1
|
Garcia-Roves PM, Alvarez-Luis J, Cutanda-Tesouro S. The role of skeletal muscle respiratory capacity in exercise performance. Free Radic Biol Med 2025:S0891-5849(24)01169-9. [PMID: 39755219 DOI: 10.1016/j.freeradbiomed.2024.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/16/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
The connection between the respiratory capacity of skeletal muscle mitochondria and athletic performance is widely acknowledged in contemporary research. Building on a solid foundation of prior studies, current research has fostered an environment where scientists can effectively demonstrate how a tailored regimen of exercise intensity, duration, and frequency significantly boosts mitochondrial function within skeletal muscles. The range of exercise modalities is broad, spanning from endurance and high-intensity interval training to resistance-based exercises, allowing for an in-depth exploration of effective strategies to enhance mitochondrial respiratory capacity-a key factor in improving exercise performance, in other words offering a better skeletal muscle capacity to cope with exercise demands. By identifying optimal training strategies, individuals can significantly improve their performance, leading to better outcomes in their fitness and athletic endeavours. This review provides the prevailing insights on skeletal muscle mitochondrial respiratory capacity and its role in exercise performance, covering essential instrumental and methodological aspects, findings from animal studies, potential sex differences, a review of existing human studies, and considerations for future research directions.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jorge Alvarez-Luis
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain
| | | |
Collapse
|
2
|
Thomakos P, Tsekos P, Tselios Z, Spyrou K, Katsikas C, Tsoukos A, Bogdanis GC. Effects of Two In-Season Short High-Intensity Interval Training Formats on Aerobic and Neuromuscular Performance in Young Soccer Players. J Sports Sci Med 2024; 23:812-821. [PMID: 39649568 PMCID: PMC11622058 DOI: 10.52082/jssm.2024.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 12/11/2024]
Abstract
Supplementary high-intensity interval training (HIIT) programs, focusing on different aspects of fitness, are commonly used in soccer practice. This study examined the impact of two different HIIT formats applied during the competitive season on aerobic and neuromuscular performance. Twenty-six young players from two youth amateur soccer teams (aged 18.1 ± 0.7 and 18.7 ± 1.1 years) participated. In a randomized design, Team A served as an experimental group, performing either a 10s/10s linear running HIIT or a 15s/15s HIIT with changes of direction, both at 100% of maximum aerobic speed, twice per week for six weeks. In that period, team B acted as a control group, maintaining their usual training soccer regimen. Following two weeks of lower volume and frequency training, team B added the two HIIT formats in their training for six weeks, while team A acted as control. Before and after each 6-weeks period, aerobic fitness and neuromuscular performance was evaluated by the countermovement jump (CMJ). The 3-way ANOVA showed that both HIIT formats significantly enhanced Yo-Yo Intermittent Recovery Test Level 1 (Yo-YO IR1) performance compared to the respective control periods. However, the main finding was that the 10s/10s compared with the 15s/15s HIIT format induced 45-50% greater improvements in Yo-YO IR1 (total distance: 18.5 ± 11.7% vs. 9.0 ± 8.5%, V̇O2max: 5.6 ± 3.2% vs. 3.0 ± 2.7%, and vV̇O2max: (3.3 ± 1.9% vs. 1.8 ± 1.7%, all p = 0.39, d = 0.85). Countermovement jump performance remained unchanged across both groups (p > 0.68). During HIIT rating of perceived exertion was higher in the 15s/15s vs. the 10s/10s format (6.4 ± 0.5 vs. 4.7 ± 1.2 a.u., p < 0.001). These findings suggest that while both HIIT formats effectively enhance aerobic performance during the season, the 10s/10s format offers superior benefits with less perceived exertion, while the 15s/15s format induces higher internal load.
Collapse
Affiliation(s)
- Pierros Thomakos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Prokopis Tsekos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Zacharias Tselios
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Spyrou
- UCAM Research Center for High Performance Sport, UCAM Universidad Católica de Murcia, Murcia, Spain
| | - Christos Katsikas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsoukos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory C Bogdanis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Boulinguiez A, Bouragba D, Crisol B, Bigot A, Butler-Browne G, Trollet C. [Effects of physical exercise in muscular dystrophies]. Med Sci (Paris) 2024; 40 Hors série n° 1:17-21. [PMID: 39555871 DOI: 10.1051/medsci/2024161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Myopathies are a heterogeneous group of diseases characterized by progressive muscle weakness and degeneration. While muscle diseases have a major impact on patients' quality of life, a growing number of pre-clinical and clinical studies suggest that adapted physical exercise is beneficial in alleviating some symptoms and improving some functional parameters. This brief review of the literature discusses the current state of research about the effects of exercise in humans with various muscle diseases, exploring its impact on molecular mechanisms, muscle strength, endurance, function and the quality of life.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Dounia Bouragba
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Barbara Crisol
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en myologie, Paris, France
| |
Collapse
|
4
|
Urdampilleta Otegui A, Roche Collado E. Intermittent hypoxia in sport nutrition, performance, health status and body composition. NUTR HOSP 2024; 41:224-229. [PMID: 38095103 DOI: 10.20960/nh.04692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction Intermittent hypoxia refers to the discontinuous use of low oxygen levels in normobaric environment. These conditions can be reproduced in hypoxic tents or chambers while the individual is training in different physical activity protocols. Intermittent hypoxia can affect several body systems, impacting nutrition, physical performance, health status and body composition. Therefore, it is necessary to assess protocols, regarding time and frequency of exposure, passive exposure or training in hypoxia, and the simulated altitude. At the molecular level, the hypoxia-inducible factor-1α is the primary factor mediating induction of target genes, including vascular endothelial growth factor and erythropoietin. The goal of these molecular changes is to preserve oxygen supply for cardiac and neuronal function. In addition, hypoxia produces a sympathetic adrenal activation that can increase the resting metabolic rate. Altogether, these changes are instrumental in protocols designed to improve physical performance as well as functional parameters for certain pathological disorders. In addition, nutrition must adapt to the increased energy expenditure. In this last context, performing physical activity in intermittent hypoxia improves insulin sensitivity by increasing the presence of the glucose transporter GLUT-4 in muscle membranes. These changes could also be relevant for obesity and type 2 diabetes treatment. Also, the anorectic effect of intermittent hypoxia modulates serotonin and circulating leptin levels, which may contribute to regulate food intake and favor body weight adaptation for optimal sport performance and health. All these actions suggest that intermittent hypoxia can be a very effective tool in sports training as well as in certain clinical protocols.
Collapse
Affiliation(s)
| | - Enrique Roche Collado
- Department of Applied Biology-Nutrition. Institute of Bioengineering. Universidad Miguel Hernández
| |
Collapse
|
5
|
San-Millán I. The Key Role of Mitochondrial Function in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12040782. [PMID: 37107158 PMCID: PMC10135185 DOI: 10.3390/antiox12040782] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The role of mitochondrial function in health and disease has become increasingly recognized, particularly in the last two decades. Mitochondrial dysfunction as well as disruptions of cellular bioenergetics have been shown to be ubiquitous in some of the most prevalent diseases in our society, such as type 2 diabetes, cardiovascular disease, metabolic syndrome, cancer, and Alzheimer's disease. However, the etiology and pathogenesis of mitochondrial dysfunction in multiple diseases have yet to be elucidated, making it one of the most significant medical challenges in our history. However, the rapid advances in our knowledge of cellular metabolism coupled with the novel understanding at the molecular and genetic levels show tremendous promise to one day elucidate the mysteries of this ancient organelle in order to treat it therapeutically when needed. Mitochondrial DNA mutations, infections, aging, and a lack of physical activity have been identified to be major players in mitochondrial dysfunction in multiple diseases. This review examines the complexities of mitochondrial function, whose ancient incorporation into eukaryotic cells for energy purposes was key for the survival and creation of new species. Among these complexities, the tightly intertwined bioenergetics derived from the combustion of alimentary substrates and oxygen are necessary for cellular homeostasis, including the production of reactive oxygen species. This review discusses different etiological mechanisms by which mitochondria could become dysregulated, determining the fate of multiple tissues and organs and being a protagonist in the pathogenesis of many non-communicable diseases. Finally, physical activity is a canonical evolutionary characteristic of humans that remains embedded in our genes. The normalization of a lack of physical activity in our modern society has led to the perception that exercise is an "intervention". However, physical activity remains the modus vivendi engrained in our genes and being sedentary has been the real intervention and collateral effect of modern societies. It is well known that a lack of physical activity leads to mitochondrial dysfunction and, hence, it probably becomes a major etiological factor of many non-communicable diseases affecting modern societies. Since physical activity remains the only stimulus we know that can improve and maintain mitochondrial function, a significant emphasis on exercise promotion should be imperative in order to prevent multiple diseases. Finally, in populations with chronic diseases where mitochondrial dysfunction is involved, an individualized exercise prescription should be crucial for the "metabolic rehabilitation" of many patients. From lessons learned from elite athletes (the perfect human machines), it is possible to translate and apply multiple concepts to the betterment of populations with chronic diseases.
Collapse
Affiliation(s)
- Iñigo San-Millán
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80198, USA
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Zulbaran‐Rojas A, Lee M, Bara RO, Flores‐Camargo A, Spitz G, Finco MG, Bagheri AB, Modi D, Shaib F, Najafi B. Electrical stimulation to regain lower extremity muscle perfusion and endurance in patients with post-acute sequelae of SARS CoV-2: A randomized controlled trial. Physiol Rep 2023; 11:e15636. [PMID: 36905161 PMCID: PMC10006649 DOI: 10.14814/phy2.15636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Muscle deconditioning and impaired vascular function in the lower extremities (LE) are among the long-term symptoms experienced by COVID-19 patients with a history of severe illness. These symptoms are part of the post-acute sequelae of Sars-CoV-2 (PASC) and currently lack evidence-based treatment. To investigate the efficacy of lower extremity electrical stimulation (E-Stim) in addressing PASC-related muscle deconditioning, we conducted a double-blinded randomized controlled trial. Eighteen (n = 18) patients with LE muscle deconditioning were randomly assigned to either the intervention (IG) or the control (CG) group, resulting in 36 LE being assessed. Both groups received daily 1 h E-Stim on both gastrocnemius muscles for 4 weeks, with the device functional in the IG and nonfunctional in the CG. Changes in plantar oxyhemoglobin (OxyHb) and gastrocnemius muscle endurance (GNMe) in response to 4 weeks of daily 1 h E-Stim were assessed. At each study visit, outcomes were measured at onset (t0 ), 60 min (t60 ), and 10 min after E-Stim therapy (t70 ) by recording ΔOxyHb with near-infrared spectroscopy. ΔGNMe was measured with surface electromyography at two time intervals: 0-5 min (Intv1 ) and: 55-60 min (Intv2 ). Baseline OxyHb decreased in both groups at t60 (IG: p = 0.046; CG: p = 0.026) and t70 (IG = p = 0.021; CG: p = 0.060) from t0 . At 4 weeks, the IG's OxyHb increased from t60 to t70 (p < 0.001), while the CG's decreased (p = 0.003). The IG had higher ΔOxyHb values than the CG at t70 (p = 0.004). Baseline GNMe did not increase in either group from Intv1 to Intv2 . At 4 weeks, the IG's GNMe increased (p = 0.031), whereas the CG did not change. There was a significant association between ΔOxyHb and ΔGNMe (r = 0.628, p = 0.003) at 4 weeks in the IG. In conclusion, E-Stim can improve muscle perfusion and muscle endurance in individuals with PASC experiencing LE muscle deconditioning.
Collapse
Affiliation(s)
- Alejandro Zulbaran‐Rojas
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Myeounggon Lee
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Rasha O. Bara
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Areli Flores‐Camargo
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Gil Spitz
- Baylor St Luke's Medical Center, Exercise PhysiologyLiver Transplant ProgramHoustonTexasUSA
| | - M. G. Finco
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Amir Behzad Bagheri
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| | - Dipaben Modi
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Fidaa Shaib
- Department of Pulmonary Critical CareBaylor College of MedicineHoustonTexasUSA
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
7
|
Long J, Xia Y, Qiu H, Xie X, Yan Y. Respiratory substrate preferences in mitochondria isolated from different tissues of three fish species. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1555-1567. [PMID: 36472706 DOI: 10.1007/s10695-022-01137-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Energy requirements of tissues vary greatly and exhibit different mitochondrial respiratory activities with variable participation of both substrates and oxidative phosphorylation. The present study aimed to (1) compare the substrate preferences of mitochondria from different tissues and fish species with different ecological characteristics, (2) identify an appropriate substrate for comparing metabolism by mitochondria from different tissues and species, and (3) explore the relationship between mitochondrial metabolism mechanisms and ecological energetic strategies. Respiration rates and cytochrome c oxidase (CCO) activities of mitochondria isolated from heart, brain, kidney, and other tissues from Silurus meridionalis, Carassius auratus, and Megalobrama amblycephala were measured using succinate (complex II-linked substrate), pyruvate (complex I-linked), glutamate (complex I-linked), or combinations. Mitochondria from all tissues and species exhibited substrate preferences. Mitochondria exhibited greater coupling efficiencies and lower leakage rates using either complex I-linked substrates, whereas an opposite trend was observed for succinate (complex II-linked). Furthermore, maximum mitochondrial respiration rates were higher with the substrate combinations than with individual substrates; therefore, state III respiration rates measured with substrate combinations could be effective indicators of maximum mitochondrial metabolic capacity. Regardless of fish species, both state III respiration rates and CCO activities were the highest in heart mitochondria, followed by red muscle mitochondria. However, differences in substrate preferences were not associated with species feeding habit. The maximum respiration rates of heart mitochondria with substrate combinations could indicate differences in locomotor performances, with higher metabolic rates being associated with greater capacity for sustained swimming.
Collapse
Affiliation(s)
- Jing Long
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yiguo Xia
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Hanxun Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Xiaojun Xie
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China
| | - Yulian Yan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, School of Life Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Hody S, Warren BE, Votion DM, Rogister B, Lemieux H. Eccentric Exercise Causes Specific Adjustment in Pyruvate Oxidation by Mitochondria. Med Sci Sports Exerc 2022; 54:1300-1308. [PMID: 35320143 DOI: 10.1249/mss.0000000000002920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liège, BELGIUM
| | - Blair E Warren
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, CANADA
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, BELGIUM
| | | | | |
Collapse
|
9
|
Dennis MC, Goods PSR, Binnie MJ, Girard O, Wallman KE, Dawson B, Billaut F, Peeling P. Repeated-sprint training in heat and hypoxia: effect of exercise-to-rest ratio. Eur J Sport Sci 2022:1-11. [PMID: 35698899 DOI: 10.1080/17461391.2022.2085631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractThe aim of this study was to investigate acute performance and physiological responses to the manipulation of exercise-to-rest ratio (E:R) during repeated-sprint hypoxic training (RSH) in hot conditions. Twelve male team-sport players completed two experimental sessions at a simulated altitude of ∼3000 m (FIO2 0.144), air temperature of 40°C and relative humidity of 50%. Exercise involved either 3×5×10-s (E:R1:2) or 3×10×5-s (E:R1:4) maximal cycling sprints interspersed with active recoveries at 120W (20-s between sprints, 2.5 and 5-min between sets for E:R1:2 and E:R1:4 respectively). Sessions were matched for overall sprint and total session duration (47.5-min). Peak and mean power output, and total work were greater in E:R1:4 than E:R1:2 (p < 0.05). Peak core temperature was significantly higher in E:R1:4 than E:R1:2 (38.44 ± 0.33 vs. 38.20 ± 0.35°C, p = 0.028). Muscle deoxygenation magnitude during sprints was greater in E:R1:2 (28.2 ± 1.6 vs. 22.4 ± 4.6%, p < 0.001), while muscle reoxygenation did not differ between conditions (p > 0.05).These results indicate E:R1:4 increased mechanical power output and core temperature compared to E:R1:2. Both protocols had different effects on measures of muscle oxygenation, with E:R1:2 generating greater muscle oxygen extraction and E:R1:4 producing more muscle oxygenation flux, which are both important signals for peripheral adaptation. We conclude that the E:R manipulation during RSH in the heat might be used to target different physiological and performance outcomes, with these findings forming a strong base for future mechanistic investigation.
Collapse
Affiliation(s)
- Myles C Dennis
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009.,Western Australian Institute of Sport, Mt Claremont, WA, Australia, 6010
| | - Paul S R Goods
- Western Australian Institute of Sport, Mt Claremont, WA, Australia, 6010.,Murdoch Applied Sports Science Laboratory, Murdoch University, WA, Australia, 6150.,Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia, 6150
| | - Martyn J Binnie
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009.,Western Australian Institute of Sport, Mt Claremont, WA, Australia, 6010
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009
| | - Karen E Wallman
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009
| | - Brian Dawson
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009
| | - Francois Billaut
- Department of Kinesiology, University Laval, Quebec, Canada, G1V 0A6
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia, 6009.,Western Australian Institute of Sport, Mt Claremont, WA, Australia, 6010
| |
Collapse
|
10
|
Stöggl TL, Blumkaitis JC, Strepp T, Sareban M, Simon P, Neuberger EWI, Finkenzeller T, Nunes N, Aglas L, Haller N. The Salzburg 10/7 HIIT shock cycle study: the effects of a 7-day high-intensity interval training shock microcycle with or without additional low-intensity training on endurance performance, well-being, stress and recovery in endurance trained athletes-study protocol of a randomized controlled trial. BMC Sports Sci Med Rehabil 2022; 14:84. [PMID: 35526065 PMCID: PMC9077880 DOI: 10.1186/s13102-022-00456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Performing multiple high-intensity interval training (HIIT) sessions in a compressed period of time (approximately 7-14 days) is called a HIIT shock microcycle (SM) and promises a rapid increase in endurance performance. However, the efficacy of HIIT-SM, as well as knowledge about optimal training volumes during a SM in the endurance-trained population have not been adequately investigated. This study aims to examine the effects of two different types of HIIT-SM (with or without additional low-intensity training (LIT)) compared to a control group (CG) on key endurance performance variables. Moreover, participants are closely monitored for stress, fatigue, recovery, and sleep before, during and after the intervention using innovative biomarkers, questionnaires, and wearable devices. METHODS This is a study protocol of a randomized controlled trial that includes the results of a pilot participant. Thirty-six endurance trained athletes will be recruited and randomly assigned to either a HIIT-SM (HSM) group, HIIT-SM with additional LIT (HSM + LIT) group or a CG. All participants will be monitored before (9 days), during (7 days), and after (14 days) a 7-day intervention, for a total of 30 days. Participants in both intervention groups will complete 10 HIIT sessions over 7 consecutive days, with an additional 30 min of LIT in the HSM + LIT group. HIIT sessions consist of aerobic HIIT, i.e., 5 × 4 min at 90-95% of maximal heart rate interspersed by recovery periods of 2.5 min. To determine the effects of the intervention, physiological exercise testing, and a 5 km time trial will be conducted before and after the intervention. RESULTS The feasibility study indicates good adherence and performance improvement of the pilot participant. Load monitoring tools, i.e., biomarkers and questionnaires showed increased values during the intervention period, indicating sensitive variables. CONCLUSION This study will be the first to examine the effects of different total training volumes of HIIT-SM, especially the combination of LIT and HIIT in the HSM + LIT group. In addition, different assessments to monitor the athletes' load during such an exhaustive training period will allow the identification of load monitoring tools such as innovative biomarkers, questionnaires, and wearable technology. TRIAL REGISTRATION clinicaltrials.gov, NCT05067426. Registered 05 October 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05067426 . Protocol Version Issue date: 1 Dec 2021. Original protocol. Authors: TLS, NH.
Collapse
Affiliation(s)
- Thomas Leonhard Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria.,Red Bull Athlete Performance Center, Salzburg, Austria
| | - Julia C Blumkaitis
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Tilmann Strepp
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Mahdi Sareban
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Elmo W I Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Thomas Finkenzeller
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Natalia Nunes
- Department of Biosciences, University of Salzburg, Salzburg, Austria.,Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Nils Haller
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria. .,Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University of Mainz, Mainz, Germany.
| |
Collapse
|
11
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|
12
|
Cyr-Kirk S, Billaut F. Hyperoxia Improves Repeated-Sprint Ability and the Associated Training Load in Athletes. Front Sports Act Living 2022; 4:817280. [PMID: 35359505 PMCID: PMC8963206 DOI: 10.3389/fspor.2022.817280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the impact of hyperoxic gas breathing (HYP) on repeated-sprint ability (RSA) and on the associated training load (TL). Thirteen team- and racquet-sport athletes performed 6-s all-out sprints with 24-s recovery until exhaustion (power decrement ≥ 15% for two consecutive sprints) under normoxic (NOR: FIO2 0.21) and hyperoxic (HYP: FIO2 0.40) conditions in a randomized, single-blind and crossover design. The following variables were recorded throughout the tests: mechanical indices, arterial O2 saturation (SpO2), oxygenation of the vastus lateralis muscle with near-infrared spectroscopy, and electromyographic activity of the vastus lateralis, rectus femoris, and gastrocnemius lateralis muscles. Session TL (work × rate of perceived exertion) and neuromuscular efficiency (work/EMG [Electromyography]) were calculated. Compared with NOR, HYP increased SpO2 (2.7 ± 0.8%, Cohen's effect size ES 0.55), the number of sprints (14.5 ± 8.6%, ES 0.28), the total mechanical work (13.6 ± 6.8%, ES 0.30), and the session TL (19.4 ± 7.0%, ES 0.33). Concomitantly, HYP increased the amplitude of muscle oxygenation changes during sprints (25.2 ± 11.7%, ES 0.36) and recovery periods (26.1 ± 11.4%, ES 0.37), as well as muscle recruitment (9.9 ± 12.1%, ES 0.74), and neuromuscular efficiency (6.9 ± 9.0%, ES 0.24). It was concluded that breathing a hyperoxic mixture enriched to 40% O2 improves the total work performed and the associated training load during an open-loop RSA session in trained athletes. This ergogenic impact may be mediated by metabolic and neuromuscular alterations.
Collapse
|
13
|
Yamaguchi K, Kasai N, Hayashi N, Yatsutani H, Girard O, Goto K. Muscle Oxygenation during Repeated Cycling Sprints in a Combined Hot and Hypoxic Condition. Int J Sports Med 2022; 43:708-714. [PMID: 35088397 DOI: 10.1055/a-1495-5612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to examine the effects of a combined hot and hypoxic environment on muscle oxygenation and performance during repeated cycling sprints. In a single-blind, counterbalanced, cross-over research design, 10 male athletes performed three sets of 3 × 10-s maximal pedaling interspersed with 40-s recovery between sprints under four different environments. Each condition consisted of a control (CON; 20°C, 20.9% FiO2), normobaric hypoxia (HYP; 20°C, 14.5% FiO2), hot (HOT; 35°C, 20.9% FiO2), and combined hot and normobaric hypoxia (HH; 35°C, 14.5% FiO2). Power output and vastus lateralis muscle oxygenation were measured. Peak power output was significantly higher in HOT (892±27 W) and HH (887±24 W) than in CON (866±25 W) and HYP (859±25 W) during the first set (p<0.05). The increase in total hemoglobin during recovery periods was larger in HH than in HYP (p<0.05), while change in tissue saturation index was smaller in HYP than in CON and HOT (p<0.05). The findings suggest that the combination of hot and hypoxia during repeated cycling sprints presented different characteristics for muscle metabolism and power output compared to temperature or altitude stressor alone.
Collapse
Affiliation(s)
- Keiichi Yamaguchi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Nobukazu Kasai
- Department of Sports Science, Japan Institute of Sports Sciences, Kita-ku, Japan
| | - Nanako Hayashi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Haruka Yatsutani
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Olivier Girard
- School of Human Science (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
14
|
Schöffl I, Ehrlich B, Rottermann K, Weigelt A, Dittrich S, Schöffl V. Jumping into a Healthier Future: Trampolining for Increasing Physical Activity in Children. SPORTS MEDICINE-OPEN 2021; 7:53. [PMID: 34328569 PMCID: PMC8324653 DOI: 10.1186/s40798-021-00335-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/08/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Physical activity in children and adolescents has positive effects on cardiopulmonary function in this age group as well as later in life. As poor cardiopulmonary function is associated with higher mortality and morbidity, increasing physical activity especially in children needs to become a priority. Trampoline jumping is widely appreciated in children. The objective was to investigate its use as a possible training modality. METHODS Fifteen healthy children (10 boys and 5 girls) with a mean age of 8.8 years undertook one outdoor incremental running test using a mobile cardiopulmonary exercise testing unit. After a rest period of at least 2 weeks, a trampoline test using the mobile unit was realized by all participants consisting of a 5-min interval of moderate-intensity jumping and two high-intensity intervals with vigorous jumping for 2 min, interspersed with 1-min rests. RESULTS During the interval of moderate intensity, the children achieved [Formula: see text]-values slightly higher than the first ventilatory threshold (VT1) and during the high-intensity interval comparable to the second ventilatory threshold (VT2) of the outdoor incremental running test. They were able to maintain these values for the duration of the respective intervals. The maximum values recorded during the trampoline test were significantly higher than during the outdoor incremental running test. CONCLUSION Trampoline jumping is an adequate tool for implementing high-intensity interval training as well as moderate-intensity continuous training in children. As it is a readily available training device and is greatly enjoyed in this age group, it could be implemented in exercise interventions.
Collapse
Affiliation(s)
- Isabelle Schöffl
- Department of Pediatric Cardiology, University Hospital Erlangen-Nuremberg, 91054, Erlangen, Germany. .,School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, Great Britain.
| | - Benedikt Ehrlich
- Section of Sportsmedicine and Sports Orthopaedics, Department of Orthopedic and Trauma Surgery, Klinikum Bamberg, Bamberg, Germany
| | - Kathrin Rottermann
- Department of Pediatric Cardiology, University Hospital Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Annika Weigelt
- Department of Pediatric Cardiology, University Hospital Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Sven Dittrich
- Department of Pediatric Cardiology, University Hospital Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Volker Schöffl
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, Great Britain.,Section of Sportsmedicine and Sports Orthopaedics, Department of Orthopedic and Trauma Surgery, Klinikum Bamberg, Bamberg, Germany.,Section of Wilderness Medicine, Department of Emergency Medicine, University of Colorado School of Medicine, Denver, USA
| |
Collapse
|
15
|
Paquette M, Bieuzen F, Billaut F. The effect of HIIT vs. SIT on muscle oxygenation in trained sprint kayakers. Eur J Appl Physiol 2021; 121:2743-2759. [PMID: 34145486 DOI: 10.1007/s00421-021-04743-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE To assess the performance change and physiological adaptations following nine sessions of short high-intensity interval training (HIIT) or sprint-interval training (SIT) in sprint kayakers. METHODS Twelve trained kayakers performed an incremental test and 3 time trials (200 m, 500 m and 1000 m) on a kayak ergometer. Oxygen consumption (V̇O2) and muscle oxygenation of the latissimus dorsi, biceps brachii, and vastus lateralis were measured. Athletes were then paired for sex and V̇O2max and randomized into a HIIT or a SIT training group, and performed nine training sessions before repeating the tests. RESULTS Training improved performance in HIIT (200 m: + 3.8 ± 3.1%, p = 0.06; 500 m: + 2.1 ± 4.1%, p = 0.056; 1000 m: + 3.0 ± 4.6%, p = 0.13) but changes in performance remained within the smallest worthwhile change in SIT (200 m: + 0.8 ± 4.1%, p = 0.59; 500 m: + 0.5 ± 4.1%, p = 0.87; 1000 m: + 1.3 ± 4.6%, p = 0.57). In the 1000 m, training led to a greater deoxygenation in the biceps brachii and vastus lateralis in HIIT, and in the latissimus dorsi in SIT. In HIIT, the best predictors of improvements in 1000 m performance were increases in latissimus dorsi and vastus lateralis maximal deoxygenation. CONCLUSION In a group of trained sprint kayakers, greater improvements in performance can be obtained with HIIT compared with SIT, for any distance. Training did not change V̇O2peak, but increased muscle maximal deoxygenation, suggesting both HIIT and SIT elicit peripheral adaptations. Performance improvement in the 1000 m was associated with increased maximal muscle deoxygenation, reinforcing the contribution of peripheral adaptations to performance in sprint kayaking.
Collapse
Affiliation(s)
- Myriam Paquette
- Département de kinésiologie, Université Laval, Quebec, QC, Canada
- Institut National du Sport du Québec, Montreal, QC, Canada
| | | | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada.
- Institut National du Sport du Québec, Montreal, QC, Canada.
| |
Collapse
|
16
|
Hoppel F, Calabria E, Pesta DH, Kantner-Rumplmair W, Gnaiger E, Burtscher M. Effects of Ultramarathon Running on Mitochondrial Function of Platelets and Oxidative Stress Parameters: A Pilot Study. Front Physiol 2021; 12:632664. [PMID: 33679442 PMCID: PMC7935014 DOI: 10.3389/fphys.2021.632664] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023] Open
Abstract
Only a few studies have evaluated changes in mitochondrial function and oxidative stress associated with ultramarathon running. Invasive biopsies are needed to assess mitochondrial function of skeletal muscle, which may not be well tolerated by some individuals. Platelets (PLTs) as a metabolically highly active and homogenous cell population were suggested as a potentially valuable surrogate to investigate mitochondrial function. Thus, this study was aimed to evaluate mitochondrial function of PLTs and its association with individual race performance and markers of oxidative stress, muscle damage and renal dysfunction. Race performance and mitochondrial function (high-resolution respirometry, HRR) of PLTs using different substrates inducing ROUTINE, LEAK, N-pathway control state (Complex I linked oxidative phosphorylation; CI, OXPHOS), NS-pathway control state (CI + II linked OXPHOS and electron transfer pathway; ET), S-pathway control state (CII linked ET) as well as parameters of oxidative stress and antioxidant capacity, and markers of muscle and renal injury were assessed in eight male ultramarathon runners (26–45 years) before, immediately after and 24 h after an ultramarathon race (PRE, POST, and REC). Ultramarathon running induced an increase in LEAK O2 flux of PLT mitochondria and slight, largely non-significant changes in the oxidant/antioxidant balance. Levels of creatine kinase (CK), lactate dehydrogenase (LDH), blood urea nitrogen, and creatinine were all significantly elevated POST and remained high in REC. There were inverse correlations between race time and N-linked substrate state PRE-POST, and changes in CK and LDH levels were significantly related to PLT mitochondrial LEAK and N-linked respiration PRE. Although race-related changes in respirometry parameters of PLT mitochondria were rather small, a somewhat more pronounced increase in the relative N-linked respiration in faster runners might suggest PLT CI as indicator of physical fitness. The higher PLT LEAK PRE and diminished increase of CK during the race may represent a prophylactic preconditioning and the slight but non-significant elevation of the antioxidant potential post-race as a protective consequence of the race-related oxidative stress and potential threat to the kidney. Our findings point toward an interrelationship between mitochondrial function of PLTs, individual fitness levels and extreme physical and metal stresses, which stimulates further research.
Collapse
Affiliation(s)
- Florian Hoppel
- Oroboros Instruments, Innsbruck, Austria.,Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Elisa Calabria
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dominik H Pesta
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.,Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany.,Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Wilhelm Kantner-Rumplmair
- Department of Psychosomatic Pain Ambulance, University Hospital for Medical Psychology and Psychotherapy, Innsbruck, Austria
| | - Erich Gnaiger
- Oroboros Instruments, Innsbruck, Austria.,D. Swarovski Research Laboratory, Department of Visceral, Transplant Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Jevtovic F. Combination of Metformin and Exercise in Management of Metabolic Abnormalities Observed in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:4043-4057. [PMID: 34557007 PMCID: PMC8453852 DOI: 10.2147/dmso.s328694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Excess nutrient intake and lack of exercise characterize the problem of obesity and are common factors in insulin resistance (IR). With an increasing number of prediabetic, and type 2 diabetic populations, metformin is still the most prescribed glucose-lowering drug and is often accompanied by recommendations for regular physical exercise. Metformin, by the inhibition of complex 1 of the electron transport chain, and exercise, by increasing energy expenditure, both elicit a low cellular energy state that leads to improvements in glucose control via activation of adenosine 5' monophosphate-activated protein kinase (AMPK). An augmented stimulation of the energy-sensing enzyme AMPK by either of the two modalities leads to an increase in glycogenolysis, glucose uptake, fat oxidation, a decrease in glycogen and protein synthesis, and gluconeogenesis in muscle and the liver, which are remarked as having positive effects on metabolic pathophysiology observed in IR and type 2 diabetes mellitus (T2DM). While both modalities exploit the energy-sensing enzyme AMPK to attain glucose homeostasis, the synergistic effect of these two treatments is not distinctly supported by the literature. Further, an antagonistic dynamic has been observed in cases where metformin and exercise were combined. Reduction of insulin-sensitizing effects of exercise and an overall hindrance of exercise performance and adaptations have been reported and could suggest the possible incongruity of these two modalities. The aim of this review is to elucidate the effect that metformin and exercise have on the management of the metabolic abnormalities observed in T2DM and to provide an insight into the interaction of these two modalities.
Collapse
Affiliation(s)
- Filip Jevtovic
- Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
- Correspondence: Filip Jevtovic East Carolina University; School of Dental Medicine, Ledyard E. Ross Hall; 1851 MacGregor Downs Road, Mail Stop 701, Greenville, NC, 27834, USATel +1 616 844 8323Fax +1 252 737 7024 Email
| |
Collapse
|
18
|
General, 21-Day Postoperative Rehabilitation Program Has Beneficial Effect on Oxidative Stress Markers in Patients after Total Hip or Knee Replacement. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4598437. [PMID: 33062140 PMCID: PMC7532996 DOI: 10.1155/2020/4598437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/04/2022]
Abstract
Imbalance in prooxidant-antioxidant equilibrium plays an important role in the progression of osteoarthritis (OA). Postoperative rehabilitation significantly improves the functional activity of patients with OA. We aimed to assess the effect of the general 21-day postoperative rehabilitation on the oxidative stress markers in patients after total hip arthroplasty or knee replacement. Patients (n =41) started individually designed postoperative rehabilitation ca. 90 days after endoprosthesis implantation. We used the six-minute walk test (6MWT) to quantify the changes in their exercise capacity. We analyzed the oxidative stress markers: total antioxidant capacity (TAC), total superoxide dismutase (SOD), Cu-Zn-superoxide dismutase (CuZnSOD) and ceruloplasmin (Cp) activity, malondialdehyde (MDA) and lipofuscin (LPS) concentration in patients serum to asses changes in the oxidative stress intensity. We found that after 21-days postoperative rehabilitation program: the average distance walked by patients increased by 69 m; TAC increased by 0.20 ± 0.14 mmol/l; both SOD isoforms activities increased by 1.6 (±1.7) and 1.72 (±1.5) NU/ml, respectively; but Cp activity decreased by 1.8 (0.7-3.7) mg/dl. Also, we observed lower concentrations of lipid peroxidation markers: by 19.6 ± 24.4 μmol/l for MDA and by 0.4 ± 0.5 RF for LPS. A 21-day postoperative rehabilitation program effectively reduces oxidative processes, which helps the patients after total hip or knee replacement in a successful recovery.
Collapse
|
19
|
Paradis-Deschênes P, Joanisse DR, Mauriège P, Billaut F. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living 2020; 2:41. [PMID: 33345033 PMCID: PMC7739728 DOI: 10.3389/fspor.2020.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
20
|
Heyman E, Daussin F, Wieczorek V, Caiazzo R, Matran R, Berthon P, Aucouturier J, Berthoin S, Descatoire A, Leclair E, Marais G, Combes A, Fontaine P, Tagougui S. Muscle Oxygen Supply and Use in Type 1 Diabetes, From Ambient Air to the Mitochondrial Respiratory Chain: Is There a Limiting Step? Diabetes Care 2020; 43:209-218. [PMID: 31636081 DOI: 10.2337/dc19-1125] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/25/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Long before clinical complications of type 1 diabetes (T1D) develop, oxygen supply and use can be altered during activities of daily life. We examined in patients with uncomplicated T1D all steps of the oxygen pathway, from the lungs to the mitochondria, using an integrative ex vivo (muscle biopsies) and in vivo (during exercise) approach. RESEARCH DESIGN AND METHODS We compared 16 adults with T1D with 16 strictly matched healthy control subjects. We assessed lung diffusion capacity for carbon monoxide and nitric oxide, exercise-induced changes in arterial O2 content (SaO2, PaO2, hemoglobin), muscle blood volume, and O2 extraction (via near-infrared spectroscopy). We analyzed blood samples for metabolic and hormonal vasoactive moieties and factors that are able to shift the O2-hemoglobin dissociation curve. Mitochondrial oxidative capacities were assessed in permeabilized vastus lateralis muscle fibers. RESULTS Lung diffusion capacity and arterial O2 transport were normal in patients with T1D. However, those patients displayed blunted exercise-induced increases in muscle blood volume, despite higher serum insulin, and in O2 extraction, despite higher erythrocyte 2,3-diphosphoglycerate. Although complex I- and complex II-supported mitochondrial respirations were unaltered, complex IV capacity (relative to complex I capacity) was impaired in patients with T1D, and this was even more apparent in those with long-standing diabetes and high HbA1c. [Formula: see text]O2max was lower in patients with T1D than in the control subjects. CONCLUSIONS Early defects in microvascular delivery of blood to skeletal muscle and in complex IV capacity in the mitochondrial respiratory chain may negatively impact aerobic fitness. These findings are clinically relevant considering the main role of skeletal muscle oxidation in whole-body glucose disposal.
Collapse
Affiliation(s)
- Elsa Heyman
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Frédéric Daussin
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | | | - Robert Caiazzo
- Service de Chirurgie Générale et Endocrinienne, University Hospital of Lille, Lille, France.,UMR_1190 Recherche Translationnelle sur le Diabète, Faculté de Médecine de Lille, INSERM, Lille, France
| | - Régis Matran
- Department of Physiology, EA 2689 and IFR 22, Lille, France
| | - Phanélie Berthon
- Inter-university Laboratory of Human Movement Sciences EA7424, University of Savoie Mont Blanc, Chambéry, France
| | - Julien Aucouturier
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Serge Berthoin
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | | | - Erwan Leclair
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France.,Réseau québécois de recherche sur la douleur, Université de Sherbrooke, Montreal, Quebec, Canada
| | - Gaëlle Marais
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Adrien Combes
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France
| | - Pierre Fontaine
- Department of Diabetology, Lille University Hospital, EA 4489, Lille, France
| | - Sémah Tagougui
- EA7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, Lille, France.,Metabolic Diseases, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Coqueiro AY, Raizel R, Bonvini A, Rogero MM, Tirapegui J. Effects of glutamine and alanine supplementation on muscle fatigue parameters of rats submitted to resistance training. Nutrition 2019; 65:131-137. [PMID: 31100607 DOI: 10.1016/j.nut.2018.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022]
|
22
|
Paquette M, Bieuzen F, Billaut F. Sustained Muscle Deoxygenation vs. Sustained High VO 2 During High-Intensity Interval Training in Sprint Canoe-Kayak. Front Sports Act Living 2019; 1:6. [PMID: 33344930 PMCID: PMC7739754 DOI: 10.3389/fspor.2019.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Recent data suggests that peripheral adaptations, i.e., the muscle ability to extract and use oxygen, may be a stronger predictor of canoe-kayak sprint performance compared to VO2max or central adaptations. If maximizing the time near VO2max during high-intensity interval training (HIIT) sessions is believed to optimize central adaptations, maximizing the time near maximal levels of muscle desaturation could represent a critical stimulus to optimize peripheral adaptations. Purpose: Therefore, the purpose of this study was to assess the VO2, muscle oxygenation and cardiac output responses to various HIIT sessions, and to determine which type of HIIT elicits the lowest muscle oxygenation and the longest cumulated time at low muscle O2 saturation. Methods: Thirteen well-trained canoe-kayak athletes performed an incremental test to determine VO2max and peak power output (PPO), and 4 HIIT sessions (HIIT-15: 40x[15 s at 115%PPO, 15 s at 30%PPO]; HIIT-30: 20x[30 s at 115%PPO, 30 s at 30%PPO]; HIIT-60: 6x[1 min at 130%PPO, 3 min rest]; sprint interval training (SIT): 6x[30 s all-out, 3 min 30 rest]) on a canoe or kayak ergometer. Portable near-infrared spectroscopy monitors were placed on the Latissimus dorsi (LD), Biceps brachii (BB), and Vastus lateralis (VL) during every session to assess changes in muscle O2 saturation (SmO2, % of physiological range). Results: HIIT-15 and HIIT-30 elicited a longer time >90%VO2max (HIIT-15: 8.1 ± 6.2 min, HIIT-30: 6.8 ± 4.6 min), compared to SIT (1.7 ± 1.3 min, p = 0.006 and p = 0.035) but not HIIT-60 (4.1 ± 1.7 min). SIT and HIIT-60 elicited the lowest SmO2 in the VL (SIT: 0 ± 1%, HIIT-60: 8 ± 9%) compared to HIIT-15 (26 ± 12%, p < 0.001 and p = 0.007) and HIIT-30 (25 ± 12%, p < 0.001 and p = 0.030). SIT produced the longest time at >90% of maximal deoxygenation in all 3 muscles, with effect sizes ranging from small to very large. Conclusions: Short HIIT performed on a canoe/kayak ergometer elicits the longest time near VO2max, potentially conducive to VO2max improvements, but SIT is needed in order to maximize muscle deoxygenation during training, which would potentially conduct to greater peripheral adaptations.
Collapse
Affiliation(s)
- Myriam Paquette
- Département de kinésiologie, Université Laval, Quebec, QC, Canada.,Institut National du sport du Québec, Montreal, QC, Canada
| | | | - François Billaut
- Département de kinésiologie, Université Laval, Quebec, QC, Canada.,Institut National du sport du Québec, Montreal, QC, Canada
| |
Collapse
|
23
|
Brandao CFC, de Carvalho FG, Souza ADO, Junqueira-Franco MVM, Batitucci G, Couto-Lima CA, Fett CA, Papoti M, Freitas ECD, Alberici LC, Marchini JS. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. Scand J Med Sci Sports 2019; 29:1699-1706. [PMID: 31282585 DOI: 10.1111/sms.13514] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/10/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Exercise training may improve energy expenditure, thermogenesis, and oxidative capacities. Therefore, we hypothesized that physical training enhances white adipose tissue mitochondrial oxidative capacity from obese women. OBJECTIVE To evaluate mitochondrial respiratory capacity, mitochondrial content, and UCP1 gene expression in white adipose tissue from women with obesity before and after the physical training program. METHODS Women (n = 14, BMI 33 ± 3 kg/m2 , 35 ± 6 years, mean ± SD) were submitted to strength and aerobic exercises (75%-90% maximum heart rate and multiple repetitions), 3 times/week during 8 weeks. All evaluated subjects were paired, before and after training for resting metabolic rate (RMR), substrate oxidation (lipid and carbohydrate) by indirect calorimeter, deuterium oxide body composition, and aerobic maximum velocity (Vmax ) test. At the beginning and at the ending of the protocol, abdominal subcutaneous adipose tissue was collected to measure the mitochondrial respiration by high-resolution respirometry, mitochondrial content by citrate synthase (CS) activity, and UCP1 gene expression by RT-qPCR. RESULTS Combined physical training increased RMR, lipid oxidation, and Vmax but did not change body weight/composition. In WAT, exercise increased CS activity, decreased mitochondrial uncoupled respiration and mRNA of UCP1. RMR was positively correlated with fat-free mass. CONCLUSION Physical training promotes an increase in mitochondrial content without changing tissue respiratory capacity, a reduction in mitochondrial uncoupling degree and UCP1 mRNA expression in WAT. Finally, it improved the resting metabolic rate, lipid oxidation and physical performance, independent of the body changing free, or fat mass in obese women.
Collapse
Affiliation(s)
| | - Flavia Giolo de Carvalho
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Gabriela Batitucci
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Carlos Antonio Couto-Lima
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Marcelo Papoti
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ellen Cristini de Freitas
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Luciane Carla Alberici
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julio Sergio Marchini
- Nutrology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
24
|
Ghiarone T, Andrade-Souza VA, Learsi SK, Tomazini F, Ataide-Silva T, Sansonio A, Fernandes MP, Saraiva KL, Figueiredo RCBQ, Tourneur Y, Kuang J, Lima-Silva AE, Bishop DJ. Twice-a-day training improves mitochondrial efficiency, but not mitochondrial biogenesis, compared with once-daily training. J Appl Physiol (1985) 2019; 127:713-725. [PMID: 31246557 DOI: 10.1152/japplphysiol.00060.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training performed with lowered muscle glycogen stores can amplify adaptations related to oxidative metabolism, but it is not known if this is affected by the "train-low" strategy used (i.e., once-daily versus twice-a-day training). Fifteen healthy men performed 3 wk of an endurance exercise (100-min) followed by a high-intensity interval exercise 2 (twice-a-day group, n = 8) or 14 h (once-daily group, n = 7) later; therefore, the second training session always started with low muscle glycogen in both groups. Mitochondrial efficiency (state 4 respiration) was improved only for the twice-a-day group (group × training interaction, P < 0.05). However, muscle citrate synthase activity, mitochondria, and lipid area in intermyofibrillar and subsarcolemmal regions, and PGC1α, PPARα, and electron transport chain relative protein abundance were not altered with training in either group (P > 0.05). Markers of aerobic fitness (e.g., peak oxygen uptake) were increased, and plasma lactate, O2 cost, and rating of perceived exertion during a 100-min exercise task were reduced in both groups, although the reduction in rating of perceived exertion was larger in the twice-a-day group (group × time × training interaction, P < 0.05). These findings suggest similar training adaptations with both training low approaches; however, improvements in mitochondrial efficiency and perceived effort seem to be more pronounced with twice-a-day training.NEW & NOTEWORTHY We assessed, for the first time, the differences between two "train-low" strategies (once-daily and twice-a-day) in terms of training-induced molecular, functional, and morphological adaptations. We found that both strategies had similar molecular and morphological adaptations; however, only the twice-a-day strategy increased mitochondrial efficiency and had a superior reduction in the rating of perceived exertion during a constant-load exercise compared with once-daily training. Our findings provide novel insights into skeletal muscle adaptations using the "train-low" strategy.
Collapse
Affiliation(s)
- Thaysa Ghiarone
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Victor A Andrade-Souza
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil
| | - Sara K Learsi
- Sciences Applied in Sports Research Group, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Fabiano Tomazini
- Human Performance Research Group, Academic Department of Physical Education, Technological Federal University of Parana and Federal University of Parana, Curitiba, Parana, Brazil
| | - Thays Ataide-Silva
- Faculty of Nutrition, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Andre Sansonio
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil
| | - Mariana P Fernandes
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil
| | - Karina L Saraiva
- Nucleus of Technological Platforms, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
| | - Regina C B Q Figueiredo
- Laboratory of Cell Biology, Department of Microbiology, Aggeu Magalhães Institute, FIOCRUZ, Recife, Brazil
| | - Yves Tourneur
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil.,Faculty of Medicine Lyon South, University of Lyon, Lyon, France
| | - Jujiao Kuang
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Adriano E Lima-Silva
- Sport Science Research Group, Department of Physical Education and Sports Science, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil.,Human Performance Research Group, Academic Department of Physical Education, Technological Federal University of Parana and Federal University of Parana, Curitiba, Parana, Brazil
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
25
|
Berg J, Undebakke V, Rasch-Halvorsen Ø, Aakerøy L, Sandbakk Ø, Tjønna AE. Comparison of Mitochondrial Respiration in M. triceps brachii and M. vastus lateralis Between Elite Cross-Country Skiers and Physically Active Controls. Front Physiol 2019; 10:365. [PMID: 31024334 PMCID: PMC6461012 DOI: 10.3389/fphys.2019.00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 11/13/2022] Open
Abstract
Rationale The main purposes of this study were to compare mitochondrial respiration in M. triceps brachii and M. vastus lateralis between elite cross-country (XC) skiers and physically active controls (CON), and to explore the associations between mitochondrial respiration in these muscles and peak oxygen uptake ( V ˙ O2peak) in arm- and leg-dominant exercise modes. Methods Thirteen male elite XC skiers (age: 25 ± 4; peak oxygen uptake ( V ˙ O2peak): 75.5 ± 4.2 mL⋅kg-1⋅min-1) and twelve CON (age: 26 ± 3; V ˙ O2peak: 57.2 ± 6.4 mL⋅kg-1⋅min-1) had microbiopsies taken from M. vastus lateralis and M. triceps brachii, which were analyzed for various measures of mitochondrial respiration using high-resolution respirometry. Thereafter, all participants tested V ˙ O2peak in both running (RUN) and upper body poling (UBP). Results XC skiers had generally higher mitochondrial respiration in M. triceps brachii compared to CON (P < 0.001), whereas no significant group-differences in mitochondrial respiration in M. vastus lateralis were revealed. XC skiers had higher mitochondrial respiration in M. triceps brachii compared to M. vastus lateralis (P = 0.005-0.058), whereas in CON, most mitochondrial respiration measures were higher in M. vastus lateralis than in M. triceps brachii (P < 0.01). When all athletes were pooled, there was a strong positive correlation between V ˙ O2peak in UBP and mitochondrial respiration in M. triceps brachii on several measures (P < 0.01), whereas no correlation was found for RUN. Conclusion The higher mitochondrial respiration found in M. triceps brachii compared to M. vastus lateralis among our elite XC skiers demonstrates the potential for the arm muscles to adapt to aerobic endurance training. The opposite pattern found in CON, clearly showed lower mitochondrial respiration in M. triceps brachii compared to XC skiers, whereas respiration in M. vastus lateralis did not differ between groups. The strong positive correlation between mitochondrial respiration in M. triceps brachii and V ˙ O2peak in UBP indicate that arm muscles' respiratory function may be a limiting factor for V ˙ O2peak in arm-dominant exercise modes.
Collapse
Affiliation(s)
- Jonathan Berg
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vidar Undebakke
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øystein Rasch-Halvorsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Lars Aakerøy
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Øyvind Sandbakk
- Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnt Erik Tjønna
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
26
|
Hedges CP, Woodhead JST, Wang HW, Mitchell CJ, Cameron-Smith D, Hickey AJR, Merry TL. Peripheral blood mononuclear cells do not reflect skeletal muscle mitochondrial function or adaptation to high-intensity interval training in healthy young men. J Appl Physiol (1985) 2019; 126:454-461. [DOI: 10.1152/japplphysiol.00777.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Measurement of skeletal muscle mitochondrial respiration requires invasive biopsy to obtain a muscle sample. Peripheral blood mononuclear cell (PBMC) mitochondrial protein content appears to reflect training status in young men; however, no studies have investigated whether there are training-induced changes in PBMC mitochondrial respiration. Therefore, we determined whether PBMC mitochondrial respiration could be used as a marker of skeletal muscle mitochondrial respiration in young healthy men and whether PBMC mitochondrial respiration responds to short-term training. Skeletal muscle and PBMC samples from 10 healthy young (18–35 yr) male participants were taken before and after a 2-wk high-intensity interval training protocol. High-resolution respirometry was used to determine mitochondrial respiration from muscle and PBMCs, and Western blotting and quantitative PCR were used to assess mitochondrial biogenesis in PBMCs. PBMC mitochondrial respiration was not correlated with muscle mitochondrial respiration at baseline ( R2 = 0.012–0.364, P > 0.05). While muscle mitochondrial respiration increased in response to training (32.1–61.5%, P < 0.05), PBMC respiration was not affected by training. Consequently, PBMCs did not predict training effect on muscle mitochondrial respiration ( R2 = 0.024–0.283, P > 0.05). Similarly, gene and protein markers of mitochondrial biogenesis did not increase in PBMCs following training. This suggests PBMC mitochondrial function does not reflect that of skeletal muscle and does not increase following short-term high-intensity training. PBMCs are therefore not a suitable biomarker for muscle mitochondrial function in young healthy men. It may be useful to study PBMC mitochondrial function as a biomarker of muscle mitochondrial function in pathological populations with different respiration capacities. NEW & NOTEWORTHY Research in primates has suggested that peripheral blood mononuclear cells (PBMCs) may provide a less-invasive alternative to a muscle biopsy for measuring muscle mitochondrial function. Furthermore, trained individuals appear to have greater mitochondrial content in PBMCs. Here we show that in healthy young men, PBMCs do not reflect skeletal muscle mitochondrial function and do not adapt in response to a training intervention that increases muscle mitochondrial function, suggesting PBMCs are a poor marker of muscle mitochondrial function in humans.
Collapse
Affiliation(s)
- C. P. Hedges
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - J. S. T. Woodhead
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - H. W. Wang
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - C. J. Mitchell
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - D. Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - A. J. R. Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - T. L. Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Hedges CP, Bishop DJ, Hickey AJR. Voluntary wheel running prevents the acidosis-induced decrease in skeletal muscle mitochondrial reactive oxygen species emission. FASEB J 2018; 33:4996-5004. [PMID: 30596520 DOI: 10.1096/fj.201801870r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Decreases in pH (acidosis) in vitro can alter skeletal muscle mitochondrial function [respiration and reactive oxygen species (ROS) emission]. However, because skeletal muscles readily adapt to exercise, the effects of acidosis may be different on sedentary vs. trained muscle. The aim of this work was to compare the effects of pH on skeletal muscle mitochondrial function between sedentary vs. exercise-trained male Sprague-Dawley rats ( n = 10 in each cohort). Rates of mitochondrial respiration and ROS emission were determined from the soleus muscle of both cohorts over a physiologic range of pH values (pH 6.2-7.1). Exercise-trained rats had 14% higher mean muscle buffering capacities; 46 and 40% greater enzyme activity of citrate synthase and lactate dehydrogenase, respectively; and greater activity of respiratory complexes I-IV. ADP-stimulated respiration with complex I and II substrates was ∼25% greater in exercise-trained rats but was unaffected by pH in either cohort. In both cohorts, lowering pH decreased respiration only in complex I- and complex II-supported nonphosphorylating (leak) state. However, as pH decreased, ROS emissions in complex I- and complex II-supported leak state decreased only in sedentary rats; in exercise-trained rats, ROS emissions in this state remained constant. We hypothesize that this effect may result from modulation at complex III, which declined 47% per unit pH in sedentary rats, in comparison to 23% in exercise-trained rats. Taken together, these data suggest that pH regulates mitochondrial respiratory complexes and that exercise training can decrease the effects of pH on skeletal muscle mitochondrial function.-Hedges, C. P., Bishop, D. J., Hickey, A. J. R. Voluntary wheel running prevents the acidosis-induced decrease in skeletal muscle mitochondrial reactive oxygen species emission.
Collapse
Affiliation(s)
- Christopher P Hedges
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; and
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; and.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Anthony J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Silva LA, Tromm CB, Doyenart R, Thirupathi A, Silveira PCL, Pinho RA. Effects of different frequencies of physical training on electron transport chain and oxidative damage in healthy mice. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201800040008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Luciano A. Silva
- Universidade do Extremo Sul Catarinense, Brazil; Escola superiror de Criciúma, Brazil; Centro Universitario Barriga Verde, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
30
|
Hughes DC, Ellefsen S, Baar K. Adaptations to Endurance and Strength Training. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029769. [PMID: 28490537 DOI: 10.1101/cshperspect.a029769] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The capacity for human exercise performance can be enhanced with prolonged exercise training, whether it is endurance- or strength-based. The ability to adapt through exercise training allows individuals to perform at the height of their sporting event and/or maintain peak physical condition throughout the life span. Our continued drive to understand how to prescribe exercise to maximize health and/or performance outcomes means that our knowledge of the adaptations that occur as a result of exercise continues to evolve. This review will focus on current and new insights into endurance and strength-training adaptations and will highlight important questions that remain as far as how we adapt to training.
Collapse
Affiliation(s)
- David C Hughes
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| | - Stian Ellefsen
- Section of Sports Sciences, Lillehammer University College, 2604 Lillehammer, Norway.,Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, Functional Molecular Biology Laboratory, University of California Davis, Davis, California 95616
| |
Collapse
|
31
|
Gifford JR, Trinity JD, Kwon OS, Layec G, Garten RS, Park SY, Nelson AD, Richardson RS. Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol (1985) 2018; 124:1045-1053. [PMID: 29357496 PMCID: PMC5972462 DOI: 10.1152/japplphysiol.00788.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 11/22/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) exhibit an altered skeletal muscle mitochondrial phenotype, which often includes reduced mitochondrial density, altered respiratory function, and elevated oxidative stress. As this phenotype may be explained by the sedentary lifestyle that commonly accompanies this disease, the aim of this study was to determine whether such alterations are still evident when patients with COPD are compared to control subjects matched for objectively measured physical activity (PA; accelerometry). Indexes of mitochondrial density [citrate synthase (CS) activity], respiratory function (respirometry in permeabilized fibers), and muscle oxidative stress [4-hydroxynonenal (4-HNE) content] were assessed in muscle fibers biopsied from the vastus lateralis of nine patients with COPD and nine PA-matched control subjects (CON). Despite performing similar levels of PA (CON: 18 ± 3, COPD: 20 ± 7 daily minutes moderate-to-vigorous PA; CON: 4,596 ± 683, COPD: 4,219 ± 763 steps per day, P > 0.70), patients with COPD still exhibited several alterations in their mitochondrial phenotype, including attenuated skeletal muscle mitochondrial density (CS activity; CON 70.6 ± 3.8, COPD 52.7 ± 6.5 U/mg, P < 0.05), altered mitochondrial respiration [e.g., ratio of complex I-driven state 3 to complex II-driven state 3 (CI/CII); CON: 1.20 ± 0.11, COPD: 0.90 ± 0.05, P < 0.05), and oxidative stress (4-HNE; CON: 1.35 ± 0.19, COPD: 2.26 ± 0.25 relative to β-actin, P < 0.05). Furthermore, CS activity ( r = 0.55), CI/CII ( r = 0.60), and 4-HNE ( r = 0.49) were all correlated with pulmonary function, assessed as forced expiratory volume in 1 s ( P < 0.05), but not PA ( P > 0.05). In conclusion, the altered mitochondrial phenotype in COPD is present even in the absence of differing levels of PA and appears to be related to the disease itself. NEW & NOTEWORTHY Chronic obstructive pulmonary disease (COPD) is associated with debilitating alterations in the function of skeletal muscle mitochondria. By comparing the mitochondrial phenotype of patients with COPD to that of healthy control subjects who perform the same amount of physical activity each day, this study provides evidence that many aspects of the dysfunctional mitochondrial phenotype observed in COPD are not merely due to reduced physical activity but are likely related to the disease itself.
Collapse
Affiliation(s)
- Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University , Provo, Utah
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Oh-Sung Kwon
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Ryan S Garten
- Department of Exercise Science, Health, and Movement Science, Virginia Commonwealth University , Richmond, Virginia
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska , Omaha, Nebraska
| | - Ashley D Nelson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Medical Center , Salt Lake City, Utah
- Department of Internal Medicine, University of Utah , Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
32
|
Martins EL, Ricardo JC, de-Souza-Ferreira E, Camacho-Pereira J, Ramos-Filho D, Galina A. Rapid regulation of substrate use for oxidative phosphorylation during a single session of high intensity interval or aerobic exercises in different rat skeletal muscles. Comp Biochem Physiol B Biochem Mol Biol 2017; 217:40-50. [PMID: 29222029 DOI: 10.1016/j.cbpb.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Different exercise protocols lead to long-term adaptations that are related to increased mitochondrial content through the activation of mitochondrial biogenesis. However, immediate mitochondrial response to exercise and energetic substrate utilization is still unknown. We evaluate the mitochondrial physiology of two types rat skeletal muscle fibres immediately after a single session of high intensity interval exercise (HIIE) or aerobic exercise (AER). We found AER was able to reduce the ATP synthesis dependent oxygen flux in the tibialis (TA) when stimulated by complex I and II substrates. On the other hand, there was an increase of the maximum velocity (Vmax) for glycerol-phosphate oxidation and Vmax and affinity (KM) of palmitoyl-carnitine oxidation (PC). The exercise did not affect oxygen flux coupled to ATP synthesis in red gastrocnemius (RG) but, surprisingly, reduced its affinity for PC, decreasing the apparent catalytic efficiency (Vmax/KM) of oxidation for PC. Neither exercise protocol was able to change the electron transfer system capacity of the mitochondria or markers of mitochondrial content. The AER group had increased H2O2 production compared to the SED and HIIE groups, with the mechanism being predominantly the escape of electrons through reverse flux in complex I and other sites in TA, and only through other sites in RG. There were no changes in the activities of antioxidant enzymes. Our results show that mitochondria from different muscles submitted to distinct exercise protocols show alterations in the specific fluxes of substrate utilization and oxygen metabolism, indicating that the dynamics of mitochondria are linked to the metabolic flexibility.
Collapse
Affiliation(s)
- Eduarda Lopes Martins
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Carvalho Ricardo
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Camacho-Pereira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dionizio Ramos-Filho
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Rygiel KA, Dodds RM, Patel HP, Syddall HE, Westbury LD, Granic A, Cooper C, Cliff J, Rocha MC, Turnbull DM, Sayer AA. Mitochondrial respiratory chain deficiency in older men and its relationship with muscle mass and performance. JCSM CLINICAL REPORTS 2017. [DOI: 10.17987/jcsm-cr.v2i2.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IntroductionSarcopenia is the loss of muscle mass and physical performance with age, and recognition of its importance in clinical practice is growing. Age-related decline in muscle mitochondrial function has been described although less is known about the role of mitochondrial dysfunction in sarcopenia. The aim of this study was to investigate whether respiratory chain deficiency is associated with muscle mass and physical performance among a sample of healthy older men participating in the Hertfordshire Sarcopenia Study.MethodsWe used immunofluorescence on biopsies of the vastus lateralis to measure levels of the NDUFB8 subunit of complex I and the COX-1 subunit of complex IV per fibre. We measured muscle mass using dual-energy x-ray absorptiometry. We assessed physical performance using grip strength, gait speed, chair rise time, timed up and go and standing balance time, and composed an aggregate performance score on the scale of 0 (worst) and 5 (best performance). We used linear regression with a cluster sandwich estimator to test relationships between complex I / IV and muscle mass / physical performance. Study approval was granted by the Hertfordshire Research Ethics Committee.ResultsSamples were available from 77 participants of mean age 72.6 (2.5) years. The median number of fibres analysed per participant was 157 (104, 237). We expressed complex I and IV levels as Z-scores relative to that expected in young controls. The overall participant mean Z-scores were 0.3 (1.3) and -1.5 (0.9) for complex I and IV, respectively. We saw no relationship between complex I or IV and muscle mass. Each unit (SD) increase in complex I was associated with an increase in aggregate performance score of 0.06 (95% CI: 0.02, 0.09, P = 0.003), whilst the relationship for complex IV did not reach significance.ConclusionWe saw marked heterogeneity in complex I and IV levels, both between and within participants, as well as lower overall levels of complex IV. The finding of a small but statistically significant positive association between complex I levels and physical performance suggests that mitochondrial dysfunction may have a role in the development of sarcopenia. These findings will help inform the design of future studies across a wider range of ages and in both women and men.
Collapse
|
34
|
Schreckenberg R, Horn AM, da Costa Rebelo RM, Simsekyilmaz S, Niemann B, Li L, Rohrbach S, Schlüter KD. Effects of 6-months' Exercise on Cardiac Function, Structure and Metabolism in Female Hypertensive Rats-The Decisive Role of Lysyl Oxidase and Collagen III. Front Physiol 2017; 8:556. [PMID: 28824452 PMCID: PMC5541302 DOI: 10.3389/fphys.2017.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: According to the current therapeutic guidelines of the WHO physical activity and exercise are recommended as first-line therapy of arterial hypertension. Previous results lead to the conclusion, however, that hearts of spontaneously hypertensive rats (SHR) with established hypertension cannot compensate for the haemodynamic stresses caused by long-term exercise. The current study was initiated to investigate the effects of aerobic exercise on the cardiac remodeling as the sole therapeutic measure before and during hypertension became established. Methods: Beginning at their 6th week of life, six SHR were provided with a running wheel over a period of 6 months. Normotensive Wistar rats served as non-hypertensive controls. Results: In Wistar rats and SHR, voluntary exercise led to cardioprotective adaptation reactions that were reflected in increased mitochondrial respiration, reduced heart rate and improved systolic function. Exercise also had antioxidant effects and reduced the expression of maladaptive genes (TGF-β1, CTGF, and FGF2). However, at the end of the 6-months' training, the echocardiograms revealed that SHR runners developed a restrictive cardiomyopathy. The induction of lysyl oxidase (LOX), which led to an increased network of matrix proteins and a massive elevation in collagen III expression, was identified as the underlying cause. Conclusions: Running-induced adaptive mechanisms effectively counteract the classic remodeling of hearts subject to chronic pressure loads. However, with sustained running stress, signaling pathways are activated that have a negative effect on left ventricular relaxation. Our data suggest that the induction of LOX may play a causative role in the diagnosed filling disorder in trained SHR.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Anja-Maria Horn
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | | - Sakine Simsekyilmaz
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum DüsseldorfDüsseldorf, Germany
| | - Bernd Niemann
- Klinik für Herz-, Kinderherz- und Gefäßchirurgie, Universitätsklinikum GiessenGiessen, Germany
| | - Ling Li
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | - Susanne Rohrbach
- Physiologisches Institut, Justus-Liebig-Universität GiessenGiessen, Germany
| | | |
Collapse
|
35
|
Lejay A, Laverny G, Paradis S, Schlagowski AI, Charles AL, Singh F, Zoll J, Thaveau F, Lonsdorfer E, Dufour S, Favret F, Wolff V, Metzger D, Chakfe N, Geny B. Moderate Exercise Allows for shorter Recovery Time in Critical Limb Ischemia. Front Physiol 2017; 8:523. [PMID: 28790926 PMCID: PMC5524729 DOI: 10.3389/fphys.2017.00523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
Whether and how moderate exercise might allow for accelerated limb recovery in chronic critical limb ischemia (CLI) remains to be determined. Chronic CLI was surgically induced in mice, and the effect of moderate exercise (training five times per week over a 3-week period) was investigated. Tissue damages and functional scores were assessed on the 4th, 6th, 10th, 20th, and 30th day after surgery. Mice were sacrificed 48 h after the last exercise session in order to assess muscle structure, mitochondrial respiration, calcium retention capacity, oxidative stress and transcript levels of genes encoding proteins controlling mitochondrial functions (PGC1α, PGC1β, NRF1) and anti-oxidant defenses markers (SOD1, SOD2, catalase). CLI resulted in tissue damages and impaired functional scores. Mitochondrial respiration and calcium retention capacity were decreased in the ischemic limb of the non-exercised group (Vmax = 7.11 ± 1.14 vs. 9.86 ± 0.86 mmol 02/min/g dw, p < 0.001; CRC = 7.01 ± 0.97 vs. 11.96 ± 0.92 microM/mg dw, p < 0.001, respectively). Moderate exercise reduced tissue damages, improved functional scores, and restored mitochondrial respiration and calcium retention capacity in the ischemic limb (Vmax = 9.75 ± 1.00 vs. 9.82 ± 0.68 mmol 02/min/g dw; CRC = 11.36 ± 1.33 vs. 12.01 ± 1.24 microM/mg dw, respectively). Exercise also enhanced the transcript levels of PGC1α, PGC1β, NRF1, as well as SOD1, SOD2, and catalase. Moderate exercise restores mitochondrial respiration and calcium retention capacity, and it has beneficial functional effects in chronic CLI, likely by stimulating reactive oxygen species-induced biogenesis and anti-oxidant defenses. These data support further development of exercise therapy even in advanced peripheral arterial disease.
Collapse
Affiliation(s)
- Anne Lejay
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Gilles Laverny
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Stéphanie Paradis
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anna-Isabel Schlagowski
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Anne-Laure Charles
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - François Singh
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France
| | - Joffrey Zoll
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Fabien Thaveau
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Evelyne Lonsdorfer
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Stéphane Dufour
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Fabrice Favret
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Faculté des Sciences du Sport, Université de StrasbourgStrasbourg, France
| | - Valérie Wolff
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Unité Neurovasculaire, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Daniel Metzger
- Institut de Génétique et Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104/Institut National de la Santé et de la Recherche Médicale U964, Université de StrasbourgStrasbourg, France
| | - Nabil Chakfe
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Chirurgie Vasculaire et Transplantation Rénale, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| | - Bernard Geny
- Université de Strasbourg, Fédération de Médecine Translationnnelle, Equipe d'Accueil 3072, Mitochondrie, Stress Oxydant et Protection Musculaire, Institut de PhysiologieStrasbourg, France.,Service de Physiologie et Explorations Fonctionnelles Respiratoires, Hôpitaux Universitaires de StrasbourgStrasbourg, France
| |
Collapse
|
36
|
Bochkezanian V, Newton RU, Trajano GS, Vieira A, Pulverenti TS, Blazevich AJ. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force. BMC Neurol 2017; 17:82. [PMID: 28464800 PMCID: PMC5414318 DOI: 10.1186/s12883-017-0862-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. METHODS Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. RESULTS TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. CONCLUSIONS Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.
Collapse
Affiliation(s)
- Vanesa Bochkezanian
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia. .,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Australia.,Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - Timothy S Pulverenti
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Sports and Exercise Science, School of Medical and Health Sciences, Edith Cowan University, Joondalup 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
37
|
Herget S, Reichardt S, Grimm A, Petroff D, Käpplinger J, Haase M, Markert J, Blüher S. High-Intensity Interval Training for Overweight Adolescents: Program Acceptance of a Media Supported Intervention and Changes in Body Composition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1099. [PMID: 27834812 PMCID: PMC5129309 DOI: 10.3390/ijerph13111099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 12/26/2022]
Abstract
High-intensity interval training (HIIT) consists of short intervals of exercise at high intensity intermitted by intervals of lower intensity and is associated with improvement of body composition and metabolic health in adults. Studies in overweight adolescents are scarce. We conducted a randomized controlled trial in overweight adolescents to compare acceptance and attendance of HIIT with or without weekly motivational encouragement through text messages and access to a study website. HIIT was offered for six months (including summer vacation) twice a week (60 min/session). Participation rates were continuously assessed and acceptance was measured. Clinical parameters were assessed at baseline and after six months. Twenty-eight adolescents participated in this study (age 15.5 ± 1.4; 54% female). The standard deviation score for body mass index over all participants was 2.33 at baseline and decreased by 0.026 (95% CI -0.048 to 0.10) units, p = 0.49. Waist to height ratio was 0.596 at baseline and decreased by 0.013 (95% CI 0.0025 to 0.024), p = 0.023. Participation within the first two months ranged from 65% to 75%, but fell to 15% within the last three months. Attendance in the intervention group was 14% (95% CI -8 to 37), p = 0.18, higher than the control group. Overall program content was rated as "good" by participants, although high drop-out rates were observed. Summer months constitute a serious problem regarding attendance. The use of media support has to be assessed further in appropriately powered trials.
Collapse
Affiliation(s)
- Sabine Herget
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
- Faculty of Architecture and Social Sciences, University of Applied Sciences Leipzig (HTWK), Leipzig 04315, Germany.
| | - Sandra Reichardt
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
| | - Andrea Grimm
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
| | - David Petroff
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
- Clinical Trial Centre, University of Leipzig, Leipzig 04109, Germany.
| | - Jakob Käpplinger
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
| | - Michael Haase
- CityBootCamp Outdoor Fitness Training, Leipzig 04103, Germany.
| | - Jana Markert
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
| | - Susann Blüher
- Integrated Research and Treatment Center (IFB) for Adiposity Diseases, University of Leipzig, Leipzig 04109, Germany.
- Department of Pediatrics, University of Halle-Wittenberg, Halle 06108, Germany.
| |
Collapse
|
38
|
Landram MJ, Utter AC, Baldari C, Guidetti L, McAnulty SR, Collier SR. Differential Effects of Continuous Versus Discontinuous Aerobic Training on Blood Pressure and Hemodynamics. J Strength Cond Res 2016; 32:97-104. [PMID: 27676274 DOI: 10.1519/jsc.0000000000001661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Landram, MJ, Utter, AC, Baldari, C, Guidetti, L, McAnulty, SR, and Collier, SR. Differential effects of continuous versus discontinuous aerobic training on blood pressure and hemodynamics. J Strength Cond Res 32(1): 97-104, 2018-The purpose of this study was to compare the hemodynamic, arterial stiffness, and blood flow changes after 4 weeks of either continuous or discontinuous aerobic exercise in adults. Forty-seven subjects between the ages of 18 and 57 were recruited for 1 month of either continuous aerobic treadmill work for 30 minutes at 70% max heart rate or 3 bouts of 10 minutes of exercise at 70% of max heart rate with two 10 minutes break periods in between, totaling 30 minutes of aerobic work. After exercise, both continuous (CON) and discontinuous (DIS) groups demonstrated a significant improvement in maximal oxygen uptake (V[Combining Dot Above]O2max, CON 35.39 ± 1.99 to 38.19 ± 2.03; DIS 36.18 ± 1.82 to 39.33 ± 1.75), heart rate maximum (CON 183.5 ± 3.11 to 187.17 ± 3.06; DIS 179.06 ± 2.75 to 182 ± 2.61), decreases in systolic blood pressure (CON 119 ± 1.82 to 115.11 ± 1.50; DIS 117.44 ± 1.90 to 112.67 ± 1.66), diastolic blood pressure (CON 72.56 ± 1.65 to 70.56 ± 1.06; DIS 71.56 ± 1.59 to 69.56 ± 1.43), augmentation index (CON 17.17 ± 2.17 to 14.9 ± 1.92; DIS 19.71 ± 2.66 to 13.91 ± 2.46), central pulse wave velocity (CON 8.29 ± 0.32 to 6.92 ± 0.21; DIS 7.85 ± 0.30 to 6.83 ± 0.29), peripheral pulse wave velocity (CON 9.49 ± 0.35 to 7.72 ± 0.38; DIS 9.11 ± 0.37 to 7.58 ± 0.47), and significant increases in average forearm blood flow (CON 4.06 ± 0.12 to 4.34 ± 0.136; DIS 4.26 ± 0.18 to 4.53 ± 0.15), peak forearm blood flow (FBF) after reactive hyperemia (CON 28.45 ± 0.094 to 29.96 ± 0.45; DIS 29.29 ± 0.46 to 30.6 ± 0.38), area under the curve (AUC) of FBF (CON 28.65 ± 1.77 to 30.4 ± 1.08; DIS 30.52 ± 1.9 to 31.67 ± 1.44), and AUC peak FBF after reactive hyperemia (CON 222.3 ± 5.68 to 231.95 ± 4.42; DIS 230.81 ± 6.91 to 237.19 ± 5.39). These data suggest that for healthy people either 4 weeks of continuous or discontinuous aerobic training is effective in improving measures of fitness and vascular health.
Collapse
Affiliation(s)
- Michael J Landram
- Department of Exercise Science and Sport, University of Rome "Foro Italico," Rome, Italy.,Department of Health and Exercise Science, Vascular Biology and Autonomic Studies Laboratory, College of Health Sciences, Appalachian State University, Boone, North Carolina.,Department of Movement, Human and Health Sciences, Division of Health Sciences, The University of Scranton, Scranton, Pennsylvania
| | - Alan C Utter
- Department of Health and Exercise Science, Vascular Biology and Autonomic Studies Laboratory, College of Health Sciences, Appalachian State University, Boone, North Carolina
| | - Carlo Baldari
- Department of Exercise Science and Sport, University of Rome "Foro Italico," Rome, Italy
| | - Laura Guidetti
- Department of Exercise Science and Sport, University of Rome "Foro Italico," Rome, Italy
| | - Steven R McAnulty
- Department of Health and Exercise Science, Vascular Biology and Autonomic Studies Laboratory, College of Health Sciences, Appalachian State University, Boone, North Carolina
| | - Scott R Collier
- Department of Health and Exercise Science, Vascular Biology and Autonomic Studies Laboratory, College of Health Sciences, Appalachian State University, Boone, North Carolina
| |
Collapse
|
39
|
MacInnis MJ, Zacharewicz E, Martin BJ, Haikalis ME, Skelly LE, Tarnopolsky MA, Murphy RM, Gibala MJ. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol 2016; 595:2955-2968. [PMID: 27396440 DOI: 10.1113/jp272570] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS A classic unresolved issue in human integrative physiology involves the role of exercise intensity, duration and volume in regulating skeletal muscle adaptations to training. We employed counterweighted single-leg cycling as a unique within-subject model to investigate the role of exercise intensity in promoting training-induced increases in skeletal muscle mitochondrial content. Six sessions of high-intensity interval training performed over 2 weeks elicited greater increases in citrate synthase maximal activity and mitochondrial respiration compared to moderate-intensity continuous training matched for total work and session duration. These data suggest that exercise intensity, and/or the pattern of contraction, is an important determinant of exercise-induced skeletal muscle remodelling in humans. ABSTRACT We employed counterweighted single-leg cycling as a unique model to investigate the role of exercise intensity in human skeletal muscle remodelling. Ten young active men performed unilateral graded-exercise tests to measure single-leg V̇O2, peak and peak power (Wpeak ). Each leg was randomly assigned to complete six sessions of high-intensity interval training (HIIT) [4 × (5 min at 65% Wpeak and 2.5 min at 20% Wpeak )] or moderate-intensity continuous training (MICT) (30 min at 50% Wpeak ), which were performed 10 min apart on each day, in an alternating order. The work performed per session was matched for MICT (143 ± 8.4 kJ) and HIIT (144 ± 8.5 kJ, P > 0.05). Post-training, citrate synthase (CS) maximal activity (10.2 ± 0.8 vs. 8.4 ± 0.9 mmol kg protein-1 min-1 ) and mass-specific [pmol O2 •(s•mg wet weight)-1 ] oxidative phosphorylation capacities (complex I: 23.4 ± 3.2 vs. 17.1 ± 2.8; complexes I and II: 58.2 ± 7.5 vs. 42.2 ± 5.3) were greater in HIIT relative to MICT (interaction effects, P < 0.05); however, mitochondrial function [i.e. pmol O2 •(s•CS maximal activity)-1 ] measured under various conditions was unaffected by training (P > 0.05). In whole muscle, the protein content of COXIV (24%), NDUFA9 (11%) and mitofusin 2 (MFN2) (16%) increased similarly across groups (training effects, P < 0.05). Cytochrome c oxidase subunit IV (COXIV) and NADH:ubiquinone oxidoreductase subunit A9 (NDUFA9) were more abundant in type I than type II fibres (P < 0.05) but training did not increase the content of COXIV, NDUFA9 or MFN2 in either fibre type (P > 0.05). Single-leg V̇O2, peak was also unaffected by training (P > 0.05). In summary, single-leg cycling performed in an interval compared to a continuous manner elicited superior mitochondrial adaptations in human skeletal muscle despite equal total work.
Collapse
Affiliation(s)
- Martin J MacInnis
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Evelyn Zacharewicz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brian J Martin
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Maria E Haikalis
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lauren E Skelly
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Gifford JR, Trinity JD, Layec G, Garten RS, Park SY, Rossman MJ, Larsen S, Dela F, Richardson RS. Quadriceps exercise intolerance in patients with chronic obstructive pulmonary disease: the potential role of altered skeletal muscle mitochondrial respiration. J Appl Physiol (1985) 2015; 119:882-8. [PMID: 26272320 PMCID: PMC4610006 DOI: 10.1152/japplphysiol.00460.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022] Open
Abstract
This study sought to determine if qualitative alterations in skeletal muscle mitochondrial respiration, associated with decreased mitochondrial efficiency, contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). Using permeabilized muscle fibers from the vastus lateralis of 13 patients with COPD and 12 healthy controls, complex I (CI) and complex II (CII)-driven State 3 mitochondrial respiration were measured separately (State 3:CI and State 3:CII) and in combination (State 3:CI+CII). State 2 respiration was also measured. Exercise tolerance was assessed by knee extensor exercise (KE) time to fatigue. Per milligram of muscle, State 3:CI+CII and State 3:CI were reduced in COPD (P < 0.05), while State 3:CII and State 2 were not different between groups. To determine if this altered pattern of respiration represented qualitative changes in mitochondrial function, respiration states were examined as percentages of peak respiration (State 3:CI+CII), which revealed altered contributions from State 3:CI (Con 83.7 ± 3.4, COPD 72.1 ± 2.4%Peak, P < 0.05) and State 3:CII (Con 64.9 ± 3.2, COPD 79.5 ± 3.0%Peak, P < 0.05) respiration, but not State 2 respiration in COPD. Importantly, a diminished contribution of CI-driven respiration relative to the metabolically less-efficient CII-driven respiration (CI/CII) was also observed in COPD (Con 1.28 ± 0.09, COPD 0.81 ± 0.05, P < 0.05), which was related to exercise tolerance of the patients (r = 0.64, P < 0.05). Overall, this study indicates that COPD is associated with qualitative alterations in skeletal muscle mitochondria that affect the contribution of CI and CII-driven respiration, which potentially contributes to the exercise intolerance associated with this disease.
Collapse
Affiliation(s)
- Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| | - Ryan S Garten
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| | - Song-Young Park
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
41
|
Strassnig MT, Signorile JF, Potiaumpai M, Romero MA, Gonzalez C, Czaja S, Harvey PD. High velocity circuit resistance training improves cognition, psychiatric symptoms and neuromuscular performance in overweight outpatients with severe mental illness. Psychiatry Res 2015; 229:295-301. [PMID: 26187340 DOI: 10.1016/j.psychres.2015.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 11/18/2022]
Abstract
We developed a physical exercise intervention aimed at improving multiple determinants of physical performance in severe mental illness. A sample of 12 (9M, 3F) overweight or obese community-dwelling patients with schizophrenia (n=9) and bipolar disorder (n=3) completed an eight-week, high-velocity circuit resistance training, performed twice a week on the computerized Keiser pneumatic exercise machines, including extensive pre/post physical performance testing. Participants showed significant increases in strength and power in all major muscle groups. There were significant positive cognitive changes, objectively measured with the Brief Assessment of Cognition Scale: improvement in composite scores, processing speed and symbol coding. Calgary Depression Scale for Schizophrenia and Positive and Negative Syndrome Scale total scores improved significantly. There were large gains in neuromuscular performance that have functional implications. The cognitive domains that showed the greatest improvements (memory and processing speed) are most highly predictive of disability in schizophrenia. Moreover, the improvements seen in depression suggest this type of exercise intervention may be a valuable add-on therapy for bipolar depression.
Collapse
Affiliation(s)
- Martin T Strassnig
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joseph F Signorile
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, FL, USA; Center on Aging, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Melanie Potiaumpai
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, FL, USA
| | - Matthew A Romero
- Laboratory of Neuromuscular Research and Active Aging, Department of Kinesiology and Sports Sciences, University of Miami, Coral Gables, FL, USA
| | | | - Sara Czaja
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA; Center on Aging, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA; Center on Aging, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
42
|
Ha MS, Kim DY, Baek YH. Effects of Hatha yoga exercise on plasma malondialdehyde concentration and superoxide dismutase activity in female patients with shoulder pain. J Phys Ther Sci 2015; 27:2109-12. [PMID: 26311934 PMCID: PMC4540828 DOI: 10.1589/jpts.27.2109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to analyze the effects of Hatha yoga exercise on
plasma malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity in
female patients with shoulder pain. [Subjects] Subjects comprised 20 female patients with
shoulder pain. [Methods] Subjects were divided into 2 groups: a Hatha yoga exercise group
(n = 10) and a control group that performed no exercise (n = 10). The subjects’ body
composition, plasma malondialdehyde concentrations, and superoxide dismutase activities
were measured before and after a 16-week Hatha yoga exercise program. [Results] After the
16-week Hatha yoga exercise program, the exercise group had significantly lower plasma MDA
concentrations than the control group. In addition, the exercise group had significantly
higher plasma SOD activity than the control group. [Conclusions] Hatha yoga exercise
improves flexibility, muscle tone and strength, balance, and joint function. Our findings
indicate that regular and continuous yoga exercise effectively improved body composition,
decrease plasma MDA concentration, and increase plasma SOD activity in female patients
with shoulder pain.
Collapse
Affiliation(s)
- Min-Sung Ha
- Department of Physical Education, Pusan National University, Republic of Korea
| | - Do-Yeon Kim
- Department of Physical Education, Pusan National University, Republic of Korea
| | - Yeong-Ho Baek
- Department of Physical Education, Pusan National University, Republic of Korea
| |
Collapse
|
43
|
Ramos-Filho D, Chicaybam G, de-Souza-Ferreira E, Guerra Martinez C, Kurtenbach E, Casimiro-Lopes G, Galina A. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles. PLoS One 2015; 10:e0131766. [PMID: 26121248 PMCID: PMC4488295 DOI: 10.1371/journal.pone.0131766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.
Collapse
Affiliation(s)
- Dionizio Ramos-Filho
- Laboratory of Bioenergetics and Mitochondrial Physiology-Institute of Medical Biochemistry Leopoldo de Meis-Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AG); (DRF)
| | - Gustavo Chicaybam
- Laboratory of Bioenergetics and Mitochondrial Physiology-Institute of Medical Biochemistry Leopoldo de Meis-Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology-Institute of Medical Biochemistry Leopoldo de Meis-Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Guerra Martinez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eleonora Kurtenbach
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Casimiro-Lopes
- Institute of Physical Education and Sports-State University of Rio de Janeiro, UERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology-Institute of Medical Biochemistry Leopoldo de Meis-Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (AG); (DRF)
| |
Collapse
|
44
|
Nordsborg NB, Connolly L, Weihe P, Iuliano E, Krustrup P, Saltin B, Mohr M. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. J Appl Physiol (1985) 2015; 119:116-23. [PMID: 26023221 DOI: 10.1152/japplphysiol.00101.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
The hypothesis that the adaptive capacity is higher in human upper- than lower-body skeletal muscle was tested. Furthermore, the hypothesis that more pronounced adaptations in upper-body musculature can be achieved by "low-volume high-intensity" compared with "high-volume low-intensity" exercise training was evaluated. A group of sedentary premenopausal women aged 45 ± 6 yr (± SD) with expected high adaptive potential in both upper- and lower-extremity muscle groups participated. After random allocation to high-intensity swimming (HIS, n = 21), moderate-intensity swimming (MOS, n = 21), soccer (SOC, n = 21) or a nontraining control group (CON, n = 20), the training groups completed three workouts per week for 15 wk. Resting muscle biopsies were obtained from the vastus lateralis muscle and deltoideus muscle before and after the intervention. After the training intervention, a larger (P < 0.05) increase existed in deltoideus muscle of the HIS group compared with vastus lateralis muscle of the SOC group for citrate synthase maximal activity (95 ± 89 vs. 27 ± 34%), citrate synthase protein expression (100 ± 29 vs. 31 ± 44%), 3-hydroxyacyl-CoA dehydrogenase maximal activity (35 ± 43 vs. 3 ± 25%), muscle glycogen content (63 ± 76 vs. 20 ± 51%), and expression of mitochondrial complex II, III, and IV. Additionally, HIS caused higher (P < 0.05) increases than MOS in deltoideus muscle citrate synthase maximal activity, citrate synthase protein expression, and muscle glycogen content. In conclusion, the deltoideus muscle has a higher adaptive potential than the vastus lateralis muscle in sedentary women, and "high-intensity low-volume" training is a more efficient regime than "low-intensity high-volume" training for increasing the aerobic capacity of the deltoideus muscle.
Collapse
Affiliation(s)
- Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Luke Connolly
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
| | - Enzo Iuliano
- Department of Medicine and Health Sciences, University of Molise, Molise, Italy
| | - Peter Krustrup
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark; Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Bengt Saltin
- Copenhagen Muscle Research Centre, Rigshopsitalet and University of Copenhagen, Copenhagen, Denmark
| | - Magni Mohr
- Faculty of Natural and Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands; and Center of Health and Human Performance, Department of Food and Nutrition, and Sport Science, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
45
|
Boushel R, Lundby C, Qvortrup K, Sahlin K. Mitochondrial plasticity with exercise training and extreme environments. Exerc Sport Sci Rev 2015; 42:169-74. [PMID: 25062000 DOI: 10.1249/jes.0000000000000025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mitochondria form a reticulum in skeletal muscle. Exercise training stimulates mitochondrial biogenesis, yet an emerging hypothesis is that training also induces qualitative regulatory changes. Substrate oxidation, oxygen affinity, and biochemical coupling efficiency may be regulated differentially with training and exposure to extreme environments. Threshold training doses inducing mitochondrial upregulation remain to be elucidated considering fitness level.
Collapse
Affiliation(s)
- Robert Boushel
- 1Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden; 2Center for Integrative Human Physiology, Institute of Physiology, University of Zurich, Zurich, Switzerland; and 3Department of Biomedical Sciences, Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
46
|
Vincent G, Lamon S, Gant N, Vincent PJ, MacDonald JR, Markworth JF, Edge JA, Hickey AJR. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training. Front Physiol 2015; 6:51. [PMID: 25759671 PMCID: PMC4338748 DOI: 10.3389/fphys.2015.00051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/05/2015] [Indexed: 11/13/2022] Open
Abstract
PURPOSE High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. METHODS Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. RESULTS HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. CONCLUSION Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression.
Collapse
Affiliation(s)
- Grace Vincent
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne VIC, Australia ; Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Melbourne VIC, Australia
| | - Nicholas Gant
- Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Peter J Vincent
- Department of General Practice and Primary Healthcare, Auckland School of Medicine, The University of Auckland Auckland, New Zealand
| | - Julia R MacDonald
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland Auckland, New Zealand
| | | | - Johann A Edge
- Department of Sport and Exercise Science, The University of Auckland Auckland, New Zealand
| | - Anthony J R Hickey
- Applied Surgery and Metabolism Laboratory, School of Biological Sciences, The University of Auckland Auckland, New Zealand
| |
Collapse
|
47
|
Isner-Horobeti ME, Rasseneur L, Lonsdorfer-Wolf E, Dufour SP, Doutreleau S, Bouitbir J, Zoll J, Kapchinsky S, Geny B, Daussin FN, Burelle Y, Richard R. Effect of eccentric versus concentric exercise training on mitochondrial function. Muscle Nerve 2014; 50:803-11. [PMID: 24639213 DOI: 10.1002/mus.24215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 01/22/2023]
Abstract
INTRODUCTION The effect of eccentric (ECC) versus concentric (CON) training on metabolic properties in skeletal muscle is understood poorly. We determined the responses in oxidative capacity and mitochondrial H2 O2 production after eccentric (ECC) versus concentric (CON) training performed at similar mechanical power. METHODS Forty-eight rats performed 5- or 20-day eccentric (ECC) or concentric (CON) training programs. Mitochondrial respiration, H2 O2 production, citrate synthase activity (CS), and skeletal muscle damage were assessed in gastrocnemius (GAS), soleus (SOL) and vastus intermedius (VI) muscles. RESULTS Maximal mitochondrial respiration improved only after 20 days of concentric (CON) training in GAS and SOL. H2 O2 production increased specifically after 20 days of eccentric ECC training in VI. Skeletal muscle damage occurred transiently in VI after 5 days of ECC training. CONCLUSIONS Twenty days of ECC versus CON training performed at similar mechanical power output do not increase skeletal muscle oxidative capacities, but it elevates mitochondrial H2 O2 production in VI, presumably linked to transient muscle damage.
Collapse
Affiliation(s)
- Marie-Eve Isner-Horobeti
- Strasbourg University, Physical and Rehabilitation Medicine Department, Strasbourg University Rehabilitation Institute, France; Strasbourg University, Fédération de Médecine Translationnelle de Strasbourg (FMTS), EA 3072 "Mitochondrie, stress oxydant et protection musculaire", France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Garzon M, Juneau M, Dupuy O, Nigam A, Bosquet L, Comtois A, Gayda M. Cardiovascular and hemodynamic responses on dryland vs. immersed cycling. J Sci Med Sport 2014; 18:619-23. [PMID: 25183667 DOI: 10.1016/j.jsams.2014.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the effect of water immersion on oxygen uptake (VO2) and central hemodynamic responses during incremental maximal exercise at the same external power output (P ext) and recovery on an immersible ergocycle vs. a dryland ergocycle. DESIGN Cross-over design study. METHODS Twenty healthy participants (32 ± 7 years; 173 ± 6 cm; 71.7 ± 9.7 kg) performed maximal incremental exercise tests while pedalling either immersed on immersible ergocycle (Hydrorider(®)) or on dryland ergocycle (Ergoline 800 S; Bitz, Germany). Initial P ext of dryland ergocycle protocol was set at 25 W and increased by 25 W every minute until exhaustion. P ext on immersible ergocycle was controlled by pedalling rate (rpm). Initial rpm was set at 40 rpm and was increased by 10 rpm until 70 rpm and thereafter by 5 rpm until exhaustion. Gas exchange and central hemodynamic parameters were measured continuously during exercise and a 5-min recovery period. Reported VO2, stroke volume, cardiac output (Q) and arteriovenous difference (C(a-v)O2) were compared. RESULTS During exercise on immersible ergocycle, VO2 and C(a-v)O2 were lower (P < 0.0001) whereas stroke volume and Q were higher (P < 0.05) relative to a dryland ergocycle exercise of equivalent P ext. CONCLUSIONS During exercise and recovery in immersion, (VO2) and arteriovenous difference were reduced in healthy young participants, while stroke volume and cardiac output were increased for the same P ext. During the recovery, central hemodynamics responses remained higher in immersible ergocycle.
Collapse
Affiliation(s)
- Mauricio Garzon
- Cardiovascular Prevention and Rehabilitation Centre (EPIC), Montreal Heart Institute, Canada; Research Center, Montreal Heart Institute and University of Montreal, Canada; Department of Kinesiology, University of Montreal, Canada
| | - Martin Juneau
- Cardiovascular Prevention and Rehabilitation Centre (EPIC), Montreal Heart Institute, Canada; Research Center, Montreal Heart Institute and University of Montreal, