1
|
Sammut MJ, Dotzert MS, Melling CWJ. Mechanisms of insulin resistance in type 1 diabetes mellitus: A case of glucolipotoxicity in skeletal muscle. J Cell Physiol 2024:e31419. [PMID: 39192756 DOI: 10.1002/jcp.31419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Insulin resistance (IR), a hallmark of type 2 diabetes mellitus, develops in a significant number of patients with type 1 diabetes mellitus (T1DM) despite the use of insulin therapy to control glycemia. However, little is currently understood regarding the underlying mechanisms of IR in T1DM, especially within the context of chronic insulin treatment. Recent evidence suggests an important influence of glucolipotoxicity in skeletal muscle on insulin sensitivity in T1DM. Thus, this review summarizes our current knowledge regarding impairments in skeletal muscle lipid, glucose, and oxidative metabolism in the development of IR in insulin-treated T1DM.
Collapse
Affiliation(s)
- Mitchell J Sammut
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Michelle S Dotzert
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - C W James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 (Nrf1) in pancreatic β-cells. Biochem Biophys Res Commun 2024; 737:150478. [PMID: 39128225 DOI: 10.1016/j.bbrc.2024.150478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 (Nrf1), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β-cells. Expression of NRF1 target genes Tfam, Tfb1m and Tfb2m, and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi-genomic gene transcription in diabetes.
Collapse
Affiliation(s)
- Fionnuala Morrish
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Helene Gingras
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Joanna Noonan
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Li Huang
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ian R Sweet
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Iok Teng Kuok
- University of Washington Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Sue E Knoblaugh
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Sammut MJ, McBey DP, Sayal AP, Melling CWJ. The Effects of Resistance Exercise Training on Skeletal Muscle Metabolism and Insulin Resistance Development in Female Rodents with Type 1 Diabetes. J Diabetes Res 2024; 2024:5549762. [PMID: 38435452 PMCID: PMC10904684 DOI: 10.1155/2024/5549762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
The etiology of insulin resistance (IR) development in type 1 diabetes mellitus (T1DM) remains unclear; however, impaired skeletal muscle metabolism may play a role. While IR development has been established in male T1DM rodents, female rodents have yet to be examined in this context. Resistance exercise training (RT) has been shown to improve IR and is associated with a lower risk of hypoglycemia onset in T1DM compared to aerobic exercise. The purpose of this study was to investigate the effects of RT on IR development in female T1DM rodents. Forty Sprague Dawley eight-week-old female rats were divided into four groups: control sedentary (CS; n = 10), control trained (CT; n = 10), T1DM sedentary (DS; n = 10), and T1DM trained (DT; n = 10). Multiple low-dose streptozotocin injections were used to induce T1DM. Blood glucose levels were maintained in the 4-9 mmol/l range with intensive insulin therapy. CT and DT underwent weighted ladder climbing 5 days/week for six weeks. Intravenous glucose tolerance tests (IVGTT) were conducted on all animals following the six-week period. Results demonstrate that DS animals exhibited significantly increased weekly blood glucose measures compared to all groups including DT (p < 0.0001), despite similar insulin dosage levels. This was concomitant with a significant increase in insulin-adjusted area under the curve following IVGTT in DS (p < 0.05), indicative of a reduction in insulin sensitivity. Both DT and DS exhibited greater serum insulin concentrations compared to CT and CS (p < 0.05). DS animals also exhibited significantly greater glycogen content in white gastrocnemius muscle compared to CS and DT (p < 0.05), whereas DT and DS animals exhibited greater p-Akt: Akt ratio in the white vastus lateralis muscle and citrate synthase activity in the red vastus lateralis muscle compared to CS and CT (p < 0.05). These results indicate that female rodents with T1DM develop poor glycemic control and IR which can be attenuated with RT, possibly related to differences in intramyocellular glycogen content.
Collapse
Affiliation(s)
- Mitchell J. Sammut
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - David P. McBey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - Amit P. Sayal
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
| | - C. W. James Melling
- School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
4
|
Petrelli A, Cugnata F, Carnovale D, Bosi E, Libman IM, Piemonti L, Cuthbertson D, Sosenko JM. HOMA-IR and the Matsuda Index as predictors of progression to type 1 diabetes in autoantibody-positive relatives. Diabetologia 2024; 67:290-300. [PMID: 37914981 PMCID: PMC10789859 DOI: 10.1007/s00125-023-06034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023]
Abstract
AIM/HYPOTHESIS We assessed whether HOMA-IR and the Matsuda Index are associated with transitions through stages of type 1 diabetes. METHODS Autoantibody (AAb)-positive relatives of individuals with type 1 diabetes (n=6256) from the TrialNet Pathway to Prevention were studied. Associations of indicators of insulin resistance (HOMA-IR) and insulin sensitivity (Matsuda Index) with BMI percentile (BMIp) and age were assessed with adjustments for measures of insulin secretion, Index60 and insulinogenic index (IGI). Cox regression was used to determine if tertiles of HOMA-IR and Matsuda Index predicted transitions from Not Staged (<2 AAbs) to Stage 1 (≥2 AAbs and normoglycaemia), from Stage 1 to Stage 2 (≥2 AAbs with dysglycaemia), and progression to Stage 3 (diabetes as defined by WHO/ADA criteria). RESULTS There were strong associations of HOMA-IR (positive) and Matsuda Index (inverse) with baseline age and BMIp (p<0.0001). After adjustments for Index60, transitioning from Stage 1 to Stage 2 was associated with higher HOMA-IR and lower Matsuda Index (HOMA-IR: HR=1.71, p<0.0001; Matsuda Index, HR=0.40, p<0.0001), as with progressing from Stages 1 or 2 to Stage 3 (HOMA-IR: HR=1.98, p<0.0001; Matsuda Index: HR=0.46, p<0.0001). Without adjustments, associations of progression to Stage 3 were inverse for HOMA-IR and positive for Matsuda Index, opposite in directionality with adjustments. When IGI was used in place of Index60, the findings were similar. CONCLUSIONS/INTERPRETATION Progression to Stages 2 and 3 of type 1 diabetes increases with HOMA-IR and decreases with the Matsuda Index after adjustments for insulin secretion. Indicators of insulin secretion appear helpful for interpreting associations of progression to type 1 diabetes with HOMA-IR or the Matsuda Index in AAb-positive relatives.
Collapse
Affiliation(s)
| | - Federica Cugnata
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Debora Carnovale
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ingrid M Libman
- Division of Endocrinology, Diabetes and Metabolism, University of Pittsburgh and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - David Cuthbertson
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Jay M Sosenko
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami, Miami, FL, USA
| |
Collapse
|
5
|
Morrish F, Gingras H, Noonan J, Huang L, Sweet IR, Kuok IT, Knoblaugh SE, Hockenbery DM. Mitochondrial diabetes in mice expressing a dominant-negative allele of nuclear respiratory factor-1 ( Nrf1 ) in pancreatic β-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.524153. [PMID: 38014068 PMCID: PMC10680558 DOI: 10.1101/2023.01.22.524153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with β-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic β-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in β- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in β-cells was sufficient to restore β-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of β-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.
Collapse
|
6
|
Wang H, Akbari-Alavijeh S, Parhar RS, Gaugler R, Hashmi S. Partners in diabetes epidemic: A global perspective. World J Diabetes 2023; 14:1463-1477. [PMID: 37970124 PMCID: PMC10642420 DOI: 10.4239/wjd.v14.i10.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 10/09/2023] Open
Abstract
There is a recent increase in the worldwide prevalence of both obesity and diabetes. In this review we assessed insulin signaling, genetics, environment, lipid metabolism dysfunction and mitochondria as the major determinants in diabetes and to identify the potential mechanism of gut microbiota in diabetes diseases. We searched relevant articles, which have key information from laboratory experiments, epidemiological evidence, clinical trials, experimental models, meta-analysis and review articles, in PubMed, MEDLINE, EMBASE, Google scholars and Cochrane Controlled Trial Database. We selected 144 full-length articles that met our inclusion and exclusion criteria for complete assessment. We have briefly discussed these associations, challenges, and the need for further research to manage and treat diabetes more efficiently. Diabetes involves the complex network of physiological dysfunction that can be attributed to insulin signaling, genetics, environment, obesity, mitochondria and stress. In recent years, there are intriguing findings regarding gut microbiome as the important regulator of diabetes. Valid approaches are necessary for speeding medical advances but we should find a solution sooner given the burden of the metabolic disorder - What we need is a collaborative venture that may involve laboratories both in academia and industries for the scientific progress and its application for the diabetes control.
Collapse
Affiliation(s)
- Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning Province, China
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Safoura Akbari-Alavijeh
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ranjit S Parhar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Randy Gaugler
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Sarwar Hashmi
- Rutgers Center for Vector Biology, Rutgers University, New Brunswick, NJ 08901, United States
- Research and Diagnostics, Ghazala and Sanya Hashmi Foundation, Holmdel, NJ 07733, United States
| |
Collapse
|
7
|
Schön M, Zaharia OP, Strassburger K, Kupriyanova Y, Bódis K, Heilmann G, Strom A, Bönhof GJ, Michelotti F, Yurchenko I, Möser C, Huttasch M, Bombrich M, Kelm M, Burkart V, Schrauwen-Hinderling VB, Wagner R, Roden M. Intramyocellular Triglyceride Content During the Early Course of Type 1 and Type 2 Diabetes. Diabetes 2023; 72:1483-1492. [PMID: 37478166 PMCID: PMC10545555 DOI: 10.2337/db23-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Intramyocellular lipid content (IMCL) is elevated in insulin-resistant humans, but it changes over time, and relationships with comorbidities remain unclear. We examined IMCL during the initial course of diabetes and its associations with complications. Participants of the German Diabetes Study (GDS) with recent-onset type 1 (n = 132) or type 2 diabetes (n = 139) and glucose-tolerant control subjects (n = 128) underwent 1H-MRS to measure IMCL and muscle volume, whole-body insulin sensitivity (hyperinsulinemic-euglycemic clamps; M-value), and cycling spiroergometry (VO2max). Subgroups underwent the same measurements after 5 years. At baseline, IMCL was ∼30% higher in type 2 diabetes than in other groups independently of age, sex, BMI, and muscle volume. In type 2 diabetes, the M-value was ∼36% and ∼62% lower compared with type 1 diabetes and control subjects, respectively. After 5 years, the M-value decreased by ∼29% in type 1 and ∼13% in type 2 diabetes, whereas IMCL remained unchanged. The correlation between IMCL and M-value in type 2 diabetes at baseline was modulated by VO2max. IMCL also associated with microalbuminuria, the Framingham risk score for cardiovascular disease, and cardiac autonomic neuropathy. Changes in IMCL within 5 years after diagnosis do not mirror the progression of insulin resistance in type 2 diabetes but associate with early diabetes-related complications. ARTICLE HIGHLIGHTS Intramyocellular lipid content (IMCL) can be elevated in insulin-resistant humans, but its dynamics and association with comorbidities remain unclear. Independently of age, sex, body mass, and skeletal muscle volume, IMCL is higher in recent-onset type 2, but not type 1 diabetes, and remains unchanged within 5 years, despite worsening insulin resistance. A degree of physical fitness modulates the association between IMCL and insulin sensitivity in type 2 diabetes. Whereas higher IMCL associates with lower insulin sensitivity in people with lower physical fitness, there is no association between IMCL and insulin sensitivity in those with higher degree of physical fitness. IMCL associates with progression of microalbuminuria, cardiovascular disease risk, and cardiac autonomic neuropathy.
Collapse
Affiliation(s)
- Martin Schön
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Oana P. Zaharia
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Kálmán Bódis
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Geronimo Heilmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Gidon J. Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Filippo Michelotti
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Iryna Yurchenko
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Clara Möser
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Maria Bombrich
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Vera B. Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Robert Wagner
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Arlien-Søborg MC, Madsen MA, Dal J, Krusenstjerna-Hafstrøm T, Ringgaard S, Skou N, Høgild M, Jørgensen JOL. Ectopic lipid deposition and insulin resistance in patients with GH disorders before and after treatment. Eur J Endocrinol 2023; 188:6984866. [PMID: 36651164 DOI: 10.1093/ejendo/lvac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Insulin resistance is associated with ectopic lipid deposition. Growth hormone (GH) status also modulates ectopic lipid accumulation, but how this associates with insulin resistance in patients with GH disorders is not well established. DESIGN AND METHODS Twenty-one patients diagnosed with acromegaly and 12 patients with adult GH deficiency (GHD) were studied at diagnosis and after treatment. A reference group of 12 subjects was included. Each study day comprised assessment of body composition with dual-energy X-ray absorptiometry, ectopic lipid deposition in the liver by MR spectroscopy, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). RESULTS Disease control of acromegaly decreased lean body mass (LBM) (P < .000) and increased the percentage of total body fat (TBF) (P < .000). GH replacement increased LBM in the GHD patients (P = .007) and decreased the percentage of TBF (P = .010). The intrahepatic lipid (IHL) content increased after disease control in acromegaly (P = .004), whereas IHL did not change significantly after GH replacement in GHD (P = .34). Insulin resistance (HOMA-IR) improved after disease control of acromegaly (P < .000) and remained unaltered after GH replacement in the GHD patients (P = .829). CONCLUSIONS GH status is a significant modulator of body composition and insulin sensitivity.GH excess reduces total fat mass and intrahepatic lipid content together with induction of insulin resistance.The data support the notion that GH-induced insulin resistance is unassociated with hepatic lipid accumulation.
Collapse
Affiliation(s)
- Mai C Arlien-Søborg
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Alle Madsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Dal
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Nickolaj Skou
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høgild
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Otto Lunde Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Medical Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Zupančič B, Umek N, Ugwoke CK, Cvetko E, Horvat S, Grdadolnik J. Application of FTIR Spectroscopy to Detect Changes in Skeletal Muscle Composition Due to Obesity with Insulin Resistance and STZ-Induced Diabetes. Int J Mol Sci 2022; 23:ijms232012498. [PMID: 36293355 PMCID: PMC9603871 DOI: 10.3390/ijms232012498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Age, obesity, and diabetes mellitus are pathophysiologically interconnected factors that significantly contribute to the global burden of non-communicable diseases. These metabolic conditions are associated with impaired insulin function, which disrupts the metabolism of carbohydrates, lipids, and proteins and can lead to structural and functional changes in skeletal muscle. Therefore, the alterations in the macromolecular composition of skeletal muscle may provide an indication of the underlying mechanisms of insulin-related disorders. The aim of this study was to investigate the potential of Fourier transform infrared (FTIR) spectroscopy to reveal the changes in macromolecular composition in weight-bearing and non-weight-bearing muscles of old, obese, insulin-resistant, and young streptozotocin (STZ)-induced diabetic mice. The efficiency of FTIR spectroscopy was evaluated by comparison with the results of gold-standard histochemical techniques. The differences in biomolecular phenotypes and the alterations in muscle composition in relation to their functional properties observed from FTIR spectra suggest that FTIR spectroscopy can detect most of the changes observed in muscle tissue by histochemical analyses and more. Therefore, it could be used as an effective alternative because it allows for the complete characterization of macromolecular composition in a single, relatively simple experiment, avoiding some obvious drawbacks of histochemical methods.
Collapse
Affiliation(s)
- Barbara Zupančič
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Nejc Umek
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| | | | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon Horvat
- Chair for Genetics, Biotechnology and Immunology, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | - Jože Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, 1000 Ljubljana, Slovenia
- Correspondence: (N.U.); (J.G.)
| |
Collapse
|
10
|
Stephenson MC, Krishna L, Pannir Selvan RM, Tai YK, Kit Wong CJ, Yin JN, Toh SJ, Torta F, Triebl A, Fröhlich J, Beyer C, Li JZ, Tan SS, Wong CK, Chinnasamy D, Pakkiri LS, Lee Drum C, Wenk MR, Totman JJ, Franco-Obregón A. Magnetic field therapy enhances muscle mitochondrial bioenergetics and attenuates systemic ceramide levels following ACL reconstruction: Southeast Asian randomized-controlled pilot trial. J Orthop Translat 2022; 35:99-112. [PMID: 36262374 PMCID: PMC9574347 DOI: 10.1016/j.jot.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium–mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 mT for 10 min) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi + PCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.
Collapse
Affiliation(s)
- Mary C. Stephenson
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Corresponding author. Centre for Translational MR Research, Yong Loo Lin School of Medicine, Tahir Foundation Building, 13-03, MD1, National University of Singapore, Singapore, 117549.
| | - Lingaraj Krishna
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Rina Malathi Pannir Selvan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| | - Craig Jun Kit Wong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Jocelyn Naixin Yin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Shi-Jie Toh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Christian Beyer
- Centre Suisse d'électronique et de Microtechnique, CSEM SA, Neuchatel, Switzerland
| | - Jing Ze Li
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sara S. Tan
- Division of Sports Medicine and Surgery, Department of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore
| | - Chun-Kit Wong
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duraimurugan Chinnasamy
- National University Hospital, Department of Rehabilitation Centre, National University Health System, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chester Lee Drum
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS), Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore,Precision Medicine Translational Research Program, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John J. Totman
- Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Academic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland,Corresponding author. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block Level 8, 1E Kent Ridge Road, Singapore, 119228.
| |
Collapse
|
11
|
McDonnell T, Cussen L, McIlroy M, O’Reilly MW. Characterizing skeletal muscle dysfunction in women with polycystic ovary syndrome. Ther Adv Endocrinol Metab 2022; 13:20420188221113140. [PMID: 35874313 PMCID: PMC9297442 DOI: 10.1177/20420188221113140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine condition affecting women. It has traditionally been viewed as a primarily reproductive disorder; however, it is increasingly recognized as a lifelong metabolic disease. Women with PCOS are at increased risk of insulin resistance (IR), type 2 diabetes mellitus, non-alcoholic fatty liver disease and cardiovascular disease. Although not currently a diagnostic criterion, IR is a cardinal pathophysiological feature and highly prevalent in women with PCOS. Androgens play a bidirectional role in the pathogenesis of IR, and there is a complex interplay between IR and androgen excess in women with PCOS. Skeletal muscle has a key role in maintaining metabolic homeostasis and is also a metabolic target organ of androgen action. Skeletal muscle is the organ responsible for the majority of insulin-mediated glucose disposal. There is growing interest in the relationship between skeletal muscle, androgen excess and mitochondrial dysfunction in the pathogenesis of metabolic disease in PCOS. Molecular mechanisms underpinning defects in skeletal muscle dysfunction in PCOS remain to be elucidated, but may represent promising targets for future therapeutic intervention. In this review, we aim to explore the role of skeletal muscle in metabolism, focusing particularly on perturbations in skeletal muscle specific to PCOS as observed in recent molecular and in vivo human studies. We review the possible role of androgens in the pathophysiology of skeletal muscle abnormalities in PCOS, and identify knowledge gaps, areas for future research and potential therapeutic implications. Despite increasing interest in the area of skeletal muscle dysfunction in women with PCOS, significant challenges and unanswered questions remain, and going forward, novel innovative approaches will be required to dissect the underlying mechanisms.
Collapse
Affiliation(s)
- Tara McDonnell
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Leanne Cussen
- Department of Medicine, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Republic of Ireland
- Department of Endocrinology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Republic of Ireland
| | | |
Collapse
|
12
|
Bitkin EC, Kara C, Yılmaz GC, Mammadova J, Aydın HM. Evaluation of children with type 1 diabetes mellitus in terms of overweight/obesity in tertiary care hospital. J Pediatr Endocrinol Metab 2021; 34:995-1000. [PMID: 34162026 DOI: 10.1515/jpem-2021-0268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Obesity is a growing problem in type 1 diabetes mellitus (T1DM) today. The aim of our study is to determine the frequency of overweight/obesity at the time of diagnosis and during follow-up in children with T1DM as well as review the conditions that may accompany. METHODS A total of 315 patients with T1DM were retrospectively analyzed. The patients were divided into two groups as normal weight and overweight/obese. The two groups were compared in terms of age at diagnosis, birth weight, anthropometric measurements, insulin dose used and blood pressure measurements, and insulin, c-peptide, hemoglobin A1c, triglyceride, and high-density lipoprotein levels at the time of diagnosis and follow-up. RESULTS The height, weight and body mass index standard deviation (BMI SD) scores, and c-peptide levels at the time of diagnosis of the overweight/obese group were higher than those with normal weight (p<0.001 and p = 0.008, respectively). The frequency of dyslipidemia and hypertension was higher in the overweight/obese group than in the normal weight group [18.2 vs. 5% (p = 0.015) and 10 vs. 1.5% (p = 0.003), respectively]. CONCLUSIONS In our study, the fact that the overweight/obese group had higher BMI and c-peptide and lower HDL values at the time of diagnosis can be evaluated as indicators that insulin resistance syndrome can accompany T1DM from the beginning (double diabetes). When determining the treatment and follow-up strategies of patients with T1DM, considering the risk of obesity and taking the necessary precautions is very important in terms of morbidity.
