:345. [PMID: 35508983 PMCID: PMC9068226 DOI: 10.1186/s12864-022-08554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung airway epithelial cells are part of innate immunity and the frontline of defense against bacterial infections. During infection, airway epithelial cells secrete proinflammatory mediators that participate in the recruitment of immune cells. Virulence factors expressed by bacterial pathogens can alter epithelial cell gene expression and modulate this response. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, expresses numerous virulence factors to facilitate establishment of infection and evade the host immune response. This study focused on identifying the role of two major P. aeruginosa virulence factors, type III (T3SS) and type VI (T6SS) secretion systems, on the early transcriptome response of airway epithelial cells in vitro. RESULTS We performed RNA-seq analysis of the transcriptome response of type II pneumocytes during infection with P. aeruginosa in vitro. We observed that P. aeruginosa differentially upregulates immediate-early response genes and transcription factors that induce proinflammatory responses in type II pneumocytes. P. aeruginosa infection of type II pneumocytes was characterized by up-regulation of proinflammatory networks, including MAPK, TNF, and IL-17 signaling pathways. We also identified early response genes and proinflammatory signaling pathways whose expression change in response to infection with P. aeruginosa T3SS and T6SS mutants in type II pneumocytes. We determined that T3SS and T6SS modulate the expression of EGR1, FOS, and numerous genes that are involved in proinflammatory responses in epithelial cells during infection. T3SS and T6SS were associated with two distinct transcriptomic signatures related to the activation of transcription factors such as AP1, STAT1, and SP1, and the secretion of pro-inflammatory cytokines such as IL-6 and IL-8. CONCLUSIONS Taken together, transcriptomic analysis of epithelial cells indicates that the expression of immediate-early response genes quickly changes upon infection with P. aeruginosa and this response varies depending on bacterial viability and injectosomes. These data shed light on how P. aeruginosa modulates host epithelial transcriptome response during infection using T3SS and T6SS.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA. .,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
17
|
Essadek S, Bouchab H, El Kebbaj R, Gondcaille C, El Kamouni S, Savary S, Vamecq J, Essamadi A, Cherkaoui-Malki M, Nasser B, Andreoletti P. Effects of a Short-Term Lipopolysaccharides Challenge on Mouse Brain and Liver Peroxisomal Antioxidant and β-oxidative Functions: Protective Action of Argan Oil. Pharmaceuticals (Basel) 2022; 15:ph15040465. [PMID: 35455460 PMCID: PMC9030085 DOI: 10.3390/ph15040465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and β-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and β-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.
Collapse
Affiliation(s)
- Soukaina Essadek
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Habiba Bouchab
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Riad El Kebbaj
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Catherine Gondcaille
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Soufiane El Kamouni
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
| | - Joseph Vamecq
- INSERM and HMNO, CBP, CHRU Lille, 59037 Lille, France;
- RADEME EA 7364, Faculté de Médecine, Université de Lille 2, 59045 Lille, France
| | - Abdelkhalid Essamadi
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Mustapha Cherkaoui-Malki
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
- Correspondence: (M.C.-M.); (P.A.); Tel.: +33-380-39-6237 (M.C.-M.); +33-380-39-6255 (P.A.)
| | - Boubker Nasser
- Laboratoire Biochimie, Neurosciences, Ressources Naturelles et Environnement, Faculté des Sciences et Techniques, Université Hassan I, BP577, Settat 26000, Morocco; (S.E.); (H.B.); (R.E.K.); (S.E.K.); (A.E.); (B.N.)
| | - Pierre Andreoletti
- Laboratoire Bio-PeroxIL EA7270, University Bourgogne Franche-Comté, 6 Bd Gabriel, 21000 Dijon, France; (C.G.); (S.S.)
- Correspondence: (M.C.-M.); (P.A.); Tel.: +33-380-39-6237 (M.C.-M.); +33-380-39-6255 (P.A.)
| |
Collapse
|
18
|
Sarkar T, Patro N, Patro IK. Perinatal exposure to synergistic multiple stressors lead to cellular and behavioral deficits mimicking Schizophrenia like pathology. Biol Open 2022; 11:274201. [PMID: 35107124 PMCID: PMC8918990 DOI: 10.1242/bio.058870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Protein malnourishment and immune stress are potent perinatal stressors, encountered by children born under poor socioeconomic conditions. Thus, it is necessary to investigate how such stressors synergistically contribute towards developing neurological disorders in affected individuals. Pups from Wistar females, maintained on normal (high-protein, HP:20%) and low-protein (LP:8%) diets were used. Single and combined exposures of Poly I:C (viral mimetic: 5 mg/kg body weight) and Lipopolysaccharide (LPS; bacterial endotoxin: 0.3 mg/kg body weight) were injected to both HP and LP pups at postnatal days (PND) 3 and 9 respectively, creating eight groups: HP (control); HP+Poly I:C; HP+LPS; HP+Poly I:C+LPS; LP; LP+Poly I:C; LP+LPS; LP+Poly I:C+LPS (multi-hit). The effects of stressors on hippocampal cytoarchitecture and behavioral abilities were studied at PND 180. LP animals were found to be more vulnerable to immune stressors than HP animals and symptoms like neuronal damage, spine loss, downregulation of Egr 1 and Arc proteins, gliosis and behavioral deficits were maximum in the multi-hit group. Thus, from these findings it is outlined that cellular and behavioral changes that occur following multi-hit exposure may predispose individuals to developing Schizophrenia-like pathologies during adulthood. Summary: This study reports that exposure to perinatal multi-hit stress (protein malnourishment and immune stress) causes changes in the hippocampal cells alongside behavioral deficits which are also observed in Schizophrenic condition.
