1
|
Yacoub MI, Aslanoğlu A, Khraim F, Alsharawneh A, Abdelkader R, Almagharbeh WT, Alhejaili AA, Alshahrani BD, Sobeh DE, Eltayeb MM, Elshatarat RA, Saleh ZT. Comparing E-Cigarettes and Traditional Cigarettes in Relation to Myocardial Infarction, Arrhythmias, and Sudden Cardiac Death: A Systematic Review and Meta-Analysis. Biol Res Nurs 2025; 27:168-185. [PMID: 39317411 DOI: 10.1177/10998004241287782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND The use of electronic cigarettes (e-cigarettes) as a perceived safer alternative to traditional cigarettes has grown rapidly. However, the cardiovascular risks associated with e-cigarettes compared to regular cigarettes remain unclear. OBJECTIVE To systematically review and compare the cardiovascular outcomes of e-cigarette use versus traditional cigarette use, focusing on the risks of myocardial infarction, arrhythmias, and sudden death. METHODS A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Peer-reviewed studies published in English were included if they reported cardiovascular outcomes related to e-cigarette or traditional cigarette use. A total of 20 studies were included, covering observational and interventional studies focusing on heart rate variability, myocardial infarction, arrhythmias, and sudden cardiac events. The quality of the evidence was assessed using the GRADE criteria, and data were extracted and analyzed based on the PICOS (Population, Interventions, Comparisons, Outcomes, and Study designs) framework. RESULTS The systematic review found that both e-cigarettes and traditional cigarettes pose significant cardiovascular risks, with traditional cigarettes linked to a higher incidence of myocardial infarction, arrhythmias, and sudden cardiac death. E-cigarette users also face increased risks of arrhythmias and myocardial infarction compared to non-smokers, primarily due to the constituents of aerosolized e-liquid, including nicotine and flavorings, which contribute to adverse cardiac effects. Regular e-cigarette use, particularly in combination with traditional cigarette use, was associated with a heightened risk of myocardial infarction. Studies also reported heart function abnormalities, such as systolic and diastolic dysfunction, and reduced ejection fractions. Additionally, changes in heart rate variability, heart rate, and blood pressure were observed, indicating both acute and chronic effects of e-cigarettes on cardiovascular autonomic regulation. CONCLUSIONS While e-cigarettes may present a lower cardiovascular risk compared to traditional cigarettes, they are not without harm. Both products are linked to increased risks of myocardial infarction and arrhythmias, though traditional cigarettes pose a higher overall threat. Given the limitations in the current evidence base, particularly concerning the long-term effects of e-cigarette use, further research is needed to clarify these cardiovascular risks and inform public health guidelines.
Collapse
Affiliation(s)
- Mohammed I Yacoub
- Department of Clinical Nursing, School of Nursing, The University of Jordan, Amman, Jordan
| | - Aziz Aslanoğlu
- Department of Nursing, School of Health Sciences, Cyprus International University, Lefkoşa, Cyprus
- Department of Nursing, Vision College, Riyadh, Saudi Arabia
| | - Fadi Khraim
- College of Nursing, Qatar University, Doha, Qatar
| | - Anas Alsharawneh
- Department of Adult Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Raghad Abdelkader
- Nursing Department, Faculty of Nursing, Applied Science Private University, Amman, Jordan
| | - Wesam T Almagharbeh
- Medical Surgical Nursing Department, Faculty of Nursing, University of Tabuk, Tabuk, Saudi Arabia
| | - Asim Abdullah Alhejaili
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
| | - Bassam Dhafer Alshahrani
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
- Honorary Fellow, School of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Dena Eltabey Sobeh
- Department of Medical Surgical Nursing, College of Nursing, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Mudathir M Eltayeb
- Department of Medical Surgical Nursing, College of Nursing, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Rami A Elshatarat
- Department of Medical and Surgical Nursing, College of Nursing, Taibah University, Madinah, Saudi Arabia
| | - Zyad T Saleh
- Department of Clinical Nursing, School of Nursing, The University of Jordan, Amman, Jordan
- Department of Nursing, Vision College, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Mahgoup EM, Khaleel SA, El-Mahdy MA, Zweier JL. Electronic Cigarette Vape Decreases Nitric Oxide Bioavailability in Vascular Smooth Muscle Cells via Increased Cytoglobin-Mediated Metabolism. Free Radic Biol Med 2024:S0891-5849(24)01166-3. [PMID: 39743029 DOI: 10.1016/j.freeradbiomed.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Cytoglobin (Cygb) regulates vascular tone by modulating nitric oxide (NO) metabolism in vascular smooth muscle cells (VSMCs). In the presence of its cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism via oxygen-dependent NO dioxygenation. Electronic cigarette (EC) use has been shown to induce vascular dysfunction and decrease NO bioavailability; however, the role of Cygb-mediated NO metabolism in the pathophysiology of this process has not been previously investigated. Therefore, we utilized aortic VSMCs with EC vape extract (ECE) exposure to elucidate the effects of EC vape constituents on NO degradation and alterations in the process of Cygb-mediated NO metabolism. VSMCs were exposed to ECE, either nicotine-free (ECEV) or nicotine-containing (ECEN), for various durations. NO decay rates were measured along with cellular expression of Cygb and its B5/B5R reducing system. Exposure to ECEV led to a much higher rate of NO consumption by VSMCs, with an even larger effect following ECEN exposure. With four hours of exposure, a modest increase in NO decay rate occurred that was followed by much higher increases with exposure times of 24 to 48 hours. This effect was paralleled by upregulation of Cygb and B5/B5R expression. siRNA-mediated knock-down of Cygb expression largely reversed this ECE-induced increase in NO metabolism rate. Thus, ECE exposure led to increased Cygb-mediated NO metabolism in VSMCs with diminished NO bioavailability, which in turn can play a key role in EC-induced vascular dysfunction.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Dai W, Shi J, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I, Ting A, Kloner RA. Impact of electronic cigarette vaping on the cardiovascular function in young and old rats. Sci Rep 2024; 14:30420. [PMID: 39639066 PMCID: PMC11621403 DOI: 10.1038/s41598-024-81398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND While the acute exposure to electronic cigarette (E-cig) vapor has been associated with an increase in blood pressure, the chronic effect of E-cig vapor on blood pressure compared to standard cigarette smoke has not been extensively studied. We determined the effect of E-cig exposure on blood pressure and other measures of cardiac function in both young and old rats. METHODS Young Sprague Dawley rats (6 weeks old, both sexes) were randomly exposed to air (n = 34), E-cig with nicotine (E-cig Nic+; n = 30), E-cig without nicotine (E-cig Nic-; n = 28) or standard cigarette smoke (n = 27). Old Fischer 344 rats (25 months old, both sexes) were randomized into 2 groups: (1) 26 rats in the purified air (negative control) group and (2) 17 rats in the electronic cigarette vapor plus nicotine group (E-cig Nic+). After 12 weeks of exposure, hemodynamics were determined by Millar catheter, echocardiography, and thermodilution catheter, a few days after their last exposure. RESULTS In young rats, cigarette smoke was associated with higher systolic, diastolic and mean blood pressures and peak LV systolic pressure, compared to air or E-cig Nic + or E-cig Nic- groups. Neither fractional shortening nor cardiac output differed among the groups. Absolute value for dp/dt min, a measure of diastolic LV function, was lowest in the E-cig Nic- group. Tau, a measure of LV relaxation was worse in this group as well. In old rats, E-cig vaping did not change heart rate, blood pressure, and cardiac function. However, E-cig Nic + exposure was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats. CONCLUSIONS Chronic exposure to E-cig vaping did not cause an increase in blood pressure or heart rate, nor did it change cardiac function compared to air in young rats after 12 weeks of exposure, while standard cigarette smoking was associated with an increase in blood pressure. E-cig vaping was associated with a greater heart weight/BW and LV weight/BW compared to air exposure in old rats, suggested that older animals might be more vulnerable to E-cig stimulus than younger ones.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA.
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 South Fair Oaks Avenue, Pasadena, CA, 91105, USA
- Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
4
|
Jung L, Buchwald IC, Hauck A, Lüthgen M, Jagomast T, Weckmann M, Drömann D, Franzen KF. The Impact of Heat-Not-Burn, E-Cigarettes, and Cigarettes on Small Airway Function. Tob Use Insights 2024; 17:1179173X241271551. [PMID: 39314801 PMCID: PMC11418371 DOI: 10.1177/1179173x241271551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/26/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction E-cigarettes and heated tobacco products (HTPs) are gaining worldwide significance. The tobacco industry is promoting these products as healthier alternatives to conventional cigarettes. Methods In this four-arm crossover study, we examined the acute effects of cigarette smoking, vaping IQOS, or vaping e-cigarettes (with or without nicotine) on hemodynamics, arterial stiffness, and small airways. Twenty subjects (10 male, 10 female), all occasional smokers, completed each study arm. There was at least a 48 h washout period before each test day. Arterial stiffness and peripheral and central hemodynamics were assessed using Mobil-O-Graph™ (I.E.M., Germany), whereas tremoFlo® c-100 (Thoracic Medical Systems Inc) was used to evaluate the effects on the small airways and resistance. Results Cigarettes, IQOS, e-cigarettes containing nicotine, and nicotine-free e-cigarettes had similar effects on peripheral and central hemodynamics as well as on arterial stiffness. We observed a significant increase in all parameters. However, only nicotine-containing products lead to increased bronchial obstruction, higher reactance, and a higher tidal volume. Conclusion Therefore, we concluded that cigarettes, IQOS, and e-cigarettes have similar effects on hemodynamics. No differences were observed between the nicotine-containing and nicotine-free e-cigarettes. All nicotine-containing products also influence small airways. These findings suggest that e-cigarettes and HTPs are not healthier alternatives than conventional cigarettes.
