1
|
Conte E, Imbrici P, Dinoi G, Boccanegra B, Lanza M, Mele E, Riemma MA, Urbanek K, Cappetta D, De Luca A, Berrino L, De Angelis A, Liantonio A. SGLT2 inhibitor dapagliflozin mitigates skeletal muscle pathology by modulating key proteins involved in glucose and ion homeostasis in an animal model of heart failure. Eur J Pharmacol 2025; 997:177617. [PMID: 40222442 DOI: 10.1016/j.ejphar.2025.177617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Heart failure (HF) is a syndrome characterized by dyspnoea, fatigue and exercise intolerance. Among non-cardiac comorbidities which often accompany HF, skeletal muscle abnormalities impact patients' daily activities and quality of life. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown promise in improving clinical outcomes and enhancing physical performance in HF patients, although their mechanism of action remains unclear. In this context, altered muscle ions and glucose homeostasis may contribute to HF-related muscle changes and serve as indirect targets for SGLT2i effects. To explore this further, we used Dahl salt-sensitive rats fed with a high-salt diet for five weeks and then randomized to receive dapagliflozin (HS + DAP) or vehicle (HS) for the following six weeks. Control animals received a low-salt diet (LS). We investigated whether variations in indexes of glucose and ions homeostasis occur in extensor digitorum longus muscle of this rodent model of HF with preserved ejection fraction and are counteracted by dapagliflozin treatment. Gene and protein expression analysis revealed altered expression of proteins involved in glucose (SGLT2, GLUT4, GPD1) and Ca2+ and Na + homeostasis (NCX3, Ryr1, NHE1/6, Na+/K+-ATPase, Nav1.4) in HS vs LS animals. Furthermore, HS rats showed an increased CaMKII expression in its active phosphorylated form and a change in plasma pH toward acidification. Dapagliflozin treatment counteracted the altered expression of most of the components under investigation, also promoting an amelioration of atrophy indexes and a recovery of plasma pH. Thus, skeletal muscle appears highly responsive to SGLT2i treatment, supporting the potential of these drugs in mitigating HF-related muscle pathology.
Collapse
Affiliation(s)
- Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Giorgia Dinoi
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Martina Lanza
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
2
|
Guo S, Hudmon A, Sahoo FK, Motes MR, Tsai WC, Chen PS, Rubart M. K + currents in ventricular cardiomyocytes of p.N98S-calmodulin mutant mice. Am J Physiol Heart Circ Physiol 2025; 328:H658-H675. [PMID: 39739562 DOI: 10.1152/ajpheart.00470.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated the role of cardiac K+ channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the Calm1 gene (Calm1N98S/+). Single-cell patch-clamp technique and whole heart optical voltage mapping were used to assess action potentials and whole cell currents. Ventricular action potential duration (APD) at baseline was similar between genotypes. The β-adrenergic agonist isoproterenol prolonged APD in myocytes and isolated perfused hearts from Calm1N98S/+, but not wild-type (Calm1+/+), mice. Current density-voltage relationships for the small-conductance calcium-activated K+ (SK) current and the inward rectifier K+ current did not significantly differ between Calm1+/+ and Calm1N98S/+ ventricular cardiomyocytes ± isoproterenol. Peak densities of other voltage-gated K+ currents were significantly larger in Calm1N98S/+ versus Calm1+/+ cells at voltages ≥40 mV, both without and with isoproterenol. Isoproterenol reduced outward KATP currents more in Calm1N98S/+ versus Calm1+/+ myocytes. Dialysis of Calm1+/+ cardiomyocytes with exogenous wild-type or N98S-CaM protein (5 µmol/L) via the pipette, respectively, increased and eliminated SK currents. The specific SK channel inhibitor apamin did not significantly alter the APD of Calm1+/+ or Calm1N98S/+ hearts ± isoproterenol. Thus, dysregulation of SK or voltage-gated K+ channels does not contribute to the β-adrenergic-induced LQTS of Calm1N98S/+ mice, possibly because cardiomyocyte content of endogenous N98S-CaM and/or its affinity for CaM-binding domains may be too low to modulate channel properties. The larger KATP current inhibition by isoproterenol may delay Calm1N98S/+ myocyte repolarization at low intracellular [ATP].NEW & NOTEWORTHY Despite in vitro and in silico evidence implicating cardiac K+ channel dysregulation in LQTS associated with missense mutations in genes-encoding calmodulin, their effects on native cardiac K+ currents are unknown. Using a knock-in mouse model harboring the p.N98S mutation in the Calm1 gene, we found no evidence for dysregulation of major cardiac K+ channels. Although these data do not support mechanistic findings from heterologous systems, our finding impacts efforts to improve therapies for calmodulinopathies.
Collapse
Affiliation(s)
- Shuai Guo
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Andy Hudmon
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Firoj K Sahoo
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Madeline R Motes
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, United States
| | - Wen-Chin Tsai
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Michael Rubart
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Boileve A, Romito O, Hof T, Levallois A, Brard L, d'Hers S, Fouchet A, Simard C, Guinamard R, Brette F, Sallé L. EPAC1 and 2 inhibit K + currents via PLC/PKC and NOS/PKG pathways in rat ventricular cardiomyocytes. Am J Physiol Cell Physiol 2024; 327:C557-C570. [PMID: 38985989 DOI: 10.1152/ajpcell.00582.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Arthur Boileve
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Olivier Romito
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Thomas Hof
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Aurélia Levallois
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Laura Brard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Sarah d'Hers
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Alexandre Fouchet
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Christophe Simard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Romain Guinamard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Fabien Brette
- PhyMedExp, INSERM U1046, CNRS 9412, Université de Montpellier, Montpellier, France
| | - Laurent Sallé
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| |
Collapse
|
4
|
Lee AS, Sung YL, Pan SH, Sung KT, Su CH, Ding SL, Lu YJ, Hsieh CL, Chen YF, Liu CC, Chen WY, Chen XR, Chung FP, Wang SW, Chen CH, Mochly-Rosen D, Hung CL, Yeh HI, Lin SF. A Common East Asian aldehyde dehydrogenase 2*2 variant promotes ventricular arrhythmia with chronic light-to-moderate alcohol use in mice. Commun Biol 2023; 6:610. [PMID: 37280327 PMCID: PMC10244406 DOI: 10.1038/s42003-023-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic heavy alcohol use is associated with lethal arrhythmias. Whether common East Asian-specific aldehyde dehydrogenase deficiency (ALDH2*2) contributes to arrhythmogenesis caused by low level alcohol use remains unclear. Here we show 59 habitual alcohol users carrying ALDH2 rs671 have longer QT interval (corrected) and higher ventricular tachyarrhythmia events compared with 137 ALDH2 wild-type (Wt) habitual alcohol users and 57 alcohol non-users. Notably, we observe QT prolongation and a higher risk of premature ventricular contractions among human ALDH2 variants showing habitual light-to-moderate alcohol consumption. We recapitulate a human electrophysiological QT prolongation phenotype using a mouse ALDH2*2 knock-in (KI) model treated with 4% ethanol, which shows markedly reduced total amount of connexin43 albeit increased lateralization accompanied by markedly downregulated sarcolemmal Nav1.5, Kv1.4 and Kv4.2 expressions compared to EtOH-treated Wt mice. Whole-cell patch-clamps reveal a more pronounced action potential prolongation in EtOH-treated ALDH2*2 KI mice. By programmed electrical stimulation, rotors are only provokable in EtOH-treated ALDH2*2 KI mice along with higher number and duration of ventricular arrhythmia episodes. The present research helps formulate safe alcohol drinking guideline for ALDH2 deficient population and develop novel protective agents for these subjects.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tzu Sung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Huang Su
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shiao-Li Ding
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Ying-Jui Lu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chin-Ling Hsieh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Yun-Fang Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chuan-Chuan Liu
- Department of Physiology Examination, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Chung-Lieh Hung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Hung-I Yeh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Cardiomyocyte-specific loss of plasma membrane calcium ATPase 1 impacts cardiac rhythm and is associated with ventricular repolarisation dysfunction. J Mol Cell Cardiol 2022; 172:41-51. [PMID: 35926724 DOI: 10.1016/j.yjmcc.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/09/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
Plasma membrane calcium ATPase 1 (PMCA1, Atp2b1) is emerging as a key contributor to cardiac physiology, involved in calcium handling and myocardial signalling. In addition, genome wide association studies have associated PMCA1 in several areas of cardiovascular disease including hypertension and myocardial infarction. Here, we investigated the role of PMCA1 in basal cardiac function and heart rhythm stability. Cardiac structure, heart rhythm and arrhythmia susceptibility were assessed in a cardiomyocyte-specific PMCA1 deletion (PMCA1CKO) mouse model. PMCA1CKO mice developed abnormal heart rhythms related to ventricular repolarisation dysfunction and displayed an increased susceptibility to ventricular arrhythmias. We further assessed the levels of cardiac ion channels using qPCR and found a downregulation of the voltage-dependent potassium channels, Kv4.2, with a corresponding reduction in the transient outward potassium current which underlies ventricular repolarisation in the murine heart. The changes in heart rhythm were found to occur in the absence of any structural cardiomyopathy. To further assess the molecular changes occurring in PMCA1CKO hearts, we performed proteomic analysis. Functional characterisation of differentially expressed proteins suggested changes in pathways related to metabolism, protein-binding, and pathways associated cardiac function including β-adrenergic signalling. Together, these data suggest an important role for PMCA1 in basal cardiac function in relation to heart rhythm control, with reduced cardiac PMCA1 expression resulting in an increased risk of arrhythmia development.