Collapse
Affiliation(s)
- Tiyasha Sarkar
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| | - Ishan Kumar Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior-474011, India
| |
Collapse
|
19
|
The -172 A-to-G variation in ADAM17 gene promoter region affects EGR1/ADAM17 pathway and confers susceptibility to septic mortality with sepsis-3.0 criteria. Int Immunopharmacol 2021; 102:108385. [PMID: 34862128 DOI: 10.1016/j.intimp.2021.108385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND A disintegrin and metalloproteinase 17 (ADAM17) is a proteolytic cleaving protein with a crucial function in the inflammatory responses, especially sepsis. But the clear role of ADAM17 in sepsis and the underlying mechanism remained unknown. In this study, we aim to determine the clinical association of ADAM17 -172A > G (rs12692386) promoter polymorphism with sepsis and to further explore the effect and mechanism of the early growth response 1 (EGR1)/ADAM17 pathway in inflammatory process during sepsis. METHODS A total of 477 sepsis patients and 750 controls were enrolled in this study to determine the association of ADAM17 -172A > G polymorphism with sepsis. The transcription factor binding to the promoter region of ADAM17 gene was predicted by bioinformatics analysis and verified by Chromatin Immunoprecipitation (ChIP) and luciferase assays. Quantitative real-time PCR and Western blot were performed to detect EGR1 and ADAM17 expression. Cytokine production was detected by enzyme-linked immunosorbent assay. The effect of EGR1/ADAM17 pathway on sepsis-induced inflammatory responses was evaluated in EGR1-silenced cells and endotoxemia mouse model. RESULTS The frequencies of non-survivors among the sepsis patients with the -172AG/GG genotypes and G allele were distinctly higher than those among patients with the AA genotype (53.9% vs. 39.7%, OR = 1.779, 95% CI = 1.119-2.829, P = 0.0142) and A allele (30.9% vs. 22.2%, OR = 1.570, 95% CI = 1.095-2.251, P = 0.0136). The Kaplan-Meier survival analysis indicated that the 28-day survival in septic patients with -172AG/GG genotypes of this functional ADAM17 promoter polymorphism was much worse than in the AA genotype carriers (log-rank = 5.358, P = 0.021). The results of in vitro lipopolysaccharide-stimulated and luciferase assays indicated that the -172 A-to-G variation could functionally upregulate promoter activity and transcription of ADAM17 gene via enhancing the binding affinity of its promoter region with the EGR1. The ChIP assay identified the direct interaction. Further studies demonstrated that inhibition of EGR1 significantly decreased ADAM17 expression and the pro-inflammatory cytokine secretion in vitro, and improved the survival and inflammatory response of sepsis mouse model. CONCLUSIONS These results provided evidence that the ADAM17 -172A > G polymorphism functionally promoted ADAM17 expression and enhanced sepsis-induced inflammatory responses via the EGR1/ADAM17 pathway, which ultimately conferred susceptibility to sepsis mortality and poor prognosis.
Collapse
|
20
|
Chirivi M, Rendon CJ, Myers MN, Prom CM, Roy S, Sen A, Lock AL, Contreras GA. Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows. J Dairy Sci 2021; 105:842-855. [PMID: 34696909 DOI: 10.3168/jds.2021-20855] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023]
Abstract
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: -63 ± 18%) and LPS (LPS+INS: -45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: -16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (-3.84 ± 23.6% and -21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Madison N Myers
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Crystal M Prom
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Sambit Roy
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Aritro Sen
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
21
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Banerji R, Saroj SD. Early growth response 1 (EGR1) activation in initial stages of host-pathogen interactions. Mol Biol Rep 2021; 48:2935-2943. [PMID: 33783681 DOI: 10.1007/s11033-021-06305-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
The factors that determine the outcomes of host-pathogen interactions, such as host specificity, tissue specificity, and transition from asymptomatic to symptomatic behavior of a pathogen, are yet to be deciphered. The initial interaction of a pathogen with host and host-associated factors play a crucial role in deciding such outcomes. One of the several host-factors that contribute to bacterial adhesion and the outcome of an infection is the activation of early growth response 1 (EGR1). EGR1 is an initial response transcriptional regulator that plays a vital role in regulating cell growth, differentiation, and survival. EGR1 expression is seen in most of the mammalian tissues. Multiple post-translational modifications occur, which modulate the EGR1 transcriptional activity. Upon activation, EGR1 can transactivate several genes with diverse cellular functions, including transcriptional regulatory proteins and cell proliferation. EGR1 has also been identified as a potential mediator of inflammatory gene expression. Recent studies have highlighted the role of EGR1 as a potent signaling molecule that facilitates bacterial adhesion to host epithelial cells, thus modulating colonization pathways. The pathways for the regulation of EGR1 during host-pathogen interaction remain yet unidentified. The review focuses on the role and regulation of EGR1 during host-pathogen interaction.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|
23
|
VIP modulates human macrophages phenotype via FPRL1 via activation of RhoA-GTPase and PLC pathways. Inflamm Res 2021; 70:309-321. [PMID: 33502586 DOI: 10.1007/s00011-021-01436-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN This study is aimed at uncovering the signaling pathways activated by vasoactive intestinal peptide in human macrophages MATERIALS: Human peripheral blood mononuclear cell-derived macrophages were used for the in vitro investigation of the VIP-activated signaling pathways. METHODS AND TREATMENT Time-course and dose-response experiments and siRNA were used in human macrophages co-challenged with various concentrations of VIP and different MAPK pharmacologic inhibitors to investigate signaling pathways activated by VIP. Flow analysis was performed to assess the levels of CD11b, CD35 and CD66. Luminescence spectrometry was used to measure the levels of the released hydrogen peroxide and the intracellular calcium levels in the media. RESULTS Macrophages incubated with VIP showed increased phospho-AKT and phospho-ERK1/2 levels in a GTP-RhoA-GTPase-dependent manner. Similarly, VIP increased intracellular release of H2O2 and calcium via PLC and GTP-RhoA-GTPase, in addition to inducing the expression of CD11b, CD35, CD66 and MMP9. Furthermore, VIP activated P38 MAPK through the cAMP/PKA pathway but was independent of both PLC and RhoA signaling. The above-mentioned VIP effects were mediated via activation of the FPRL1 receptor. CONCLUSION VIP/FPRL1/VPAC/GTP-RhoA-GTPase signaling modulated macrophages phenotype through activation of multiple signaling pathways including ERK1/2, AKT, P38, ROS, cAMP and calcium.