Collapse
Affiliation(s)
- L. Jung
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
| | - I. C. Buchwald
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - A. Hauck
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M. Lüthgen
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
| | - T. Jagomast
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
| | - M. Weckmann
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
- Pediatrics, site Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Research Center Borstel, Leibniz Lung Center, Borstel, Schleswig-Holstein
| | - D. Drömann
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
| | - K. F. Franzen
- Medical Clinic III, Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North (ARNCN), German Center for Lung Research (DZL), Großhansdorf - site Lübeck, Germany
| |
Collapse
|
5
|
Mills A, Velayutham M, Corbin D, Suter L, Robinson M, Khramtsov VV, Shouldis L, Cook M, Dakhallah D, Chantler PD, Olfert IM. Maternal use of electronic cigarettes and impact on offspring: a double-hit model. J Appl Physiol (1985) 2024; 137:690-704. [PMID: 39088647 PMCID: PMC11424175 DOI: 10.1152/japplphysiol.00345.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024] Open
Abstract
Endothelial dysfunction is a predictor for cardiovascular disease. Preclinical data suggest longstanding cardiovascular and cerebrovascular dysfunction occurs in offspring with perinatal electronic cigarette (Ecig) exposure. Furthermore, direct use of Ecigs increases reactive oxygen species and impairs cerebrovascular function, but the combined effect of direct use in offspring with a history of perinatal exposure (i.e. double-hit condition) is not known. We tested the hypothesis that offspring with double-hit Ecig exposure will lead to greater cerebrovascular and neurocognitive dysfunction compared with in utero exposure only. Male and female offspring were obtained from time-mated Sprague Dawley female rats exposed to air (n = 5 dams) or Ecig exposed (n = 5 dams) and studied at either 3 or 6 mo after birth. Ecig exposure for double-hit offspring began at 1-mo before the timepoints and lasted 4 wk (5 days/wk with 90-min exposure/day). We found double-hit offspring (Ecig:Ecig = exposure dam:offspring) sustained further blunted middle cerebral artery (MCA) reactivity, increased severity of neuronal damage, and increased interactions of astrocytes and endothelial cells compared with offspring with maternal (Ecig:Air) or direct (Air:Ecig) exposure only. Circulating extracellular vesicles (EVs) were increased, whereas sirtuin 1 (SIRT1) was decreased, in all Ecig-exposed groups compared with controls (Air:Air), with Ecig:Ecig group showing the greatest respective change for each. Electron paramagnetic resonance (EPR) spectroscopy revealed oxidative stress was the highest in the plasma of Ecig:Ecig group (P < 0.05) than the other groups. These data show that a double-hit exposure in adolescent or adult offspring results in a greater decline in cerebrovascular function, biomarkers of neuronal dysfunction, and increased circulation of EVs compared with a single-hit exposure.NEW & NOTEWORTHY These data add to the growing body of literature demonstrating that electronic cigarette (Ecig) use during pregnancy (even without nicotine) is not safe, and primes offspring to have worse cardiovascular health outcomes in early and adult life. A key finding from this work is that a second insult from direct vaping in offspring with prior in utero exposure induces greater vascular dysfunction, increased oxidative stress, and shows evidence of neuronal dysfunction compared with either direct- or maternal-only exposure.
Collapse
Affiliation(s)
- Amber Mills
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Murugesan Velayutham
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Debbie Corbin
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Lindsey Suter
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Madison Robinson
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Valery V Khramtsov
- In vivo Multifunctional Magnetic Resonance (IMMR) Center, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Lainey Shouldis
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Mary Cook
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Duaa Dakhallah
- Department of Surgery, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Paul D Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - I Mark Olfert
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
6
|
Zweier JL, Kundu T, Eid MS, Hemann C, Leimkühler S, El-Mahdy MA. Nicotine inhalation and metabolism triggers AOX-mediated superoxide generation with oxidative lung injury. J Biol Chem 2024; 300:107626. [PMID: 39098528 PMCID: PMC11403528 DOI: 10.1016/j.jbc.2024.107626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) which is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km = 2.7 μM and Vmax = 794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in the lungs of control mice with an even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.
Collapse
Affiliation(s)
- Jay L Zweier
- Division of Cardiovascular Medicine, and the EPR Center, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA.
| | - Tapan Kundu
- Division of Cardiovascular Medicine, and the EPR Center, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mahmoud S Eid
- Division of Cardiovascular Medicine, and the EPR Center, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Craig Hemann
- Division of Cardiovascular Medicine, and the EPR Center, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institut für Biochemie und Biologie, Universität Potsdam, Potsdam, Germany
| | - Mohamed A El-Mahdy
- Division of Cardiovascular Medicine, and the EPR Center, Department of Internal Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Ewees MG, El-Mahdy MA, Hannawi Y, Zweier JL. Tobacco cigarette smoking induces cerebrovascular dysfunction followed by oxidative neuronal injury with the onset of cognitive impairment. J Cereb Blood Flow Metab 2024:271678X241270415. [PMID: 39136181 PMCID: PMC11572251 DOI: 10.1177/0271678x241270415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 09/26/2024]
Abstract
While chronic smoking triggers cardiovascular disease, controversy remains regarding its effects on the brain and cognition. We investigated the effects of long-term cigarette smoke (CS) exposure (CSE) on cerebrovascular function, neuronal injury, and cognition in a novel mouse exposure model. Longitudinal studies were performed in CS or air-exposed mice, 2 hours/day, for up to 60 weeks. Hypertension and carotid vascular endothelial dysfunction (VED) occurred by 16 weeks of CSE, followed by reduced carotid artery blood flow, with oxidative stress detected in the carotid artery, and subsequently in the brain of CS-exposed mice with generation of reactive oxygen species (ROS) and secondary protein and DNA oxidation, microglial activation and astrocytosis. Brain small vessels exhibited decreased levels of endothelial NO synthase (eNOS), enlarged perivascular spaces with blood brain barrier (BBB) leak and decreased levels of tight-junction proteins. In the brain, amyloid-β deposition and phosphorylated-tau were detected with increases out to 60 weeks, at which time mice exhibited impaired spatial learning and memory. Thus, long-term CSE initiates a cascade of ROS generation and oxidative damage, eNOS dysfunction with cerebral hypoperfusion, as well as cerebrovascular and BBB damage with intracerebral inflammation, and neuronal degeneration, followed by the onset of impaired cognition and memory.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Matheson C, Simovic T, Heefner A, Colon M, Tunon E, Cobb K, Thode C, Breland A, Cobb CO, Nana-Sinkam P, Garten R, Rodriguez-Miguelez P. Evidence of premature vascular dysfunction in young adults who regularly use e-cigarettes and the impact of usage length. Angiogenesis 2024; 27:229-243. [PMID: 38345700 PMCID: PMC11021332 DOI: 10.1007/s10456-023-09903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 04/17/2024]
Abstract
BACKGROUND Electronic (e-) cigarettes are increasingly popular tobacco products on the US market. Traditional tobacco products are known to cause vascular dysfunction, one of the earliest indicators of cardiovascular disease (CVD) development. However, little is known about the effect of regular e-cigarette use on vascular function. The purpose of this study was to investigate the impact of regular e-cigarette use on vascular function and cardiovascular health in young, healthy adults. METHODS Twenty-one regular users of e-cigarettes (ECU) and twenty-one demographically matched non-users (NU) completed this study. Vascular health was assessed in the cutaneous microcirculation through different reactivity tests to evaluate overall functionality, endothelium-dependent vasodilation (EDD), and endothelium-independent vasodilation (EID). Macrovascular function was assessed using flow-mediated dilation (FMD). RESULTS Our results suggest that regular users of e-cigarettes present with premature microvascular impairment when compared to non-users. Specifically, they exhibit lower hyperemic (p = 0.003), thermal (p = 0.010), and EDD (p = 0.004) responses. No differences in EID between the groups were identified. We also identified that individuals who use e-cigarettes for longer than 3 years also present with systemic manifestations, as observed by significantly reduced macrovascular (p = 0.002) and microvascular (p ≤ 0.044) function. CONCLUSIONS Our novel data suggests that young, apparently healthy, regular users of e-cigarettes present with premature vascular dysfunction in the microcirculation when compared to non-users. We have also identified systemic vascular dysfunction affecting both the micro and macrovasculature in those young individuals who used e-cigarettes for longer than 3 years. Taken together, these findings associate regular e-cigarette use with premature vascular dysfunctions and adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Chloe Matheson
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Tijana Simovic
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Allison Heefner
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Marisa Colon
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Enrique Tunon
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Kolton Cobb
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Christopher Thode
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Alison Breland
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Caroline O Cobb
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA
| | - Ryan Garten
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA
| | - Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, 817 West Franklin Street, Richmond, VA, 23284, USA.
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Chandy M, Hill T, Jimenez-Tellez N, Wu JC, Sarles SE, Hensel E, Wang Q, Rahman I, Conklin DJ. Addressing Cardiovascular Toxicity Risk of Electronic Nicotine Delivery Systems in the Twenty-First Century: "What Are the Tools Needed for the Job?" and "Do We Have Them?". Cardiovasc Toxicol 2024; 24:435-471. [PMID: 38555547 PMCID: PMC11485265 DOI: 10.1007/s12012-024-09850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Cigarette smoking is positively and robustly associated with cardiovascular disease (CVD), including hypertension, atherosclerosis, cardiac arrhythmias, stroke, thromboembolism, myocardial infarctions, and heart failure. However, after more than a decade of ENDS presence in the U.S. marketplace, uncertainty persists regarding the long-term health consequences of ENDS use for CVD. New approach methods (NAMs) in the field of toxicology are being developed to enhance rapid prediction of human health hazards. Recent technical advances can now consider impact of biological factors such as sex and race/ethnicity, permitting application of NAMs findings to health equity and environmental justice issues. This has been the case for hazard assessments of drugs and environmental chemicals in areas such as cardiovascular, respiratory, and developmental toxicity. Despite these advances, a shortage of widely accepted methodologies to predict the impact of ENDS use on human health slows the application of regulatory oversight and the protection of public health. Minimizing the time between the emergence of risk (e.g., ENDS use) and the administration of well-founded regulatory policy requires thoughtful consideration of the currently available sources of data, their applicability to the prediction of health outcomes, and whether these available data streams are enough to support an actionable decision. This challenge forms the basis of this white paper on how best to reveal potential toxicities of ENDS use in the human cardiovascular system-a primary target of conventional tobacco smoking. We identify current approaches used to evaluate the impacts of tobacco on cardiovascular health, in particular emerging techniques that replace, reduce, and refine slower and more costly animal models with NAMs platforms that can be applied to tobacco regulatory science. The limitations of these emerging platforms are addressed, and systems biology approaches to close the knowledge gap between traditional models and NAMs are proposed. It is hoped that these suggestions and their adoption within the greater scientific community will result in fresh data streams that will support and enhance the scientific evaluation and subsequent decision-making of tobacco regulatory agencies worldwide.