Collapse
|
7
|
Ogata G, Partida GJ, Fasoli A, Ishida AT. Calcium/calmodulin-dependent protein kinase II associates with the K + channel isoform Kv4.3 in adult rat optic nerve. Front Neuroanat 2022; 16:958986. [PMID: 36172564 PMCID: PMC9512010 DOI: 10.3389/fnana.2022.958986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Spikes are said to exhibit "memory" in that they can be altered by spikes that precede them. In retinal ganglion cell axons, for example, rapid spiking can slow the propagation of subsequent spikes. This increases inter-spike interval and, thus, low-pass filters instantaneous spike frequency. Similarly, a K+ ion channel blocker (4-aminopyridine, 4AP) increases the time-to-peak of compound action potentials recorded from optic nerve, and we recently found that reducing autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) does too. These results would be expected if CaMKII modulates spike propagation by regulating 4AP-sensitive K+ channels. As steps toward identifying a possible substrate, we test whether (i) 4AP alters optic nerve spike shape in ways consistent with reducing K+ current, (ii) 4AP alters spike propagation consistent with effects of reducing CaMKII activation, (iii) antibodies directed against 4AP-sensitive and CaMKII-regulated K+ channels bind to optic nerve axons, and (iv) optic nerve CaMKII co-immunoprecipitates with 4AP-sensitive K+ channels. We find that, in adult rat optic nerve, (i) 4AP selectively slows spike repolarization, (ii) 4AP slows spike propagation, (iii) immunogen-blockable staining is achieved with anti-Kv4.3 antibodies but not with antibodies directed against Kv1.4 or Kv4.2, and (iv) CaMKII associates with Kv4.3. Kv4.3 may thus be a substrate that underlies activity-dependent spike regulation in adult visual system pathways.
Collapse
Affiliation(s)
- Genki Ogata
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Gloria J. Partida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Anna Fasoli
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
| | - Andrew T. Ishida
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology and Vision Science, University of California, Sacramento, Sacramento, CA, United States
| |
Collapse
|
8
|
Neumann J, Boknik P, Kirchhefer U, Gergs U. The role of PP5 and PP2C in cardiac health and disease. Cell Signal 2021; 85:110035. [PMID: 33964402 DOI: 10.1016/j.cellsig.2021.110035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Protein phosphatases are important, for example, as functional antagonists of β-adrenergic stimulation of the mammalian heart. While β-adrenergic stimulations increase the phosphorylation state of regulatory proteins and therefore force of contraction in the heart, these phosphorylations are reversed and thus force is reduced by the activity of protein phosphatases. In this context the role of PP5 and PP2C is starting to unravel. They do not belong to the same family of phosphatases with regard to sequence homology, many similarities with regard to location, activation by lipids and putative substrates have been worked out over the years. We also suggest which pathways for regulation of PP5 and/or PP2C described in other tissues and not yet in the heart might be useful to look for in cardiac tissue. Both phosphatases might play a role in signal transduction of sarcolemmal receptors in the heart. Expression of PP5 and PP2C can be increased by extracellular stimuli in the heart. Because PP5 is overexpressed in failing animal and human hearts, and because overexpression of PP5 or PP2C leads to cardiac hypertrophy and KO of PP5 leads to cardiac hypotrophy, one might argue for a role of PP5 and PP2C in heart failure. Because PP5 and PP2C can reduce, at least in vitro, the phosphorylation state of proteins thought to be relevant for cardiac arrhythmias, a role of these phosphatases for cardiac arrhythmias is also probable. Thus, PP5 and PP2C might be druggable targets to treat important cardiac diseases like heart failure, cardiac hypertrophy and cardiac arrhythmias.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Domagkstraße 12, D-48149 Münster, Germany.
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Magdeburger Str. 4, D-06097 Halle, Germany.
| |
Collapse
|
9
|
Chen X, Zhang C, Guo Y, Liu X, Ye T, Fo Y, Qu C, Liang J, Shi S, Yang B. Chronic stimulation of the sigma-1 receptor ameliorates ventricular ionic and structural remodeling in a rodent model of depression. Life Sci 2020; 257:118047. [PMID: 32629001 DOI: 10.1016/j.lfs.2020.118047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
AIM The purpose of the study was to investigate what effects the sigma-1 receptor (S1R) could exert on the cardiac myocyte ion channels in a rodent model of depression and to explore the underlying mechanisms since depression is an independent risk factor for cardiovascular diseases including ventricular arrhythmias (VAs). MATERIALS AND METHODS To establish the depression model in rats, chronic mild unpredictable stress (CMUS) for 28 days was used. The S1R agonist fluvoxamine was injected intraperitoneally from the second week to the last week for 21 days in total, and the effects were evaluated by patch clamp, western blot analysis, and Masson staining. KEY FINDINGS We demonstrated that depression was improved after treatment with fluvoxamine. In addition, the prolongation of the corrected QT (QTc) interval under CMUS that increased vulnerability to VAs was significantly attenuated by stimulation of S1R due to the decreased amplitude of L-type calcium current (ICa-L) and the restoration of reduced transient outward potassium current (Ito) resulting from CMUS induction. The S1R also decelerated Ito inactivation and accelerated Ito recovery by activating Ca2+/calmodulin-dependent kinase II. Moreover, the stimulation of S1R ameliorated the structural remodeling as the substrate for maintenance of VAs. All these effects were abolished by the administration of S1R antagonist BD1047, which verified the roles for S1R. SIGNIFICANCE Activation of S1R could decrease the vulnerability to VAs by inhibiting ICa-L and restoring Ito, in addition to ameliorating the CMUS-induced depressive symptoms and structural remodeling.