Collapse
|
24
|
Zawistowska-Deniziak A, Bień-Kalinowska J, Basałaj K. Regulation of human THP-1 macrophage polarization by Trichinella spiralis. Parasitol Res 2021; 120:569-578. [PMID: 33415398 DOI: 10.1007/s00436-020-07000-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022]
Abstract
Trichinella spiralis is a foodborne zoonotic nematode, which causes trichinellosis. During the infection, parasite evades the host immune responses by direct and indirect (through excretory-secretory products) contact with host immune cells. One of the main targets for immunomodulation induced by helminths are macrophages. In this study, we examined whether direct contact of different stages of T. spiralis can affect the polarization of human THP-1 macrophages. Co-culture of adult parasite stage and cells in direct contact without LPS addition had a significant impact on TNFα levels. Interestingly, in settings with the addition of LPS, the levels of IL-1β and TNFα significantly increased in adult parasite and newborn larvae (NBL) but not for muscle larvae (ML). While we tested muscle larvae ESP products to compare its effect with whole ML parasite, we detect an increase of pro-inflammatory cytokines like IL-1β and TNFα in no LPS conditions. Whereas, muscle larvae ESP significantly suppressed the inflammatory response measured by IL-1β, TNFα, and IL-6 levels and anti-inflammatory IL-10 compared to LPS control. Our findings indicate the anti-inflammatory potential of T. spiralis muscle larvae excretory-secretory products and propose signaling pathways which might be engaged in the mechanism of how muscle larvae ESP affect human macrophages.
Collapse
Affiliation(s)
| | | | - Katarzyna Basałaj
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Salcedo-Tacuma D, Parales-Giron J, Prom C, Chirivi M, Laguna J, Lock AL, Contreras GA. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics 2020; 21:824. [PMID: 33228532 PMCID: PMC7686742 DOI: 10.1186/s12864-020-07235-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq. Results Subcutaneous AT samples were collected from Holstein cows (n = 12) at 11 ± 3.6 d before calving date (PreP) and at 6 ± 1d (PP1) and 13 ± 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream lipolysis triggers. In contrast, FASN, ELOVL6, ACLS1, and THRSP were identified as upstream inhibitors of lipid synthesis. Complement (C3), CXCL2, and HMOX1 were defined as links between inflammatory pathways and those involved in the generation of reactive oxygen species. Conclusions Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflammation, extracellular matrix remodeling, and redox signaling in the adipose organ. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07235-0.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Juliana Laguna
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
26
|
Kaur H, Moreau R. Curcumin steers THP-1 cells under LPS and mTORC1 challenges toward phenotypically resting, low cytokine-producing macrophages. J Nutr Biochem 2020; 88:108553. [PMID: 33220404 DOI: 10.1016/j.jnutbio.2020.108553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The persistent activation of intestinal mechanistic target of rapamycin complex 1 (mTORC1) triggered by mucosal stress has been linked to deregulation of the gut immune response resulting in intestinal inflammation and cell death. The present study investigated the regulatory properties of food-derived mTORC1 modulators, curcumin, and piperine, toward the polarization of stimulated macrophages and the differentiation of monocytes at two mTORC1 activity levels (baseline and elevated). To that end, we created stable human THP-1 monocytes exhibiting normal or constitutively active mTORC1. Curcumin or its combination with piperine, but not piperine alone, suppressed mTORC1 kinase activity, curtailed lipopolysaccharide-mediated inflammatory response of THP-1 macrophages, and repressed macrophage activation by inhibiting signaling pathways involved in M1 (mTORC1) and M2 (mTORC2 and cAMP response element binding protein) polarization. The effects of piperine in the curcumin/piperine combination were modest overall, indicating it was curcumin that modulated differentiating monocytes into acquiring a M0 macrophage phenotype characterized by low inflammatory cytokine output.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
27
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
28
|
Trametinib alleviates lipopolysaccharide-induced acute lung injury by inhibiting the MEK-ERK-Egr-1 pathway. Int Immunopharmacol 2020; 80:106152. [PMID: 31926447 DOI: 10.1016/j.intimp.2019.106152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 01/15/2023]
Abstract
Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate and for which there is no effective treatment. The main characteristic of ALI is uncontrolled inflammation, and macrophages play a critical role in the development of this disorder. Trametinib, an inhibitor of MAPK/ERK kinase (MEK) activity that possesses anti-inflammatory properties, has been approved for clinical use. Herein, the influence of trametinib and its underlying mechanism were investigated using a lipopolysaccharide (LPS)-induced murine ALI model. We found that trametinib treatment prevented the LPS-facilitated expression of proinflammatory mediators in macrophages, and this anti-inflammatory action was closely correlated with suppression of the MEK-ERK-early growth response (Egr)-1 pathway. Furthermore, trametinib treatment alleviated LPS-induced ALI in mice, and attenuated edema, proinflammatory mediator production, and neutrophil infiltration. Trametinib pretreatment also attenuated the MEK-ERK-Egr-1 pathway in lung tissues. In conclusion, these data demonstrate that trametinib pretreatment suppresses inflammation in LPS-activated macrophages in vitro and protects against murine ALI established by LPS administration in vivo through inhibition of the MEK-ERK-Egr-1 pathway. Therefore, trametinib might have therapeutic potential for ALI.
Collapse
|
29
|
Wang Z, Ni X, Zhang L, Sun L, Zhu X, Zhou Q, Yang Z, Yuan H. Toll-Like Receptor 4 and Inflammatory Micro-Environment of Pancreatic Islets in Type-2 Diabetes Mellitus: A Therapeutic Perspective. Diabetes Metab Syndr Obes 2020; 13:4261-4272. [PMID: 33204132 PMCID: PMC7666984 DOI: 10.2147/dmso.s279104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with type-2 diabetes mellitus (T2DM) display chronic low-grade inflammation induced by activation of the innate immune system. Toll-like receptor (TLR)4 is a pattern recognition receptor that plays a vital part in activation of the innate immune system. Results from animal and computer-simulation studies have demonstrated that targeting TLR4 to block the TLR4-nuclear factor-kappa B (NF-κB) pathway reduces the inflammatory response and complications associated with T2DM. Therefore, TLR4-targeted therapy has broad prospects. Here, we reviewed the role of TLR4 in inflammation during chronic hyperglycemia in T2DM and its therapeutic prospects.
Collapse
Affiliation(s)
- Zhaoping Wang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Xiaolin Ni
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li Zhang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Xiaoquan Zhu
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Qi Zhou
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ze Yang
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Huiping Yuan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
- Correspondence: Huiping Yuan The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongdan DaHua Road 1#, Beijing100730, People’s Republic of ChinaTel +86-10-58115043Fax +86-10-65237929 Email
| |
Collapse
|
30
|
Elkamhawy A, Kim NY, Hassan AHE, Park JE, Paik S, Yang JE, Oh KS, Lee BH, Lee MY, Shin KJ, Pae AN, Lee KT, Roh EJ. Thiazolidine-2,4-dione-based irreversible allosteric IKK-β kinase inhibitors: Optimization into in vivo active anti-inflammatory agents. Eur J Med Chem 2019; 188:111955. [PMID: 31893550 DOI: 10.1016/j.ejmech.2019.111955] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Selective kinase inhibitors development is a cumbersome task because of ATP binding sites similarities across kinases. On contrast, irreversible allosteric covalent inhibition offers opportunity to develop novel selective kinase inhibitors. Previously, we reported thiazolidine-2,4-dione lead compounds eliciting in vitro irreversible allosteric inhibition of IKK-β. Herein, we address optimization into in vivo active anti-inflammatory agents. We successfully developed potent IKK-β inhibitors with the most potent compound eliciting IC50 = 0.20 μM. Cellular assay of a set of active compounds using bacterial endotoxin lipopolysaccharide (LPS)-stimulated macrophages elucidated significant in vitro anti-inflammatory activity. In vitro evaluation of microsomal and plasma stabilities showed that the promising compound 7a is more stable than compound 7p. Finally, in vivo evaluation of 7a, which has been conducted in a model of LPS-induced septic shock in mice, showed its ability to protect mice against septic shock induced mortality. Accordingly, this study presents compound 7a as a novel potential irreversible allosteric covalent inhibitor of IKK-β with verified in vitro and in vivo anti-inflammatory activity.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nam Youn Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong-Eun Yang
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang-Seok Oh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Byung Ho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Mi Young Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Kye Jung Shin
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
31
|
Ruan Y, Guo SJ, Wang X, Dong D, Shen DH, Zhu J, Zheng XY. Kainic Acid Impairs the Memory Behavior of APP23 Mice by Increasing Brain Amyloid Load through a Tumor Necrosis Factor-α-Dependent Mechanism. J Alzheimers Dis 2019; 64:103-116. [PMID: 29782313 DOI: 10.3233/jad-171137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Kainic acid (KA) was recently identified as an epileptogenic and neuroexcitotoxic agent that is responsible for inducing learning and memory deficits in various neurodegenerative diseases, such as Alzheimer's disease (AD). However, the mechanism by which KA acts upon AD remains unclear. To this end, we presently investigated the roles of KA in processing amyloid-β protein precursor (AβPP) and amyloid-β protein (Aβ) loads during the course of AD development and progression. Specifically, KA treatment clearly caused the upregulation of tumor necrosis factor α (TNF-α) via activation of the PI3-K/AKT, ERK1/2, and p65 pathways in glial cells. TNF-α secreted from glial cells was then found to be responsible for stimulating the expression of BACE-1 and PS1/2, which resulted in the production and deposition of Aβ in neurons. Finally, the accumulation and aggregation of Aβ lead to the cognitive decline of APP23 mice. These results indicate that KA accelerates the progression of AD by inducing the crosstalk between glial cells and neurons.
Collapse
Affiliation(s)
- Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shi-Jie Guo
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Dong-Hui Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Mol Cell Biochem 2019; 456:179-190. [DOI: 10.1007/s11010-019-03503-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
|
33
|
Pooladanda V, Thatikonda S, Bale S, Pattnaik B, Sigalapalli DK, Bathini NB, Singh SB, Godugu C. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death Dis 2019; 10:81. [PMID: 30692512 PMCID: PMC6349848 DOI: 10.1038/s41419-018-1247-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive acute inflammatory response in lung parenchyma, which ultimately leads to refractory hypoxemia. One of the earliest abnormalities seen in lung injury is the elevated levels of inflammatory cytokines, among them, the soluble tumor necrosis factor (TNF-α) has a key role, which exerts cytotoxicity in epithelial and endothelial cells thus exacerbates edema. The bacterial lipopolysaccharide (LPS) was used both in vitro (RAW 264.7, THP-1, MLE-12, A549, and BEAS-2B) and in vivo (C57BL/6 mice), as it activates a plethora of overlapping inflammatory signaling pathways involved in ARDS. Nimbolide is a chemical constituent of Azadirachta indica, which contains multiple biological properties, while its role in ARDS is elusive. Herein, we have investigated the protective effects of nimbolide in abrogating the complications associated with ARDS. We showed that nimbolide markedly suppressed the nitrosative-oxidative stress, inflammatory cytokines, and chemokines expression by suppressing iNOS, myeloperoxidase, and nitrotyrosine expression. Moreover, nimbolide mitigated the migration of neutrophils and mast cells whilst normalizing the LPS-induced hypothermia. Also, nimbolide modulated the expression of epigenetic regulators with multiple HDAC inhibitory activity by suppressing the nuclear translocation of NF-κB and HDAC-3. We extended our studies using molecular docking studies, which demonstrated a strong interaction between nimbolide and TNF-α. Additionally, we showed that treatment with nimbolide increased GSH, Nrf-2, SOD-1, and HO-1 protein expression; concomitantly abrogated the LPS-triggered TNF-α, p38 MAPK, mTOR, and GSK-3β protein expression. Collectively, these results indicate that TNF-α-regulated NF-κB and HDAC-3 crosstalk was ameliorated by nimbolide with promising anti-nitrosative, antioxidant, and anti-inflammatory properties in LPS-induced ARDS.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease and Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, 110007, New Delhi, India
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Nagendra Babu Bathini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
34
|
Ohkura T, Yoshimura T, Fujisawa M, Ohara T, Marutani R, Usami K, Matsukawa A. Spred2 Regulates High Fat Diet-Induced Adipose Tissue Inflammation, and Metabolic Abnormalities in Mice. Front Immunol 2019; 10:17. [PMID: 30723473 PMCID: PMC6349710 DOI: 10.3389/fimmu.2019.00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic low-grade inflammation in visceral adipose tissues triggers the development of obesity-related insulin resistance, leading to the metabolic syndrome, a serious health condition with higher risk of cardiovascular disease, diabetes, and stroke. In the present study, we investigated whether Sprouty-related EVH1-domain-containing protein 2 (Spred2), a negative regulator of the Ras/Raf/ERK/MAPK pathway, plays a role in the development of high fat diet (HFD)-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance. Spred2 knockout (KO) mice, fed with HFD, exhibited an augmented body weight gain, which was associated with enhanced adipocyte hypertrophy in mesenteric white adipose tissue (mWAT) and deteriorated dyslipidemia, compared with wild-type (WT) controls. The number of infiltrating macrophages with a M1 phenotype, and the crown-like structures, composed of macrophages surrounding dead or dying adipocytes, were more abundant in Spred2 KO-mWAT compared to in WT-mWAT. Exacerbated adipose tissue inflammation in Spred2 KO mice led to aggravated insulin resistance and fatty liver disease. To analyze the mechanism(s) that caused adipose tissue inflammation, cytokine response in mWAT was investigated. Stromal vascular fraction that contained macrophages from Spred2 KO-mWAT showed elevated levels of tumor necrosis factor α (TNFα) and monocyte chemoattractant protein-1 (MCP-1/CCL2) compared with those from WT-mWAT. Upon stimulation with palmitate acid (PA), bone marrow-derived macrophages (BMDMs) derived from Spred2 KO mice secreted higher levels of TNFα and MCP-1 than those from WT mice with enhanced ERK activation. U0126, a MEK inhibitor, reduced the PA-induced cytokine response. Taken together, these results suggested that Spred2, in macrophages, negatively regulates high fat diet-induced obesity, adipose tissue inflammation, metabolic abnormalities, and insulin resistance by inhibiting the ERK/MAPK pathway. Thus, Spred2 represents a potential therapeutic tool for the prevention of insulin resistance and resultant metabolic syndrome.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Marutani
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kaya Usami
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
35
|
Elkamhawy A, Kim NY, Hassan AHE, Park JE, Yang JE, Oh KS, Lee BH, Lee MY, Shin KJ, Lee KT, Hur W, Roh EJ. Design, synthesis and biological evaluation of novel thiazolidinedione derivatives as irreversible allosteric IKK-β modulators. Eur J Med Chem 2018; 157:691-704. [PMID: 30130718 DOI: 10.1016/j.ejmech.2018.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
The kinase known as IKK-β activates NF-κB signaling pathway leading to expression of several genes contributing to inflammation, immune response, and cell proliferation. Modulation of IKK-β kinase activity could be useful for treatment and management of such diseases. Starting from a discovered weakly active hit compound, twenty four thiazolidinedione-scaffold based chemical entities belonging to five series have been designed, synthesized and evaluated as potential IKK-β modulators. Among them, compounds 6q, 6r and 6u showed low micromolar IC50 values while compounds 6v, 6w, and 6x elicited submicromolar IC50 values equal to 0.4, 0.7 and 0.9 μM respectively. These submicromolar IC50 values are 243, 139 and 105 folds the value of the reported IC50 of the starting hit compound. Kinetic study of compounds 6v and 6w confirmed this class of modulators as irreversible inhibitors. LPS-treated RAW 264.7 macrophages proved the anti-inflammatory activity of compounds 6q and 6v. Assay of hERG inhibition demonstrated a safe profile of compound 6q suggesting it as a lead for further development of IKK-β modulators.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Nam Youn Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeong-Eun Yang
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwang-Seok Oh
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Byung Ho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Mi Young Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114, Republic of Korea
| | - Kye Jung Shin
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
36
|
Merritt JR, Davis MT, Jalabert C, Libecap TJ, Williams DR, Soma KK, Maney DL. Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Horm Behav 2018; 98:210-218. [PMID: 29277700 PMCID: PMC5832363 DOI: 10.1016/j.yhbeh.2017.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/01/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
Abstract
The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.
Collapse
Affiliation(s)
- Jennifer R Merritt
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| | - Matthew T Davis
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Cecilia Jalabert
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Timothy J Libecap
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Donald R Williams
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| | - Kiran K Soma
- Department of Psychology, 2136 West Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Characteristic pro-inflammatory cytokines and host defence cathelicidin peptide produced by human monocyte-derived macrophages infected withNeospora caninum. Parasitology 2017; 145:871-884. [DOI: 10.1017/s0031182017002104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractNeospora caninumis a coccidian intracellular protozoan capable of infecting a wide range of mammals, although severe disease is mostly reported in dogs and cattle. Innate defences triggered by monocytes/macrophages are key in the pathogenesis of neosporosis, as these cells are first-line defenders against intracellular infections. The aim of this study was to characterize infection and innate responses in macrophages infected withN. caninumusing a well-known cell model to study macrophage functions (human monocyte THP-1 cells). Intracellular invasion of live tachyzoites occurred as fast as 4 h (confirmed with immunofluorescence microscopy usingN. caninum-specific antibodies). Macrophages infected byN. caninumhad increased expression of pro-inflammatory cytokines (TNFα, IL-1β, IL-8, IFNγ). Interestingly,N. caninuminduced expression of host-defence peptides (cathelicidins), a mechanism of defence never reported forN. caninuminfection in macrophages. The expression of cytokines and cathelicidins in macrophages invaded byN. caninumwas mediated by mitogen-activated protein kinase (MEK 1/2). Secretion of such innate factors fromN. caninum-infected macrophages reduced parasite internalization and promoted the secretion of pro-inflammatory cytokines in naïve macrophages. We concluded that rapid invasion of macrophages byN. caninumtriggered protective innate defence mechanisms against intracellular pathogens.
Collapse
|
38
|
Zhou LF, Chen QZ, Yang CT, Fu ZD, Zhao ST, Chen Y, Li SN, Liao L, Zhou YB, Huang JR, Li JH. TRPC6 contributes to LPS-induced inflammation through ERK1/2 and p38 pathways in bronchial epithelial cells. Am J Physiol Cell Physiol 2017; 314:C278-C288. [PMID: 29141922 DOI: 10.1152/ajpcell.00117.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
receptor potential canonical (TRPC) channels are presently an emerging target for airway disorders. Recent evidence has indicated that TRPC6 as a member of the TRPC family plays an important role in airway inflammation, but its precise function in bronchial epithelial cells remains unclear. The aim of this study was to investigate the role of TRPC6 in Toll-like receptor 4 (TLR4)-mediated inflammation in human bronchial epithelial cells stimulated by endotoxin [lipopolysaccharide (LPS)]. Hyp9 is a simplified phloroglucinol derivative of hyperforin that highly selectively activates TRPC6 channels. The results show that the activation of TRPC6 by Hyp9 induced the production of interleukin (IL)-8 and IL-6. LPS was also able to induce the release of IL-8 and IL-6, which was significantly aggravated by Hyp9 and reduced by knockdown of TRPC6. Treatment with LPS not only chronically induced the expression of TRPC6 mRNA and protein in a TLR4-dependent manner but also acutely increased Ca2+ influx through TRPC6 channels. In addition, LPS-induced overexpression of TRPC6 and Ca2+ influx were associated with the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt. Importantly, TRPC6 was required for the activation of ERK1/2, p38, and NF-κB. In conclusion, these data reveal that LPS induced the overexpression of TRPC6 and TRPC6-dependent Ca2+ influx via the TLR4/PI3K/Akt pathway resulting in Ca2+ mobilization, which subsequently promoted the activation of ERK1/2, p38, and NF-κB and the inflammatory response in bronchial epithelial cells.
Collapse
Affiliation(s)
- Li-Fen Zhou
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Qing-Zi Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Chun-Tao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Zhao-Di Fu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Shen-Ting Zhao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Yan Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Shu-Ni Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Li Liao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Yu-Bo Zhou
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| | - Jian-Rong Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-Hua Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences; Affiliated Cancer Hospital and Institute, Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
39
|
de Klerk N, Saroj SD, Wassing GM, Maudsdotter L, Jonsson AB. The Host Cell Transcription Factor EGR1 Is Induced by Bacteria through the EGFR-ERK1/2 Pathway. Front Cell Infect Microbiol 2017; 7:16. [PMID: 28180113 PMCID: PMC5264520 DOI: 10.3389/fcimb.2017.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/12/2017] [Indexed: 12/01/2022] Open
Abstract
The essential first step in bacterial colonization is adhesion to the host epithelial cells. The early host-responses post-bacterial adhesions are still poorly understood. Early growth response 1 (EGR1) is an early response transcriptional regulator that can be rapidly induced by various environmental stimuli. Several bacteria can induce EGR1 expression in host cells, but the involved bacterial characteristics and the underlying molecular mechanisms of this response are largely unknown. Here, we show that EGR1 can be induced in host epithelial cells by different species of bacteria independent of the adherence level, Gram-staining type and pathogenicity. However, bacterial viability and contact with host cells is necessary, indicating that an active interaction between bacteria and the host is important. Furthermore, the strongest response is observed in cells originating from the natural site of the infection, suggesting that the EGR1 induction is cell type specific. Finally, we show that EGFR–ERK1/2 and β1-integrin signaling are the main pathways used for bacteria-mediated EGR1 upregulation. In conclusion, the increase of EGR1 expression in epithelial cells is a common stress induced, cell type specific response upon host-bacteria interaction that is mediated by EGFR–ERK1/2 and β1-integrin signaling.
Collapse
Affiliation(s)
- Nele de Klerk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Sunil D Saroj
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Gabriela M Wassing
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Lisa Maudsdotter
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University Stockholm, Sweden
| |
Collapse
|
40
|
Chouvardas P, Kollias G, Nikolaou C. Inferring active regulatory networks from gene expression data using a combination of prior knowledge and enrichment analysis. BMC Bioinformatics 2016; 17 Suppl 5:181. [PMID: 27295045 PMCID: PMC4905609 DOI: 10.1186/s12859-016-1040-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Under both physiological and pathological conditions gene expression programs are shaped through the interplay of regulatory proteins and their gene targets, interactions between which form intricate gene regulatory networks (GRN). While the assessment of genome-wide expression for the complete set of genes at a given condition has become rather straight-forward and is performed routinely, we are still far from being able to infer the topology of gene regulation simply by analyzing its “descendant” expression profile. In this work we are trying to overcome the existing limitations for the inference and study of such regulatory networks. We are combining our approach with state-of-the-art gene set enrichment analyses in order to create a tool, called Regulatory Network Enrichment Analysis (RNEA) that will prioritize regulatory and functional characteristics of a genome-wide expression experiment. Results RNEA combines prior knowledge, originating from manual literature curation and small-scale experimental data, to construct a reference network of interactions and then uses enrichment analysis coupled with a two-level hierarchical parsing of the network, to infer the most relevant subnetwork for a given experimental setting. It is implemented as an R package, currently supporting human and mouse datasets and was herein tested on one test case for each of the two organisms. In both cases, RNEA’s gene set enrichment analysis was comparable to state-of-the-art methodologies. Moreover, through its distinguishing feature of regulatory subnetwork reconstruction, RNEA was able to define the key transcriptional regulators for the studied systems as supported from the literature. Conclusions RNEA constitutes a novel computational approach to obtain regulatory interactions directly from a genome-wide expression profile. Its simple implementation, with minimal requirements from the user is coupled with easy-to-parse enrichment lists and a subnetwork file that may be readily visualized to reveal the most important components of the regulatory hierarchy. The combination of prior information and novel concept of a hierarchical reconstruction of regulatory interactions makes RNEA a very useful tool for a first-level interpretation of gene expression profiles. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1040-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panagiotis Chouvardas
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece.,Department of Physiology, Medical School, University of Athens, Athens, 11527, Greece
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Christoforos Nikolaou
- Biomedical Sciences Research Center "Alexander Fleming", Vari, 16672, Greece. .,Computational Genomics Group, Department of Biology, University of Crete, Voutes Campus, Heraklion, 70013, Greece.
| |
Collapse
|
41
|
Aspirin Inhibits LPS-Induced Expression of PI3K/Akt, ERK, NF-κB, CX3CL1, and MMPs in Human Bronchial Epithelial Cells. Inflammation 2015; 39:643-50. [DOI: 10.1007/s10753-015-0289-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Han H, Xue-Franzén Y, Miao X, Nagy E, Li N, Xu D, Sjöberg J, Björkholm M, Claesson HE. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins Other Lipid Mediat 2015; 121:122-30. [DOI: 10.1016/j.prostaglandins.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022]
|
43
|
Manna SK, Golla S, Golla JP, Tanaka N, Cai Y, Takahashi S, Krausz KW, Matsubara T, Korboukh I, Gonzalez FJ. St. John's Wort Attenuates Colorectal Carcinogenesis in Mice through Suppression of Inflammatory Signaling. Cancer Prev Res (Phila) 2015; 8:786-95. [PMID: 26069204 DOI: 10.1158/1940-6207.capr-14-0113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
Abstract
Despite widespread use as well as epidemiologic indications, there have been no investigations into the effect of St. John's wort (SJW) extract on colorectal carcinogenesis in vivo. This study reports a systematic evaluation of the impact of dietary supplementation of SJW extract on azoxymethane-induced colorectal carcinogenesis in mice. Mice were fed with either AIN-93G (control) diet or SJW extract-supplemented diet (SJW diet) prior to azoxymethane treatment. SJW diet was found to significantly improve the overall survival of azoxymethane-treated mice. Pretreatment with the SJW diet significantly reduced body weight loss as well as decrease of serum albumin and cholesterol levels associated with azoxymethane-induced colorectal tumorigenesis. SJW diet-fed mice showed a significant decrease in tumor multiplicity along with a decrease in incidence of large tumors and a trend toward decreased total tumor volume in a dose-dependent manner. A short-term study, which examined the effect of SJW prior to rectal bleeding, also showed decrease in colorectal polyps in SJW diet-fed mice. Nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase (ERK1/2) pathways were attenuated by SJW administration. SJW extract resulted in early and continuous attenuation of these pathways in the colon epithelium of SJW diet-fed mice under both short-term and long-term treatment regimens. In conclusion, this study demonstrated the chemopreventive potential of SJW extract against colorectal cancer through attenuation of proinflammatory processes.
Collapse
Affiliation(s)
- Soumen K Manna
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Srujana Golla
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jaya Prakash Golla
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yan Cai
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shogo Takahashi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tsutomu Matsubara
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
44
|
Schrimpe-Rutledge AC, Fong KY, Wright DW. Impact of 4-hydroxynonenal on matrix metalloproteinase-9 regulation in lipopolysaccharide-stimulated RAW 264.7 cells. Cell Biochem Funct 2015; 33:59-66. [PMID: 25663587 DOI: 10.1002/cbf.3087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/15/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023]
Abstract
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP-9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4-hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP-9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP-9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide-stimulated RAW 264.7 cells with HNE increased MMP-9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase-1 protein levels, further decreasing MMP-9 regulation. Phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP-9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP-9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP-9 levels leading to tissue damage.
Collapse
|
45
|
Park HJ, Lee SW, Park H, Park SH, Hong S. A Tubulin Inhibitor, N-(5-Benzyl-1,3-thiazol-2-yl)-3-(furan-2-yl)prop-2-enamide, Induces Anti-inflammatory Innate Immune Responses to Attenuate LPS-mediated Septic Shock. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.11.3307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Olafsdottir A, Thorlacius GE, Omarsdottir S, Olafsdottir ES, Vikingsson A, Freysdottir J, Hardardottir I. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1451-1457. [PMID: 24877713 DOI: 10.1016/j.phymed.2014.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/12/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Astridur Olafsdottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | - Gudny Ella Thorlacius
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | | | | | - Arnor Vikingsson
- Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland
| | - Jona Freysdottir
- Department of Immunology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland; Center for Rheumatology Research, Landspitali - The National University Hospital of Iceland, Iceland; Department of Immunology, Landspitali - The National University Hospital of Iceland, Iceland
| | - Ingibjorg Hardardottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Biomedical Center, University of Iceland, Iceland.
| |
Collapse
|
47
|
Murata H, Hattori T, Maeda H, Takashiba S, Takigawa M, Kido J, Nagata T. Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-α expression upon lipopolysaccharide stimulation in human monocytes. J Periodontal Res 2014; 50:452-60. [PMID: 25202836 DOI: 10.1111/jre.12227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Tumor necrosis factor alpha (TNF-α) is a major cytokine implicated in various inflammatory diseases. The nature of the nuclear factors associated with human TNF-α gene regulation is not well elucidated. We previously identified a novel region located from -550 to -487 in human TNF-α promoter that did not contain the reported binding sites for nuclear factor kappa B (NF-κB) but showed lipopolysaccharide (LPS)-induced transcriptional activity. The purpose of this study is to identify novel factors that bind to the promoter region and regulate TNF-α expression. MATERIAL AND METHODS To identify DNA-binding proteins that bound to the target region of TNF-α promoter, a cDNA library from LPS-stimulated human monocytic cell line THP-1 was screened using a yeast one-hybrid system. Cellular localizations of the DNA-binding protein in the cells were examined by subcellular immunocytochemistry. Nuclear amounts of the protein in LPS-stimulated THP-1 cells were identified by western blot analysis. Expression of mRNA of the protein in the cells was quantified by real-time polymerase chain reaction. Electrophoretic mobility shift assays were performed to confirm the DNA-binding profile. Overexpression of the protein and knockdown of the gene were also performed to investigate the role for TNF-α expression. RESULTS Several candidates were identified from the cDNA library and transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) was focused on. Western blot analysis revealed that nuclear TDP-43 protein was increased in the LPS-stimulated THP-1 cells. Expression of TDP-43 mRNA was already enhanced before TNF-α induction by LPS. Electrophoretic mobility shift assay analysis showed that nuclear extracts obtained by overexpressing FLAG-tagged TDP-43 bound to the -550 to -487 TNF-α promoter fragments. Overexpression of TDP-43 in THP-1 cells resulted in an increase of TNF-α expression. Knockdown of TDP-43 in THP-1 cells downregulated TNF-α expression. CONCLUSION We identified TDP-43 as one of the novel TNF-α factors and found that it bound to the LPS-responsive element in the TNF-α promoter to increase TNF-α expression.
Collapse
Affiliation(s)
- H Murata
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - T Hattori
- Department of Biochemistry & Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - H Maeda
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - S Takashiba
- Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - M Takigawa
- Department of Biochemistry & Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - J Kido
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - T Nagata
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Secretoglobin 3A2 Attenuates Lipopolysaccharide-Induced Inflammation Through Inhibition of ERK and JNK Pathways in Bronchial Epithelial Cells. Inflammation 2014; 38:828-34. [DOI: 10.1007/s10753-014-9992-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L524-36. [PMID: 25106430 DOI: 10.1152/ajplung.00077.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.
Collapse
Affiliation(s)
- Hidenori Kage
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Danping Gao
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Crystal N Marconett
- Departments of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center
| | - Lucas DeMaio
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Departments of Physiology and Biophysics and Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California; Department of Biomedical Engineering and
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Pathology, Keck School of Medicine, University of Southern California; Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center,
| |
Collapse
|
50
|
Chan MA, Gigliotti NM, Aubin BG, Rosenwasser LJ. FCER2 (CD23) asthma-related single nucleotide polymorphisms yields increased IgE binding and Egr-1 expression in human B cells. Am J Respir Cell Mol Biol 2014; 50:263-9. [PMID: 24010859 DOI: 10.1165/rcmb.2013-0112oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD23 is the low-affinity Fc receptor for IgE. When expressed on B cells, CD23 appears to play a role in regulation of IgE synthesis. Polymorphisms within FCER2, the gene encoding CD23, have been associated with atopy, increased risk of exacerbations in patients with asthma, and high serum IgE levels. A single-nucleotide polymorphism (rs2228137) present in exon 4 of FCER2 encodes a nonsynonymous amino acid change (R62W) and is the subject of the present analysis. Human B cell stable transfectants were established to characterize the functional relevance of the R62W SNP. We demonstrate that CD23b-R62W-expressing human B cells bind IgE with greater affinity than wild-type cells and display differences in kinetics of CD23-mediated ERK1/2 activation that may be responsible for the increased levels of Egr-1 mRNA observed after stimulation through CD23. Finally, the R62W SNP seems to alter the tertiary or quaternary structure of CD23 because in the absence of N-glycosylation the CD23b-R62W-expressing cells appear to be less sensitive to endogenous proteases. These observations may have implications in mechanisms responsible for the atopic phenotypes observed in patients with asthma who possess this genotype.
Collapse
Affiliation(s)
- Marcia A Chan
- Department of Pediatrics, Division of Immunology Research, Children's Mercy Hospitals & Clinics, Kansas City, Missouri
| | | | | | | |
Collapse
|