Collapse
Affiliation(s)
- Mark Chandy
- Robarts Research Institute, Western University, London, N6A 5K8, Canada
| | - Thomas Hill
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nerea Jimenez-Tellez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - S Emma Sarles
- Biomedical and Chemical Engineering PhD Program, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Edward Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel J Conklin
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 S. Preston St., Delia Baxter, Rm. 404E, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Critselis E, Panagiotakos D. Impact of Electronic Cigarette use on Cardiovascular Health: Current Evidence, Causal Pathways, and Public Health Implications. Angiology 2024; 75:417-424. [PMID: 36913951 DOI: 10.1177/00033197231161905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Electronic cigarette (e-cigarette) use is increasing in Europe and the USA. While mounting evidence exists regarding an array of associated adverse health effects, to date limited evidence exists regarding the health effects of e-cigarette use on cardiovascular (CV) disease (CVD). The present review summarizes the effects of e-cigarette use on CV health. A search strategy of in vivo experimental, observational studies (including population-based cohort studies), and interventional studies was conducted in PubMed, MEDLINE, and Web of Science (April 1, 2009-April 1, 2022). The main findings revealed that the influence of e-cigarette on health are attributed mainly to the individual and interactive effects of flavors and additives used in e-cigarette fluids, along with the extended heating. The above collectively stimulate prolonged sympathoexcitatory CV autonomic effects, such as increased heart rate and diastolic blood pressure (BP), as well as decreased oxygen saturation. Hence, e-cigarette users are at increased risk of developing atherosclerosis, hypertension, arrhythmia, myocardial infarction, and heart failure. Such risks are anticipated to increase, especially among the young who are increasingly adopting e-cigarette use particularly with flavored additives. Further investigations are urgently needed to evaluate the long-term effects of e-cigarette use, particularly among susceptible population groups such as youth.
Collapse
Affiliation(s)
- Elena Critselis
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
- Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
11
|
Dai Y, Yang W, Song H, He X, Guan R, Wu Z, Jiang X, Li M, Liu P, Chen J. Long-term effects of chronic exposure to electronic cigarette aerosol on the cardiovascular and pulmonary system in mice: A comparative study to cigarette smoke. ENVIRONMENT INTERNATIONAL 2024; 185:108521. [PMID: 38508052 DOI: 10.1016/j.envint.2024.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Electronic cigarettes (e-cigarettes) have rapidly gained popularity as alternatives to traditional combustible cigarettes. However, their long-term health impact remains uncertain. This study aimed to investigate the effects of chronic exposure to e-cigarette aerosol (ECA) in mice compared to conventional cigarette smoke (CS) exposure. The mice were exposed to air (control), low, medium, or high doses of ECA, or a reference CS dose orally and nasally for eight months. Various cardiovascular and pulmonary assessments have been conducted to determine the biological and prosthetic effects. Histopathological analysis was used to determine structural changes in the heart and lungs. Biological markers associated with fibrosis, inflammation, and oxidative stress were investigated. Cardiac proteomic analysis was applied to reveal the shared and unique protein expression changes in ECA and CS groups, which related to processes such as immune activation, lipid metabolism, and intracellular transport. Overall, chronic exposure to ECA led to adverse cardiovascular and pulmonary effects in mice, although they were less pronounced than those of CS exposure. This study provides evidence that e-cigarettes may be less harmful than combustible cigarettes for the long-term health of the cardiovascular and respiratory systems in mice. However, further human studies are needed to clarify the long-term health risks associated with e-cigarette use.
Collapse
Affiliation(s)
- Yuxing Dai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wanchun Yang
- Jieyang Medical Research Center, Jieyang People's Hospital, Jieyang, Guangdong, China
| | - Hongjia Song
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiangjun He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruoqing Guan
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zehong Wu
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Xingtao Jiang
- RELX Science Center, Shenzhen RELX Tech. Co. Ltd., Shenzhen 518101, China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianwen Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Kallurkar A, Kaye AD, Shekoohi S. Marijuana Use, Vaping, and Preoperative Anesthetic and Surgical Considerations in Clinical Practice. Anesthesiol Clin 2024; 42:53-63. [PMID: 38278592 DOI: 10.1016/j.anclin.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
In recent years, marijuana and vaping have acquired widespread popularity, with millions of people using them for a variety of reasons, including recreational purposes. However, these practices have often overlooked the implications on surgery and the preoperative anesthesia considerations. Marijuana can influence a patient's response to anesthesia, alter postoperative pain management, and increase the risk of complications, whereas vaping can have negative effects on the respiratory system and hinder the body's ability to recover after surgery.
Collapse
Affiliation(s)
- Anusha Kallurkar
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA; Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA.
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA
| |
Collapse
|
13
|
Halstead KM, Wetzel EM, Cho JL, Stanhewicz AE. Sex Differences in Oxidative Stress-Mediated Reductions in Microvascular Endothelial Function in Young Adult e-Cigarette Users. Hypertension 2023; 80:2641-2649. [PMID: 37800370 PMCID: PMC10848654 DOI: 10.1161/hypertensionaha.123.21684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Chronic electronic-cigarette (EC) use is reported to decrease vascular endothelial function. However, the mechanism(s) mediating this reduction remain unclear. In this study, we examined endothelium- and NO-dependent dilation, and the role of oxidative stress in attenuating these responses, in healthy young EC users (n=20, 10 males/10 females) compared with healthy controls (n=20, 10 males/10 females). We hypothesized that EC would have reduced endothelium- and NO-dependent dilation and administration of the superoxide scavenger tempol would increase these responses in EC. We further hypothesized that female EC would have the greatest reductions in endothelium- and NO-dependent dilation. METHODS We assessed microvascular endothelium-dependent vasodilator function in vivo by measurement of cutaneous vascular conductance (%CVCmax) responses to a standardized local heating protocol in control and 10 μM tempol-treated sites. After full expression of the local heating response, 15 mM NG-nitro-L-arginine methyl ester (NO synthase inhibition) was perfused. RESULTS EC had significantly reduced endothelium- (73±15 versus 87±9%CVCmax; P<0.001) and NO-dependent (48±17% versus 62±15%; P=0.011) dilation. Tempol perfusion increased endothelium-dependent (84±12%CVCmax P=0.01) and NO-dependent (63±14% P=0.005) dilation in EC but had no effect in healthy control. Within female sex, EC had lower endothelium-dependent (71±13 versus 89±7%CVCmax; P=0.002) and NO-dependent (50±6 versus 69±11%; P=0.005) dilation compared with healthy control, and tempol augmented endothelium-dependent (83±13%CVCmax; P=0.002) and NO-dependent (62±13%; P=0.015) dilation. There were no group or treatment differences within male sex. CONCLUSION Healthy young adult EC users have reduced microvascular endothelium-dependent and NO-dependent dilation, driven by greater reductions in female EC users, and mediated in part by superoxide.
Collapse
Affiliation(s)
- Kristen M Halstead
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| | - Elizabeth M Wetzel
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| | - Josalyn L Cho
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA (J.L.C.)
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, IA (K.M.H., E.M.W., A.E.S.)
| |
Collapse
|
14
|
Espinoza-Derout J, Arambulo JML, Ramirez-Trillo W, Rivera JC, Hasan KM, Lao CJ, Jordan MC, Shao XM, Roos KP, Sinha-Hikim AP, Friedman TC. The lipolysis inhibitor acipimox reverses the cardiac phenotype induced by electronic cigarettes. Sci Rep 2023; 13:18239. [PMID: 37880325 PMCID: PMC10600141 DOI: 10.1038/s41598-023-44082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA.
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jose Mari Luis Arambulo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - William Ramirez-Trillo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Kamrul M Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Candice J Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria C Jordan
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuesi M Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kenneth P Roos
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amiya P Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Wölkart G, Kollau A, Russwurm M, Koesling D, Schrammel A, Mayer B. Varied effects of tobacco smoke and e-cigarette vapor suggest that nicotine does not affect endothelium-dependent relaxation and nitric oxide signaling. Sci Rep 2023; 13:15833. [PMID: 37739972 PMCID: PMC10517138 DOI: 10.1038/s41598-023-42750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Chronic smoking causes dysfunction of vascular endothelial cells, evident as a reduction of flow-mediated dilation in smokers, but the role of nicotine is still controversial. Given the increasing use of e-cigarettes and other nicotine products, it appears essential to clarify this issue. We studied extracts from cigarette smoke (CSE) and vapor from e-cigarettes (EVE) and heated tobacco (HTE) for their effects on vascular relaxation, endothelial nitric oxide signaling, and the activity of soluble guanylyl cyclase. The average nicotine concentrations of CSE, EVE, and HTE were 164, 800, and 85 µM, respectively. At a dilution of 1:3, CSE almost entirely inhibited the relaxation of rat aortas and porcine coronary arteries to acetylcholine and bradykinin, respectively, while undiluted EVE, with a 15-fold higher nicotine concentration, had no significant effect. With about 50% inhibition at 1:2 dilution, the effect of HTE was between CSE and EVE. Neither extract affected endothelium-independent relaxation to an NO donor. At the dilutions tested, CSE was not toxic to cultured endothelial cells but, in contrast to EVE, impaired NO signaling and inhibited NO stimulation of soluble guanylyl cyclase. Our results demonstrate that nicotine does not mediate the impaired endothelium-dependent vascular relaxation caused by smoking.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, MA N1-39, 44780, Bochum, Germany
| | - Doris Koesling
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, MA N1-39, 44780, Bochum, Germany
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Universität Graz, Humboldtstraße 46, 8010, Graz, Austria.
| |
Collapse
|
16
|
Alqahtani MM, Alanazi AMM, Aljohani H, Ismaeil TT, Algarni SS, Alotaibi TF, Alotaibi MM, Kalan ME, Lein DH, Alqahtani MK, Alwadeai KS, Almutairi AB, Hendricks PS. The relationship between chronic lung disease diagnosis and the susceptibility to e-cigarette use in adults: The mediation effects of psychosocial, cognitive influences, and the moderation effect of physiological factors. Tob Induc Dis 2023; 21:116. [PMID: 37745030 PMCID: PMC10515703 DOI: 10.18332/tid/169741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 09/26/2023] Open
Abstract
INTRODUCTION There is a paucity of studies on e-cigarette use among adults with chronic lung disease. In the present study, we aimed to assess whether psychosocial or cognitive factors elucidate the relationship between chronic lung disease (CLD) and susceptibility to e-cigarette use and whether the relationship between CLD and e-cigarette use is conditional on the presence of respiratory symptoms. METHODS We recruited adults aged ≥18 years in Alabama with CLD from university medical clinics (n=140) and individuals without CLD (n=123 as a reference group). Information on sociodemographics, susceptibility to e-cigarette use, psychosocial factors, and cognitive factors were collected. Mediation analysis was used to assess whether the psychosocial factors or cognitive factors explained the association between CLD and susceptibility to using e-cigarettes, and moderation analysis was conducted to determine if respiratory factors would change the association between CLD and susceptibility to e-cigarette use. RESULTS Psychosocial factors (stress, depression, anxiety) and e-cigarette positive expectancy were notably high among individuals with CLD. Having CLD was associated with a lower likelihood of susceptibility to e-cigarette use. Higher levels of stress, being a smoker, boredom, taste/sensorimotor manipulation, and social facilitation were associated with higher odds of susceptibility to using e-cigarettes among individuals with CLD. Mediation analysis indicated a statistically significant indirect effect of CLD on the susceptibility to using e-cigarettes through stress and boredom reduction. We did not find a statistically significant interaction between CLD and respiratory symptoms affecting susceptibility to using e-cigarettes. CONCLUSIONS Individuals with CLD often exhibit stress, depression, and a positive view of e-cigarettes but are generally less inclined to use them. Stress, smoking habits, boredom, taste, and social influence can increase their susceptibility to e-cigarette use. Our findings call for further exploration to evaluate the temporal relationship between CLD status, psychosocial factors, cognitive factors, and susceptibility to using e-cigarettes. TRIAL REGISTRATION The study was registered on ClinicalTrials.gov, on 5 November 2019. Identifier: NCT04151784.
Collapse
Affiliation(s)
- Mohammed M Alqahtani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Abdullah M M Alanazi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Hassan Aljohani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Taha T Ismaeil
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saleh S Algarni
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Tareq F Alotaibi
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Mansour M Alotaibi
- Department of Physical Therapy, College of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | | | - Donald H Lein
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham, Birmingham, United States
| | - Mobarak K Alqahtani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Department of Respiratory Care, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khalid S Alwadeai
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anwar B Almutairi
- Physical Therapy Department, School of Allied Health, Kuwait University, Kuwait City, Kuwait
| | - Peter S Hendricks
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
17
|
Sala M, Gotti C. Electronic nicotine delivery systems (ENDS): A convenient means of smoking? Pharmacol Res 2023; 195:106885. [PMID: 37634554 DOI: 10.1016/j.phrs.2023.106885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
Electronic nicotine delivery systems (ENDS), which are becoming increasingly popular in many parts of the world, have recently become more sophisticated in terms of their more active content and better controlled vaporisation. This review begins by describing how cigarette smoking led to the development of ENDS as a means of combatting nicotine addiction. ENDS are usually categorised as belonging to one of only three main generations, but a fourth has been added in order to differentiate the latest, most powerful, most advanced and innovative that have improved heating efficiency. Descriptions of the principal substances contained in ENDS are followed by considerations concerning the risk of toxicity due to the presence of albeit low concentrations of such a variety of compounds inhaled over a long time, and the increasingly widespread use of ENDS as a means of smoking illicit drugs. We also review the most widely used pharmacotherapeutic approaches to smoking cessation, and recent epidemiological data showing that ENDS can help some people to stop smoking. However, in order to ensure their appropriate regulation, there is a need for higher-quality evidence concerning the health effects and safety of ENDS, and their effectiveness in discouraging tobacco smoking.
Collapse
Affiliation(s)
- Mariaelvina Sala
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy.
| | - Cecilia Gotti
- Institute of Neuroscience, CNR-Milan Unit, c/o Bldg. U28, University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, MB, Italy; NeuroMi Milan Center for Neuroscience University of Milano Bicocca,Italy
| |
Collapse
|
18
|
Damay VA, Setiawan, Lesmana R, Akbar MR, Lukito AA, Tarawan VM, Martha JW, Nugroho J, Sugiharto S. Aerobic Exercise versus Electronic Cigarette in Vascular Aging Process: First Histological Insight. Int J Vasc Med 2023; 2023:8874599. [PMID: 37533734 PMCID: PMC10393525 DOI: 10.1155/2023/8874599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Smoking is related to vascular aging. However, the hazardous effect of e-cigarette is often debatable, with limited studies available. In contrast, moderate-intensity aerobic exercise is well known to decrease aortic stiffness. We provide novel research to determine the effect of e-cigarette and aerobic moderate-intensity exercise on the aortic structure of Wistar rats. A total of 26 male Wistar rats (Rattus norvegicus) 8 weeks aged, 200-250 g b.w., were randomly divided into 4 groups, namely, K0 (normal rats), K1 (rats were given moderate-intensity aerobic exercise by animal treadmill 20 m/30 min), K2 (rats were given e-cigarette with 6 mg nicotine, 40% propylene glycol, and 60% vegetable glycerine 30 min for 5 days/week), and K3 (rats were given e-cigarette and moderate-intensity aerobic exercise). After exposure for 6 weeks, all animals were sacrificed to isolate the aorta for histopathological analysis with hematoxylin-eosin stain to evaluate the elastic fiber layer and intimal-medial thickness. The Verhoeff-Van Gieson staining was done for quantification elastic lamina fragmentation. Our study found that the e-cigarette group had the highest elastic lamina fragmentation among groups (8.14 ± 2.85). The exercise only group showed the lowest elastic lamina fragmentation (2.50 ± 1.87). Fragmentation in the e-cigarette and exercise group was higher than in the exercise only group (5.83 ± 0.753 vs. 2.50 ± 1.87, p = 0.002). There is a significant difference of NO serum between four groups. The result of post hoc analysis using LSD showed that there is a significant difference of NO serum between K0 and K2, K0 and K3, K1 and K2, and K1 and K3. Therefore, our research demonstrated that the most injury of aorta elastic lamina was in the group that was exposed to e-cigarette that leads to vascular aging while exercise is not yet proven to reverse this effect.
Collapse
Affiliation(s)
- Vito A. Damay
- Department of Cardiovascular Medicine, Universitas Pelita Harapan, Banten, Indonesia
| | - Setiawan
- Department of Biomedical Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Muhammad Rizki Akbar
- Department of Cardiology and Vascular Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Antonia Anna Lukito
- Department of Cardiovascular Medicine, Universitas Pelita Harapan, Banten, Indonesia
| | - Vita M. Tarawan
- Department of Biomedical Sciences, Universitas Padjadjaran, Bandung, Indonesia
| | - Januar W. Martha
- Department of Cardiology and Vascular Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - J. Nugroho
- Department of Cardiology and Vascular Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sony Sugiharto
- Department of Anatomical Pathology, Universitas Tarumanegara, Jakarta, Indonesia
| |
Collapse
|
19
|
Fountoulakis P, Theofilis P, Tsalamandris S, Antonopoulos AS, Tsioufis P, Toutouzas K, Oikonomou E, Tsioufis K, Tousoulis D. The cardiovascular consequences of electronic cigarette smoking: a narrative review. Expert Rev Cardiovasc Ther 2023; 21:651-661. [PMID: 37755116 DOI: 10.1080/14779072.2023.2264179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION E-cigarettes have emerged as a popular alternative to traditional tobacco smoking in recent years. Despite their growing popularity, concerns have arisen regarding the cardiovascular implications of e-cigarette use. AREAS COVERED This narrative review aims to highlight the latest evidence on the impact of e-cigarettes on cardiovascular health. EXPERT OPINION Numerous studies have demonstrated that e-cigarette use can lead to acute adverse cardiovascular effects. Inhalation of e-cigarette aerosols exposes users to a wide range of potentially harmful substances that have been implicated in critical pathophysiologic pathways of cardiovascular disease, namely endothelial dysfunction, oxidative stress, inflammation, sympathetic overdrive, and arterial stiffness. While long-term epidemiological studies specifically focusing on the cardiovascular effects of e-cigarettes are still relatively scarce, early evidence suggests a potential association between e-cigarette use and an increased risk of adverse cardiovascular events. However, it is essential to recognize that e-cigarettes are relatively new products, and the full extent of their long-term cardiovascular impact has not been fully elucidated. In the meantime, promoting tobacco cessation strategies that are evidence-based and regulated, along with rigorous monitoring of e-cigarette use patterns and associated health outcomes, are essential steps in safeguarding cardiovascular health in the face of this emerging public health challenge.
Collapse
Affiliation(s)
- Petros Fountoulakis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Sotiris Tsalamandris
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Panagiotis Tsioufis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Toutouzas
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelos Oikonomou
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
- Cardiology Department, Sotiria Chest Diseases Hospital, University of Athens Medical School, Athens, Greece
| | - Konstantinos Tsioufis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| | - Dimitris Tousoulis
- Cardiology Department, Hippokration General Hospital, University of Athens Medical School, Athens, Greece
| |
Collapse
|
20
|
Ding R, Ren X, Sun Q, Sun Z, Duan J. An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2023; 48:227-257. [PMID: 35998874 PMCID: PMC10248804 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
21
|
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, Maegdefessel L, Tsao PS. E-cigarette exposure augments murine abdominal aortic aneurysm development: role of Chil1. Cardiovasc Res 2023; 119:867-878. [PMID: 36413508 PMCID: PMC10409905 DOI: 10.1093/cvr/cvac173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common cardiovascular disease with a strong correlation to smoking, although underlying mechanisms have been minimally explored. Electronic cigarettes (e-cigs) have gained recent broad popularity and can deliver nicotine at comparable levels to tobacco cigarettes, but effects on AAA development are unknown. METHODS AND RESULTS We evaluated the impact of daily e-cig vaping with nicotine on AAA using two complementary murine models and found that exposure enhanced aneurysm development in both models and genders. E-cigs induced changes in key mediators of AAA development including cytokine chitinase-3-like protein 1 (CHI3L1/Chil1) and its targeting microRNA-24 (miR-24). We show that nicotine triggers inflammatory signalling and reactive oxygen species while modulating miR-24 and CHI3L1/Chil1 in vitro and that Chil1 is crucial to e-cig-augmented aneurysm formation using a knockout model. CONCLUSIONS In conclusion our work shows increased aneurysm formation along with augmented vascular inflammation in response to e-cig exposure with nicotine. Further, we identify Chil1 as a key mediator in this context. Our data raise concerns regarding the potentially harmful long-term effects of e-cig nicotine vaping.
Collapse
Affiliation(s)
- Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Joshua M Spin
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Pireyatharsheny Mulorz
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alicia Deng
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Karin Mattern
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Medical University of Göttingen, Göttingen, Germany
| | - Yae H Rhee
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| | - Kensuke Toyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matti Adam
- Department of Cardiology, Heart Center, University of Cologne, Cologne, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- German Center for Cardiovascular Research (DZHK), Berlin, Germany (partner site: Munich)
| | - Philip S Tsao
- Department of Medicine, Stanford University, 300 Pasteur Drive, Standford, CA 94305, USA
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford Cardiovascular Institute, 300 Pasteur Drive, Standford, CA 94305, USA
| |
Collapse
|
22
|
Saaoud F, Shao Y, Cornwell W, Wang H, Rogers TJ, Yang X. Cigarette Smoke Modulates Inflammation and Immunity via Reactive Oxygen Species-Regulated Trained Immunity and Trained Tolerance Mechanisms. Antioxid Redox Signal 2023; 38:1041-1069. [PMID: 36017612 PMCID: PMC10171958 DOI: 10.1089/ars.2022.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Significance: Cigarette smoke (CS) is a prominent cause of morbidity and death and poses a serious challenge to the current health care system worldwide. Its multifaceted roles have led to cardiovascular, respiratory, immunological, and neoplastic diseases. Recent Advances: CS influences both innate and adaptive immunity and regulates immune responses by exacerbating pathogenic immunological responses and/or suppressing defense immunity. There is substantial evidence pointing toward a critical role of CS in vascular immunopathology, but a comprehensive and up-to-date review is lacking. Critical Issues: This review aims to synthesize novel conceptual advances on the immunomodulatory action of CS with a focus on the cardiovascular system from the following perspectives: (i) the signaling of danger-associated molecular pattern (DAMP) receptors contributes to CS modulation of inflammation and immunity; (ii) CS reprograms immunometabolism and trained immunity-related metabolic pathways in innate immune cells and T cells, which can be sensed by the cytoplasmic (cytosolic and non-nuclear organelles) reactive oxygen species (ROS) system in vascular cells; (iii) how nuclear ROS drive CS-promoted DNA damage and cell death pathways, thereby amplifying inflammation and immune responses; and (iv) CS induces endothelial cell (EC) dysfunction and vascular inflammation to promote cardiovascular diseases (CVDs). Future Directions: Despite significant progress in understanding the cellular and molecular mechanisms linking CS to immunity, further investigations are warranted to elucidate novel mechanisms responsible for CS-mediated immunopathology of CVDs; in particular, the research in redox regulation of immune functions of ECs and their fate affected by CS is still in its infancy.
Collapse
Affiliation(s)
- Fatma Saaoud
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - William Cornwell
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology & Inflammation, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Department of Cardiovascular Sciences, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
- Metabolic Disease Research and Thrombosis Research Centers, Department of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Hirschtick JL, Cook S, Patel A, Barnes GD, Arenberg D, Bondarenko I, Levy DT, Jeon J, Jimenez Mendoza E, Meza R, Fleischer NL. Longitudinal Associations Between Exclusive and Dual Use of Electronic Nicotine Delivery Systems and Cigarettes and Self-Reported Incident Diagnosed Cardiovascular Disease Among Adults. Nicotine Tob Res 2023; 25:386-394. [PMID: 35907264 PMCID: PMC9910147 DOI: 10.1093/ntr/ntac182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
INTRODUCTION The cardiovascular health effects of electronic nicotine delivery systems (ENDS) use are not well characterized, making it difficult to assess ENDS as a potential harm reduction tool for adults who use cigarettes. AIMS AND METHODS Using waves 1-5 of the Population Assessment of Tobacco and Health Study (2013-2019), we analyzed the risk of self-reported incident diagnosed myocardial infarction (MI; 280 incident cases) and stroke (186 incident cases) associated with ENDS and/or cigarette use among adults aged 40 + using discrete time survival models. We employed a time-varying exposure lagged by one wave, defined as exclusive or dual established use of ENDS and/or cigarettes every day or some days, and controlled for demographics, clinical factors, and past smoking history. RESULTS The analytic samples (MI = 11 031; stroke = 11 076) were predominantly female and non-Hispanic White with a mean age of 58 years. At baseline, 14.2% of respondents exclusively smoked cigarettes, 0.6% exclusively used ENDS, and 1.0% used both products. Incident MI and stroke were rare during follow-up (< 1% at each wave). Compared to no cigarette or ENDS use, exclusive cigarette use increased the risk of MI (aHR 1.99, 95% CI = 1.40-2.84) and stroke (aHR 2.26, 95% CI = 1.51-3.39), while exclusive ENDS use (MI: aHR 0.61, 95% CI = 0.12-3.04; stroke: aHR 1.74, 95% CI = 0.55-5.49) and dual use (MI: aHR 1.84, 95% CI = 0.64-5.30; stroke: aHR 1.12, 95% CI = 0.33-3.79) were not significantly associated with the risk of either outcome. CONCLUSIONS Compared to non-use, exclusive cigarette use was associated with an increased risk of self-reported incident diagnosed cardiovascular disease over a 5-year period, while ENDS use was not associated with a statistically significant increase in the outcomes. IMPLICATIONS Existing literature on the health effects of ENDS use has important limitations, including potential reverse causation and improper control for cigarette smoking. We accounted for these issues by using a prospective design and adjusting for current and former smoking status and cigarette pack-years. In this context, we did not find that ENDS use was associated with a statistically significant increase in self-reported incident diagnosed myocardial infarction or stroke over a 5-year period. While more studies are needed, this analysis provides an important foundation and key methodological considerations for future research on the health effects of ENDS use.
Collapse
Affiliation(s)
- Jana L Hirschtick
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven Cook
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Akash Patel
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Geoffrey D Barnes
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | - Douglas Arenberg
- Pulmonary Clinic, Department of Internal Medicine, University of Michigan Health System, Northville, MI, USA
| | - Irina Bondarenko
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David T Levy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C., USA
| | - Jihyoun Jeon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Evelyn Jimenez Mendoza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rafael Meza
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nancy L Fleischer
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Aboaziza E, Feaster K, Hare L, Chantler PD, Olfert IM. Maternal electronic cigarette use during pregnancy affects long-term arterial function in offspring. J Appl Physiol (1985) 2023; 134:59-71. [PMID: 36417201 PMCID: PMC9762967 DOI: 10.1152/japplphysiol.00582.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
Vaping, or electronic cigarette (ecig) use, is prevalent among pregnant women, although little is known about the effects of perinatal ecig use on cardiovascular health of the progeny (even when using nicotine-free e-liquid). Maternal toxicant inhalation may adversely affect vital conduit vessel development. We tested the hypothesis that perinatal exposure to maternal vaping would lead to a dose-dependent dysfunction that would persist into later life of offspring. Pregnant Sprague-Dawley rats were exposed to either nicotine-free (ecig0) or nicotine-containing ecig aerosol (18 mg/mL, ecig18) starting on gestational day 2 and continued until pups were weaned (postnatal day 21). Pups were never directly exposed. Conduit artery function (stiffness and reactivity) and structure were assessed in 3- and 7-mo-old offspring. At 3 mo, pulse wave velocity (PWV) in the ecig0 and ecig18 offspring was significantly higher than controls in both the 20 puffs/day (6.6 ± 2.1 and 4.8 ± 1.3 vs. 3.2 ± 0.7 m/s, respectively, P < 0.05, means ± SD) and in 60 puffs/day exposure cohort (7.5 ± 2.8 and 7.5 ± 2.5 vs. 3.2 ± 0.5 m/s, respectively, P < 0.01). Wire myography revealed (range of 23%-31%) impaired aortic relaxation in all ecig exposure groups (with or without nicotine). Incubation of vessels with TEMPOL or Febuxostat reversed the aortic dysfunction, implicating the involvement of reactive oxygen species. Nearly identical changes and pattern was seen in vascular outcomes of 7-mo-old offspring. The take-home message from this preclinical study is that maternal vaping during pregnancy, with or without nicotine, leads to maladaptations in vascular (aortic) development that persist into adult life of offspring.NEW & NOTEWORTHY We observe a significant alteration in arterial structure and function in adolescent and adult offspring due to developmental exposure to toxicants resulting from perinatal maternal vaping. Taken together with previous work that described lasting dysfunction in cerebral microvasculature in offspring, these data underscore the adverse consequences of maternal exposure to electronic cigarette aerosol in conduit and resistance vessels alike, irrespective of nicotine content.
Collapse
Affiliation(s)
- Eiman Aboaziza
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kimberly Feaster
- Department of Pathology, Anatomy and Laboratory Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Lance Hare
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Paul D Chantler
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - I Mark Olfert
- West Virginia Clinical and Translational Science Institute, West Virginia University School of Medicine, Morgantown, West Virginia
- WVU Center of Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
25
|
Dai W, Shi J, Siddarth P, Zhao L, Carreno J, Kleinman MT, Herman DA, Arechavala RJ, Renusch S, Hasen I, Ting A, Kloner RA. Effects of Electronic Cigarette Exposure on Myocardial Infarction and No-Reflow, and Cardiac Function in a Rat Model. J Cardiovasc Pharmacol Ther 2023; 28:10742484231155992. [PMID: 36799436 DOI: 10.1177/10742484231155992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
PURPOSE We investigated the effects of exposure to electronic cigarettes (E-cig) vapor on the sizes of the no-reflow and myocardial infarction regions, and cardiovascular function compared to exposure to purified air and standard cigarette smoke. METHODS AND RESULTS Sprague Dawley rats (both male and female, 6 weeks old) were successfully exposed to filtered air (n = 32), E-cig with nicotine (E-cig Nic+, n = 26), E-cig without nicotine (E-cig Nic-, n = 26), or standard cigarette smoke (1R6F reference, n = 31). All rats were exposed to inhalation exposure for 8 weeks, prior to being subjected to 30 minutes of left coronary artery occlusion followed by 3 hours of reperfusion. Exposure to E-cig vapor with or without nicotine or exposure to standard cigarettes did not increase myocardial infarct size or worsen the no-reflow phenomenon. Exposure to E-cig Nic+ reduced the body weight gain, and increased the LV weight normalized to body weight and LV wall thickness and enhanced the collagen deposition within the LV wall. E-cig exposure led to cardiovascular dysfunction, such as reductions in cardiac output, LV positive and negative dp/dt, suggesting a reduction in contractility and relaxation, and increased systemic arterial resistance after coronary artery occlusion and reperfusion in rats compared to air or cigarette exposure. CONCLUSIONS E-cig exposure did not increase myocardial infarct size or worsen the no-reflow phenomenon, but induced deleterious changes in LV structure leading to cardiovascular dysfunction and increased systemic arterial resistance after coronary artery occlusion followed by reperfusion.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Lifu Zhao
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - David A Herman
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Samantha Renusch
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Irene Hasen
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Amanda Ting
- Department of Environmental and Occupational Health, College of Health Sciences, University of California, Irvine, CA, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Leung T, Kasson E, Singh AK, Ren Y, Kaiser N, Huang M, Cavazos-Rehg PA. Topics and Sentiment Surrounding Vaping on Twitter and Reddit During the 2019 e-Cigarette and Vaping Use-Associated Lung Injury Outbreak: Comparative Study. J Med Internet Res 2022; 24:e39460. [PMID: 36512403 PMCID: PMC9795395 DOI: 10.2196/39460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Vaping or e-cigarette use has become dramatically more popular in the United States in recent years. e-Cigarette and vaping use-associated lung injury (EVALI) cases caused an increase in hospitalizations and deaths in 2019, and many instances were later linked to unregulated products. Previous literature has leveraged social media data for surveillance of health topics. Individuals are willing to share mental health experiences and other personal stories on social media platforms where they feel a sense of community, reduced stigma, and empowerment. OBJECTIVE This study aimed to compare vaping-related content on 2 popular social media platforms (ie, Twitter and Reddit) to explore the context surrounding vaping during the 2019 EVALI outbreak and to support the feasibility of using data from both social platforms to develop in-depth and intelligent vaping detection models on social media. METHODS Data were extracted from both Twitter (316,620 tweets) and Reddit (17,320 posts) from July 2019 to September 2019 at the peak of the EVALI crisis. High-throughput computational analyses (sentiment analysis and topic analysis) were conducted. In addition, in-depth manual content analyses were performed and compared with computational analyses of content on both platforms (577 tweets and 613 posts). RESULTS Vaping-related posts and unique users on Twitter and Reddit increased from July 2019 to September 2019, with the average post per user increasing from 1.68 to 1.81 on Twitter and 1.19 to 1.21 on Reddit. Computational analyses found the number of positive sentiment posts to be higher on Reddit (P<.001, 95% CI 0.4305-0.4475) and the number of negative posts to be higher on Twitter (P<.001, 95% CI -0.4289 to -0.4111). These results were consistent with the clinical content analyses results indicating that negative sentiment posts were higher on Twitter (273/577, 47.3%) than Reddit (184/613, 30%). Furthermore, topics prevalent on both platforms by keywords and based on manual post reviews included mentions of youth, marketing or regulation, marijuana, and interest in quitting. CONCLUSIONS Post content and trending topics overlapped on both Twitter and Reddit during the EVALI period in 2019. However, crucial differences in user type and content keywords were also found, including more frequent mentions of health-related keywords on Twitter and more negative health outcomes from vaping mentioned on both Reddit and Twitter. Use of both computational and clinical content analyses is critical to not only identify signals of public health trends among vaping-related social media content but also to provide context for vaping risks and behaviors. By leveraging the strengths of both Twitter and Reddit as publicly available data sources, this research may provide technical and clinical insights to inform automatic detection of social media users who are vaping and may benefit from digital intervention and proactive outreach strategies on these platforms.
Collapse
Affiliation(s)
| | - Erin Kasson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Avineet Kumar Singh
- Department of Integrated Information Technology, University of South Carolina, Columbia, SC, United States
| | - Yang Ren
- Department of Integrated Information Technology, University of South Carolina, Columbia, SC, United States
| | - Nina Kaiser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ming Huang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Patricia A Cavazos-Rehg
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
27
|
Gangopadhyay A, Ibrahim R, Theberge K, May M, Houseknecht KL. Non-alcoholic fatty liver disease (NAFLD) and mental illness: Mechanisms linking mood, metabolism and medicines. Front Neurosci 2022; 16:1042442. [PMID: 36458039 PMCID: PMC9707801 DOI: 10.3389/fnins.2022.1042442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the world and one of the leading indications for liver transplantation. It is one of the many manifestations of insulin resistance and metabolic syndrome as well as an independent risk factor for cardiovascular disease. There is growing evidence linking the incidence of NAFLD with psychiatric illnesses such as schizophrenia, bipolar disorder and depression mechanistically via genetic, metabolic, inflammatory and environmental factors including smoking and psychiatric medications. Indeed, patients prescribed antipsychotic medications, regardless of diagnosis, have higher incidence of NAFLD than population norms. The mechanistic pharmacology of antipsychotic-associated NAFLD is beginning to emerge. In this review, we aim to discuss the pathophysiology of NAFLD including its risk factors, insulin resistance and systemic inflammation as well as its intersection with psychiatric illnesses.
Collapse
Affiliation(s)
| | | | | | | | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| |
Collapse
|
28
|
Fried ND, Oakes JM, Whitehead AK, Lazartigues E, Yue X, Gardner JD. Nicotine and novel tobacco products drive adverse cardiac remodeling and dysfunction in preclinical studies. Front Cardiovasc Med 2022; 9:993617. [PMID: 36277777 PMCID: PMC9582354 DOI: 10.3389/fcvm.2022.993617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background The heart undergoes structural and functional changes in response to injury and hemodynamic stress known as cardiac remodeling. Cardiac remodeling often decompensates causing dysfunction and heart failure (HF). Cardiac remodeling and dysfunction are significantly associated with cigarette smoking. Although cigarette smoking has declined, the roles of nicotine and novel tobacco products (including electronic cigarettes and heat-not-burn tobacco) in cardiac remodeling are unclear. In this perspective, we present evidence demonstrating maladaptive cardiac remodeling in nicotine-exposed mice undergoing hemodynamic stress with angiotensin (Ang)-II infusion and review preclinical literature linking nicotine and novel tobacco products with cardiac remodeling and dysfunction. Methods Adult, male C57BL/6J mice were exposed to room air or chronic, inhaled nicotine for 8 weeks. A subset of mice was infused with Ang-II via subcutaneous osmotic mini-pumps during the final 4 weeks of exposure. Left ventricular structure and function were assessed with echocardiography. Results Chronic, inhaled nicotine abrogated Ang-II-induced thickening of the left ventricular posterior wall, leading to reduced relative wall thickness. Ang-II infusion was associated with increased left ventricular mass index in both air- and nicotine-exposed mice. Conclusions These changes suggest a phenotypic shift from concentric hypertrophy to eccentric hypertrophy in nicotine-exposed, hemodynamically-stressed mice which could drive HF pathogenesis. These findings join a growing body of animal studies demonstrating cardiac remodeling and dysfunction following nicotine and electronic cigarette exposure. Further exploration is necessary; however, clinicians and researchers should not overlook these emerging products as potential risk factors in the pathogenesis of cardiac remodeling and associated diseases including HF.
Collapse
Affiliation(s)
- Nicholas D. Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Joshua M. Oakes
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Anna K. Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States,Cardiovascular Center of Excellence, New Orleans, LA, United States,Neuroscience center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States,Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, United States
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jason D. Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States,*Correspondence: Jason D. Gardner
| |
Collapse
|
29
|
How Electronic Cigarette Affects the Vascular System. J Smok Cessat 2022; 2022:3216580. [PMID: 36262466 PMCID: PMC9553677 DOI: 10.1155/2022/3216580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The popularity of the electronic cigarette has soared in the last decades. However, the health effect of smoking electronic cigarettes on the vascular system is unclear. This systematic review examines the electronic cigarettes’ effect on the vascular system from recent evidence. A systematic search was conducted in MEDLINE (PubMed) database from January 2016 to August 2021 for studies assessing the vascular effect of chronic use of electronic cigarettes on human and animal. The Cochrane Risk of Bias 2, NIH Quality Assessment for Cross-Sectional Study, and SYRCLE’s Risk of Bias were used to assess the risk of bias in interventional, observational, and animal study, respectively. A narrative synthesis of evidence is provided to describe results. From 101 retrieved studies related to electronic cigarettes effect on the vascular system, a total of 16 studies are included in this review. The overall results indicated that electronic cigarette use is associated with adverse events in the vascular, including the incident of elevated oxidative stress, endothelial dysfunction, inflammation, arterial stiffness, and the development of atherosclerotic lesion. Further studies should broaden perspectives and reveal more about the mechanism of how electronic cigarettes impact on vascular system.
Collapse
|
30
|
Pipe AL, Mir H. E-Cigarettes Reexamined: Product Toxicity. Can J Cardiol 2022; 38:1395-1405. [PMID: 36089290 DOI: 10.1016/j.cjca.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
The introduction of e-cigarettes, or electronic nicotine delivery systems (ENDS), has been accompanied by controversy regarding their safety and effectiveness as a cessation aid and by an explosion in their use by youth. Their use does not involve the combustion of tobacco and the creation of harmful combustion products; they have been seen as a "harm reduction" tool that may be of assistance in promoting smoking cessation. Recognition that ENDS can deliver an array of chemicals and materials with known adverse consequences has spurred more careful examination of these products. Nicotine, nitrosamines, carbonyl compounds, heavy metals, free radicals, reactive oxygen species, particulate matter, and "emerging chemicals of concern" are among the constituents of the heated chemical aerosol that is inhaled when ENDS are used. They raise concerns for cardiovascular and respiratory health that merit the attention of clinicians and regulatory agencies. Frequently cited concerns include evidence of disordered respiratory function, altered hemodynamics, endothelial dysfunction, vascular reactivity, and enhanced thrombogenesis. The absence of evidence of the consequences of their long-term use is of additional concern. Their effectiveness as cessation aids and beneficial impact on health outcomes continue to be examined. It is important to ensure that their production and availability are thoughtfully regulated to optimise their safety and permit their use as harm reduction devices and potentially as smoking-cessation aids. It is equally vital to effectively prevent them from becoming ubiquitous consumer products with the potential to rapidly induce nicotine addiction among large numbers of youth. Clinicians should understand the nature of these products and the implications of their use.
Collapse
Affiliation(s)
- Andrew L Pipe
- Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Hassan Mir
- Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Mills A, Dakhlallah D, Robinson M, Kirk A, Llavina S, Boyd JW, Chantler PD, Olfert IM. Short-term effects of electronic cigarettes on cerebrovascular function: A time course study. Exp Physiol 2022; 107:994-1006. [PMID: 35661445 PMCID: PMC9357197 DOI: 10.1113/ep090341] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Acute exposure to electronic cigarettes (Ecigs) triggers abnormal vascular responses in systemic arteries; however, effects on cerebral vessels are poorly understood and time for recovery is not known. We hypothesized that exposure to cigarettes or Ecigs would trigger rapid (<4 h) impairment of the middle cerebral artery (MCA) but that this would resolve by 24 h. What is the main finding and its importance? Cigarettes and Ecigs caused similar degree and duration of MCA impairment. We find it takes ~72 hours after exposure for MCA function to return to normal. This suggests that Ecig use is likely to produce similar adverse vascular health outcomes to those seen with cigarette smoke. ABSTRACT Temporal influences of electronic cigarettes (Ecigs) on blood vessels are poorly understood. In this study, we evaluated a single episode of cigarette versus Ecig exposure on middle cerebral artery (MCA) reactivity and determined how long after the exposure MCA responses took to return to normal. We hypothesized that cigarette and Ecig exposure would induce rapid (<4 h) reduction in MCA endothelial function and would resolve within 24 h. Sprague-Dawley rats (4 months old) were exposed to either air (n = 5), traditional cigarettes (20 puffs, n = 16) or Ecigs (20-puff group, n = 16; or 60-puff group, n = 12). Thereafter, the cigarette and Ecig groups were randomly assigned for postexposure vessel myography testing on day 0 (D0, 1-4 h postexposure), day 1 (D1, 24-28 h postexposure), day 2 (D2, 48-52 h postexposure) and day 3 (72-76 h postexposure). The greatest effect on endothelium-dependent dilatation was observed within 24 h of exposure (∼50% decline between D0 and D1) for both cigarette and Ecig groups, and impairment persisted with all groups for up to 3 days. Changes in endothelium-independent dilatation responses were less severe (∼27%) and shorter lived (recovering by D2) compared with endothelium-dependent dilatation responses. Vasoconstriction in response to serotonin (5-HT) was similar to endothelium-independent dilatation, with greatest impairment (∼45% for all exposure groups) at D0-D1, returning to normal by D2. These data show that exposure to cigarettes and Ecigs triggers a similar level/duration of cerebrovascular dysfunction after a single exposure. The finding that Ecig (without nicotine) and cigarette (with nicotine) exposure produce the same effects suggesting that nicotine is not likely to be triggering MCA dysfunction, and that vaping (with/without nicotine) has potential to produce the same vascular harm and/or disease as smoking.
Collapse
Affiliation(s)
- Amber Mills
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Duaa Dakhlallah
- Dept. of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506,Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Egypt
| | - Madison Robinson
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Ally Kirk
- Alderson Broaddus University, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Sam Llavina
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Jonathan W. Boyd
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Orthopedics, West Virginia University School of Medicine, Morgantown, WV 26506
| | - Paul D. Chantler
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Dept. of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506
| | - I. Mark Olfert
- Dept. of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506,Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506,Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV 26506
| |
Collapse
|
32
|
Shi H, Leventhal AM, Wen Q, Ossip DJ, Li D. Sex Differences in the Association of E-cigarette and Cigarette Use and Dual Use With Self-Reported Hypertension Incidence in US Adults. Nicotine Tob Res 2022; 25:478-485. [PMID: 35863748 PMCID: PMC9910126 DOI: 10.1093/ntr/ntac170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND While there is some evidence and conceptual plausibility that tobacco product use is associated with hypertension incidence and that this association varies by sex, extant longitudinal research had been conducted prior to the emergence of e-cigarette and dual e-cigarette and cigarette use. AIMS AND METHODS Data were analyzed from the US Population Assessment of Tobacco and Health study for adults with no lifetime history of hypertension at wave 1 (2013-2014) who completed waves 2-4 follow-up surveys (2014-2018; n = 16 434). Sex-stratified weighted covariate-adjusted multivariable Cox regression models were used to examine the association between established current e-cigarette or cigarette exclusive or dual-use (as a time-varying and time-lagged regressor) and subsequent self-reported hypertension onset. RESULTS Weighted cumulative hypertension incidence by wave 4 varied by waves 1-3 e-cigarette, cigarette, and dual use status in females (nonuse [incidence: 9.9%], exclusive e-cigarette use [11.8%], exclusive cigarette use [14.8%], dual-use [12.4%]; p = .003 for omnibus differences among all groups) but not males (nonuse [12.6%], exclusive e-cigarette use [9.7%], exclusive cigarette use [13.7%], dual-use [9.3%]; p = .231). Among females, exclusive cigarette (vs. no) use (hazard ratio: 1.69, 95%CI 1.21 to 2.34; p = .002), but not exclusive e-cigarette or dual-use, was significantly associated with subsequent hypertension. Dose-response models were suggestive that consistent exclusive e-cigarette or dual-use versus nonuse across multiple may be associated with hypertension among females, but results were nonsignificant. CONCLUSIONS The association of e-cigarette, cigarette, and dual use with hypertension may differ by sex, whereby exclusive cigarette use could be a prospective risk factor for subsequent self-reported hypertension in US adult females. IMPLICATIONS This nationally representative cohort study provides the very first evidence of whether there are prospective associations of established e-cigarette and cigarette use and dual use with future hypertension onset among US adult females and males. We found that exclusive cigarette smoking was associated with an increased risk of incident hypertension among females, but not males. We observed a trend of a dose-response relationship between e-cigarette use and risk of incident hypertension among female exclusive e-cigarette users or dual e-cigarette and cigarette users. Our study will contribute to understanding the chronic health risks of vaping to prevent the potential long-term e-cigarette use-related health burden.
Collapse
Affiliation(s)
- Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Adam M Leventhal
- USC Institute for Addiction Science, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deborah J Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Corresponding Author: Dongmei Li, Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY 14642-0708, USA. Telephone: (585)2767285; Fax: (585)2761122; E-mail:
| |
Collapse
|
33
|
Alqahtani MM, Pavela G, Lein DH, Vilcassim R, Hendricks PS. The Influence of Mental Health and Respiratory Symptoms on the Association Between Chronic Lung Disease and E-Cigarette Use in Adults in the United States. Respir Care 2022; 67:814-822. [PMID: 35440495 PMCID: PMC9994082 DOI: 10.4187/respcare.09579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adults with chronic lung disease use electronic cigarettes (e-cigarette) at higher rates than those without chronic lung disease. Because e-cigarettes have now been shown to cause adverse pulmonary effects and impair immune responses, it is particularly important to identify the factors that contribute to e-cigarette use in individuals with chronic lung disease. We tested whether mental health explains the association between chronic lung disease and e-cigarette use, and whether the association between chronic lung disease and e-cigarette use is conditional on the presence of respiratory symptoms. METHODS Data were obtained from the 2018 Behavioral Risk Factor Surveillance System. Logistic regression was used to test the association between chronic lung disease status and e-cigarette use when controlling for demographic variables and comorbidities. Structural equation modeling was then used to evaluate (a) whether the number of bad mental health days in the past 30 days explained the association between chronic lung disease and e-cigarette use, and (b) if respiratory symptoms moderated the association between chronic lung disease and e-cigarette use. RESULTS The prevalence of lifetime and current e-cigarette use was significantly higher in those with than in those without chronic lung disease, as was the number of bad mental health days in the past 30 days. Mediation analysis indicated a statistically significant indirect effect of chronic lung disease on the likelihood of e-cigarette use (lifetime and current) through mental health. However, our analyses did not indicate a statistically significant interaction between chronic lung disease and respiratory symptoms in the likelihood of e-cigarette use. CONCLUSIONS The association between chronic lung disease and e-cigarette use may be due, in part, to poorer mental health among individuals with chronic lung disease. These findings provide preliminary evidence that improving the mental health of individuals with chronic lung disease could reduce e-cigarette use in this vulnerable population.
Collapse
Affiliation(s)
- Mohammed M Alqahtani
- Department of Respiratory Therapy, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; and Department of Physical and Occupational Therapy, School of Health Profession, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Gregory Pavela
- Department of Health Behavior, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donald H Lein
- Department of Physical Therapy, School of Health Profession, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ruzmyn Vilcassim
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter S Hendricks
- Department of Health Behavior, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
34
|
Whitehead AK, Fried ND, Li Z, Neelamegam K, Pearson CS, LaPenna KB, Sharp TE, Lefer DJ, Lazartigues E, Gardner JD, Yue X. Alpha7 nicotinic acetylcholine receptor mediates chronic nicotine inhalation-induced cardiopulmonary dysfunction. Clin Sci (Lond) 2022; 136:973-987. [PMID: 35678315 PMCID: PMC10199464 DOI: 10.1042/cs20220083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022]
Abstract
Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.
Collapse
Affiliation(s)
- Anna K. Whitehead
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Nicholas D. Fried
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kandasamy Neelamegam
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Charlotte S. Pearson
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Kyle B. LaPenna
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Thomas E. Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Department of Medicine Section of Cardiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - David J. Lefer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA 70119, U.S.A
| | - Jason D. Gardner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| | - Xinping Yue
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, U.S.A
| |
Collapse
|
35
|
Liu Z, Zhang Y, Youn JY, Zhang Y, Makino A, Yuan JXJ, Cai H. Flavored and Nicotine-Containing E-Cigarettes Induce Impaired Angiogenesis and Diabetic Wound Healing via Increased Endothelial Oxidative Stress and Reduced NO Bioavailability. Antioxidants (Basel) 2022; 11:antiox11050904. [PMID: 35624768 PMCID: PMC9137638 DOI: 10.3390/antiox11050904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The prevalent use of electronic cigarettes (e-cigarettes) has increased exponentially in recent years, especially in youth who are attracted to flavored e-cigarettes. Indeed, e-cigarette or vaping product use-associated lung injury (EVALI) cases started to emerge in the United States in August 2019, resulting in 2807 hospitalized cases and 68 deaths as of 18 February 2020. In the present study, we investigated, for the first time, whether flavored and nicotine containing e-cigarettes induce endothelial dysfunction to result in impaired angiogenesis and wound healing particularly under diabetic condition. Nicotine containing e-cigarettes with various contents of nicotine (0, 1.2%, 2.4%), and flavored e-cigarettes of classic tobacco, mint, menthol, and vanilla or fruit from BLU (nicotine 2.4%) or JUUL (nicotine 3%), were used to treat endothelial cells in vitro and streptozotocin-induced diabetic mice in vivo. Endothelial cell superoxide production, determined by dihydroethidium (DHE) fluorescent imaging and electron spin resonance (ESR), was markedly increased by exposure to e-cigarette extract (e-CSE) in a nicotine-content dependent manner, while nitric oxide (NO) bioavailability detected by DAF-FM fluorescent imaging was substantially decreased. All of the different flavored e-cigarettes examined also showed significant effects in increasing superoxide production while diminishing NO bioavailability. Endothelial cell apoptosis evaluated by caspase 3 activity was markedly increased by exposure to e-CSE prepared from flavored and nicotine containing e-cigarettes. Endothelial monolayer wound assays revealed that nicotine-containing and flavored e-cigarettes induced impaired angiogenic wound repair of endothelial cell monolayers. Furthermore, vascular endothelial growth factor (VEGF) stimulated wound healing in diabetic mice was impaired by exposure to e-CSEs prepared from nicotine-containing and flavored e-cigarettes. Taken together, our data demonstrate for the first time that flavored and nicotine-containing e-cigarettes induce endothelial dysfunction through excessive ROS production, resulting in decreased NO bioavailability, increased endothelial cell apoptosis, and impairment in angiogenesis and wound healing, especially under diabetic condition. These responses of endothelial dysfunction likely underlie harmful effects of e-cigarettes in endothelial-rich organs, such as heart and lungs. These data also indicate that rigorous regulation on e-cigarette use should be enforced in diabetic and/or surgical patients to avoid severe consequences from impaired angiogenesis/wound healing.
Collapse
Affiliation(s)
- Zhuoying Liu
- Department of Anesthesiology, Department of Medicine/Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (Z.L.); (Y.Z.); (J.Y.Y.); (Y.Z.)
| | - Yixuan Zhang
- Department of Anesthesiology, Department of Medicine/Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (Z.L.); (Y.Z.); (J.Y.Y.); (Y.Z.)
| | - Ji Youn Youn
- Department of Anesthesiology, Department of Medicine/Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (Z.L.); (Y.Z.); (J.Y.Y.); (Y.Z.)
| | - Yabing Zhang
- Department of Anesthesiology, Department of Medicine/Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (Z.L.); (Y.Z.); (J.Y.Y.); (Y.Z.)
| | - Ayako Makino
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA; (A.M.); (J.X.-J.Y.)
| | - Jason X.-J. Yuan
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA; (A.M.); (J.X.-J.Y.)
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine/Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (Z.L.); (Y.Z.); (J.Y.Y.); (Y.Z.)
- Correspondence:
| |
Collapse
|
36
|
Getiye Y, Peterson MR, Phillips BD, Carrillo D, Bisha B, He G. E-cigarette exposure with or without heating the e-liquid induces differential remodeling in the lungs and right heart of mice. J Mol Cell Cardiol 2022; 168:83-95. [PMID: 35489388 DOI: 10.1016/j.yjmcc.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/12/2023]
Abstract
Various cardiopulmonary pathologies associated with electronic cigarette (EC) vaping have been reported. This study investigated the differential adverse effects of heating-associated by-products versus the intact components of EC aerosol to the lungs and heart of mice. We further dissected the roles of caspase recruitment domain-containing protein 9 (CARD9)-associated innate immune response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in EC exposure-induced cardiopulmonary injury. C57BL/6 wild type (WT), CARD9-/-, and NLRP3-/- mice were exposed to EC aerosol 3 h/day, 5 days/week for 6 month with or without heating the e-liquid with exposure to ambient air as the control. In WT mice, EC exposure with heating (EwH) significantly increased right ventricle (RV) free wall thickness at systole and diastole. However, EC exposure without heating (EwoH) caused a significant decrease in the wall thickness at systole. RV fractional shortening was also markedly reduced following EwH in WT and NLRP3-/- mice. Further, EwH activated NF-κB and p38 MAPK inflammatory signaling in the lungs, but not in the RV, in a CARD9- and NLRP3-dependent manner. Levels of circulatory inflammatory mediators were also elevated following EwH, indicating systemic inflammation. Moreover, EwoH activated TGF-β1/SMAD2/3/α-SMA fibrosis signaling in the lungs but not the RV of WT mice. In conclusion, EC aerosol exposure following EwH or EwoH induced differential cardiopulmonary remodeling and CARD9 innate immune and NLRP3 inflammasome contributed to the adverse effects.
Collapse
Affiliation(s)
- Yohannes Getiye
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Matthew R Peterson
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Brandon D Phillips
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel Carrillo
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Bledar Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Guanglong He
- School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
37
|
Espinoza-Derout J, Shao XM, Lao CJ, Hasan KM, Rivera JC, Jordan MC, Echeverria V, Roos KP, Sinha-Hikim AP, Friedman TC. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:879726. [PMID: 35463745 PMCID: PMC9021536 DOI: 10.3389/fcvm.2022.879726] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesi M. Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Candice J. Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Maria C. Jordan
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Valentina Echeverria
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Kenneth P. Roos
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Friends Research Institute, Cerritos, CA, United States
| |
Collapse
|
38
|
Mahgoup EM, Khaleel SA, El-Mahdy MA, Abd-Allah AR, Zweier JL. Role of cytoglobin in cigarette smoke constituent-induced loss of nitric oxide bioavailability in vascular smooth muscle cells. Nitric Oxide 2022; 119:9-18. [PMID: 34875385 PMCID: PMC8752519 DOI: 10.1016/j.niox.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023]
Abstract
Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Adel R Abd-Allah
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, And the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
|
40
|
El-Mahdy MA, Ewees MG, Eid MS, Mahgoup EM, Khaleel SA, Zweier JL. Electronic Cigarette Exposure Causes Vascular Endothelial Dysfunction Due to NADPH Oxidase Activation and eNOS Uncoupling. Am J Physiol Heart Circ Physiol 2022; 322:H549-H567. [PMID: 35089811 PMCID: PMC8917923 DOI: 10.1152/ajpheart.00460.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/ml nicotine for 16 and 60 weeks. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared to air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sahar A Khaleel
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and the Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
41
|
Zweier JL, Hemann C, Kundu T, Ewees MG, Khaleel SA, Samouilov A, Ilangovan G, El-Mahdy MA. Cytoglobin has potent superoxide dismutase function. Proc Natl Acad Sci U S A 2021; 118:e2105053118. [PMID: 34930834 PMCID: PMC8719900 DOI: 10.1073/pnas.2105053118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.
Collapse
Affiliation(s)
- Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210;
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Craig Hemann
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Tapan Kundu
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Govindasamy Ilangovan
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
Esquer C, Echeagaray O, Firouzi F, Savko C, Shain G, Bose P, Rieder A, Rokaw S, Witon-Paulo A, Gude N, Sussman MA. Fundamentals of vaping-associated pulmonary injury leading to severe respiratory distress. Life Sci Alliance 2021; 5:5/2/e202101246. [PMID: 34810278 PMCID: PMC8616545 DOI: 10.26508/lsa.202101246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Vaping of flavored liquids has been touted as safe alternative to traditional cigarette smoking with decreased health risks. The popularity of vaping has dramatically increased over the last decade, particularly among teenagers who incorporate vaping into their daily life as a social activity. Despite widespread and increasing adoption of vaping among young adults, there is little information on long-term consequences of vaping and potential health risks. This study demonstrates vaping-induced pulmonary injury using commercial JUUL pens with flavored vape juice using an inhalation exposure murine model. Profound pathological changes to upper airway, lung tissue architecture, and cellular structure are evident within 9 wk of exposure. Marked histologic changes include increased parenchyma tissue density, cellular infiltrates proximal to airway passages, alveolar rarefaction, increased collagen deposition, and bronchial thickening with elastin fiber disruption. Transcriptional reprogramming includes significant changes to gene families coding for xenobiotic response, glycerolipid metabolic processes, and oxidative stress. Cardiac systemic output is moderately but significantly impaired with pulmonary side ventricular chamber enlargement. This vaping-induced pulmonary injury model demonstrates mechanistic underpinnings of vaping-related pathologic injury.
Collapse
Affiliation(s)
- Carolina Esquer
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Oscar Echeagaray
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Fareheh Firouzi
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Clarissa Savko
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Grant Shain
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Pria Bose
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Abigail Rieder
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Sophie Rokaw
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Andrea Witon-Paulo
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Natalie Gude
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| | - Mark A Sussman
- San Diego State University Integrated Regenerative Research Institute and Biology Department, San Diego State University, San Diego, CA, USA
| |
Collapse
|
43
|
Farra YM, Matz J, Ramkhelawon B, Oakes JM, Bellini C. Structural and functional remodeling of the female Apoe-/- mouse aorta due to chronic cigarette smoke exposure. Am J Physiol Heart Circ Physiol 2021; 320:H2270-H2282. [PMID: 33834870 DOI: 10.1152/ajpheart.00893.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite a decline in popularity over the past several decades, cigarette smoking remains a leading cause of cardiovascular morbidity and mortality. Yet, the effects of cigarette smoking on vascular structure and function are largely unknown. To evaluate changes in the mechanical properties of the aorta that occur with chronic smoking, we exposed female apolipoprotein E-deficient mice to mainstream cigarette smoke daily for 24 wk, with room air as control. By the time of euthanasia, cigarette-exposed mice had lower body mass but experienced larger systolic/diastolic blood pressure when compared with controls. Smoking was associated with significant wall thickening, reduced axial stretch, and circumferential material softening of the aorta. Although this contributed to maintaining intrinsic tissue stiffness at control levels despite larger pressure loads, the structural stiffness became significantly larger. Furthermore, the aorta from cigarette-exposed mice exhibited decreased ability to store elastic energy and augment diastolic blood flow. Histological analysis revealed a region-dependent increase in the cross-sectional area due to smoking. Increased smooth muscle and extracellular matrix content led to medial thickening in the ascending aorta, whereas collagen deposition increased the thickness of the descending thoracic and abdominal aorta. Atherosclerotic lesions were larger in exposed vessels and featured a necrotic core overlaid by a thinned fibrous cap and macrophage infiltration, consistent with a vulnerable phenotype. Collectively, our data indicate that cigarette smoking decreases the mechanical functionality of the aorta, inflicts morphometric alterations to distinct segments of the aorta, and accelerates the progression of atherosclerosis.NEW & NOTEWORTHY We studied the effects of chronic cigarette smoking on the structure and function of the aorta in a mouse model of nose-only aerosol inhalation. Our data indicated that exposure to cigarette smoke impairs vascular function by reducing the ability of the aorta to store elastic energy and by decreasing aortic distensibility. Combined with a more vulnerable atherosclerotic phenotype, these findings reveal the biomechanical mechanisms that support the development of cardiovascular disease due to cigarette smoking.
Collapse
Affiliation(s)
- Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Bhama Ramkhelawon
- Division of Vascular Surgery, Department of Surgery, New York University Langone Health, New York City, New York.,Department of Cell Biology, New York University Langone Health, New York City, New York
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| |
Collapse
|