Collapse
Affiliation(s)
- Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jinjun Liang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
10
|
Tinaquero D, Crespo-García T, Utrilla RG, Nieto-Marín P, González-Guerra A, Rubio-Alarcón M, Cámara-Checa A, Dago M, Matamoros M, Pérez-Hernández M, Tamargo M, Cebrián J, Jalife J, Tamargo J, Bernal JA, Caballero R, Delpón E. The p.P888L SAP97 polymorphism increases the transient outward current (I to,f) and abbreviates the action potential duration and the QT interval. Sci Rep 2020; 10:10707. [PMID: 32612162 PMCID: PMC7329876 DOI: 10.1038/s41598-020-67109-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/01/2020] [Indexed: 11/09/2022] Open
Abstract
Synapse-Associated Protein 97 (SAP97) is an anchoring protein that in cardiomyocytes targets to the membrane and regulates Na+ and K+ channels. Here we compared the electrophysiological effects of native (WT) and p.P888L SAP97, a common polymorphism. Currents were recorded in cardiomyocytes from mice trans-expressing human WT or p.P888L SAP97 and in Chinese hamster ovary (CHO)-transfected cells. The duration of the action potentials and the QT interval were significantly shorter in p.P888L-SAP97 than in WT-SAP97 mice. Compared to WT, p.P888L SAP97 significantly increased the charge of the Ca-independent transient outward (Ito,f) current in cardiomyocytes and the charge crossing Kv4.3 channels in CHO cells by slowing Kv4.3 inactivation kinetics. Silencing or inhibiting Ca/calmodulin kinase II (CaMKII) abolished the p.P888L-induced Kv4.3 charge increase, which was also precluded in channels (p.S550A Kv4.3) in which the CaMKII-phosphorylation is prevented. Computational protein-protein docking predicted that p.P888L SAP97 is more likely to form a complex with CaMKII than WT. The Na+ current and the current generated by Kv1.5 channels increased similarly in WT-SAP97 and p.P888L-SAP97 cardiomyocytes, while the inward rectifier current increased in WT-SAP97 but not in p.P888L-SAP97 cardiomyocytes. The p.P888L SAP97 polymorphism increases the Ito,f, a CaMKII-dependent effect that may increase the risk of arrhythmias.
Collapse
Affiliation(s)
- David Tinaquero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Teresa Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | | - Marcos Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Anabel Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - María Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Marcos Matamoros
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - María Tamargo
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - Jorge Cebrián
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Internal Medicine/Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Juan Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | | - Ricardo Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain.
| | - Eva Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, Madrid, Spain
| | | |
Collapse
|
11
|
Urbano FJ, Bisagno V, Garcia-Rill E. Gamma oscillations in the pedunculopontine nucleus are regulated by F-actin: neuroepigenetic implications. Am J Physiol Cell Physiol 2019; 318:C282-C288. [PMID: 31747316 DOI: 10.1152/ajpcell.00374.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pedunculopontine nucleus (PPN) is part of the reticular activating system (RAS) in charge of arousal and rapid eye movement sleep. The presence of high-frequency membrane oscillations in the gamma-band range in the PPN has been extensively demonstrated both in vivo and in vitro. Our group previously described histone deacetylation (HDAC) inhibition in vitro induced protein changes in F-actin cytoskeleton and intracellular Ca2+ concentration regulation proteins in the PPN. Here, we present evidence that supports the presence of a fine balance between HDAC function and calcium calmodulin kinase II-F-actin interactions in the PPN. We modified F-actin polymerization in vitro by using jasplakinolide (1 μM, a promoter of F-actin stabilization), or latrunculin-B (1 μM, an inhibitor of actin polymerization). Our results showed that shifting the balance in either direction significantly reduced PPN gamma oscillation as well as voltage-dependent calcium currents.
Collapse
Affiliation(s)
- Francisco J Urbano
- Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Veronica Bisagno
- Instituto de Fisiología, Biología Molecular, y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, Arakansas
| |
Collapse
|
12
|
Abstract
Kv channel-interacting proteins (KChIPs) belong to the neuronal calcium sensor (NCS) family of Ca2+-binding EF-hand proteins. KChIPs constitute a group of specific auxiliary β-subunits for Kv4 channels, the molecular substrate of transient potassium currents in both neuronal and non-neuronal tissues. Moreover, KChIPs can interact with presenilins to control ER calcium signaling and apoptosis, and with DNA to control gene transcription. Ca2+ binding via their EF-hands, with the consequence of conformational changes, is well documented for KChIPs. Moreover, the Ca2+ dependence of the presenilin/KChIP complex may be related to Alzheimer’s disease and the Ca2+ dependence of the DNA/KChIP complex to pain sensing. However, only in few cases could the Ca2+ binding to KChIPs be directly linked to the control of excitability in nerve and muscle cells known to express Kv4/KChIP channel complexes. This review summarizes current knowledge about the Ca2+ binding properties of KChIPs and the Ca2+ dependencies of macromolecular complexes containing KChIPs, including those with presenilins, DNA and especially Kv4 channels. The respective physiological or pathophysiolgical roles of Ca2+ binding to KChIPs are discussed.
Collapse
Affiliation(s)
- Robert Bähring
- a Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin , Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
13
|
Tyan L, Foell JD, Vincent KP, Woon MT, Mesquitta WT, Lang D, Best JM, Ackerman MJ, McCulloch AD, Glukhov AV, Balijepalli RC, Kamp TJ. Long QT syndrome caveolin-3 mutations differentially modulate K v 4 and Ca v 1.2 channels to contribute to action potential prolongation. J Physiol 2019; 597:1531-1551. [PMID: 30588629 DOI: 10.1113/jp276014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in the caveolae scaffolding protein, caveolin-3 (Cav3), have been linked to the long QT type 9 inherited arrhythmia syndrome (LQT9) and the cause of underlying action potential duration prolongation is incompletely understood. In the present study, we show that LQT9 Cav3 mutations, F97C and S141R, cause mutation-specific gain of function effects on Cav 1.2-encoded L-type Ca2+ channels responsible for ICa,L and also cause loss of function effects on heterologously expressed Kv 4.2 and Kv 4.3 channels responsible for Ito . A computational model of the human ventricular myocyte action potential suggests that the major ionic current change causing action potential duration prolongation in the presence of Cav3-F97C is the slowly inactivating ICa,L but, for Cav3-S141R, both increased ICa,L and increased late Na+ current contribute equally to action potential duration prolongation. Overall, the LQT9 Cav3-F97C and Cav3-S141R mutations differentially impact multiple ionic currents, highlighting the complexity of Cav3 regulation of cardiac excitability and suggesting mutation-specific therapeutic approaches. ABSTRACT Mutations in the CAV3 gene encoding caveolin-3 (Cav3), a scaffolding protein integral to caveolae in cardiomyocytes, have been associated with the congenital long-QT syndrome (LQT9). Initial studies demonstrated that LQT9-associated Cav3 mutations, F97C and S141R, increase late sodium current as a potential mechanism to prolong action potential duration (APD) and cause LQT9. Whether these Cav3 LQT9 mutations impact other caveolae related ion channels remains unknown. We used the whole-cell, patch clamp technique to characterize the effect of Cav3-F97C and Cav3-S141R mutations on heterologously expressed Cav 1.2+Cav β2cN4 channels, as well as Kv 4.2 and Kv 4.3 channels, in HEK 293 cells. Expression of Cav3-S141R increased ICa,L density without changes in gating properties, whereas expression of Cav3-F97C reduced Ca2+ -dependent inactivation of ICa,L without changing current density. The Cav3-F97C mutation reduced current density and altered the kinetics of IKv4.2 and IKv4.3 and also slowed recovery from inactivation. Cav3-S141R decreased current density and also slowed activation kinetics and recovery from inactivation of IKv4.2 but had no effect on IKv4.3 . Using the O'Hara-Rudy computational model of the human ventricular myocyte action potential, the Cav3 mutation-induced changes in Ito are predicted to have negligible effect on APD, whereas blunted Ca2+ -dependent inactivation of ICa,L by Cav3-F97C is predicted to be primarily responsible for APD prolongation, although increased ICa,L and late INa by Cav3-S141R contribute equally to APD prolongation. Thus, LQT9 Cav3-associated mutations, F97C and S141R, produce mutation-specific changes in multiple ionic currents leading to different primary causes of APD prolongation, which suggests the use of mutation-specific therapeutic approaches in the future.