Collapse
Affiliation(s)
- Eda Celebi Bitkin
- Department of Pediatrics, Van Yüzüncü Yıl University, Faculty of Medicine, Division of Pediatric Endocrinology, Van, Turkey
| | - Cengiz Kara
- Department of Pediatrics, Istinye University, Faculty of Medicine, Division of Pediatric Endocrinology, Istanbul, Turkey
| | - Gülay Can Yılmaz
- Department of Pediatrics, Muğla Sıtkı Koçman University, Faculty of Medicine, Division of Pediatric Endocrinology, Muğla, Turkey
| | - Jamala Mammadova
- Department of Pediatrics, Istinye University, Faculty of Medicine, Division of Pediatric Endocrinology, Istanbul, Turkey
| | - Hasan Murat Aydın
- Department of Pediatrics, Ondokuz Mayis University, Faculty of Medicine, Division of Pediatric Endocrinology, Samsun, Turkey
| |
Collapse
|
13
|
Hua X, Kratz M, Malen RC, Dai JY, Lindström S, Zheng Y, Newcomb PA. Association between post-treatment circulating biomarkers of inflammation and survival among stage II-III colorectal cancer patients. Br J Cancer 2021; 125:806-815. [PMID: 34230610 DOI: 10.1038/s41416-021-01458-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Biomarker studies on colorectal cancer (CRC) prognosis are limited to pre-diagnostic or pre-operative measures. Post-treatment biomarkers are not well understood for their associations with CRC survival. METHODS We included 306 eligible incident stage II-III CRC cases from the population-based Seattle Colon Cancer Family Registry. Concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), adiponectin, and leptin were measured using post-treatment plasma samples. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause and CRC-specific mortality were calculated using Cox proportional hazard models. RESULTS Elevated levels of CRP, IL-6, MCP-1, and adiponectin were significantly associated with a higher risk of all-cause mortality within 10 years post blood draw with HRs (95% CI) of 1.32 (1.10-2.59), 2.72 (2.07-3.56), 1.97 (1.18-3.28) and 1.71 (1.14-2.58), respectively. IL-6 and adiponectin had a dose-response effect (Ptrend < 0.0001). For CRC-specific mortality, we observed positive associations for CRP (HR = 1.75, 95% CI: 1.2-2.56), IL-6 (HR = 5.02, 95% CI: 2.92-8.59), MCP-1 (HR = 3.78, 95% CI: 1.41-10.08), and adiponectin (HR = 3.16, 95% CI: 1.27-7.86), and inverse association for leptin (HR = 0.44, 95% CI: 0.29-0.68) within the first year of blood draw, whereas the association for IL-6 remained statistically significant over 10 years. CONCLUSION Our results support the role of chronic inflammation in CRC progression and suggested several post-treatment inflammatory biomarkers, particularly IL-6, are promising prognostic markers for stage II-III CRC patients.
Collapse
Affiliation(s)
- Xinwei Hua
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA.,Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Kratz
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Rachel C Malen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James Y Dai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Sara Lindström
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Yingye Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,University of Washington, Seattle, WA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Adiponectin enhances the bioenergetics of cardiac myocytes via an AMPK- and succinate dehydrogenase-dependent mechanism. Cell Signal 2021; 78:109866. [PMID: 33271223 PMCID: PMC9619024 DOI: 10.1016/j.cellsig.2020.109866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
Adiponectin is one of the most abundant circulating hormones, which through adenosine monophosphate-activated protein kinase (AMPK), enhances fatty acid and glucose oxidation, and exerts a cardioprotective effect. However, its effects on cellular bioenergetics have not been explored. We have previously reported that 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR, an AMPK activator) enhances mitochondrial respiration through a succinate dehydrogenase (SDH or complex II)-dependent mechanism in cardiac myocytes, leading us to predict that Adiponectin would exert a similar effect via activating AMPK. Our results show that Adiponectin enhances basal mitochondrial oxygen consumption rate (OCR), ATP production, and spare respiratory capacity (SRC), which were all abolished by the knockdown of AMPKγ1, inhibition of SDH complex assembly, via the knockdown of the SDH assembly factor 1 (Sdhaf1), or inhibition of SDH activity. Additionally, Adiponectin alleviated hypoxia-induced reductions in OCR and ATP production, in a Sdhaf1-dependent manner, whereas overexpression of Sdhaf1 confirmed its sufficiency for mediating these effects. Importantly, the levels of holoenzyme SDH under the various conditions correlated with OCR. We also show that the effects of Adiponectin, AMPK, Sdhaf1, as well as, SDH complex assembly all required sirtuin 3 (Sirt3). In conclusion, Adiponectin potentiates mitochondrial bioenergetics via promoting SDH complex assembly in an AMPK-, Sdhaf1-, and Sirt3-dependent fashion in cardiac myocytes.
Collapse
|
15
|
An HJ, Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Nam SW, Kim JS, Yang JW, Lee JY, Smith L, Koyanagi A, Jacob L, Li H, Shin JI, Kronbichler A. Sarcopenia in Autoimmune and Rheumatic Diseases: A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21165678. [PMID: 32784808 PMCID: PMC7461030 DOI: 10.3390/ijms21165678] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia refers to a decrease in skeletal muscle mass and function. Because sarcopenia affects mortality, and causes significant disability, the clinical importance of sarcopenia is emerging. At first, sarcopenia was recognized as an age-related disease but, recently, it has been reported to be prevalent also in younger patients with autoimmune diseases. Specifically, the association of sarcopenia and autoimmune diseases such as rheumatoid arthritis has been studied in detail. Although the pathogenesis of sarcopenia in autoimmune diseases has not been elucidated, chronic inflammation is believed to contribute to sarcopenia, and moreover the pathogenesis seems to be different depending on the respective underlying disease. The definition of sarcopenia differs among studies, which limits direct comparisons. Therefore, in this review, we cover various definitions of sarcopenia used in previous studies and highlight the prevalence of sarcopenia in diverse autoimmune diseases including rheumatoid arthritis, spondyloarthritis, systemic sclerosis, inflammatory bowel disease, and autoimmune diabetes. In addition, we cover the pathogenesis and treatment of sarcopenia in autoimmune and rheumatic diseases. This review provides a comprehensive understanding of sarcopenia in various autoimmune diseases and highlights the need for a consistent definition of sarcopenia.
Collapse
Affiliation(s)
- Hyo Jin An
- Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, 28100 Novara, Italy; (S.T.); (S.C.)
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Seoung Wan Nam
- Department of Rheumatology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Jun Young Lee
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea; (J.S.K.); (J.W.Y.); (J.Y.L.)
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Science, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain; (A.K.); (L.J.)
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830 Barcelona, Spain; (A.K.); (L.J.)
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78000 Versailles, France
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-22282-050
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
16
|
Köken ÖY, Kara C, Yılmaz GC, Aydın HM. Utility of estimated glucose disposal rate for predicting metabolic syndrome in children and adolescents with type-1 diabetes. J Pediatr Endocrinol Metab 2020; 33:859-864. [PMID: 32628635 DOI: 10.1515/jpem-2020-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/21/2020] [Indexed: 11/15/2022]
Abstract
Objectives To determine the clinical utility of the estimated glucose disposal rate (eGDR) for predicting metabolic syndrome (MetS) in children and adolescents with type-1 diabetes (T1D). Methods Modified criteria of the International Diabetes Federation were used to determine MetS in children and adolescents between 10 and 18 years of age with T1D. The eGDR, a validated marker of insulin sensitivity, was calculated in two different ways using either the waist-to-hip ratio (WHR) or waist circumference (WC). Receiver operating characteristic (ROC) curve analysis was performed to ascertain cut-off levels of the eGDR to predict MetS. Results A total of 200 patients (52% male) with T1D were enrolled in the study. The prevalence of MetS was 10.5% (n: 21). Lower eGDR levels, indicating greater insulin resistance, were found in T1D patients with MetS when compared to those without (6.41 ± 1.86 vs. 9.50 ± 1.34 mg/kg/min) (p < 0.001). An eGDRWHR cut-off of 8.44 mg/kg/min showed 85.7% sensitivity and 82.6% specificity, while an eGDRWC cut-off of 8.16 mg/kg/min showed 76.1% sensitivity and 92.1% specificity for MetS diagnosis. The diagnostic odds ratio was 28.6 (7.3-131.0) for the eGDRWHR cut-off and 37.7 (10.8-140.8) for the eGDRWC cut-off. Conclusions The eGDR is a mathematical formula that can be used in clinical practice to detect the existence of MetS in children and adolescents with T1D using only the WC, existence of hypertension, and hemoglobin A1c levels. An eGDR calculated using the WC could be a preferred choice due to its higher diagnostic performance.
Collapse
Affiliation(s)
- Özlem Yayıcı Köken
- Department of Pediatrics, Division of Pediatric Neurology, Ankara City Hospital, Ankara, Turkey.,Üniversiteler Mahallesi Bilkent Cad, No: 1, Ankara Şehir Hastanesi, Çocuk Hastanesi, B1 katı, Çocuk Nörolojisi Departmanı, Çankaya, Ankara, Turkey
| | - Cengiz Kara
- Department of Pediatrics, Division of Pediatric Neurology, İstinye University, Istanbul, Turkey
| | - Gülay Can Yılmaz
- Department of Pediatrics, Division of Pediatric Neurology, Muğla Sıtkı Koçman Research and Training Hospital, Mugla, Turkey
| | - Hasan Murat Aydın
- Department of Pediatrics, Division of Pediatric Neurology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
17
|
Pathak MP, Das A, Patowary P, Chattopadhyay P. Contentious role of 'Good Adiponectin' in pulmonary and cardiovascular diseases: Is adiponectin directed therapy a boon or a bane? Biochimie 2020; 175:106-119. [PMID: 32473183 DOI: 10.1016/j.biochi.2020.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 11/24/2022]
Abstract
After two decades of its discovery, numerous facts of adiponectin (APN) biology has been uncovered, yet, APN remains an elusive adipokine. Findings from clinical studies and animal models established APN's ameliorative role in cardiovascular disease (CVD) and pulmonary disease (PD) but the same condition is prognostic for mortality in the same set of patients which cornered APN towards a dubious state. A repertoire of mechanisms associated with the positive association of APN in both lean/cachectic or obese CVD and PD patients from past publications are evaluated. Newer pharmacological agent may be explored to regulate elevated blood APN concentration in COPD or CHF patients whereas administration of recombinant APN as well as growth hormone may augment blood APN concentration in obese subjects associated with low blood and intracellular APN concentration. However, some APN directed therapy in clinical as well as in pre-clinical setup has pronounced some contentious effects. After reviewing the mechanisms of the contentious role of APN functioning in pathologic conditions of CVD and PD in both lean and obese conditions, the authors came to conclusion that APN directed therapy may be utilized with caution keeping in mind the different age group, sex and the different CVD as well as pulmonary diseases they are suffering from.
Collapse
Affiliation(s)
- Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Pompy Patowary
- Division of Pharmaceutical Technology, Defence Research Laboratory, Tezpur, India; Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | | |
Collapse
|
18
|
Gregory JM, Cherrington AD, Moore DJ. The Peripheral Peril: Injected Insulin Induces Insulin Insensitivity in Type 1 Diabetes. Diabetes 2020; 69:837-847. [PMID: 32312900 PMCID: PMC7171956 DOI: 10.2337/dbi19-0026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022]
Abstract
Insulin resistance is an underappreciated facet of type 1 diabetes that occurs with remarkable consistency and considerable magnitude. Although therapeutic innovations are continuing to normalize dysglycemia, a sizable body of data suggests a second metabolic abnormality-iatrogenic hyperinsulinemia-principally drives insulin resistance and its consequences in this population and has not been addressed. We review this evidence to show that injecting insulin into the peripheral circulation bypasses first-pass hepatic insulin clearance, which leads to the unintended metabolic consequence of whole-body insulin resistance. We propose restructuring insulin therapy to restore the physiological insulin balance between the hepatic portal and peripheral circulations and thereby avoid the complications of life-long insulin resistance. As technology rapidly advances and our ability to ensure euglycemia improves, iatrogenic insulin resistance will become the final barrier to overcome to restore normal physiology, health, and life in type 1 diabetes.
Collapse
Affiliation(s)
- Justin M Gregory
- Ian Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Daniel J Moore
- Ian Burr Division of Pediatric Endocrinology and Diabetes, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
19
|
Yayıcı Köken Ö, Kara C, Can Yılmaz G, Aydın HM. Prevalence of Obesity and Metabolic Syndrome in Children with Type 1 Diabetes: A Comparative Assessment Based on Criteria Established by the International Diabetes Federation, World Health Organisation and National Cholesterol Education Program. J Clin Res Pediatr Endocrinol 2020; 12:55-62. [PMID: 31434460 PMCID: PMC7127892 DOI: 10.4274/jcrpe.galenos.2019.2019.0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 01/04/2023] Open
Abstract
Objective To determine the prevalence of obesity and metabolic syndrome (MetS) in children and adolescents with type 1 diabetes (T1D) and to compare the widely accepted and used diagnostic criteria for MetS established by the International Diabetes Federation (IDF), World Health Organisation (WHO) and National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII). Methods We conducted a descriptive, cross sectional study including T1D patients between 8-18 years of age. The three sets of criteria were used to determine the prevalence of MetS and findings compared. Risk factors related to MetS were extracted from hospital records. Results The study included 200 patients with T1D (52% boys). Of these, 18% (n=36) were overweight/obese (body mass index percentile ≥85%). MetS prevalence was 10.5%, 8.5% and 13.5% according to IDF, WHO and NCEP criteria, respectively. There were no statistically significant differences in age, gender, family history of T1D and T2D, pubertal stage, duration of diabetes, hemoglobin A1c levels and daily insulin doses between patients with or without MetS. In the overweight or obese T1D patients, the prevalence of MetS was 44.4%, 38.8% and 44.4% according to IDF, WHO and NCEP-ATPIII criteria, respectively. Conclusion Obesity prevalence in the T1D cohort was similar to that of the healthy population of the same age. Prevalence of MetS was higher in children and adolescents with T1D compared to the obese population in Turkey. The WHO criteria include microvascular complications which are rare in childhood and the NCEP criteria do not include a primary criterion while diagnosing non-obese patients according to waist circumference as MetS because the existence of diabetes is considered as a direct criterion. Our study suggests that IDF criteria which allows the diagnosis of MetS with obesity and have accepted criteria for the childhood are more suitable for the diagnosis of MetS in children and adolescents with T1D.
Collapse
Affiliation(s)
- Özlem Yayıcı Köken
- University of Health Sciences Turkey, Dr. Sami Ulus Training and Research Hospital, Clinic of Pediatric Neurology, Ankara, Turkey
| | - Cengiz Kara
- İstinye University Faculty of Medicine, Department of Pediatrics, İstanbul, Turkey
| | - Gülay Can Yılmaz
- Mardin State Hospital, Clinic of Pediatric Endocrinology, Mardin, Turkey
| | - Hasan Murat Aydın
- Ondokuz Mayıs University Faculty of Medicine, Department of Pediatric Endocrinology, Samsun, Turkey
| |
Collapse
|
20
|
Simon MC, Möller-Horigome A, Strassburger K, Nowotny B, Knebel B, Müssig K, Herder C, Szendroedi J, Roden MW. Correlates of Insulin-Stimulated Glucose Disposal in Recent-Onset Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab 2019; 104:2295-2304. [PMID: 30689904 DOI: 10.1210/jc.2018-02057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/23/2019] [Indexed: 02/10/2023]
Abstract
CONTEXT AND OBJECTIVE Not only type 2 diabetes (T2D), but also type 1 diabetes (T1D), can be associated with insulin resistance, as assessed using insulin-stimulated whole-body glucose disposal (M-value). We hypothesized that different factors would affect the M-value at the onset of T1D and T2D. DESIGN AND PATIENTS We examined 132 patients with T1D or T2D matched for sex, age, and body mass index with a known diabetes duration of <12 months. Multivariable linear regression analyses were applied to test the associations between glycemic control, blood lipid levels, adiponectin, and proinflammatory immune mediators and the M-value, obtained from the hyperinsulinemic-euglycemic clamp. RESULTS Despite comparable age, body mass index, and near-normoglycemic control, the mean M-value was lower in those with T2D than in those with T1D. Patients with T1D had a lower waist/hip ratio and serum triglycerides but higher serum adiponectin than patients with T2D. However, the circulating proinflammatory markers were not different. Even with adjustments for glucose-lowering treatments, the fasting blood glucose correlated negatively with the M-value in both groups. However, gamma-glutamyl transferase-independently of any treatments-correlated negatively only in T2D. In contrast, serum adiponectin correlated positively with the M-values. CONCLUSIONS Fasting glycemia correlated with insulin-stimulated glucose disposal in both diabetes types. However, altered liver and adipose tissue function were associated with insulin-stimulated glucose disposal only in T2D, underpinning the specific differences between these diabetes types.
Collapse
Affiliation(s)
- Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Akiko Möller-Horigome
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael W Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
21
|
Monaco CMF, Gingrich MA, Hawke TJ. Considering Type 1 Diabetes as a Form of Accelerated Muscle Aging. Exerc Sport Sci Rev 2019; 47:98-107. [PMID: 30653028 DOI: 10.1249/jes.0000000000000184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent evidence reveals impairments to skeletal muscle health in adolescent/young adults with type 1 diabetes (T1D). Interestingly, the observed changes in T1D are not unlike aged muscle, particularly, the alterations to mitochondria. Thus, we put forth the novel hypothesis that T1D may be considered a condition of accelerated muscle aging and that, similar to aging, mitochondrial dysfunction is a primary contributor to this complication.
Collapse
Affiliation(s)
- Cynthia M F Monaco
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
22
|
Scott SN, Anderson L, Morton JP, Wagenmakers AJM, Riddell MC. Carbohydrate Restriction in Type 1 Diabetes: A Realistic Therapy for Improved Glycaemic Control and Athletic Performance? Nutrients 2019; 11:E1022. [PMID: 31067747 PMCID: PMC6566372 DOI: 10.3390/nu11051022] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Around 80% of individuals with Type 1 diabetes (T1D) in the United States do not achieve glycaemic targets and the prevalence of comorbidities suggests that novel therapeutic strategies, including lifestyle modification, are needed. Current nutrition guidelines suggest a flexible approach to carbohydrate intake matched with intensive insulin therapy. These guidelines are designed to facilitate greater freedom around nutritional choices but they may lead to higher caloric intakes and potentially unhealthy eating patterns that are contributing to the high prevalence of obesity and metabolic syndrome in people with T1D. Low carbohydrate diets (LCD; <130 g/day) may represent a means to improve glycaemic control and metabolic health in people with T1D. Regular recreational exercise or achieving a high level of athletic performance is important for many living with T1D. Research conducted on people without T1D suggests that training with reduced carbohydrate availability (often termed "train low") enhances metabolic adaptation compared to training with normal or high carbohydrate availability. However, these "train low" practices have not been tested in athletes with T1D. This review aims to investigate the known pros and cons of LCDs as a potentially effective, achievable, and safe therapy to improve glycaemic control and metabolic health in people with T1D. Secondly, we discuss the potential for low, restricted, or periodised carbohydrate diets in athletes with T1D.
Collapse
Affiliation(s)
- Sam N Scott
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
| | | | - James P Morton
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada.
- LMC Diabetes & Endocrinology, 1929 Bayview Avenue, Toronto, ON M4G 3E8, Canada.
| |
Collapse
|
23
|
Wolf P, Fellinger P, Pfleger L, Smajis S, Beiglböck H, Gajdošík M, Anderwald CH, Trattnig S, Luger A, Winhofer Y, Krššák M, Krebs M. Reduced hepatocellular lipid accumulation and energy metabolism in patients with long standing type 1 diabetes mellitus. Sci Rep 2019; 9:2576. [PMID: 30796305 PMCID: PMC6385341 DOI: 10.1038/s41598-019-39362-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
The prevalence of obesity and metabolic syndrome increases in patients with type 1 diabetes mellitus (T1DM). In the general population this is linked with ectopic lipid accumulation in liver (HCL) and skeletal muscle (IMCL), representing hallmarks in the development of insulin resistance. Moreover, hepatic mitochondrial activity is lower in newly diagnosed patients with T1DM. If this precedes later development of diabetes related fatty liver disease is currently not known. This study aims to investigate energy metabolism in liver (kATP) and skeletal muscle (kCK) and its impact on HCL, IMCL, cardiac fat depots and heart function in 10 patients with long standing T1DM compared to 11 well-matched controls by 31P/1H magnetic resonance spectroscopy. HCL was almost 70% lower in T1DM compared to controls (6.9 ± 5% vs 2.1 ± 1.3%; p = 0.030). Also kATP was significantly reduced (0.33 ± 0.1 s-1 vs 0.17 ± 0.1 s-1; p = 0.018). In T1DM, dose of basal insulin strongly correlated with BMI (r = 0.676, p = 0.032) and HCL (r = 0.643, p = 0.045), but not with kATP. In the whole cohort, HCL was significantly associated with BMI (r = 0.615, p = 0.005). In skeletal muscle kCK was lower in patients with T1DM (0.25 ± 0.05 s-1 vs 0.31 ± 0-04 s-1; p = 0.039). No significant differences were found in IMCL. Cardiac fat depots as well as heart function were not different. Our results in patients with long standing T1DM show that HCL is lower compared to matched controls, despite reduced energy metabolism in liver and skeletal muscle.
Collapse
Affiliation(s)
- Peter Wolf
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Paul Fellinger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - Sabina Smajis
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Gajdošík
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - Christian-Heinz Anderwald
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Siegfried Trattnig
- Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - Anton Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Yvonne Winhofer
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Centre of Excellence - High Field MR, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Wang N, Zhu F, Chen L, Chen K. Proteomics, metabolomics and metagenomics for type 2 diabetes and its complications. Life Sci 2018; 212:194-202. [DOI: 10.1016/j.lfs.2018.09.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 02/08/2023]
|
25
|
Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ. Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocr Rev 2018; 39:629-663. [PMID: 30060120 DOI: 10.1210/er.2017-00191] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
There has been an alarming increase in the prevalence of obesity in people with type 1 diabetes in recent years. Although obesity has long been recognized as a major risk factor for the development of type 2 diabetes and a catalyst for complications, much less is known about the role of obesity in the initiation and pathogenesis of type 1 diabetes. Emerging evidence suggests that obesity contributes to insulin resistance, dyslipidemia, and cardiometabolic complications in type 1 diabetes. Unique therapeutic strategies may be required to address these comorbidities within the context of intensive insulin therapy, which promotes weight gain. There is an urgent need for clinical guidelines for the prevention and management of obesity in type 1 diabetes. The development of these recommendations will require a transdisciplinary research strategy addressing metabolism, molecular mechanisms, lifestyle, neuropsychology, and novel therapeutics. In this review, the prevalence, clinical impact, energy balance physiology, and potential mechanisms of obesity in type 1 diabetes are described, with a special focus on the substantial gaps in knowledge in this field. Our goal is to provide a framework for the evidence base needed to develop type 1 diabetes-specific weight management recommendations that account for the competing outcomes of glycemic control and weight management.
Collapse
Affiliation(s)
- Karen D Corbin
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Kimberly A Driscoll
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado.,Barbara Davis Center for Diabetes, Aurora, Colorado
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - David M Maahs
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
26
|
Sedivy P, Dezortova M, Drobny M, Vlasakova Z, Herynek V, Hajek M. Differences in muscle metabolism in patients with type I diabetes - influence of gender and nephropathy studied by (31)P MR spectroscopy. Physiol Res 2018. [PMID: 29527910 DOI: 10.33549/physiolres.933745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type I diabetes mellitus (DM1) is a complex disease with adverse effects on organs and tissues despite compensation by insulin treatment. The goal of our study was to study how kidney diseases change (31)P MR parameters of muscle metabolism in DM1 patients with respect to gender. 51 DM1 patients (19 m/14 f without and 13 m/5 f with nephropathy) and 26 (14 m/12 f) healthy volunteers were examined using (31)P magnetic resonance spectroscopy at 3T tomograph at rest, and during and after a calf muscle exercise. The exercise consisted of a six-minute plantar flexion using a pedal ergometer followed by a six-minute recovery. It is reflected by reduced relative beta-ATP and increased Pi and phosphodiester signals to phosphocreatine (PCr) at rest and prolongation of the PCr recovery time after the exercise. Measurement on healthy volunteers indicated differences between males and females in pH at the rest and after the exercise only. These differences between patients groups were not significant. We have proven that nephropathy affects the metabolism in diabetic patients and our results confirm significant difference between patients with and without nephropathy. Gender differences in pH were observed only between male and female healthy volunteers.
Collapse
Affiliation(s)
- P Sedivy
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic.
| | | | | | | | | | | |
Collapse
|
27
|
Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol 2017; 54:615-630. [PMID: 28289908 DOI: 10.1007/s00592-017-0978-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
28
|
Cleland S. Double diabetes: the cardiovascular implications of combining type 1 with type 2 diabetes. PRACTICAL DIABETES 2017. [DOI: 10.1002/pdi.2120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steve Cleland
- Queen Elizabeth University Hospital and Gartnavel General Hospital; Glasgow UK
| |
Collapse
|
29
|
Orchard TJ, Cariou B, Connelly MA, Otvos JD, Zhang S, Antalis CJ, Ivanyi T, Hoogwerf BJ. The effects of basal insulin peglispro vs. insulin glargine on lipoprotein particles by NMR and liver fat content by MRI in patients with diabetes. Cardiovasc Diabetol 2017; 16:73. [PMID: 28587667 PMCID: PMC5461740 DOI: 10.1186/s12933-017-0555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022] Open
Abstract
Background In Phase 2/3 studies of basal insulin peglispro (BIL) compared to insulin glargine, patients with type 1 or type 2 diabetes previously treated with insulin and randomized to BIL had an increase in serum triglycerides (TGs). To further understand lipoprotein changes, a lipid substudy which included liver fat content was designed to assess relationships among the measured variables for each diabetes cohort and compare the hepato-preferential insulin BIL to glargine. Methods In three cohorts of patients with diabetes (type 1, type 2 insulin naïve, and type 2 previously on insulin; n = 652), liver fat content (LFC) was determined by magnetic resonance imaging (MRI) and blood lipids were analyzed by nuclear magnetic resonance (NMR) spectroscopy at baseline, 26 and 52 weeks of treatment. Apolipoproteins, adiponectin, and other lipid parameters were also measured. Descriptive statistics were done, as well as correlation analyses to look for relationships among LFC and lipoproteins or other lipid measures. Results In patients with type 1 diabetes treated with BIL, but not glargine, small LDL and medium and large VLDL subclass concentrations increased from baseline. In patients with type 2 diabetes previously on insulin and treated with BIL, large VLDL concentration increased from baseline. In insulin naïve patients with type 2 diabetes treated with BIL, there were very few changes, while in those treated with glargine, small LDL and large VLDL decreased from baseline. Baseline LFC correlated significantly in one or more cohorts with baseline large VLDL, small LDL, VLDL size, and Apo C3. Changes in LFC by treatment showed generally weak correlations with lipoprotein changes, except for positive correlations with large VLDL and VLDL size. Adiponectin was higher in patients with type 1 diabetes compared to patients with type 2 diabetes, but decreased with treatment with both BIL and glargine. Conclusions The lipoprotein changes were in line with the observed changes in serum TGs; i.e., the cohorts experiencing increased TGs and LFC with BIL treatment had decreased LDL size and increased VLDL size. These data and analyses add to the currently available information on the metabolic effects of insulins in a very carefully characterized cohort of patients with diabetes. Clinicaltrials.gov registration numbers and dates NCT01481779 (2011), NCT01435616 (2011), NCT01454284 (2011), NCT01582451 (2012) Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0555-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trevor J Orchard
- Department of Epidemiology, GSPH, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bertrand Cariou
- l'Institut du Thorax, CHU Nantes INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Margery A Connelly
- LipoScience, Laboratory Corporation of America Holdings, Morrisville, NC, 27560, USA
| | - James D Otvos
- LipoScience, Laboratory Corporation of America Holdings, Morrisville, NC, 27560, USA
| | - Shuyu Zhang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Caryl J Antalis
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Byron J Hoogwerf
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
30
|
Lukaszuk B, Miklosz A, Zendzian-Piotrowska M, Wojcik B, Gorski J, Chabowski A. Changes in the Diaphragm Lipid Content after Administration of Streptozotocin and High-Fat Diet Regime. J Diabetes Res 2017; 2017:3437169. [PMID: 29234684 PMCID: PMC5694988 DOI: 10.1155/2017/3437169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
The diaphragm is a dome-shaped skeletal muscle indispensable for breathing. Its activity contributes up to 70% of the total ventilatory function at rest. In comparison to other skeletal muscles, it is distinguished by an oxidative phenotype and uninterrupted cyclic contraction pattern. Surprisingly, the research regarding diaphragm diabetic phenotype particularly in the light of lipid-induced insulin resistance is virtually nonexistent. Male Wistar rats were randomly allocated into 3 groups: control, streptozotocin-induced (STZ) type-1 diabetes, and rodents fed with high-fat diet (HFD). Additionally, half of the animals from each group were administered with myriocin, a robust, selective inhibitor of ceramide synthesis and, therefore, a potent agent ameliorating insulin resistance. Diaphragm lipid contents were evaluated using chromatography. Fatty acid transporter expression was determined by Western blot. The STZ and HFD rats had increased concentration of lipids, namely, ceramides (CER) and diacylglycerols (DAG). Interestingly, this coincided with an increased concentration of long-chain (C ≥ 16) saturated fatty acid species present in both the aforementioned lipid fractions. The CER/DAG accumulation was accompanied by an elevated fatty acid transporter expression (FATP-1 in HFD and FATP-4 in STZ). Surprisingly, we observed a significantly decreased triacylglycerol content in the diaphragms of STZ-treated rats.
Collapse
Affiliation(s)
- Bartlomiej Lukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Miklosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Beata Wojcik
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Jan Gorski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Jiang L, Yao L, Yang Y, Ke D, Batey R, Wang J, Li Y. Jiangzhi Capsule improves fructose-induced insulin resistance in rats: Association with repair of the impaired sarcolemmal glucose transporter-4 recycling. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:288-298. [PMID: 27616031 DOI: 10.1016/j.jep.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiangzhi Capsule, originated from an experienced formula in traditional Chinese Medicine, has been listed and used for the management of metabolic abnormalities in Australia for a long time. To better understand Jiangzhi Capsule, this study investigated its effect on insulin resistance. MATERIALS AND METHODS Male rats were treated with liquid fructose in their drinking water over 14 weeks. Jiangzhi Capsule was co-administered (once daily, by oral gavage) during the last 7 weeks. Indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by real-time PCR, Western blot and/or immunohistochemistry. RESULTS Treatment with Jiangzhi Capsule (100mg/kg) attenuated fructose overconsumption-induced increases in basal plasma insulin concentrations, the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. The increased plasma glucose concentrations during oral glucose tolerance test were also inhibited. Furthermore, Jiangzhi Capsule had a trend to attenuate the decreased ratios of glucose and non-esterified fatty acids to plasma insulin concentrations. Mechanistically, this insulin-sensitizing action was accompanied by normalization of the downregulated sarcolemmal glucose transporter (GLUT)-4 protein expression and the decreased phosphorylated Akt to total Akt protein ratio in gastrocnemius. CONCLUSIONS These results suggest that Jiangzhi Capsule ameliorates fructose-induced insulin resistance with a link to repair of the impaired sarcolemmal GLUT-4 recycling through modulation of the ratio of phosphorylated Akt to total Akt in gastrocnemius. Our findings provide an evidence-based and mechanistic understanding of Jiangzhi Capsule for the management of insulin resistance-associated disorders.
Collapse
Affiliation(s)
- Lirong Jiang
- Faculty of Basic Medical Sciences, Chongqing Medical University, China.
| | - Ling Yao
- Laboratory of Traditional Chinese Medicine, Chongqing Medical University, China.
| | - Yifan Yang
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Australia.
| | - Dazhi Ke
- The Second Affiliated Hospital, Chongqing Medical University, China.
| | - Robert Batey
- Central Clinical School, Royal Prince Alfred Hospital, The University of Sydney, Australia.
| | - Jianwei Wang
- Laboratory of Traditional Chinese Medicine, Chongqing Medical University, China.
| | - Yuhao Li
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Australia.
| |
Collapse
|
32
|
Bacha F, Klinepeter Bartz S. Insulin resistance, role of metformin and other non-insulin therapies in pediatric type 1 diabetes. Pediatr Diabetes 2016; 17:545-558. [PMID: 26592507 DOI: 10.1111/pedi.12337] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) in youth is a challenging chronic medical condition. Its management should address not only the glycemic control but also insulin resistance and cardiovascular disease risk factors which are increasingly recognized to be present in youth with TID. Current knowledge on the mechanisms of insulin resistance in T1DM is reviewed. The use of adjunctive therapies that are beneficial to achieve adequate glycemic control while mitigating the effects of insulin resistance are discussed with a focus on metformin therapy and an overview of other new pharmacologic agents.
Collapse
Affiliation(s)
- Fida Bacha
- Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine Houston, Houston, TX, USA. .,Division of Pediatric Endocrinology and Diabetes, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Sara Klinepeter Bartz
- Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine Houston, Houston, TX, USA.,Division of Pediatric Endocrinology and Diabetes, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
33
|
Regnell SE, Peterson P, Trinh L, Broberg P, Leander P, Lernmark Å, Månsson S, Elding Larsson H. Pancreas volume and fat fraction in children with Type 1 diabetes. Diabet Med 2016; 33:1374-9. [PMID: 26996278 DOI: 10.1111/dme.13115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
AIMS People with Type 1 diabetes have smaller pancreases than healthy individuals. Several diseases causing pancreatic atrophy are associated with pancreatic steatosis, but pancreatic fat in Type 1 diabetes has not been measured. This cross-sectional study aimed to compare pancreas size and fat fraction in children with Type 1 diabetes and controls. METHODS The volume and fat fraction of the pancreases of 22 children with Type 1 diabetes and 29 controls were determined using magnetic resonance imaging. RESULTS Pancreas volume was 27% smaller in children with diabetes (median 34.9 cm(3) ) than in controls (47.8 cm(3) ; P < 0.001). Pancreas volume correlated positively with age in controls (P = 0.033), but not in children with diabetes (P = 0.649). Pancreas volume did not correlate with diabetes duration, but it did correlate positively with units of insulin/kg body weight/day (P = 0.048). A linear model of pancreas volume as influenced by age, body surface area and insulin units/kg body weight/day found that insulin dosage correlated with pancreas volume after controlling for both age and body surface area (P = 0.009). Pancreatic fat fraction was not significantly different between the two groups (1.34% vs. 1.57%; P = 0.891). CONCLUSIONS Our findings do not indicate that pancreatic atrophy in Type 1 diabetes is associated with an increased pancreatic fat fraction, unlike some other diseases featuring reduced pancreatic volume. We speculate that our results may support the hypotheses that much of pancreatic atrophy in Type 1 diabetes occurs before the clinical onset of the disease and that exogenous insulin administration decelerates pancreatic atrophy after diabetes onset.
Collapse
Affiliation(s)
- S E Regnell
- Pediatric Endocrinology, Diabetes and Celiac Disease Unit, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö.
| | - P Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö
| | - L Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö
| | - P Broberg
- Department of Cancer Epidemiology, Department of Clinical Sciences, Lund University and Skåne University Hospital, Lund
| | - P Leander
- Department of Radiology, Department of Translational Medicine, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Å Lernmark
- Pediatric Endocrinology, Diabetes and Celiac Disease Unit, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö
| | - S Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö
| | - H Elding Larsson
- Pediatric Endocrinology, Diabetes and Celiac Disease Unit, Lund University/Clinical Research Centre and Skåne University Hospital, Malmö
| |
Collapse
|
34
|
Gancheva S, Bierwagen A, Kaul K, Herder C, Nowotny P, Kahl S, Giani G, Klueppelholz B, Knebel B, Begovatz P, Strassburger K, Al-Hasani H, Lundbom J, Szendroedi J, Roden M. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes. Diabetes 2016; 65:1849-57. [PMID: 27207512 DOI: 10.2337/db16-0162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 01/21/2023]
Abstract
Type 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes. They underwent hyperinsulinemic-normoglycemic clamps with [6,6-(2)H2]glucose to assess whole-body and hepatic insulin sensitivity. Hepatic γATP, inorganic phosphate (Pi), and triglyceride concentrations (hepatocellular lipid content [HCL]) were measured with multinuclei magnetic resonance spectroscopy ((31)P/(1)H-MRS). Glucose-tolerant humans served as control (CON) (n = 57). Whole-body insulin sensitivity was 44% lower in patients than in age- and BMI-matched CON. Hepatic γATP was 15% reduced (2.3 ± 0.6 vs. 2.7 ± 0.6 mmol/L, P < 0.001), whereas hepatic Pi and HCL were similar in patients when compared with CON. Across all participants, hepatic γATP correlated negatively with glycemia and oxidized LDL. Carriers of the PPARG G allele (rs1801282) and noncarriers of PPARGC1A A allele (rs8192678) had 21 and 13% lower hepatic ATP concentrations. Variations in genes controlling oxidative metabolism contribute to a reduction in hepatic ATP in the absence of NAFLD, suggesting that alterations in hepatic mitochondrial function may precede diabetes-related liver diseases.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Guido Giani
- German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Klueppelholz
- German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Paul Begovatz
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | |
Collapse
|
35
|
Dotzert MS, Murray MR, McDonald MW, Olver TD, Velenosi TJ, Hennop A, Noble EG, Urquhart BL, Melling CWJ. Metabolomic Response of Skeletal Muscle to Aerobic Exercise Training in Insulin Resistant Type 1 Diabetic Rats. Sci Rep 2016; 6:26379. [PMID: 27197730 PMCID: PMC4873835 DOI: 10.1038/srep26379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
The etiology of insulin resistance in Type 1 Diabetes (T1D) is unknown, however it affects approximately 20% of T1D patients. Intramyocellular lipids (IMCL) have been identified as a mechanism of insulin resistance. We examined skeletal muscle of T1D rats to determine if alterations in lipid metabolism were evident and whether aerobic exercise training improves IMCL and insulin resistance. To do so, 48 male Sprague-Dawley rats were divided into control (C), sedentary diabetes (D) and diabetes exercise (DX) groups. Following multiple low-dose Streptozotocin (STZ) injections (20 mg/kg), glycemia (9-15 mM) was maintained using insulin treatment. DX were treadmill trained at high intensity (~75% V02max; 5days/week) for 10 weeks. The results demonstrate that D exhibited insulin resistance compared with C and DX, indicated by decreased glucose infusion rate during a hyperinsulinemic-euglycemic clamp (p < 0.05). There were no differences between C and DX, suggesting that exercise improved insulin resistance (p < 0.05). Metabolomics analysis revealed a significant shift in lipid metabolism whereby notable fatty acid metabolites (arachidonic acid, palmitic acid and several polyunsaturated fatty acids) were significantly elevated in D compared to C and DX. Based on the intermediates observed, insulin resistance in T1D is characterized by an insulin-desensitizing intramyocellular fatty acid metabolite profile that is ameliorated with exercise training.
Collapse
Affiliation(s)
- Michelle S. Dotzert
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Michael R. Murray
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - T. Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Thomas J. Velenosi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anzel Hennop
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Brad L. Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| |
Collapse
|
36
|
Szendroedi J, Saxena A, Weber KS, Strassburger K, Herder C, Burkart V, Nowotny B, Icks A, Kuss O, Ziegler D, Al-Hasani H, Müssig K, Roden M. Cohort profile: the German Diabetes Study (GDS). Cardiovasc Diabetol 2016; 15:59. [PMID: 27053136 PMCID: PMC4823856 DOI: 10.1186/s12933-016-0374-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Background The German Diabetes Study (GDS) is a prospective longitudinal cohort study describing the impact of subphenotypes on the course of the disease. GDS aims at identifying prognostic factors and mechanisms underlying the development of related comorbidities. Study design and methods The study comprises intensive phenotyping within 12 months after clinical diagnosis, at 5-year intervals for 20 years and annual telephone interviews in between. Dynamic tests, including glucagon, mixed meal, intravenous glucose tolerance and hyperinsulinemic clamp tests, serve to assess beta-cell function and tissue-specific insulin sensitivity. Magnetic resonance imaging and multinuclei spectroscopy allow quantifying whole-body fat distribution, tissue-specific lipid deposition and energy metabolism. Comprehensive analyses of microvascular (nerve, eye, kidney) and macrovascular (endothelial, cardiorespiratory) morphology and function enable identification and monitoring of comorbidities. The GDS biobank stores specimens from blood, stool, skeletal muscle, subcutaneous adipose tissue and skin for future analyses including multiomics, expression profiles and histology. Repeated questionnaires on socioeconomic conditions, patient-reported outcomes as quality of life, health-related behavior as physical activity and nutritional habits are a specific asset of GDS. This study will recruit 3000 patients and a group of humans without familiy history of diabetes. 237 type 1 and 456 type 2 diabetes patients have been already included. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0374-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Szendroedi
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Aaruni Saxena
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Katharina S Weber
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andrea Icks
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,Public Health Unit, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Oliver Kuss
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry German Diabetes Center, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, Leibniz Institute for Diabetes Research, German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany. .,German Center for Diabetes Research (DZD), München-Neuherberg, Germany. .,Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Coleman SK, Rebalka IA, D’Souza DM, Hawke TJ. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 2015; 6:1323-1336. [PMID: 26674848 PMCID: PMC4673386 DOI: 10.4239/wjd.v6.i17.1323] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease targeting the pancreatic beta-cells and rendering the person hypoinsulinemic and hyperglycemic. Despite exogenous insulin therapy, individuals with T1DM will invariably develop long-term complications such as blindness, kidney failure and cardiovascular disease. Though often overlooked, skeletal muscle is also adversely affected in T1DM, with both physical and metabolic derangements reported. As the largest metabolic organ in the body, impairments to skeletal muscle health in T1DM would impact insulin sensitivity, glucose/lipid disposal and basal metabolic rate and thus affect the ability of persons with T1DM to manage their disease. In this review, we discuss the impact of T1DM on skeletal muscle health with a particular focus on the proposed mechanisms involved. We then identify and discuss established and potential adjuvant therapies which, in association with insulin therapy, would improve the health of skeletal muscle in those with T1DM and thereby improve disease management- ultimately delaying the onset and severity of other long-term diabetic complications.
Collapse
|
38
|
Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism 2015; 64:1629-39. [PMID: 26455399 DOI: 10.1016/j.metabol.2015.09.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 12/25/2022]
Abstract
For long the presence of insulin resistance in type 1 diabetes has been questioned. Detailed metabolic analyses revealed 12%-61% and up to 20% lower whole-body (skeletal muscle) and hepatic insulin sensitivity in type 1 diabetes, depending on the population studied. Type 1 diabetes patients feature impaired muscle adenosine triphosphate (ATP) synthesis and enhanced oxidative stress, predominantly relating to hyperglycemia. They may also exhibit abnormal fasting and postprandial glycogen metabolism in liver, while the role of hepatic energy metabolism for insulin resistance remains uncertain. Recent rodent studies point to tissue-specific differences in the mechanisms underlying insulin resistance. In non-obese diabetic mice, increased lipid availability contributes to muscle insulin resistance via diacylglycerol/protein kinase C isoforms. Furthermore, humans with type 1 diabetes respond to lifestyle modifications or metformin by 20%-60% increased whole-body insulin sensitivity, likely through improvement in both glycemic control and oxidative phosphorylation. Intensive insulin treatment and islet transplantation also increase but fail to completely restore whole-body and hepatic insulin sensitivity. In conclusion, insulin resistance is a feature of type 1 diabetes, but more controlled trials are needed to address its contribution to disease progression, which might help to optimize treatment and reduce comorbidities.
Collapse
Affiliation(s)
- Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Maria Apostolopoulou
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Germany; German Center of Diabetes Research Partner, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
39
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
40
|
Donga E, Dekkers OM, Corssmit EPM, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol 2015; 173:101-9. [PMID: 25899581 DOI: 10.1530/eje-14-0911] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/20/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The aim of this study was to perform a systematic review and meta-analysis on insulin resistance in adult patients with type 1 diabetes mellitus compared to healthy controls, assessed by hyperinsulinemic euglycemic clamp studies. DESIGN AND METHODS We conducted a systematic search of publications using PubMed, EMBASE, Web of Science and COCHRANE Library. Hyperinsulinemic euglycemic clamp studies comparing adult patients with type 1 diabetes mellitus to healthy controls were eligible. Primary outcome measures were pooled mean differences of insulin sensitivity of endogenous glucose production (EGP), of glucose uptake and of lipolysis. We estimated mean (standardized) differences and 95% CIs using random effects meta-analysis. RESULTS We included 38 publications in this meta-analysis. The weighed mean differences in EGP during hyperinsulinemia between patients and controls was 0.88 (95% CI: 0.47, 1.29) in the basal state and 0.52 (95% CI: 0.09, 0.95) in insulin stimulated conditions, indicating decreased hepatic insulin sensitivity in patients. Insulin sensitivity of glucose uptake was either reported as M value (M), glucose infusion rate (GIR), glucose disposal rate (GDR) or metabolic clearance rate (MCR). Weighed mean differences were similar for M -3.98 (95% CI: -4.68, -3.29) and GIR -4.61 (95% CI: -5.86, -3.53). Weighed mean difference for GDR was -2.43 (95% CI: -3.03, -1.83) and -3.29 (95% CI: -5.37, -1.22) for MCR, indicating decreased peripheral insulin sensitivity in patients. Insulin mediated inhibition of lipolysis was decreased in patients, reflected by increased non-esterified fatty acid levels. CONCLUSIONS Insulin resistance is a prominent feature of patients with type 1 diabetes mellitus and involves hepatic, peripheral and adipose tissues.
Collapse
Affiliation(s)
- Esther Donga
- Department of Endocrinology and Metabolic Diseases C7Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The NetherlandsDepartment of Clinical EpidemiologyLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineAmsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Olaf M Dekkers
- Department of Endocrinology and Metabolic Diseases C7Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The NetherlandsDepartment of Clinical EpidemiologyLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineAmsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands Department of Endocrinology and Metabolic Diseases C7Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The NetherlandsDepartment of Clinical EpidemiologyLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineAmsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora P M Corssmit
- Department of Endocrinology and Metabolic Diseases C7Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The NetherlandsDepartment of Clinical EpidemiologyLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineAmsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Department of Endocrinology and Metabolic Diseases C7Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The NetherlandsDepartment of Clinical EpidemiologyLeiden University Medical Center, Leiden, The NetherlandsDepartment of Internal MedicineAmsterdam Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Bjornstad P, Snell-Bergeon JK, Nadeau KJ, Maahs DM. Insulin sensitivity and complications in type 1 diabetes: New insights. World J Diabetes 2015; 6:8-16. [PMID: 25685274 PMCID: PMC4317319 DOI: 10.4239/wjd.v6.i1.8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/24/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Despite improvements in glucose, lipids and blood pressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need to identify additional risk factors to utilize in clinical practice or translate to novel therapies to prevent vascular complications. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes that has been linked with the development and progression of both micro- and macrovascular complications. Adolescents and adults with type 1 diabetes have reduced insulin sensitivity, even when compared to their non-diabetic counterparts of similar adiposity, serum triglycerides, high-density lipoprotein cholesterol, level of habitual physical activity, and in adolescents, pubertal stage. Reduced insulin sensitivity is thought to contribute both to the initiation and progression of macro- and microvascular complications in type 1 diabetes. There are currently clinical trials underway examining the benefits of improving insulin sensitivity with regards to vascular complications in type 1 diabetes. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes, is implicated in the pathogenesis of vascular complications and is potentially an important therapeutic target to prevent vascular complications. In this review, we will focus on the pathophysiologic contribution of insulin sensitivity to vascular complications and summarize related ongoing clinical trials.
Collapse
|
42
|
Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, Regensteiner JG, Pyle L, Reusch JEB, Nadeau KJ. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes 2015; 64:383-92. [PMID: 25157095 PMCID: PMC4303961 DOI: 10.2337/db14-0765] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin resistance (IR) increases cardiovascular morbidity and is associated with mitochondrial dysfunction. IR is now recognized to be present in type 1 diabetes; however, its relationship with mitochondrial function is unknown. We determined the relationship between IR and muscle mitochondrial function in type 1 diabetes using the hyperinsulinemic-euglycemic clamp and (31)P-MRS before, during, and after near-maximal isometric calf exercise. Volunteers included 21 nonobese adolescents with type 1 diabetes and 17 nondiabetic control subjects with similar age, sex, BMI, Tanner stage, and activity levels. We found that youths with type 1 diabetes were more insulin resistant (median glucose infusion rate 10.1 vs. 18.9 mg/kglean/min; P < 0.0001) and had a longer time constant of the curve of ADP conversion to ATP (23.4 ± 5.3 vs. 18.8 ± 3.9 s, P < 0.001) and a lower rate of oxidative phosphorylation (median 0.09 vs. 0.21 mmol/L/s, P < 0.001). The ADP time constant (β = -0.36, P = 0.026) and oxidative phosphorylation (β = 0.02, P < 0.038) were related to IR but not HbA1c. Normal-weight youths with type 1 diabetes demonstrated slowed postexercise ATP resynthesis and were more insulin resistant than control subjects. The correlation between skeletal muscle mitochondrial dysfunction in type 1 diabetes and IR suggests a relationship between mitochondrial dysfunction and IR in type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Cree-Green
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bradley R Newcomer
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL
| | - Mark S Brown
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amy D Baumgartner
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Bryan Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brendan Drew
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Judith G Regensteiner
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO Divisions of General Internal Medicine and Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jane E B Reusch
- Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO Veterans Affairs Medical Center, Denver, CO
| | - Kristen J Nadeau
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
43
|
Tasci E, Ozbek MN, Onenli-Mungan N, Temiz F, Topaloglu AK, Yuksel B. Low serum adiponectin levels in children and adolescents with diabetic retinopathy. Eurasian J Med 2015; 43:18-22. [PMID: 25610154 DOI: 10.5152/eajm.2011.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 11/08/2010] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to elucidate the role of adiponectin, leptin, TNF-α and IL-6 on the early detection of the microvascular complications of type I diabetes. MATERIALS AND METHODS A total of 88 children were included in the study. There were 60 type I diabetic patients and 28 healthy control children. RESULTS The gender, age, weight, height, BMI and puberty status characteristics were similar in the patient and control groups (p>0.05). The serum leptin, TNF-α and IL-6 levels were similar between the patient and control groups (p>0.05) and the only difference was in the serum adiponectin level which was higher in the patient group (p:0.042). We also found no association between the adiponectin, leptin, TNF-α and IL-6 levels and diabetes duration (p>0.05). Leptin was high in the pubertal period (p:0.016), while adiponectin TNF-α and IL-6 levels were similar in the prepubertal and pubertal periods (p>0.05). The serum leptin level was high in microalbuminuria patients (p<0.041). The serum adiponectin, TNF-α, and IL-6 levels were not different in patients with and without microalbuminuria (p>0.05). The serum adiponectin level was lower in diabetic retinopathy patients (p:0.003), while the serum leptin level was higher (p:0.003). The TNF-α and IL-6 levels were similar in patients with and without retinopathy (p>0.05). CONCLUSION We found increased serum adinopectin levels in children and adolescents with type I diabetes mellitus and low levels in diabetic retinopathy patients. Patients with low serum adiponectin levels and high leptin levels should be more closely monitored for chronic complication development and better metabolic control should be aimed for.
Collapse
Affiliation(s)
- Eser Tasci
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| | - Mehmet Nuri Ozbek
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| | - Neslihan Onenli-Mungan
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| | - Fatih Temiz
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| | - Ali Kemal Topaloglu
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| | - Bilgin Yuksel
- Department of Endocrinology and Metabolism, Medical Faculty, Cukurova University, Adana, Turkey
| |
Collapse
|
44
|
LeCaire TJ, Palta M. Longitudinal Analysis of Adiponectin through 20-Year Type 1 Diabetes Duration. J Diabetes Res 2015; 2015:730407. [PMID: 25950008 PMCID: PMC4407631 DOI: 10.1155/2015/730407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Little information exists on the trajectory and determinants of adiponectin, a possible insulin sensitizer and marker for inflammation and endothelial function, across the duration of type 1 diabetes. The Wisconsin Diabetes Registry Study followed an incident cohort ≤ 30 years of age when diagnosed with type 1 diabetes during 1987-1992 up to 20-year duration. Adiponectin was concurrently and retrospectively (from samples frozen at -80 °C) measured for those participating in a 20-year exam (n = 304), during 2007-2011. Adiponectin levels were higher in females, declined through adolescence, and increased with age thereafter. Lower levels were associated with greater body weight and waist circumference and with higher insulin dose, especially at longer diabetes durations. Higher levels were associated with higher HbA1c and, at longer durations, with higher albumin-creatinine ratio. Adiponectin levels showed consistency within individuals that was not explained by these factors. We conclude that markers for insulin resistance are associated with lower adiponectin, and markers for potential microvascular complications are associated with higher adiponectin. The previously reported relationship with HbA1c remains largely unexplained. Additional individual specific factors likely also influence adiponectin level. The relationship between adiponectin and urinary protein excretion may enable identification of those predisposed to kidney disease earlier in type 1 diabetes.
Collapse
Affiliation(s)
- Tamara J. LeCaire
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
| | - Mari Palta
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53726, USA
- *Mari Palta:
| |
Collapse
|
45
|
Jelenik T, Séquaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, Knebel B, Weiß J, Reinbeck AL, Janke L, Nowotny P, Partke HJ, Zhang D, Shulman GI, Szendroedi J, Roden M. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 2014; 63:3856-67. [PMID: 24917575 DOI: 10.2337/db13-1794] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although insulin resistance is known to underlie type 2 diabetes, its role in the development of type 1 diabetes has been gaining increasing interest. In a model of type 1 diabetes, the nonobese diabetic (NOD) mouse, we found that insulin resistance driven by lipid- and glucose-independent mechanisms is already present in the liver of prediabetic mice. Hepatic insulin resistance is associated with a transient rise in mitochondrial respiration followed by increased production of lipid peroxides and c-Jun N-terminal kinase activity. At the onset of diabetes, increased adipose tissue lipolysis promotes myocellular diacylglycerol accumulation. This is paralleled by increased myocellular protein kinase C θ activity and serum fetuin A levels. Muscle mitochondrial oxidative capacity is unchanged at the onset but decreases at later stages of diabetes. In conclusion, hepatic and muscle insulin resistance manifest at different stages and involve distinct cellular mechanisms during the development of diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - D Margriet Ouwens
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Linda Janke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Hans-Joachim Partke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
46
|
Pradeepa R, Surendar J, Indulekha K, Chella S, Anjana RM, Mohan V. Association of serum adiponectin with diabetic microvascular complications among south Indian type 2 diabetic subjects - (CURES-133). Clin Biochem 2014; 48:33-8. [PMID: 25445230 DOI: 10.1016/j.clinbiochem.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVES To assess the association of serum adiponectin and microvascular complications of diabetes in an urban south Indian type 2 diabetic population. DESIGN AND METHODS Diabetic subjects [n=487] were included from Chennai Urban Rural Epidemiology Study (CURES). Four-field stereo retinal color photography was done and diabetic retinopathy (DR) was classified as non-proliferative DR (NPDR) or proliferative DR (PDR) according to the Early Treatment Diabetic Retinopathy Study grading system. Sight threatening DR (STDR) was defined as the presence of NPDR with diabetic macular edema, and/or PDR. Neuropathy was diagnosed if vibratory perception threshold of the great toe using biothesiometry exceeded ≥20V. Nephropathy was diagnosed if urinary albumin excretion (UAE) was ≥30μg/mg creatinine. Serum total adiponectin levels were measured by radioimmunoassay. RESULTS Subjects with any microvascular complications had significantly higher levels of adiponectin levels compared to those without the complications (geometric mean: 6.1 vs. 5.3μg/mL, p=0.004). The adiponectin level was significantly higher in subjects with DR (6.8 vs. 5.5μg/mL, p=0.004) and neuropathy (5.6 vs. 6.5μg/mL, p=0.024) compared to those without. Adiponectin levels were not significantly different in subjects with and without nephropathy. Serum adiponectin levels increased with the severity of DR [No DR - 5.5μg/mL; NPDR without DME - 6.5μg/mL; STDR - 8.3μg/mL, p=0.001]. Regression analysis revealed adiponectin to be associated with microvascular disease (presence of neuropathy and/or retinopathy and/or nephropathy) (OR: 1.44, 95% CI: 1.01-2.06, p=0.049) even after adjusting for age, gender, BMI, HbA1c, diabetes of duration, serum cholesterol and triglycerides, hypertension and medication status. CONCLUSION In Asian Indians with type 2 diabetes, serum adiponectin levels are associated with microvascular complications and also with the severity of retinopathy.
Collapse
Affiliation(s)
- R Pradeepa
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | - J Surendar
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | - K Indulekha
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | - S Chella
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | - R M Anjana
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India
| | - V Mohan
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-communicable Diseases Prevention & Control, IDF Centre of Education, Gopalapuram, Chennai, India.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Despite improvements in glycemic and blood pressure control in patients with type 1 diabetes, diabetic nephropathy remains the most common cause of chronic kidney disease worldwide. A major challenge in preventing diabetic nephropathy is the inability to identify high-risk patients at an early stage, emphasizing the importance of discovering new therapeutic targets and implementation of clinical trials to reduce diabetic nephropathy risk. RECENT FINDINGS Limitations of managing patients with diabetic nephropathy with renin-angiotensin-aldosterone system blockade have been identified in recent clinical trials, including the failure of primary prevention studies in T1D and the demonstration of harm with dual renin-angiotensin-aldosterone system blockade. Fortunately, several new targets, including serum uric acid, insulin sensitivity, vasopressin, and sodium-glucose cotransporter-2 inhibition, are promising in the prevention and treatment of diabetic nephropathy. SUMMARY Diabetic nephropathy is characterized by a long clinically silent period without signs or symptoms of disease. There is an urgent need for improved methods of detecting early mediators of renal injury, to ultimately prevent the initiation and progression of diabetic nephropathy. In this review, we will focus on early diabetic nephropathy and summarize potential new therapeutic targets.
Collapse
Affiliation(s)
- Petter Bjornstad
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - David Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Ontario, Canada
| | - David M. Maahs
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Barbara Davis Center for Diabetes, University of Colorado Denver, Aurora, Colorado, United States
| |
Collapse
|
48
|
Menart-Houtermans B, Rütter R, Nowotny B, Rosenbauer J, Koliaki C, Kahl S, Simon MC, Szendroedi J, Schloot NC, Roden M. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: results from the German Diabetes Study (GDS). Diabetes Care 2014; 37:2326-33. [PMID: 25061140 DOI: 10.2337/dc14-0316] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Altered immune reactivity precedes and accompanies type 1 and type 2 diabetes. We hypothesized that the metabolic phenotype relates to the systemic cellular immune status. RESEARCH DESIGN AND METHODS A total of 194 metabolically well-controlled patients with type 1 diabetes (n = 62, mean diabetes duration 1.29 years) or type 2 diabetes (n = 132, 1.98 years) and 60 normoglycemic persons underwent blood sampling for automated white blood cell counting (WBC) and flow cytometry. Whole-body insulin sensitivity was measured with hyperinsulinemic-euglycemic clamp tests. RESULTS Patients with type 2 diabetes had higher WBC counts than control subjects along with a higher percentage of T cells and activated T helper (Th) and cytotoxic T (Tc) cells but lower proportions of natural killer (NK) cells. In type 1 diabetes, the percentage of activated Th and Tc cells was also higher compared with control subjects, whereas the ratio of regulatory T (Treg) cells to activated Th cells was lower, suggesting diminished regulatory capacity. Parameters of glycemic control related positively to Treg cells only in type 2 diabetes. Upon age, sex, and body mass adjustments, insulin sensitivity correlated positively with monocytes, while circulating lipids correlated positively with T cell subsets in type 1 diabetes. CONCLUSIONS Immune cell phenotypes showed distinct frequencies of occurrence in both diabetes types and associate with insulin sensitivity, glycemia, and lipidemia.
Collapse
Affiliation(s)
- Barbara Menart-Houtermans
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Ruth Rütter
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Bettina Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Joachim Rosenbauer
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, GermanyInstitute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Chrysi Koliaki
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Marie-Christine Simon
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and Diabetology, University Clinics Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Nanette C Schloot
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, GermanyGerman Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, GermanyDepartment of Endocrinology and Diabetology, University Clinics Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
49
|
Lott DJ, Forbes SC, Mathur S, Germain SA, Senesac CR, Lee Sweeney H, Walter GA, Vandenborne K. Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with Duchenne muscular dystrophy. Neuromuscul Disord 2014; 24:574-82. [PMID: 24798221 DOI: 10.1016/j.nmd.2014.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to use proton magnetic resonance spectroscopy to assess intramuscular lipid and metabolites of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) and determine its relationship with strength and functional ability. Spectroscopic measurements were obtained from four muscles of the lower leg in 25 boys with DMD (9.2±3.1 years) and 10 healthy boys (10.2±2.6 years). Lipid fractions and metabolite concentrations were also determined. Muscle strength, a timed functional test, and the Modified Brooke Lower Extremity Functional Scale were also determined. Lipid fractions were higher (p<0.01) for the DMD group than healthy subjects for all muscles, and lipid fraction was found to be greater in the older DMD boys. The peroneal muscle demonstrated a significant difference in lipid fraction in all DMD age groups. Lipid fractions in all muscles correlated with functional measures (r=0.52-0.70, p<0.001), with smaller inverse correlations with the strength measure (r=-0.36 to -0.56, p<0.05). These findings provide quantifiable information regarding intramuscular lipid and metabolite levels of different muscles across various age groups in boys with DMD and may be used in determining the effect of interventions in future clinical trials.
Collapse
Affiliation(s)
- Donovan J Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Sean A Germain
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - H Lee Sweeney
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Teixeira MM, Diniz MDFHS, Reis JS, Ferrari TCA, de Castro MGB, Teixeira BP, Arantes ICDS, Bicalho DM, Fóscolo RB. Insulin resistance and associated factors in patients with Type 1 Diabetes. Diabetol Metab Syndr 2014; 6:131. [PMID: 25937839 PMCID: PMC4416245 DOI: 10.1186/1758-5996-6-131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/17/2014] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To assess the presence of insulin resistance (IR) in patients with type 1 diabetes (T1DM) according to the estimated glucose disposal rate formula (eGDR) and the insulin sensitivity score (ISS) and to estimate the correlation between these two measures and identify the clinical and laboratory markers related to IR. RESEARCH DESIGN AND METHODS Cross-sectional study of adults with T1DM (n = 135). The results of the formulas that estimate IR were separated into quartiles and correlated with demographic data, clinical characteristics and laboratory parameters. We analyzed the total and regional adiposity by dual-energy X-ray absorptiometry and skin fold thickness measurements. RESULTS Two thirds of the patients were overweight or obese. A moderate correlation was found between eGDR and ISS (r = 0.612). The results of both formulas were positively correlated with BMI (r = -0.373 eGDR and r = -0.721 ISS), thoracic-abdominal fat (r = -0.484 eGDR and r = -0.758 ISS), waist/height ratio (r = -0.537 eGDR and r = -0.779 ISS), subscapular skinfold (mm) (r = -0.356 eGDR and r = -0.569 ISS), total dose insulin IU/lean mass (kg) (r = -0.279 eGDR and r = -0.398 ISS), age (years) (r = -0.495 eGDR and r = -0.190 ISS) and diabetes duration (years) (r = -0.428 eGDR and r = -0.187 ISS). A moderate agreement (Kappa 0.226) was observed between the 1st quartile of results determined by the formulas in 10.4% of the patients, but the 4th quartile presented a strong correlation (Kappa 0.679). The individuals with IR that were classified in the 1st quartile by the ISS formula had a higher chance of presenting with acanthosis nigricans (OR = 5.58, 95% CI =1.46-21.3). CONCLUSIONS The correlations found in this study indicate the possibility of using clinical and laboratory data to estimate IR in patients with TDM1. The detection of IR in T1DM patients may allow early intervention and possibly impact on future diabetes complications.
Collapse
Affiliation(s)
- Mônica Maria Teixeira
- />Federal University of Minas Gerais UFMG, Rua Padre Rolim 769, sala 802. Bairro São Lucas, Belo Horizonte, Minas Gerais Brazil
| | | | - Janice Sepúlveda Reis
- />Endocrinology Service, Santa Casa of Belo Horizonte, Belo Horizonte, Minas Gerais Brazil
| | | | | | - Bruna Polonio Teixeira
- />Federal University of Minas Gerais UFMG, Rua Padre Rolim 769, sala 802. Bairro São Lucas, Belo Horizonte, Minas Gerais Brazil
| | | | - Danielle Marques Bicalho
- />Federal University of Minas Gerais UFMG, Rua Padre Rolim 769, sala 802. Bairro São Lucas, Belo Horizonte, Minas Gerais Brazil
| | | |
Collapse
|