1
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
2
|
Fang Z, Deng Y, Wang H, Zhou J. SUMOylation of zebrafish transcription factor Zbtb21 affects its transcription activity. PeerJ 2024; 12:e17234. [PMID: 38666079 PMCID: PMC11044885 DOI: 10.7717/peerj.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Background Post-translational modification by Small Ubiquitin-like MOdifier (SUMO) is an important mechanism to regulate protein activity, protein stability, and localization of substrates. Zbtb21 is a zinc finger and BTB (Broad-complex, Tram-track and Bric à brac) domain-containing transcription factor. Bioinformatic prediction suggests several putative SUMOylated sites in Zbtb21 protein. Methods Two evolutionarily conserved lysine residues in Zbtb21 protein were mutated alone or in combination to disrupt the binding with SUMO molecules. Western blot and co-immunoprecipitation analyses were performed to detect the SUMOylation state of wild type and mutant Zbtb21 proteins, respectively. Luciferase reporter assays were conducted to evaluate their transcription activities. Meanwhile, immunofluorescence staining was carried out to show their sub-nuclear localizations. Finally, co-immunoprecipitation was performed to detect the interaction between Zbtb21 and its partners. Results Phylogenetically conserved lysines 419 and 845 of zebrafish Zbtb21 protein can be conjugated with SUMO molecules. SUMOylation does not affect the subcellular localization and protein stability of Zbtb21, as well as the interaction with Zbtb14 or Zbtb21. Nevertheless, luciferase reporter assays revealed that Zbtb21 is a dual-function transcription factor which exerts activation or repression effect on different promoters, and SUMOylation can modulate the transcriptional activity of Zbtb21 in regulating downstream target genes. Hence, Zbtb21 is identified as a novel substrate of SUMOylation, which would be important for its function. Conclusions Zebrafish Zbtb21 protein can be SUMOylated on lysines 419 and 845, which is evolutionary conserved. SUMOylation affects the dual role of Zbtb21 on transcription.
Collapse
Affiliation(s)
- Zhou Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Deng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihong Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhou
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yang C, Wei M, Zhao Y, Yang Z, Song M, Mi J, Yang X, Tian G. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol 2023; 11:1217189. [PMID: 37601108 PMCID: PMC10436566 DOI: 10.3389/fcell.2023.1217189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Post-translational modification (PTM) has a significant impact on cellular signaling and function regulation. In pancreatic β cells, PTMs are involved in insulin secretion, cell development, and viability. The dysregulation of PTM in β cells is clinically associated with the development of diabetes mellitus. Here, we summarized current findings on major PTMs occurring in β cells and their roles in insulin secretion. Our work provides comprehensive insight into understanding the mechanisms of insulin secretion and potential therapeutic targets for diabetes from the perspective of protein PTMs.
Collapse
Affiliation(s)
- Chunhua Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengna Wei
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Yanpu Zhao
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Zhanyi Yang
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Mengyao Song
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyong Yang
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
4
|
Davidson RK, Kanojia S, Wu W, Kono T, Xu J, Osmulski M, Bone RN, Casey N, Evans-Molina C, Sims EK, Spaeth JM. The Chd4 Helicase Regulates Chromatin Accessibility and Gene Expression Critical for β-Cell Function In Vivo. Diabetes 2023; 72:746-757. [PMID: 36913741 PMCID: PMC10202766 DOI: 10.2337/db22-0939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
The transcriptional activity of Pdx1 is modulated by a diverse array of coregulatory factors that govern chromatin accessibility, histone modifications, and nucleosome distribution. We previously identified the Chd4 subunit of the nucleosome remodeling and deacetylase complex as a Pdx1-interacting factor. To identify how loss of Chd4 impacts glucose homeostasis and gene expression programs in β-cells in vivo, we generated an inducible β-cell-specific Chd4 knockout mouse model. Removal of Chd4 from mature islet β-cells rendered mutant animals glucose intolerant, in part due to defects in insulin secretion. We observed an increased ratio of immature-to-mature insulin granules in Chd4-deficient β-cells that correlated with elevated levels of proinsulin both within isolated islets and from plasma following glucose stimulation in vivo. RNA sequencing and assay for transposase-accessible chromatin with sequencing showed that lineage-labeled Chd4-deficient β-cells have alterations in chromatin accessibility and altered expression of genes critical for β-cell function, including MafA, Slc2a2, Chga, and Chgb. Knockdown of CHD4 from a human β-cell line revealed similar defects in insulin secretion and alterations in several β-cell-enriched gene targets. These results illustrate how critical Chd4 activities are in controlling genes essential for maintaining β-cell function. ARTICLE HIGHLIGHTS Pdx1-Chd4 interactions were previously shown to be compromised in β-cells from human donors with type 2 diabetes. β-Cell-specific removal of Chd4 impairs insulin secretion and leads to glucose intolerance in mice. Expression of key β-cell functional genes and chromatin accessibility are compromised in Chd4-deficient β-cells. Chromatin remodeling activities enacted by Chd4 are essential for β-cell function under normal physiological conditions.
Collapse
Affiliation(s)
- Rebecca K. Davidson
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Sukrati Kanojia
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Wenting Wu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Tatsuyoshi Kono
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Jerry Xu
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Meredith Osmulski
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Nolan Casey
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| | - Carmella Evans-Molina
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush Veterans’ Administration Medical Center, Indianapolis, IN
| | - Emily K. Sims
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Jason M. Spaeth
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
5
|
Shendge AA, D’Souza JS. Strategic optimization of conditions for the solubilization of GST-tagged amphipathic helix-containing ciliary proteins overexpressed as inclusion bodies in E. coli. Microb Cell Fact 2022; 21:258. [PMID: 36510188 PMCID: PMC9746132 DOI: 10.1186/s12934-022-01979-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Expression of affinity-tagged recombinant proteins for crystallography, protein-protein interaction, antibody generation, therapeutic applications, etc. mandates the generation of high-yield soluble proteins. Although recent developments suggest the use of yeast, insect, and mammalian cell lines as protein expression platforms, Escherichia coli is still the most popular, due mainly to its ease of growth, feasibility in genetic manipulation and economy. However, some proteins have a spontaneous tendency to form inclusion bodies (IBs) when over-expressed in bacterial expression systems such as E. coli, thus posing a challenge in purification and yield. At times, small peptides undergo degradation during protein production and hence using suitable tags could circumvent the problem. Although several independent techniques have been used to solubilize IBs, these cannot always be applied in a generic sense. Although tagging a GST moiety is known to enhance the solubility of fusion proteins in E. coli, resulting in yields of 10-50 mg/L of the culture, the inherent nature of the protein sequence at times could lead to the formation of IBs. We have been working on a Myc Binding Protein-1 orthologue, viz. Flagellar Associated Protein 174 (FAP174) from the axoneme of Chlamydomonas reinhardtii that binds to an A-Kinase Anchoring Protein 240 (AKAP240) which has been annotated as Flagellar Associated Protein 65 (FAP65). Using an in-silico approach, we have identified two amphipathic helices on FAP65 (CrFAP65AH1 and CrFAP65AH2) that are predicted to bind to FAP174. To test this prediction, we have cloned the GST-tagged peptides, and overexpressed them in E. coli that have resulted in insoluble IBs. The yields of these over-expressed recombinant proteins dropped considerably due to IB formation, indicating aggregation. An integrated approach has been used to solubilize four highly hydrophobic polypeptides, viz. two amphipathic helices and the respective proline variants of FAP65. For solubilizing these polypeptides, variables such as non-denaturing detergents (IGEPAL CA-630), changing the ionic strength of the cell lysis and solubilization buffer, addition of BugBuster®, diluting the cell lysate and sonication were introduced. Our statistically viable results yielded highly soluble and functional polypeptides, indiscreet secondary structures, and a yield of ~ 20 mg/L of the E. coli culture. Our combinatorial strategy using chemical and physical methods to solubilize IBs could prove useful for hydrophobic peptides and proteins with amphipathic helices.
Collapse
Affiliation(s)
- Amruta A. Shendge
- grid.452882.10000 0004 1761 3305School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098 India
| | - Jacinta S. D’Souza
- grid.452882.10000 0004 1761 3305School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098 India
| |
Collapse
|
6
|
PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:biom12121785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
|
7
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
8
|
Hu A, Zou H, Chen B, Zhong J. Posttranslational modifications in diabetes: Mechanisms and functions. Rev Endocr Metab Disord 2022; 23:1011-1033. [PMID: 35697961 DOI: 10.1007/s11154-022-09740-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
As one of the most widespread chronic diseases, diabetes and its accompanying complications affect approximately one tenth of individuals worldwide and represent a growing cause of morbidity and mortality. Accumulating evidence has proven that the process of diabetes is complex and interactive, involving various cellular responses and signaling cascades by posttranslational modifications (PTMs). Therefore, understanding the mechanisms and functions of PTMs in regulatory networks has fundamental importance for understanding the prediction, onset, diagnosis, progression, and treatment of diabetes. In this review, we offer a holistic summary and illustration of the crosstalk between PTMs and diabetes, including both types 1 and 2. Meanwhile, we discuss the potential use of PTMs in diabetes treatment and provide a prospective direction for deeply understanding the metabolic diseases.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Haohong Zou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Bin Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
9
|
Fai So DH, Yan Chan JC, Tsui MG, Wai Tsang PS, Yao KM. Secreted PDZD2 exerts an insulinotropic effect on INS-1E cells by a PKA-dependent mechanism. Mol Cell Endocrinol 2020; 518:111026. [PMID: 32919022 DOI: 10.1016/j.mce.2020.111026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
Abstract
Secreted PDZD2 (sPDZD2) is a signaling molecule generated upon proteolytic processing of the multi-PDZ-containing protein PDZD2. Previous analysis of gene-trap mice deficient in the synthesis of full-length PDZD2, but not the secreted form, revealed a role of PDZD2 in the regulation of glucose-stimulated insulin secretion. Here, using the pancreatic INS-1E β cells as in vitro model, we showed that depletion of PDZD2/sPDZD2 by RNA interference suppressed the expression of β-cell genes Ins1, Glut2 and MafA whereas treatment with recombinant sPDZD2 rescued the suppressive effect. Similar to GLP-1, sPDZD2 stimulated intracellular cAMP levels, activated β-cell gene expression in a PKA-dependent manner and induced the phosphorylation and nuclear localization of PDX1. Depletion of PDX1 inhibited the sPDZD2 insulinotropic effect, which could also be demonstrated in mouse islets. In summary, our findings are consistent with sPDZD2 serving a signaling function in regulating β-cell gene expression.
Collapse
Affiliation(s)
- Danny Hon Fai So
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Joe Cho Yan Chan
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michelle Grace Tsui
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Phyllis Siu Wai Tsang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Kwok-Ming Yao
- School of Biomedical Sciences, The LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
10
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
11
|
Aghaei M, Khodadadian A, Elham KN, Nazari M, Babakhanzadeh E. Major miRNA Involved in Insulin Secretion and Production in Beta-Cells. Int J Gen Med 2020; 13:89-97. [PMID: 32210605 PMCID: PMC7071856 DOI: 10.2147/ijgm.s249011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin is implicated as a leading factor in glucose homeostasis and an important theme in diabetes mellitus (DM). Numerous proteins are involved in insulin signaling pathway and their dysregulation contributes to DM. microRNAs (miRNAs) as single-strand molecules have a critical effect on gene expression at post-transcriptional levels. Intensive investigation done by DM researchers disclosed that miRNAs have a significant role in insulin secretion by direct targeting numerous proteins engaged in insulin signaling pathway; so, their dysregulation contributes to DM. In this review, we presented some major miRNAs engaged in the insulin production and secretion.
Collapse
Affiliation(s)
- Mohsen Aghaei
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Karimi-Nazari Elham
- Nutrition and Food Security Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
12
|
The E3 SUMO ligase PIASγ is a novel interaction partner regulating the activity of diabetes associated hepatocyte nuclear factor-1α. Sci Rep 2018; 8:12780. [PMID: 30143652 PMCID: PMC6109179 DOI: 10.1038/s41598-018-29448-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
The transcription factor hepatocyte nuclear factor-1α (HNF-1A) is involved in normal pancreas development and function. Rare variants in the HNF1A gene can cause monogenic diabetes, while common variants confer type 2 diabetes risk. The precise mechanisms for regulation of HNF-1A, including the role and function of post-translational modifications, are still largely unknown. Here, we present the first evidence for HNF-1A being a substrate of SUMOylation in cellulo and identify two lysine (K) residues (K205 and K273) as SUMOylation sites. Overexpression of protein inhibitor of activated STAT (PIASγ) represses the transcriptional activity of HNF-1A and is dependent on simultaneous HNF-1A SUMOylation at K205 and K273. Moreover, PIASγ is a novel HNF-1A interaction partner whose expression leads to translocation of HNF-1A to the nuclear periphery. Thus, our findings support that the E3 SUMO ligase PIASγ regulates HNF-1A SUMOylation with functional implications, representing new targets for drug development and precision medicine in diabetes.
Collapse
|
13
|
Hoard TM, Yang XP, Jetten AM, ZeRuth GT. PIAS-family proteins negatively regulate Glis3 transactivation function through SUMO modification in pancreatic β cells. Heliyon 2018; 4:e00709. [PMID: 30094379 PMCID: PMC6077130 DOI: 10.1016/j.heliyon.2018.e00709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Gli-similar 3 (Glis3) is Krüppel-like transcription factor associated with the transcriptional regulation of insulin. Mutations within the Glis3 locus have been implicated in a number of pathologies including diabetes mellitus and hypothyroidism. Despite its clinical significance, little is known about the proteins and posttranslational modifications that regulate Glis3 transcriptional activity. In this report, we demonstrate that the SUMO-pathway associated proteins, PIASy and Ubc9 are capable of regulating Glis3 transactivation function through a SUMO-dependent mechanism. We present evidence that SUMOylation of Glis3 by PIAS-family proteins occurs at two conserved lysine residues within the Glis3 N-terminus and modification of Glis3 by SUMO dramatically inhibited insulin transcription. Finally, we provide evidence that Glis3 SUMOylation increases under conditions of chronically elevated glucose and correlates with decreased insulin transcription. Collectively, these results indicate that SUMOylation may serve as a mechanism to regulate Glis3 activity in β cells.
Collapse
Affiliation(s)
- Tyler M Hoard
- Department of Biological Sciences, Murray State University, Murray, KY, USA
| | - Xiao Ping Yang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Gary T ZeRuth
- Department of Biological Sciences, Murray State University, Murray, KY, USA.,Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
He X, Lai Q, Chen C, Li N, Sun F, Huang W, Zhang S, Yu Q, Yang P, Xiong F, Chen Z, Gong Q, Ren B, Weng J, Eizirik DL, Zhou Z, Wang CY. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia 2018; 61:881-895. [PMID: 29299635 DOI: 10.1007/s00125-017-4523-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. METHODS Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9Δbeta) and transgenic (Ubc9Tg) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. RESULTS Upon induction of Ubc9 deficiency, Ubc9Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9f/f control islets. Islets from Ubc9Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9Δbeta mice, which spontaneously developed diabetes, Ubc9Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. CONCLUSIONS/INTERPRETATION SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.
Collapse
Affiliation(s)
- Xiaoyu He
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qiaohong Lai
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Cai Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wenting Huang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qilin Yu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ping Yang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Zhishui Chen
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Quan Gong
- Medical College of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Boxu Ren
- Medical College of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Zhiguang Zhou
- Diabetes Center, The Second Xiangya Hospital, Institute of Metabolism and Endocrinology, Central South University, Changsha, 410011, People's Republic of China.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
15
|
Spaeth JM, Gupte M, Perelis M, Yang YP, Cyphert H, Guo S, Liu JH, Guo M, Bass J, Magnuson MA, Wright C, Stein R. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes 2017; 66:2830-2839. [PMID: 28705881 PMCID: PMC5652607 DOI: 10.2337/db16-1516] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor encoded by the Pdx1 gene is a critical transcriptional regulator, as it has fundamental actions in the formation of all pancreatic cell types, islet β-cell development, and adult islet β-cell function. Transgenic- and cell line-based experiments have identified 5'-flanking conserved sequences that control pancreatic and β-cell type-specific transcription, which are found within areas I (bp -2694 to -2561), II (bp -2139 to -1958), III (bp -1879 to -1799), and IV (bp -6200 to -5670). Because of the presence in area IV of binding sites for transcription factors associated with pancreas development and islet cell function, we analyzed how an endogenous deletion mutant affected Pdx1 expression embryonically and postnatally. The most striking result was observed in male Pdx1ΔIV mutant mice after 3 weeks of birth (i.e., the onset of weaning), with only a small effect on pancreas organogenesis and no deficiencies in their female counterparts. Compromised Pdx1 mRNA and protein levels in weaned male mutant β-cells were tightly linked with hyperglycemia, decreased β-cell proliferation, reduced β-cell area, and altered expression of Pdx1-bound genes that are important in β-cell replication, endoplasmic reticulum function, and mitochondrial activity. We discuss the impact of these novel findings to Pdx1 gene regulation and islet β-cell maturation postnatally.
Collapse
Affiliation(s)
- Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Manisha Gupte
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark Perelis
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Ping Yang
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Holly Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jin-Hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Christopher Wright
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
16
|
Johansson BB, Fjeld K, Solheim MH, Shirakawa J, Zhang E, Keindl M, Hu J, Lindqvist A, Døskeland A, Mellgren G, Flatmark T, Njølstad PR, Kulkarni RN, Wierup N, Aukrust I, Bjørkhaug L. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Mol Cell Endocrinol 2017. [PMID: 28648619 DOI: 10.1016/j.mce.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal (30LKKVMRR36) in the human enzyme. Substituting the residues KK31,32 and RR35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell.
Collapse
Affiliation(s)
- Bente Berg Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marie Holm Solheim
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA; Department of Endocrinology and Metabolism, Yokohama City University, Yokohama, Japan
| | | | - Magdalena Keindl
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | | | - Anne Døskeland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biomedical Laboratory Sciences and Chemical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
| |
Collapse
|
17
|
Self-Transducible Bimodal PDX1-FOXP3 Protein Lifts Insulin Secretion and Curbs Autoimmunity, Boosting Tregs in Type 1 Diabetic Mice. Mol Ther 2017; 26:184-198. [PMID: 28988715 DOI: 10.1016/j.ymthe.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing β cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting β cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4+ T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other β lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3+CD4+CD25+ T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential.
Collapse
|
18
|
Sharma A, Rani R. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells. Stem Cell Res Ther 2017; 8:167. [PMID: 28701182 PMCID: PMC5508489 DOI: 10.1186/s13287-017-0615-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/16/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? METHODS Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. RESULTS MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p < 0.009); however, administration of IPCs gave protective efficacy of 55% at the end of 28-30 weeks. CONCLUSIONS Precursors to insulin-producing cells seem to have better potential to arrest autoimmune response in type 1 diabetes when administered before the onset of the disease in NOD mice. When translated to humans, autologous mesenchymal stem cells grown in high-glucose media for 10 to 13 passages may have beneficial effects in individuals at high risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Anshu Sharma
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, 110067, India
| | - Rajni Rani
- Molecular Immunogenetics Group, National Institute of Immunology, New Delhi, 110067, India. .,Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.
| |
Collapse
|
19
|
SUMO and Nucleocytoplasmic Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:111-126. [DOI: 10.1007/978-3-319-50044-7_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Jung HS, Kang YM, Park HS, Ahn BY, Lee H, Kim MJ, Jang JY, Kim SW. Senp2 expression was induced by chronic glucose stimulation in INS1 cells, and it was required for the associated induction of Ccnd1 and Mafa. Islets 2016; 8:207-216. [PMID: 27644314 PMCID: PMC5161141 DOI: 10.1080/19382014.2016.1235677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Post-translational modification by bonding of small ubiquitin-like modifier (SUMO) peptides influences various cellular functions, and is regulated by SUMO-specific proteases (SENPs). Several proteins have been suggested to have diverse impact on insulin synthesis and secretion through SUMO modification in β cells. However, the role of SUMO modification in β cell mass has not been established. Here, we examined the changes in expression of Senp in INS1 cells and pancreatic islets under diabetes-relevant stress conditions and associated changes in β cell mass. Treatment with 25 mM glucose for 72 h induced Senp2 mRNA expression but not that of Senp1 in INS1 cells. Immunohistochemical staining with anti-SENP2 antibody on human pancreas sections revealed that SENP2 was localized in the nucleus. Moreover, in a patient with type 2 diabetes, SENP2 levels were enhanced, especially in the cytoplasm. Senp2 cytoplasmic levels were also increased in islet cells in obese diabetic mice. Cell number peaked earlier in INS1 cells cultured in high-glucose conditions compared to those cultured in control media. This finding was associated with increased Ccnd1 mRNA expression in high-glucose conditions, and siRNA-mediated Senp2 suppression abrogated it. Mafa expression, unlike Pdx1, was also dependent on Senp2 expression during high-glucose conditions. In conclusion, Senp2 may play a role in β cell mass in response to chronic high-glucose through Cyclin D1 and Mafa.
Collapse
Affiliation(s)
- Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
- CONTACT Hye Seung Jung Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yu Mi Kang
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Ho Seon Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Yong Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hakmo Lee
- Innovative Research Institute for Cell Therapy, Seoul, Republic of Korea
| | - Min Joo Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Whe Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
21
|
Meredith LJ, Wang CM, Nascimento L, Liu R, Wang L, Yang WH. The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation. J Cell Biochem 2016. [PMID: 26212494 DOI: 10.1002/jcb.25288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here, we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2, and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity.
Collapse
Affiliation(s)
- Leslie J Meredith
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 30404
| | - Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 30404
| | - Leticia Nascimento
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 30404
| | - Runhua Liu
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Lizhong Wang
- Department of Genetics and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 30404
| |
Collapse
|
22
|
Ma Y, Yu J, Lin J, Wu S, Li S, Wang J. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3758941. [PMID: 27766259 PMCID: PMC5059520 DOI: 10.1155/2016/3758941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 12/04/2022]
Abstract
Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.
Collapse
Affiliation(s)
- Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jieying Yu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinglian Lin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shaomin Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Ardestani A, Maedler K. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia 2016; 59:1843-9. [PMID: 27053234 DOI: 10.1007/s00125-016-3892-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/23/2015] [Indexed: 12/31/2022]
Abstract
The loss of insulin-producing beta cells by apoptosis is a hallmark of all forms of diabetes mellitus. Strategies to prevent beta cell apoptosis and dysfunction are urgently needed to restore the insulin-producing cells and to prevent severe diabetes progression. We recently identified the serine/threonine kinase known as mammalian sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta cell death and dysfunction. MST1 activates several apoptotic signalling pathways, which further stimulate its own cleavage, leading to a vicious cycle of cell death. This led us to hypothesise that MST1 signalling is central to the initiation of beta cell death in diabetes. We found that MST1 is strongly activated in a diabetic beta cell and induces not only its death but also directly impairs insulin secretion through promoting proteasomal degradation of key beta cell transcription factor, pancreatic and duodenal homeobox 1 (PDX1), which is critical for insulin production.Pre-clinical studies in various animal models of diabetes have reported that MST1 deficiency remarkably restores normoglycaemia and beta cell function and prevents the development of diabetes. Importantly, MST1 deficiency can revert fully diabetic beta cells to a non-diabetic state. MST1 may serve as a target for the development of novel therapies for diabetes that trigger the cause of the disease, namely, the destruction of the beta cells. The major current focus of our investigation is to identify and test the efficacy of potent inhibitors of this death signalling pathway to protect beta cells against the effects of autoimmune attack in type 1 diabetes and to preserve beta cell mass and function in type 2 diabetes. This review summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 , and by Harry Heimberg and colleagues, DOI: 10.1007/s00125-016-3879-6 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).
Collapse
Affiliation(s)
- Amin Ardestani
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, 28359, Bremen, Germany.
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Leobener Straße NW2, Room B2080, 28359, Bremen, Germany.
| |
Collapse
|
24
|
Vishwamitra D, Curry CV, Shi P, Alkan S, Amin HM. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein. Neoplasia 2016; 17:742-754. [PMID: 26476082 PMCID: PMC4611074 DOI: 10.1016/j.neo.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
25
|
Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS, Huang C, Ilkayeva O, Smith N, Miller N, Hajmrle C, Spigelman AF, Wright RC, Plummer G, Suzuki K, Mackay JP, van de Bunt M, Gloyn AL, Ryan TE, Norquay LD, Brosnan MJ, Trimmer JK, Rolph TP, Kibbey RG, Manning Fox JE, Colmers WF, Shirihai OS, Neufer PD, Yeh ETH, Newgard CB, MacDonald PE. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J Clin Invest 2015; 125:3847-60. [PMID: 26389676 DOI: 10.1172/jci82498] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023] Open
Abstract
Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D.
Collapse
|
26
|
Packham S, Lin Y, Zhao Z, Warsito D, Rutishauser D, Larsson O. The Nucleus-Localized Epidermal Growth Factor Receptor Is SUMOylated. Biochemistry 2015; 54:5157-66. [PMID: 26244656 DOI: 10.1021/acs.biochem.5b00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays important roles in normal and cancer cell growth. The EGFR has principally two different signaling pathways: the canonical kinase route induced at the plasma membrane resulting in an intracellular phosphorylation cascade via MAPKs and PI3K and the more recently discovered pathway by which the receptor functions as a transcriptional co-activator inside the cell nucleus. Full length EGFR translocates to the inner nuclear membrane, via the endoplasmic reticulum, through association with the sec61β translocon. The c-myc (MYC) and cyclin D1 (CNND1) genes represent two target genes for nuclear EGFR (nEGFR). Here we show that EGFR is SUMOylated and that the SUMO-1-modified receptors are almost unexceptionally nuclear. Co-immunoprecipitation experiments suggest that EGFR is multi-SUMOylated. Using two mass spectrometry-based strategies (matrix-assisted laser desorption ionization time of flight and electrospray ionization liquid chromatography with tandem mass spectrometry), lysine 37 was identified as a SUMO-1-modified residue by both methods. A lysine 37 site mutant (K37R) was transfected into EGFR deficient cells. Total SUMOylation of EGFR was not altered in the K37R-transfected cells, confirming the presence of other SUMOylation sites. To gain preliminary insight into the possible functional role of EGFR SUMOylation, we compared the effect of expression of the wild-type EGFR with the K37R mutant on promoter activity and expression of CMYC and CNND1. Our results indicate that SUMO-1 modification may affect the transcriptional activity of EGFR, which might have additional impact on, e.g., cancer progression.
Collapse
Affiliation(s)
- Sylvia Packham
- Karolinska Institutet , Division of Biophysics, Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden
| | - Yingbo Lin
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Zhiwei Zhao
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden.,Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University , Chengdu, Sichuan CN-610041, China
| | - Dudi Warsito
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| | - Dorothea Rutishauser
- Karolinska Institutet , Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Scheeles väg 2, SE-171 77 Stockholm, Sweden.,Science for Life Laboratory , Tomtebodavägen 23, SE-171 65 Solna, Sweden
| | - Olle Larsson
- Karolinska Institutet , Department of Oncology and Pathology, CCK R8:04, SE-171 76 Stockholm, Sweden
| |
Collapse
|
27
|
Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Özcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem 2015; 290:9812-22. [PMID: 25713082 DOI: 10.1074/jbc.m114.616219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.
Collapse
Affiliation(s)
| | - Bernhard Maier
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Sarah A Tersey
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Megan L Sampley
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | | | - Sabire Özcan
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Boobalan Pachaiyappan
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Patrick M Woster
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Chad S Hunter
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Roland Stein
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, and Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
28
|
Hajmrle C, Ferdaoussi M, Plummer G, Spigelman AF, Lai K, Manning Fox JE, MacDonald PE. SUMOylation protects against IL-1β-induced apoptosis in INS-1 832/13 cells and human islets. Am J Physiol Endocrinol Metab 2014; 307:E664-73. [PMID: 25139051 PMCID: PMC4200309 DOI: 10.1152/ajpendo.00168.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posttranslational modification by the small ubiquitin-like modifier (SUMO) peptides, known as SUMOylation, is reversed by the sentrin/SUMO-specific proteases (SENPs). While increased SUMOylation reduces β-cell exocytosis, insulin secretion, and responsiveness to GLP-1, the impact of SUMOylation on islet cell survival is unknown. Mouse islets, INS-1 832/13 cells, or human islets were transduced with adenoviruses to increase either SENP1 or SUMO1 or were transfected with siRNA duplexes to knockdown SENP1. We examined insulin secretion, intracellular Ca²⁺ responses, induction of endoplasmic reticulum stress markers and inducible nitric oxide synthase (iNOS) expression, and apoptosis by TUNEL and caspase 3 cleavage. Surprisingly, upregulation of SENP1 reduces insulin secretion and impairs intracellular Ca²⁺ handling. This secretory dysfunction is due to SENP1-induced cell death. Indeed, the detrimental effect of SENP1 on secretory function is diminished when two mediators of β-cell death, iNOS and NF-κB, are pharmacologically inhibited. Conversely, enhanced SUMOylation protects against IL-1β-induced cell death. This is associated with reduced iNOS expression, cleavage of caspase 3, and nuclear translocation of NF-κB. Taken together, these findings identify SUMO1 as a novel antiapoptotic protein in islets and demonstrate that reduced viability accounts for impaired islet function following SENP1 up-regulation.
Collapse
Affiliation(s)
- Catherine Hajmrle
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory Plummer
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Krista Lai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Zhou G, Sinnett-Smith J, Liu SH, Yu J, Wu J, Sanchez R, Pandol SJ, Abrol R, Nemunaitis J, Rozengurt E, Brunicardi FC. Down-regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5: a novel mechanism for inhibition of cellular proliferation and insulin secretion by somatostatin. Front Physiol 2014; 5:226. [PMID: 25009500 PMCID: PMC4069483 DOI: 10.3389/fphys.2014.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/31/2014] [Indexed: 01/29/2023] Open
Abstract
Somatostatin (SST) is a regulatory peptide and acts as an endogenous inhibitory regulator of the secretory and proliferative responses of target cells. SST’s actions are mediated by a family of seven transmembrane domain G protein-coupled receptors that comprise five distinct subtypes (SSTR1-5). SSTR5 is one of the major SSTRs in the islets of Langerhans. Homeodomain-containing transcription factor pancreatic and duodenal homeobox-1 (PDX-1) is essential for pancreatic development, β cell differentiation, maintenance of normal β cell functions in adults and tumorigenesis. Recent studies show that SSTR5 acts as a negative regulator for PDX-1 expression and that SSTR5 mediates somatostatin’s inhibitory effect on cell proliferation and insulin expression/excretion through down-regulating PDX-1 expression. SSTR5 exerts its inhibitory effect on PDX-1 expression at both the transcriptional level by down-regulating PDX-1 mRNA and the post-translational level by enhancing PDX-1 ubiquitination. Identification of PDX-1 as a transcriptional target for SSTR5 may help in guiding the choice of therapeutic cancer treatments.
Collapse
Affiliation(s)
- Guisheng Zhou
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Jim Sinnett-Smith
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Shi-He Liu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Juehua Yu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - James Wu
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Robbi Sanchez
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - Stephen J Pandol
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine at Cedars Sinai Medical Center Los Angeles, CA, USA ; Veterans Affairs Los Angeles, CA, USA
| | - Ravinder Abrol
- Materials and Process Simulation Center, California Institute of Technology Pasadena, CA, USA
| | - John Nemunaitis
- Gradalis, Inc., Dallas, TX, USA ; Mary Crowley Cancer Research Centers Dallas, TX, USA
| | - Enrique Rozengurt
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| | - F Charles Brunicardi
- Division of General Surgery, Department of Surgery, David Geffen School of Medicine at University of California Los Angeles, CA, USA ; CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California Los Angeles, CA, USA
| |
Collapse
|
30
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014. [PMID: 24600443 DOI: 10.3389/fmicb.2014.00063.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
31
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014; 5:63. [PMID: 24600443 PMCID: PMC3928792 DOI: 10.3389/fmicb.2014.00063] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
32
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
33
|
Glucose regulates protein kinase CK2 in pancreatic β-cells and its interaction with PDX-1. Int J Biochem Cell Biol 2013; 45:2786-95. [DOI: 10.1016/j.biocel.2013.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/19/2013] [Accepted: 10/01/2013] [Indexed: 12/13/2022]
|
34
|
Assessment of intravenous pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) in yucatan swine. Cancer Gene Ther 2013; 20:683-9. [PMID: 24287722 DOI: 10.1038/cgt.2013.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
Abstract
PDX1 (pancreatic and duodenal homeobox 1) is overexpressed in pancreatic cancer, and its reduction results in tumor regression. Bi-functional pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) utilizes the endogenous micro-RNA biogenesis pathway to effect cleavage- and non-cleavage-dependent degradation of PDX1 mRNA. We have shown that OFHIRNA-PDX1 reduces pancreatic tumor volume in xenograft models. Thus, we are now exploring biorelevant large animal safety of OFHIRNA-PDX1. Mini pigs were chosen as the biorelevant species based on the similarity of human and pig PDX1 target sequence. In the initial study, animals developed fever, lethargy, hyporexia and cutaneous hyperemia following administration of OFHIRNA-PDX1. Twenty-one days later, the same animals demonstrated less toxicity with a second OFHIRNA-PDX1 infusion in conjunction with a prophylactic regimen involving dexamethasone, diphenhydramine, Indocin and ranitidine. In a new group of animals, PDX1 protein (31 kDa) expression in the pancreas was significantly repressed at 48 and 72 h (85%, P=0.018 and 88%, P=0.013; respectively) following a single infusion of OFHIRNA-PDX1 but recovered to normal state within 7 days. In conclusion, a single intravenous infusion of OFHIRNA-PDX1 in conjunction with premedication in pigs was well tolerated and demonstrated significant PDX1 knockdown.
Collapse
|
35
|
Babin V, Wang D, Rose RB, Sagui C. Binding polymorphism in the DNA bound state of the Pdx1 homeodomain. PLoS Comput Biol 2013; 9:e1003160. [PMID: 23950697 PMCID: PMC3738460 DOI: 10.1371/journal.pcbi.1003160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
The subtle effects of DNA-protein recognition are illustrated in the homeodomain fold. This is one of several small DNA binding motifs that, in spite of limited DNA binding specificity, adopts crucial, specific roles when incorporated in a transcription factor. The homeodomain is composed of a 3-helix domain and a mobile N-terminal arm. Helix 3 (the recognition helix) interacts with the DNA bases through the major groove, while the N-terminal arm becomes ordered upon binding a specific sequence through the minor groove. Although many structural studies have characterized the DNA binding properties of homeodomains, the factors behind the binding specificity are still difficult to elucidate. A crystal structure of the Pdx1 homeodomain bound to DNA (PDB 2H1K) obtained previously in our lab shows two complexes with differences in the conformation of the N-terminal arm, major groove contacts, and backbone contacts, raising new questions about the DNA recognition process by homeodomains. Here, we carry out fully atomistic Molecular Dynamics simulations both in crystal and aqueous environments in order to elucidate the nature of the difference in binding contacts. The crystal simulations reproduce the X-ray experimental structures well. In the absence of crystal packing constraints, the differences between the two complexes increase during the solution simulations. Thus, the conformational differences are not an artifact of crystal packing. In solution, the homeodomain with a disordered N-terminal arm repositions to a partially specific orientation. Both the crystal and aqueous simulations support the existence of different stable binding conformers identified in the original crystallographic data with different degrees of specificity. We propose that protein-protein and protein-DNA interactions favor a subset of the possible conformations. This flexibility in DNA binding may facilitate multiple functions for the same transcription factor.
Collapse
Affiliation(s)
- Volodymyr Babin
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California, United States of America
| | - Dongli Wang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert B. Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| |
Collapse
|
36
|
Chen L, Ma Y, Qian L, Wang J. Sumoylation regulates nuclear localization and function of zinc finger transcription factor ZIC3. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2725-2733. [PMID: 23872418 DOI: 10.1016/j.bbamcr.2013.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/14/2013] [Accepted: 07/12/2013] [Indexed: 11/24/2022]
Abstract
ZIC3, an X-linked zinc finger transcription factor, was the first identified gene involved in establishing normal left-right patterning in humans. Mutations in the Zic3 gene in patients cause heterotaxy, which includes congenital heart defects. However, very little is known about how the function of the ZIC3 protein is regulated. Sumoylation is a posttranslational modification process in which a group of small ubiquitin-like modifier (SUMO) proteins is covalently attached to targets via a series of enzymatic reactions. Here, we report for the first time that sumoylation targets human ZIC3 primarily on the consensus lysine residue K248, which is critical for the nuclear retention of ZIC3. Consequently, SUMO modification potentiates the repressive activity of ZIC3 on the promoter of its target gene cardiac α-actin, and the mutation of lysine 248 to arginine (K248R) abolishes its repressive function. We further revealed that ZIC3 variants with mutations found in human patients with congenital anomalies exhibit aberrant sumoylation activity, which at least partially accounts for their cytoplasmic diffusion. Improved sumoylation of human disease-associated ZIC3 variants reestablishes their nuclear occupancy in the presence of SUMO E3 ligase and SUMO-1. Thus, the altered sumoylation status of ZIC3 underpins the developmental abnormalities associated with these ZIC3 mutants. The SUMO targeting consensus sequence in ZIC3 is highly conserved in its paralogs and orthologs, pointing to sumoylation as a general mechanism underlying the functional control of ZIC proteins. This study provides a potential therapeutic strategy to regain the normal subcellular distribution and function of ZIC3 mutants by restoring SUMO conjugation.
Collapse
Affiliation(s)
- Li Chen
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yanlin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Ling Qian
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA
| | - Jun Wang
- The Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Liu SH, Zhou G, Yu J, Wu J, Nemunaitis J, Senzer N, Dawson D, Li M, Fisher WE, Brunicardi FC. Notch1 activation up-regulates pancreatic and duodenal homeobox-1. Genes (Basel) 2013; 4:358-74. [PMID: 24705209 PMCID: PMC3924823 DOI: 10.3390/genes4030358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/02/2013] [Accepted: 07/11/2013] [Indexed: 12/28/2022] Open
Abstract
Transcription factor pancreatic and duodenal homeobox-1 (PDX-1) plays an essential role in pancreatic development, β-cell differentiation, maintenance of normal β-cell function and tumorigenesis. PDX-1 expression is tightly controlled through a variety of mechanisms under different cellular contexts. We report here that overexpression of Notch1 intracellular domain (NICD), an activated form of Notch1, enhanced PDX-1 expression in both PDX-1 stable HEK293 cells and mouse insulinoma β-TC-6 cells, while NICD shRNA inhibited the enhancing effect. NICD-enhanced PDX-1 expression was accompanied by increased insulin expression/secretion and cell proliferation in β-TC-6 cells, which was reversed by NICD shRNA. Cre activation-induced specific expression of NICD in islet β cells of transgenic βNICD+/+ mice induced increased expression of PDX-1, insulin and proliferating cell nuclear antigen (PCNA) and decreased expression of p27 with accompanied fasting hyperinsulinemia and hypoglycemia and altered responses to intraperitoneal glucose tolerance test. Systemically delivered NICD shRNA suppressed islet expression of PDX-1 and reversed the hypoglycemia and hyperinsulinemia. Moreover, expression levels of NICD were correlated with those of PDX-1 in human pancreatic neuroendocrine tumor. Thus, Notch1 acts as a positive regulator for PDX-1 expression, cooperates with PDX-1 in the development of insulin overexpression and islet cell neoplasia and represents a potential therapeutic target for islet neoplasia.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Guisheng Zhou
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Juehua Yu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - James Wu
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | | | - Neil Senzer
- Mary Crowley Cancer Research Center, Dallas, TX 75230, USA.
| | - David Dawson
- CURE: Digestive Disease Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| | - Min Li
- Department of Neurosurgery, UT-Houston School of Medicine, Houston, TX 77030, USA.
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - F Charles Brunicardi
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Semache M, Zarrouki B, Fontés G, Fogarty S, Kikani C, Chawki MB, Rutter J, Poitout V. Per-Arnt-Sim kinase regulates pancreatic duodenal homeobox-1 protein stability via phosphorylation of glycogen synthase kinase 3β in pancreatic β-cells. J Biol Chem 2013; 288:24825-33. [PMID: 23853095 DOI: 10.1074/jbc.m113.495945] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In pancreatic β-cells, glucose induces the binding of the transcription factor pancreatic duodenal homeobox-1 (PDX-1) to the insulin gene promoter to activate insulin gene transcription. At low glucose levels, glycogen synthase kinase 3β (GSK3β) is known to phosphorylate PDX-1 on C-terminal serine residues, which triggers PDX-1 proteasomal degradation. We previously showed that the serine/threonine Per-Arnt-Sim domain-containing kinase (PASK) regulates insulin gene transcription via PDX-1. However, the mechanisms underlying this regulation are unknown. In this study, we aimed to identify the role of PASK in the regulation of PDX-1 phosphorylation, protein expression, and stability in insulin-secreting cells and isolated rodent islets of Langerhans. We observed that glucose induces a decrease in overall PDX-1 serine phosphorylation and that overexpression of WT PASK mimics this effect. In vitro, PASK directly phosphorylates GSK3β on its inactivating phosphorylation site Ser(9). Overexpression of a kinase-dead (KD), dominant negative version of PASK blocks glucose-induced Ser(9) phosphorylation of GSK3β. Accordingly, GSK3β Ser(9) phosphorylation is reduced in islets from pask-null mice. Overexpression of WT PASK or KD GSK3β protects PDX-1 from degradation and results in increased PDX-1 protein abundance. Conversely, overexpression of KD PASK blocks glucose-induction of PDX-1 protein. We conclude that PASK phosphorylates and inactivates GSK3β, thereby preventing PDX-1 serine phosphorylation and alleviating GSK3β-mediated PDX-1 protein degradation in pancreatic β-cells.
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center, CRCHUM, Quebec City H1W4A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Aukrust I, Bjørkhaug L, Negahdar M, Molnes J, Johansson BB, Müller Y, Haas W, Gygi SP, Søvik O, Flatmark T, Kulkarni RN, Njølstad PR. SUMOylation of pancreatic glucokinase regulates its cellular stability and activity. J Biol Chem 2013; 288:5951-62. [PMID: 23297408 DOI: 10.1074/jbc.m112.393769] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucokinase is the predominant hexokinase expressed in hepatocytes and pancreatic β-cells, with a pivotal role in regulating glucose-stimulated insulin secretion, illustrated by glucokinase gene mutations causing monogenic diabetes and congenital hyperinsulinemic hypoglycemia. A complex tissue-specific network of mechanisms regulates this enzyme, and a major unanswered question in glucokinase biology is how post-translational modifications control the function of the enzyme. Here, we show that the pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells. Three N-terminal lysines unique for the pancreatic isoform (Lys-12/Lys-13 and/or Lys-15) may represent one SUMOylation site, with an additional site (Lys-346) common for the pancreatic and the liver isoform. SUMO-1 and E2 overexpression stabilized preferentially the wild-type human pancreatic enzyme in MIN6 β-cells, and SUMOylation increased the catalytic activity of recombinant human glucokinase in vitro and also of glucokinase in target cells. Small ubiquitin-like modifier conjugation represents a novel form of post-translational modification of the enzyme, and it may have an important regulatory function in pancreatic β-cells.
Collapse
Affiliation(s)
- Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Medicine, N-5020 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou G, Liu SH, Shahi KM, Wang H, Duan X, Lin X, Feng XH, Li M, Fisher WE, Demayo FJ, Dawson D, Brunicardi FC. Negative regulation of pancreatic and duodenal homeobox-1 by somatostatin receptor subtype 5. Mol Endocrinol 2012; 26:1225-34. [PMID: 22669743 DOI: 10.1210/me.2012-1095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Somatostatin receptor subtype 5 (SSTR5) mediates the inhibitory effect of somatostatin and its analogs on insulin expression/secretion and islet cell proliferation. We provide biochemical and genetic evidence that SSTR5 exerted its physiological actions via down-regulating pancreatic and duodenal homeobox-1 (PDX-1), a β-cell-specific homeodomain-containing transcription factor. Cotransfection of SSTR5 with PDX-1 resulted in dose-dependent inhibition of PDX-1 expression in human embryonic kidney 293 cells. SSTR5 agonist RPL-1980 inhibited PDX-1 expression and abolished glucagon-like peptide 1-stimulated PDX-1 expression in mouse insulinoma β-TC-6 cells. SSTR5 knockdown by short hairpin RNA led to increased PDX-1 expression that was accompanied by enhanced insulin secretion stimulated by high glucose in β-TC6 cells and alternated expressions of cell cycle proteins that favor cell proliferation in mouse insulinoma MIN6 cells. Quantitative RT-PCR analysis showed that cotransfected SSTR5 inhibited PDX-1 mRNA expression, whereas knockdown of SSTR5 increased PDX-1 mRNA expression. In addition, we found that cotransfected wild-type SSTR5 increased PDX-1 ubiquitination in human embryonic kidney 293 cells, whereas SSTR5 P335L, a hypofunctional single nucleotide polymorphism of SSTR5, inhibited PDX-1 ubiquitination. SSTR5 knockout resulted in increased expression of PDX-1, insulin, and proliferating cell nuclear antigen in the islets of sstr(-/-) mice. Immunohistochemistry analysis showed that SSTR5 P335L was associated with elevated expression of PDX-1 in human pancreatic neuroendocrine tumor. Taken together, our studies demonstrated that SSTR5 is a negative regulator for PDX-1 expression and that SSTR5 may mediate the inhibitory effects of somatostatin and its analogs on insulin expression/secretion and cell proliferation via down-regulating PDX-1 at both transcriptional and posttranslational levels.
Collapse
Affiliation(s)
- Guisheng Zhou
- Department of Surgery, David Geffen School of Medicine at University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
DeSUMOylation Controls Insulin Exocytosis in Response to Metabolic Signals. Biomolecules 2012; 2:269-81. [PMID: 24970137 PMCID: PMC4030845 DOI: 10.3390/biom2020269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/25/2022] Open
Abstract
The secretion of insulin by pancreatic islet β-cells plays a pivotal role in glucose homeostasis and diabetes. Recent work suggests an important role for SUMOylation in the control of insulin secretion from β-cells. In this paper we discuss mechanisms whereby (de)SUMOylation may control insulin release by modulating β-cell function at one or more key points; and particularly through the acute and reversible regulation of the exocytotic machinery. Furthermore, we postulate that the SUMO-specific protease SENP1 is an important mediator of insulin exocytosis in response to NADPH, a metabolic secretory signal and major determinant of β-cell redox state. Dialysis of mouse β-cells with NADPH efficiently amplifies β-cell exocytosis even when extracellular glucose is low; an effect that is lost upon knockdown of SENP1. Conversely, over-expression of SENP1 itself augments β-cell exocytosis in a redox-dependent manner. Taken together, we suggest that (de)SUMOylation represents an important mechanism that acutely regulates insulin secretion and that SENP1 can act as an amplifier of insulin exocytosis.
Collapse
|
42
|
Frogne T, Sylvestersen KB, Kubicek S, Nielsen ML, Hecksher-Sørensen J. Pdx1 is post-translationally modified in vivo and serine 61 is the principal site of phosphorylation. PLoS One 2012; 7:e35233. [PMID: 22509401 PMCID: PMC3324462 DOI: 10.1371/journal.pone.0035233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
Maintaining sufficient levels of Pdx1 activity is a prerequisite for proper regulation of blood glucose homeostasis and beta cell function. Mice that are haploinsufficient for Pdx1 display impaired glucose tolerance and lack the ability to increase beta cell mass in response to decreased insulin signaling. Several studies have shown that post-translational modifications are regulating Pdx1 activity through intracellular localization and binding to co-factors. Understanding the signaling cues converging on Pdx1 and modulating its activity is therefore an attractive approach in diabetes treatment. We employed a novel technique called Nanofluidic Proteomic Immunoassay to characterize the post-translational profile of Pdx1. Following isoelectric focusing in nano-capillaries, this technology relies on a pan specific antibody for detection and it therefore allows the relative abundance of differently charged protein species to be examined simultaneously. In all eukaryotic cells tested we find that the Pdx1 protein separates into four distinct peaks whereas Pdx1 protein from bacteria only produces one peak. Of the four peaks in eukaryotic cells we correlate one of them to a phosphorylation Using alanine scanning and mass spectrometry we map this phosphorylation to serine 61 in both Min6 cells and in exogenous Pdx1 over-expressed in HEK293 cells. A single phosphorylation is also present in cultured islets but it remains unaffected by changes in glucose levels. It is present during embryogenesis but is not required for pancreas development.
Collapse
Affiliation(s)
- Thomas Frogne
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
| | | | - Stefan Kubicek
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Jacob Hecksher-Sørensen
- Department of Beta-cell Regeneration, Hagedorn Research Institute, Gentofte, Denmark
- * E-mail:
| |
Collapse
|
43
|
Manning Fox JE, Hajmrle C, Macdonald PE. Novel roles of SUMO in pancreatic β-cells: thinking outside the nucleus. Can J Physiol Pharmacol 2012; 90:765-70. [PMID: 22486776 DOI: 10.1139/y11-134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The endocrine pancreas is critically important in the regulation of energy metabolism, with defective insulin secretion from pancreatic islet β-cells a major contributing factor to the development of type 2 diabetes. Small ubiquitin-like modifier (SUMO) proteins have been demonstrated to covalently modify a wide range of target proteins, mediating a broad range of cellular processes. While the effects of SUMOylation on β-cell gene transcription have been previously reviewed, recent reports indicate roles for SUMO outside of the nucleus. In this review we shall focus on the reported non-nuclear roles of SUMOylation in the regulation of β-cells, including SUMOylation as a novel signaling pathway in the acute regulation of insulin secretion.
Collapse
Affiliation(s)
- Jocelyn E Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, Li Ka Shing Centre, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | | | |
Collapse
|
44
|
Guan G, Moreau E, Liu J, Ma M, Rogniaux H, Liu A, Niu Q, Li Y, Ren Q, Luo J, Chauvin A, Yin H. BQP35 is a novel member of the intrinsically unstructured protein (IUP) family which is a potential antigen for the sero-diagnosis of Babesia sp. BQ1 (Lintan) infection. Vet Parasitol 2012; 187:421-30. [PMID: 22317784 DOI: 10.1016/j.vetpar.2012.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 01/04/2012] [Accepted: 01/13/2012] [Indexed: 11/19/2022]
Abstract
A new gene of Babesia sp. BQ1 (Lintan) (BQP35) was cloned by screening a merozoite cDNA expression library with infected sheep serum and using rapid amplification of cDNA ends (RACE). The nucleotide sequence of the cDNA was 1140bp with an open reading frame (ORF) of 936bp encoding a 35-kDa predicted polypeptide with 311 amino acid residues. Comparison of BQP35 cDNA and genomic DNA sequences showed that BQP35 does not possess an intron. Recombinant BQP35 (rBQP35), expressed in a prokaryotic expression system, showed abnormally slow migration on SDS-PAGE. Gel shifting, amino acid sequence and in silico disorder region prediction indicated that BQP35 protein has characteristics of intrinsically unstructured proteins (IUPs). This is the first description of such proteins in the Babesia genus. BQP35 induced antibodies production as early as one week after Babesia sp. BQ1 (Lintan) infection in sheep. No cross-reaction was observed with sera from sheep infected with other ovine piroplasms dominant in China, except with Babesia sp. Tianzhu. The interest of BQP35 as a diagnostic antigen is discussed.
Collapse
Affiliation(s)
- Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu 730046, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|
46
|
Role of transcription factor modifications in the pathogenesis of insulin resistance. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:716425. [PMID: 22110478 PMCID: PMC3205681 DOI: 10.1155/2012/716425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/25/2011] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver not due to alcohol abuse. NAFLD is accompanied by variety of symptoms related to metabolic syndrome. Although the metabolic link between NAFLD and insulin resistance is not fully understood, it is clear that NAFLD is one of the main cause of insulin resistance. NAFLD is shown to affect the functions of other organs, including pancreas, adipose tissue, muscle and inflammatory systems. Currently efforts are being made to understand molecular mechanism of interrelationship between NAFLD and insulin resistance at the transcriptional level with specific focus on post-translational modification (PTM) of transcription factors. PTM of transcription factors plays a key role in controlling numerous biological events, including cellular energy metabolism, cell-cycle progression, and organ development. Cell type- and tissue-specific reversible modifications include lysine acetylation, methylation, ubiquitination, and SUMOylation. Moreover, phosphorylation and O-GlcNAcylation on serine and threonine residues have been shown to affect protein stability, subcellular distribution, DNA-binding affinity, and transcriptional activity. PTMs of transcription factors involved in insulin-sensitive tissues confer specific adaptive mechanisms in response to internal or external stimuli. Our understanding of the interplay between these modifications and their effects on transcriptional regulation is growing. Here, we summarize the diverse roles of PTMs in insulin-sensitive tissues and their involvement in the pathogenesis of insulin resistance.
Collapse
|
47
|
Aguayo-Mazzucato C, Koh A, El Khattabi I, Li WC, Toschi E, Jermendy A, Juhl K, Mao K, Weir GC, Sharma A, Bonner-Weir S. Mafa expression enhances glucose-responsive insulin secretion in neonatal rat beta cells. Diabetologia 2011; 54:583-93. [PMID: 21190012 PMCID: PMC3047400 DOI: 10.1007/s00125-010-2026-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022]
Abstract
AIM/HYPOTHESIS Neonatal beta cells lack glucose-stimulated insulin secretion and are thus functionally immature. We hypothesised that this lack of glucose responsiveness results from a generalised low expression of genes characteristic of mature functional beta cells. Important glucose-responsive transcription factors, Mafa and Pdx1, regulate genes involved in insulin synthesis and secretion, and have been implicated in late beta cell development. The aim of this study was to assess whether Mafa and/or Pdx1 regulates the postnatal functional maturation of beta cells. METHODS By quantitative PCR we evaluated expression of these and other beta cell genes over the first month compared with adult. After infection with adenovirus expressing MAFA, Pdx1 or green fluorescent protein (Gfp), P2 rat islets were evaluated by RT-PCR and insulin secretion with static incubation and reverse haemolytic plaque assay (RHPA). RESULTS At P2 most beta cell genes were expressed at about 10% of adult, but by P7 Pdx1 and Neurod1 no longer differ from adult; by contrast, Mafa expression remained significantly lower than adult through P21. Overexpression of Pdx1 increased Mafa, Neurod1, glucokinase (Gck) mRNA and insulin content but failed to enhance glucose responsiveness. Similar overexpression of MAFA resulted in increased Neurod1, Nkx6-1, Gck and Glp1r mRNAs and no change in insulin content but, importantly, acquisition of glucose-responsive insulin secretion. Both the percentage of secreting beta cells and the amount of insulin secreted per beta cell increased, approaching that of adult beta cells. CONCLUSIONS/INTERPRETATION In the process of functional maturation acquiring glucose-responsive insulin secretion, neonatal beta cells undergo a coordinated gene expression programme in which Mafa plays a crucial role.
Collapse
Affiliation(s)
- C. Aguayo-Mazzucato
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - A. Koh
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - I. El Khattabi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - W.-C. Li
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - E. Toschi
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - A. Jermendy
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - K. Juhl
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - K. Mao
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - G. C. Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - A. Sharma
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - S. Bonner-Weir
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
48
|
Dai XQ, Plummer G, Casimir M, Kang Y, Hajmrle C, Gaisano HY, Manning Fox JE, MacDonald PE. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans. Diabetes 2011; 60:838-47. [PMID: 21266332 PMCID: PMC3046844 DOI: 10.2337/db10-0440] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The reversible attachment of small ubiquitin-like modifier (SUMO) proteins controls target localization and function. We examined an acute role for the SUMOylation pathway in downstream events mediating insulin secretion. RESEARCH DESIGN AND METHODS We studied islets and β-cells from mice and human donors, as well as INS-1 832/13 cells. Insulin secretion, intracellular Ca(2+), and β-cell exocytosis were monitored after manipulation of the SUMOylation machinery. Granule localization was imaged by total internal reflection fluorescence and electron microscopy; immunoprecipitation and Western blotting were used to examine the soluble NSF attachment receptor (SNARE) complex formation and SUMO1 interaction with synaptotagmin VII. RESULTS SUMO1 impairs glucose-stimulated insulin secretion by blunting the β-cell exocytotic response to Ca(2+). The effect of SUMO1 to impair insulin secretion and β-cell exocytosis is rapid and does not require altered gene expression or insulin content, is downstream of granule docking at the plasma membrane, and is dependent on SUMO-conjugation because the deSUMOylating enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exocytosis. SUMO1 coimmunoprecipitates with the Ca(2+) sensor synaptotagmin VII, and this is transiently lost upon glucose stimulation. SENP1 overexpression also disrupts the association of SUMO1 with synaptotagmin VII and mimics the effect of glucose to enhance exocytosis. Conversely, SENP1 knockdown impairs exocytosis at stimulatory glucose levels and blunts glucose-dependent insulin secretion from mouse and human islets. CONCLUSIONS SUMOylation acutely regulates insulin secretion by the direct and reversible inhibition of β-cell exocytosis in response to intracellular Ca(2+) elevation. The SUMO protease, SENP1, is required for glucose-dependent insulin secretion.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Greg Plummer
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marina Casimir
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Hajmrle
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jocelyn E. Manning Fox
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Corresponding author: Patrick E. MacDonald,
| |
Collapse
|
49
|
Lee JS, Kim EY, Nomaru K, Iwata H. Molecular and functional characterization of Aryl hydrocarbon receptor repressor from the chicken (Gallus gallus): interspecies similarities and differences. Toxicol Sci 2010; 119:319-34. [PMID: 21047992 DOI: 10.1093/toxsci/kfq336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) repressor (AHRR) has been recognized as a negative feedback modulator of AHR-mediated responses in fish and mammals. However, the repressive mechanism by the AHRR has not been investigated in other animals. To understand the molecular mechanism of dioxin toxicity and the evolutionary history of the AHR signaling pathway in avian species, the present study addresses chicken AHRR (ckAHRR). The complementary DNA sequence of ckAHRR encodes an 84-kDa protein sharing 29-52% identities with other AHRRs. High levels of ckAHRR messenger RNA were recorded in the kidney and intestine of nontreated chicks. In hepatoma LMH cells, the 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) 50% effective concentration value for ckAHRR induction (0.0016nM) was the same as that for chicken cytochrome P450 1A5 (ckCYP1A5), implying a shared transcriptional regulation of ckAHRR and ckCYP1A5 by chicken AHR (ckAHR). In ckAHRR transient transfection assays, ckAHRR repressed both ckAHR1- and ckAHR2-mediated transcriptional activities. Deletion and mutation assays revealed that basic helix-loop-helix/Per-ARNT-Sim A domains of ckAHRR, particularly 217-402 amino acid residues, are indispensable for the repression, but the AHR nuclear translocator sequestration by ckAHRR and SUMOylation of ckAHRR are not involved in its repressive mechanism. Additionally, subcellular localization assay of ckAHR1-enhanced green fluorescent protein fusion protein showed that ckAHRR did not affect nuclear translocation of the ckAHR1. Furthermore, ckAHRR inhibited the TCDD- and 17β estradiol-enhanced ckCYP1A5 transcription through AHR-estrogen receptor α (ERα) cross talk. Taken together, the function of AHRR is conserved in chicken in terms of the negative regulation of AHR and ERα activities, but its functional mechanism is likely distinct from those of the mammalian and fish homologues.
Collapse
Affiliation(s)
- Jin-Seon Lee
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Japan
| | | | | | | |
Collapse
|
50
|
Meng R, Götz C, Montenarh M. The role of protein kinase CK2 in the regulation of the insulin production of pancreatic islets. Biochem Biophys Res Commun 2010; 401:203-6. [DOI: 10.1016/j.bbrc.2010.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|