Collapse
Affiliation(s)
- Leonid Tyan
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Jason D Foell
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Kevin P Vincent
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Marites T Woon
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Walatta T Mesquitta
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Di Lang
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Jabe M Best
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine and Molecular Pharmacology & Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Alexey V Glukhov
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Ravi C Balijepalli
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| | - Timothy J Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, 1111, Highland Ave, Madison, WI, USA
| |
Collapse
|
14
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
15
|
Groen C, Bähring R. Modulation of human Kv4.3/KChIP2 channel inactivation kinetics by cytoplasmic Ca 2. Pflugers Arch 2017; 469:1457-1470. [PMID: 28735419 DOI: 10.1007/s00424-017-2039-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
The transient outward current (I to) in the human heart is mediated by Kv4.3 channels complexed with Kv channel interacting protein (KChIP) 2, a cytoplasmic Ca2+-binding EF-hand protein known to modulate Kv4.3 inactivation gating upon heterologous co-expression. We studied Kv4.3 channels co-expressed with wild-type (wt) or EF-hand-mutated (ΔEF) KChIP2 in human embryonic kidney (HEK) 293 cells. Co-expression took place in the absence or presence of BAPTA-AM, and macroscopic currents were recorded in the whole-cell patch-clamp configuration with different free Ca2+ concentrations in the patch-pipette. Our data indicate that Ca2+ is not necessary for Kv4.3/KChIP2 complex formation. The Kv4.3/KChIP2-mediated current decay was faster and the recovery of Kv4.3/KChIP2 channels from inactivation slower with 50 μM Ca2+ than with BAPTA (nominal Ca2+-free) in the patch-pipette. The apparent Ca2+-mediated slowing of recovery kinetics was still observed when EF-hand 4 of KChIP2 was mutated (ΔEF4) but not when EF-hand 2 (ΔEF2) was mutated, and turned into a Ca2+-mediated acceleration of recovery kinetics when EF-hand 3 (ΔEF3) was mutated. In the presence of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 cytoplasmic Ca2+ (50 μM) induced an acceleration of Kv4.3/KChIP2 recovery kinetics, which was still observed when EF-hand 2 was mutated (ΔEF2) but not when EF-hand 3 (ΔEF3) or EF-hand 4 (ΔEF4) was mutated. Our results support the notion that binding of Ca2+ to KChIP2 EF-hands can acutely modulate Kv4.3/KChIP2 channel inactivation gating, but the Ca2+-dependent gating modulation depends on CaMKII action. Our findings speak for an acute modulation of I to kinetics and frequency-dependent I to availability in cardiomyocytes under conditions with elevated Ca2+ levels and CaMKII activity.
Collapse
Affiliation(s)
- Christiane Groen
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Robert Bähring
- Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Role of CaMKII and PKA in Early Afterdepolarization of Human Ventricular Myocardium Cell: A Computational Model Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:4576313. [PMID: 28053652 PMCID: PMC5178856 DOI: 10.1155/2016/4576313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022]
Abstract
Early afterdepolarization (EAD) plays an important role in arrhythmogenesis. Many experimental studies have reported that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and β-adrenergic signaling pathway are two important regulators. In this study, we developed a modified computational model of human ventricular myocyte to investigate the combined role of CaMKII and β-adrenergic signaling pathway on the occurrence of EADs. Our simulation results showed that (1) CaMKII overexpression facilitates EADs through the prolongation of late sodium current's (INaL) deactivation progress; (2) the combined effect of CaMKII overexpression and activation of β-adrenergic signaling pathway further increases the risk of EADs, where EADs could occur at shorter cycle length (2000 ms versus 4000 ms) and lower rapid delayed rectifier K+ current (IKr) blockage (77% versus 85%). In summary, this study computationally demonstrated the combined role of CaMKII and β-adrenergic signaling pathway on the occurrence of EADs, which could be useful for searching for therapy strategies to treat EADs related arrhythmogenesis.
Collapse
|
17
|
Grandi E, Sanguinetti MC, Bartos DC, Bers DM, Chen-Izu Y, Chiamvimonvat N, Colecraft HM, Delisle BP, Heijman J, Navedo MF, Noskov S, Proenza C, Vandenberg JI, Yarov-Yarovoy V. Potassium channels in the heart: structure, function and regulation. J Physiol 2016; 595:2209-2228. [PMID: 27861921 DOI: 10.1113/jp272864] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
This paper is the outcome of the fourth UC Davis Systems Approach to Understanding Cardiac Excitation-Contraction Coupling and Arrhythmias Symposium, a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2016 symposium was 'K+ Channels and Regulation'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies and challenges on the topic of cardiac K+ channels. This paper summarizes the topics of formal presentations and informal discussions from the symposium on the structural basis of voltage-gated K+ channel function, as well as the mechanisms involved in regulation of K+ channel gating, expression and membrane localization. Given the critical role for K+ channels in determining the rate of cardiac repolarization, it is hardly surprising that essentially every aspect of K+ channel function is exquisitely regulated in cardiac myocytes. This regulation is complex and highly interrelated to other aspects of myocardial function. K+ channel regulatory mechanisms alter, and are altered by, physiological challenges, pathophysiological conditions, and pharmacological agents. An accompanying paper focuses on the integrative role of K+ channels in cardiac electrophysiology, i.e. how K+ currents shape the cardiac action potential, and how their dysfunction can lead to arrhythmias, and discusses K+ channel-based therapeutics. A fundamental understanding of K+ channel regulatory mechanisms and disease processes is fundamental to reveal new targets for human therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Michael C Sanguinetti
- Department of Internal Medicine, University of Utah, Nora Eccles Harrison Cardiovascular Research and Training Institute, Salt Lake City, UT, 84112, USA
| | - Daniel C Bartos
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA.,Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, CA, 95616, USA
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, CA, 95616, USA
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado - Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Jamie I Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Gattoni S, Røe ÅT, Frisk M, Louch WE, Niederer SA, Smith NP. The calcium-frequency response in the rat ventricular myocyte: an experimental and modelling study. J Physiol 2016; 594:4193-224. [PMID: 26916026 DOI: 10.1113/jp272011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS In the majority of species, including humans, increased heart rate increases cardiac contractility. This change is known as the force-frequency response (FFR). The majority of mammals have a positive force-frequency relationship (FFR). In rat the FFR is controversial. We derive a species- and temperature-specific data-driven model of the rat ventricular myocyte. As a measure of the FFR, we test the effects of changes in frequency and extracellular calcium on the calcium-frequency response (CFR) in our model and three altered models. The results show a biphasic peak calcium-frequency response, due to biphasic behaviour of the ryanodine receptor and the combined effect of the rapid calmodulin buffer and the frequency-dependent increase in diastolic calcium. Alterations to the model reveal that inclusion of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated L-type channel and transient outward K(+) current activity enhances the positive magnitude calcium-frequency response, and the absence of CAMKII-mediated increase in activity of the sarco/endoplasmic reticulum Ca(2+) -ATPase induces a negative magnitude calcium-frequency response. ABSTRACT An increase in heart rate affects the strength of cardiac contraction by altering the Ca(2+) transient as a response to physiological demands. This is described by the force-frequency response (FFR), a change in developed force with pacing frequency. The majority of mammals, including humans, have a positive FFR, and cardiac contraction strength increases with heart rate. However, the rat and mouse are exceptions, with the majority of studies reporting a negative FFR, while others report either a biphasic or a positive FFR. Understanding the differences in the FFR between humans and rats is fundamental to interpreting rat-based experimental findings in the context of human physiology. We have developed a novel model of rat ventricular electrophysiology and calcium dynamics, derived predominantly from experimental data recorded under physiological conditions. As a measure of FFR, we tested the effects of changes in stimulation frequency and extracellular calcium concentration on the simulated Ca(2+) transient characteristics and showed a biphasic peak calcium-frequency relationship, consistent with recent observations of a shift from negative to positive FFR when approaching the rat physiological frequency range. We tested the hypotheses that (1) inhibition of Ca(2+) /calmodulin-dependent protein kinase II (CAMKII)-mediated increase in sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, (2) CAMKII modulation of SERCA, L-type channel and transient outward K(+) current activity and (3) Na(+) /K(+) pump dynamics play a significant role in the rat FFR. The results reveal a major role for CAMKII modulation of SERCA in the peak Ca(2+) -frequency response, driven most significantly by the cytosolic calcium buffering system and changes in diastolic Ca(2+) .
Collapse
Affiliation(s)
- Sara Gattoni
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, UK
| | - Åsmund Treu Røe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K. G. Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Steven A Niederer
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, UK
| | - Nicolas P Smith
- King's College London, Department of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, London, UK.,University of Auckland, Engineering School Block 1, Level 5, 20 Symonds St, Auckland, 101, New Zealand
| |
Collapse
|
19
|
Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: heart and brain in your arteries. Am J Physiol Cell Physiol 2016; 311:C462-78. [PMID: 27306369 DOI: 10.1152/ajpcell.00341.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
Abstract
First characterized in neuronal tissues, the multifunctional calcium/calmodulin-dependent protein kinase II (CaMKII) is a key signaling component in several mammalian biological systems. Its unique capacity to integrate various Ca(2+) signals into different specific outcomes is a precious asset to excitable and nonexcitable cells. Numerous studies have reported roles and mechanisms involving CaMKII in brain and heart tissues. However, corresponding functions in vascular cell types (endothelium and vascular smooth muscle cells) remained largely unexplored until recently. Investigation of the intracellular Ca(2+) dynamics, their impact on vascular cell function, the regulatory processes involved and more recently the spatially restricted oscillatory Ca(2+) signals and microdomains triggered significant interest towards proteins like CaMKII. Heteromultimerization of CaMKII isoforms (four isoforms and several splice variants) expands this kinase's peculiar capacity to decipher Ca(2+) signals and initiate specific signaling processes, and thus controlling cellular functions. The physiological functions that rely on CaMKII are unsurprisingly diverse, ranging from regulating contractile state and cellular proliferation to Ca(2+) homeostasis and cellular permeability. This review will focus on emerging evidence of CaMKII as an essential component of the vascular system, with a focus on the kinase isoform/splice variants and cellular system studied.
Collapse
Affiliation(s)
- Fanny Toussaint
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Molecular and Integrative Physiology, Université de Montréal, Montreal Quebec, Canada
| | - Chimène Charbel
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Pharmacology, Université de Montréal, Montreal Quebec, Canada
| | - Bruce G Allen
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal Quebec, Canada
| | - Jonathan Ledoux
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal Quebec, Canada; and
| |
Collapse
|
20
|
Cox RH, Fromme S. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries. Cell Biochem Biophys 2016; 74:263-76. [PMID: 27286858 PMCID: PMC4905591 DOI: 10.1007/s12013-015-0715-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
| | - Samantha Fromme
- Program in Cardiovascular Disease, Lankenau Institute for Medical Research, Main Line Health System, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| |
Collapse
|
21
|
Yang KC, Nerbonne JM. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling. Trends Cardiovasc Med 2015; 26:209-18. [PMID: 26391345 DOI: 10.1016/j.tcm.2015.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 01/19/2023]
Abstract
In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions.
Collapse
Affiliation(s)
- Kai-Chien Yang
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jeanne M Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO; Internal Medicine, Washington University School of Medicine, St. Louis, MO; Cardiovascular Division, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
22
|
|
23
|
Chae YJ, Choi BH, Choi JS, Hahn SJ. Block of Kv4.3 potassium channel by trifluoperazine independent of CaMKII. Neurosci Lett 2014; 578:159-64. [PMID: 24993295 DOI: 10.1016/j.neulet.2014.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/24/2022]
Abstract
Trifluoperazine, a trifluoro-methyl phenothiazine derivative, is widely used in the management of schizophrenia and related psychotic disorders. We studied the effects of trifluoperazine on Kv4.3 currents expressed in CHO cells using the whole-cell patch-clamp technique. Trifluoperazine blocked Kv4.3 in a concentration-dependent manner with an IC50 value of 8.0±0.4 μM and a Hill coefficient of 2.1±0.1. Trifluoperazine also accelerated the inactivation and activation (time-to-peak) kinetics in a concentration-dependent manner. The effects of trifluoperazine on Kv4.3 were completely reversible after washout. The effects of trifluoperazine were not affected by the pretreatment of KN93, which is another CaMKII inhibitor. In addition, the inclusion of CaMKII inhibitory peptide 281-309 in the pipette solution did not modify the effect of trifluoperazine on Kv4.3. Trifluoperazine shifted the activation curve of Kv4.3 in a hyperpolarizing direction but did not affect the slope factor. The block of Kv4.3 by trifluoperazine was voltage-dependent with a steep increase across the voltage range of channel activation. Voltage dependence was also observed over the full range of activation (δ=0.18). Trifluoperazine slowed the time course for recovery from inactivation of Kv4.3. Our results indicated that trifluoperazine blocked Kv4.3 by preferentially binding to the open state of the channel. This effect was not mediated via the inhibition of CaMKII activity.
Collapse
Affiliation(s)
- Yun Ju Chae
- Department of Physiology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Bok Hee Choi
- Department of Pharmacology, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 561-180, Republic of Korea
| | - Jin-Sung Choi
- College of Pharmacy, Integrated Research Institute of Pharmaceutical, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon, Gyeonggi-do, Republic of Korea
| | - Sang June Hahn
- Department of Physiology, Cell Death and Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| |
Collapse
|
24
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
25
|
Mustroph J, Maier LS, Wagner S. CaMKII regulation of cardiac K channels. Front Pharmacol 2014; 5:20. [PMID: 24600393 PMCID: PMC3930912 DOI: 10.3389/fphar.2014.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/31/2014] [Indexed: 11/23/2022] Open
Abstract
Cardiac K channels are critical determinants of cardiac excitability. In hypertrophied and failing myocardium, alterations in the expression and activity of voltage-gated K channels are frequently observed and contribute to the increased propensity for life-threatening arrhythmias. Thus, understanding the mechanisms of disturbed K channel regulation in heart failure (HF) is of critical importance. Amongst others, Ca/calmodulin-dependent protein kinase II (CaMKII) has been identified as an important regulator of K channel activity. In human HF but also various animal models, increased CaMKII expression and activity has been linked to deteriorated contractile function and arrhythmias. This review will discuss the current knowledge about CaMKII regulation of several K channels, its influence on action potential properties, dispersion of repolarization, and arrhythmias with special focus on HF.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| | - Lars S Maier
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| | - Stefan Wagner
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
26
|
Epac activator critically regulates action potential duration by decreasing potassium current in rat adult ventricle. J Mol Cell Cardiol 2013; 57:96-105. [PMID: 23376036 DOI: 10.1016/j.yjmcc.2013.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 01/17/2013] [Indexed: 02/08/2023]
Abstract
Sympathetic stimulation is an important modulator of cardiac function via the classic cAMP-dependent signaling pathway, PKA. Recently, this paradigm has been challenged by the discovery of a family of guanine nucleotide exchange proteins directly activated by cAMP (Epac), acting in parallel to the classic signaling pathway. In cardiac myocytes, Epac activation is known to modulate Ca(2+) cycling yet their actions on cardiac ionic currents remain poorly characterized. This study attempts to address this paucity of information using the patch clamp technique to record action potential (AP) and ionic currents on rat ventricular myocytes. Epac was selectively activated by 8-CPT-AM (acetoxymethyl ester form of 8-CPT). AP amplitude, maximum depolarization rate and resting membrane amplitude were unaltered by 8-CPT-AM, strongly suggesting that Na(+) current and inward rectifier K(+) current are not regulated by Epac. In contrast, AP duration was significantly increased by 8-CPT-AM (prolongation of duration at 50% and 90% of repolarization by 41±10% and 43±8% respectively, n=11). L-type Ca(2+) current density was unaltered by 8-CPT-AM (n=16) so this cannot explain the action potential lengthening. However, the steady state component of K(+) current was significantly inhibited by 8-CPT-AM (-38±6%, n=15), while the transient outward K(+) current was unaffected by 8-CPT-AM. These effects were PKA-independent since they were observed in the presence of PKA inhibitor KT5720. Isoprenaline (100nM) induced a significant prolongation of AP duration, even in the presence of KT5720. This study provides the first evidence that the cAMP-binding protein Epac critically modulates cardiac AP duration by decreasing steady state K(+) current. These observations may be relevant to diseases in which Epac is upregulated, like cardiac hypertrophy.
Collapse
|
27
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
28
|
Maier LS. Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:685-702. [DOI: 10.1007/978-94-007-2888-2_30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y. Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 2011; 18:3707-13. [PMID: 21774758 DOI: 10.2174/092986711796642409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.
Collapse
Affiliation(s)
- T Bányász
- Department of Physiology, University of Debrecen, Nagyerdei krt. 98. H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
30
|
Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 2011; 51:468-73. [PMID: 21276796 DOI: 10.1016/j.yjmcc.2011.01.012] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 02/08/2023]
Abstract
Many signals have risen and fallen in the tide of investigation into mechanisms of myocardial hypertrophy and heart failure (HF). In our opinion, the multifunctional Ca and calmodulin-dependent protein kinase II (CaMKII) has emerged as a molecule to watch, in part because a solid body of accumulated data essentially satisfy Koch's postulates, showing that the CaMKII pathway is a core mechanism for promoting myocardial hypertrophy and heart failure. Multiple groups have now confirmed the following: (1) that CaMKII activity is increased in hypertrophied and failing myocardium from animal models and patients; (2) CaMKII overexpression causes myocardial hypertrophy and HF and (3) CaMKII inhibition (by drugs, inhibitory peptides and gene deletion) improves myocardial hypertrophy and HF. Patients with myocardial disease die in equal proportion from HF and arrhythmias, and a major therapeutic obstacle is that drugs designed to enhance myocardial contraction promote arrhythmias. In contrast, inhibiting the CaMKII pathway appears to reduce arrhythmias and improve myocardial responses to pathological stimuli. This brief paper will introduce the molecular physiology of CaMKII and discuss the impact of CaMKII on ion channels, Ca handling proteins and transcription in myocardium. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure".
Collapse
Affiliation(s)
- Mark E Anderson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | | | | |
Collapse
|
31
|
Nerbonne JM. Repolarizing cardiac potassium channels: multiple sites and mechanisms for CaMKII-mediated regulation. Heart Rhythm 2011; 8:938-41. [PMID: 21232627 DOI: 10.1016/j.hrthm.2011.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Jeanne M Nerbonne
- Department of Developmental Biology and Center for the Investigation of Membrane Excitability Diseases, Washington University Medical School, St. Louis, Missouri, USA.
| |
Collapse
|
32
|
Zhang XH, Jin MW, Sun HY, Zhang S, Li GR. The calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide directly blocks human ether à-go-go-related gene potassium channels stably expressed in human embryonic kidney 293 cells. Br J Pharmacol 2010; 161:872-84. [PMID: 20860665 DOI: 10.1111/j.1476-5381.2010.00916.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide (W-7) is a well-known calmodulin inhibitor used to study calmodulin regulation of intracellular Ca(2+) signalling-related process. Here, we have determined whether W-7 would inhibit human ether gene (hERG or K(v) 11.1) potassium channels, hK(v) 1.5 channels or hK(IR) 2.1 channels expressed in human embryonic kidney (HEK) 293 cells. EXPERIMENTAL APPROACH The hERG channel current, hK(v) 1.5 channel current or hK(IR) 2.1 channel current was recorded with a whole-cell patch clamp technique. KEY RESULTS It was found that the calmodulin inhibitor W-7 blocked hERG, hK(v) 1.5 and hK(IR) 2.1 channels. W-7 decreased the hERG current (I(hERG) ) in a concentration-dependent manner (IC(50) : 3.5 µM), and the inhibition was more significant at depolarization potentials between +10 and +60 mV. The hERG mutations in the S6 region Y652A and F656V, and in the pore helix S631A, had the IC(50) s of 5.5, 9.8 and 25.4 µM respectively. In addition, the compound inhibited hK(v) 1.5 and hK(IR) 2.1 channels with IC(50) s of 6.5 and 13.4 µM respectively. CONCLUSION AND IMPLICATIONS These results indicate that the calmodulin inhibitor W-7 exerts a direct channel-blocking effect on hERG, hK(v) 1.5 and hK(IR) 2.1 channels stably expressed in HEK 293 cells. Caution should be taken in the interpretation of calmodulin regulation of ion channels with W-7.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
33
|
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) is a multifunctional serine/threonine kinase expressed abundantly in the heart. CaMKII targets numerous proteins involved in excitation-contraction coupling and excitability, and its activation may simultaneously contribute to heart failure and cardiac arrhythmias. In this review, we summarize the modulatory effects of CaMKII on cardiac ion channel function and expression and illustrate potential implications in the onset of arrhythmias via a computer model.
Collapse
|
34
|
Lavialle-Defaix C, Moignot B, Legros C, Lapied B. How does calcium-dependent intracellular regulation of voltage-dependent sodium current increase the sensitivity to the oxadiazine insecticide indoxacarb metabolite decarbomethoxylated JW062 (DCJW) in insect pacemaker neurons? J Pharmacol Exp Ther 2010; 333:264-72. [PMID: 20056780 DOI: 10.1124/jpet.109.163519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Decarbomethoxylated JW062 (DCJW), the active component of the oxadiazine insecticide (S)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-(trifluoromethoxy)phenyl] amino]carbonyl] indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylate (DPX-JW062) (indoxacarb), was tested on 2 inward voltage-dependent sodium currents (named INa1 and INa2) expressed in short-term cultured dorsal unpaired median neurons of the cockroach Periplaneta americana. Under whole-cell voltage-clamp conditions, application of DCJW resulted in a biphasic dose-dependent inhibition of the global sodium current amplitude illustrating the differing sensitivity of sodium channels to DCJW. INa2 was less sensitive to DCJW [half-maximal inhibitory concentration (IC(50)) = 1.6 microM] compared with INa1 (IC(50) = 1.7 nM). Although a previous study demonstrated that INa1 was regulated by the cAMP/protein kinase A cascade, we showed that INa2 was mainly regulated in an opposite way by the activation of calcium-calmodulin-dependent protein phosphatase 2B (PP2B) and calcium-calmodulin-dependent protein kinase II (CaM-kinase II). Furthermore, we demonstrated that activation of CaM-kinase II by intracellular calcium via the calcium-calmodulin complex affected the sensitivity of INa2 channels to DCJW. By increasing the intracellular calcium concentration and/or using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) (a calcium chelator), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) (a calmodulin inhibitor), cyclosporine A (a PP2B inhibitor), and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) (a CaM-kinase II inhibitor), we revealed that activation of CaM-kinase II was involved in the modulation of the voltage dependence of steady-state inactivation and that the CaM-kinase II pathway activated by elevation of the intracellular calcium concentration might render INa2 channels approximately 3000-fold more sensitive to DCJW. These results indicated that manipulating specific intracellular signaling pathways involved in the regulation of sodium channels might have fundamental consequences for the sensitivity of insects to insecticides. This finding reveals an exciting research area that could lead to improvement in the efficiency of insecticides.
Collapse
Affiliation(s)
- Céline Lavialle-Defaix
- Laboratoire Récepteurs et Canaux Ioniques Membranaires (RCIM) UPRES EA 2647/USC INRA 2023, IFR 149 QUASAV, Université d'Angers, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France
| | | | | | | |
Collapse
|
35
|
Stones R, Billeter R, Zhang H, Harrison S, White E. The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts. Basic Res Cardiol 2009; 104:643-52. [PMID: 19415411 PMCID: PMC2758204 DOI: 10.1007/s00395-009-0030-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/21/2009] [Accepted: 04/08/2009] [Indexed: 12/24/2022]
Abstract
Regular exercise can lead to electrical remodelling of the heart. The cellular mechanisms associated with these changes are not well understood, and are difficult to study in human tissue but are important given that exercise is recommended to the general population. We have investigated the role played by the transient outward K+ current (I(to)) in the changes in electrical activity seen in response to voluntary exercise training in rats. Female rats undertook 6 weeks of voluntary wheel running exercise (TRN) or were sedentary controls (SED). Monophasic action potentials (MAPs) were recorded from the surface of whole hearts. Whole cell patch clamp recordings of I(to); mRNA and protein levels of selected targets in sub-epicardial (EPI) and sub-endocardial myocardium of SED and TRN hearts were compared. In TRN rats, heart weight:body weight was significantly increased and epicardial MAPs significantly prolonged. I(to) density was reduced in TRN EPI myocytes, such that the transmural gradient of I(to) was significantly reduced (P < 0.05). Computer modelling of these changes in I(to) predicted the observed changes in action potential profile. However, transmural gradients in mRNA and protein expression for Kv4.2 or mRNA levels of the Kv4.2 regulators; KChIP2 and Irx-5 were not significantly altered by voluntary exercise. We conclude that voluntary exercise electrical remodelling is caused, at least in part, by a decrease in EPI I(to), possibly because of fewer functional channels in the membrane, which results in a fall in the transmural action potential duration gradient.
Collapse
Affiliation(s)
- Rachel Stones
- Institute of Membrane and Systems Biology and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Garstang Building, Leeds, LS29JT UK
| | - Rudolf Billeter
- Centre for Integrated Systems Biology and Medicine, University of Nottingham, Nottingham, UK
| | - Henggui Zhang
- School of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Simon Harrison
- Institute of Membrane and Systems Biology and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Garstang Building, Leeds, LS29JT UK
| | - Ed White
- Institute of Membrane and Systems Biology and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Garstang Building, Leeds, LS29JT UK
| |
Collapse
|
36
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2009; 48:12-25. [PMID: 19619557 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8103, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
37
|
Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Fabritz L, Kirchhof P, Bers DM, Maier LS. Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2009; 2:285-94. [PMID: 19808479 DOI: 10.1161/circep.108.842799] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Potassium currents contribute to action potential duration (APD) and arrhythmogenesis. In heart failure, Ca/calmodulin-dependent protein kinase II (CaMKII) is upregulated and can alter ion channel regulation and expression. METHODS AND RESULTS We examine the influence of overexpressing cytoplasmic CaMKIIdelta(C), both acutely in rabbit ventricular myocytes (24-hour adenoviral gene transfer) and chronically in CaMKIIdelta(C)-transgenic mice, on transient outward potassium current (I(to)), and inward rectifying current (I(K1)). Acute and chronic CaMKII overexpression increases I(to,slow) amplitude and expression of the underlying channel protein K(V)1.4. Chronic but not acute CaMKII overexpression causes downregulation of I(to,fast), as well as K(V)4.2 and KChIP2, suggesting that K(V)1.4 expression responds faster and oppositely to K(V)4.2 on CaMKII activation. These amplitude changes were not reversed by CaMKII inhibition, consistent with CaMKII-dependent regulation of channel expression and/or trafficking. CaMKII (acute and chronic) greatly accelerated recovery from inactivation for both I(to) components, but these effects were acutely reversed by AIP (CaMKII inhibitor), suggesting that CaMKII activity directly accelerates I(to) recovery. Expression levels of I(K1) and Kir2.1 mRNA were downregulated by CaMKII overexpression. CaMKII acutely increased I(K1), based on inhibition by AIP (in both models). CaMKII overexpression in mouse prolonged APD (consistent with reduced I(to,fast) and I(K1)), whereas CaMKII overexpression in rabbit shortened APD (consistent with enhanced I(K1) and I(to,slow) and faster I(to) recovery). Computational models allowed discrimination of contributions of different channel effects on APD. CONCLUSIONS CaMKII has both acute regulatory effects and chronic expression level effects on I(to) and I(K1) with complex consequences on APD.
Collapse
Affiliation(s)
- Stefan Wagner
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
El-Haou S, Balse E, Neyroud N, Dilanian G, Gavillet B, Abriel H, Coulombe A, Jeromin A, Hatem SN. Kv4 potassium channels form a tripartite complex with the anchoring protein SAP97 and CaMKII in cardiac myocytes. Circ Res 2009; 104:758-69. [PMID: 19213956 DOI: 10.1161/circresaha.108.191007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane-associated guanylate kinase (MAGUK) proteins are major determinants of the organization of ion channels in the plasma membrane in various cell types. Here, we investigated the interaction between the MAGUK protein SAP97 and cardiac Kv4.2/3 channels, which account for a large part of the outward potassium current, I(to), in heart. We found that the Kv4.2 and Kv4.3 channels C termini interacted with SAP97 via a SAL amino acid sequence. SAP97 and Kv4.3 channels were colocalized in the sarcolemma of cardiomyocytes. In CHO cells, SAP97 clustered Kv4.3 channels in the plasma membrane and increased the current independently of the presence of KChIP and dipeptidyl peptidase-like protein-6. Suppression of SAP97 by using short hairpin RNA inhibited I(to) in cardiac myocytes, whereas its overexpression by using an adenovirus increased I(to). Kv4.3 channels without the SAL sequence were no longer regulated by Ca2+/calmodulin kinase (CaMK)II inhibitors. In cardiac myocytes, pull-down and coimmunoprecipitation assays showed that the Kv4 channel C terminus, SAP97, and CaMKII interact together, an interaction suppressed by SAP97 silencing and enhanced by SAP97 overexpression. In HEK293 cells, SAP97 silencing reproduced the effects of CaMKII inhibition on current kinetics and suppressed Kv4/CaMKII interactions. In conclusion, SAP97 is a major partner for surface expression and CaMKII-dependent regulation of cardiac Kv4 channels.
Collapse
Affiliation(s)
- Saïd El-Haou
- UMRS-956, Faculté de Médecine Pierre-Marie Curie, 91 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) is a multifunctional serine/threonine kinase widely distributed in a number of tissue types. Activation of CaMKII has been linked to important downstream physiological processes, including apoptosis, hypertrophy, and arrhythmia in the heart. Pharmacological or genetic inhibition of CaMKII has been shown to improve health outcomes in a number of animal models. In this review, we summarize the structural and functional properties of CaMKII and detail its role in cardiac arrhythmia, structural heart disease, and sudden death.
Collapse
Affiliation(s)
- Jeffrey R Erickson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
40
|
Gomes P, Saito T, Del Corsso C, Alioua A, Eghbali M, Toro L, Stefani E. Identification of a functional interaction between Kv4.3 channels and c-Src tyrosine kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1884-92. [PMID: 18620005 DOI: 10.1016/j.bbamcr.2008.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 06/02/2008] [Accepted: 06/02/2008] [Indexed: 12/31/2022]
Abstract
Voltage-gated K(+) (Kv) channels are key determinants of cardiac and neuronal excitability. A substantial body of evidence has accumulated in support of a role for Src family tyrosine kinases in the regulation of Kv channels. In this study, we examined the possibility that c-Src tyrosine kinase participates in the modulation of the transient voltage-dependent K(+) channel Kv4.3. Supporting a mechanistic link between Kv4.3 and c-Src, confocal microscopy analysis of HEK293 cells stably transfected with Kv4.3 showed high degree of co-localization of the two proteins at the plasma membrane. Our results further demonstrate an association between Kv4.3 and c-Src by co-immunoprecipitation and GST pull-down assays, this interaction being mediated by the SH2 and SH3 domains of c-Src. Furthermore, we show that Kv4.3 is tyrosine phosphorylated under basal conditions. The functional relevance of the observed interaction between Kv4.3 and c-Src was established in patch-clamp experiments, where application of the Src inhibitor PP2 caused a decrease in Kv4.3 peak current amplitude, but not the inactive structural analogue PP3. Conversely, intracellular application of recombinant c-Src kinase or the protein tyrosine phosphatase inhibitor bpV(phen) increased Kv4.3 peak current amplitude. In conclusion, our findings provide evidence that c-Src-induced Kv4.3 channel activation involves their association in a macromolecular complex and suggest a role for c-Src-Kv4.3 pathway in regulating cardiac and neuronal excitability.
Collapse
Affiliation(s)
- Pedro Gomes
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095-1778, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Calcium (Ca) is a universal intracellular second messenger. In muscle, Ca is best known for its role in contractile activation. However, in recent years the critical role of Ca in other myocyte processes has become increasingly clear. This review focuses on Ca signaling in cardiac myocytes as pertaining to electrophysiology (including action potentials and arrhythmias), excitation-contraction coupling, modulation of contractile function, energy supply-demand balance (including mitochondrial function), cell death, and transcription regulation. Importantly, although such diverse Ca-dependent regulations occur simultaneously in a cell, the cell can distinguish distinct signals by local Ca or protein complexes and differential Ca signal integration.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology and Cardiovascular Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
42
|
Grandi E, Puglisi JL, Wagner S, Maier LS, Severi S, Bers DM. Simulation of Ca-calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys J 2007; 93:3835-47. [PMID: 17704163 PMCID: PMC2084250 DOI: 10.1529/biophysj.107.114868] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ca-calmodulin-dependent protein kinase II (CaMKII) was recently shown to alter Na(+) channel gating and recapitulate a human Na(+) channel genetic mutation that causes an unusual combined arrhythmogenic phenotype in patients: simultaneous long QT syndrome and Brugada syndrome. CaMKII is upregulated in heart failure where arrhythmias are common, and CaMKII inhibition can reduce arrhythmias. Thus, CaMKII-dependent channel modulation may contribute to acquired arrhythmic disease. We developed a Markovian Na(+) channel model including CaMKII-dependent changes, and incorporated it into a comprehensive myocyte action potential (AP) model with Na(+) and Ca(2+) transport. CaMKII shifts Na(+) current (I(Na)) availability to more negative voltage, enhances intermediate inactivation, and slows recovery from inactivation (all loss-of-function effects), but also enhances late noninactivating I(Na) (gain of function). At slow heart rates, with long diastolic time for I(Na) recovery, late I(Na) is the predominant effect, leading to AP prolongation (long QT syndrome). At fast heart rates, where recovery time is limited and APs are shorter, there is little effect on AP duration, but reduced availability decreases I(Na), AP upstroke velocity, and conduction (Brugada syndrome). CaMKII also increases cardiac Ca(2+) and K(+) currents (I(Ca) and I(to)), complicating CaMKII-dependent AP changes. Incorporating I(Ca) and I(to) effects individually prolongs and shortens AP duration. Combining I(Na), I(Ca), and I(to) effects results in shortening of AP duration with CaMKII. With transmural heterogeneity of I(to) and I(to) downregulation in heart failure, CaMKII may accentuate dispersion of repolarization. This provides a useful initial framework to consider pathways by which CaMKII may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Eleonora Grandi
- Biomedical Engineering Laboratory, Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Qu YJ, Bondarenko VE, Xie C, Wang S, Awayda MS, Strauss HC, Morales MJ. W-7 modulates Kv4.3: pore block and Ca2+-calmodulin inhibition. Am J Physiol Heart Circ Physiol 2007; 292:H2364-77. [PMID: 17220193 DOI: 10.1152/ajpheart.00409.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(+)-calmodulin (Ca(2+)-CaM)-dependent protein kinase II (Ca(2+)/CaMKII) is an important regulator of cardiac ion channels, and its inhibition may be an approach for treatment of ventricular arrhythmias. Using the two-electrode voltage-clamp technique, we investigated the role of W-7, an inhibitor of Ca(2+)-occupied CaM, and KN-93, an inhibitor of Ca(2+)/CaMKII, on the K(v)4.3 channel in Xenopus laevis oocytes. W-7 caused a voltage- and concentration-dependent decrease in peak current, with IC(50) of 92.4 muM. The block was voltage dependent, with an effective electrical distance of 0.18 +/- 0.05, and use dependence was observed, suggesting that a component of W-7 inhibition of K(v)4.3 current was due to open-channel block. W-7 made recovery from open-state inactivation a biexponential process, also suggesting open-channel block. We compared the effects of W-7 with those of KN-93 after washout of 500 muM BAPTA-AM. KN-93 reduced peak current without evidence of voltage or use dependence. Both W-7 and KN-93 accelerated all components of inactivation. We used wild-type and mutated K(v)4.3 channels with mutant CaMKII consensus phosphorylation sites to examine the effects of W-7 and KN-93. In contrast to W-7, KN-93 at 35 muM selectively accelerated open-state inactivation in the wild-type vs. the mutant channel. W-7 had a significantly greater effect on recovery from inactivation in wild-type than in mutant channels. We conclude that, at certain concentrations, KN-93 selectively inhibits Ca(2+)/CaMKII activity in Xenopus oocytes and that the effects of W-7 are mediated by direct interaction with the channel pore and inhibition of Ca(2+)-CaM, as well as a change in activity of Ca(2+)-CaM-dependent enzymes, including Ca(2+)/CaMKII.
Collapse
Affiliation(s)
- Yu-Jie Qu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|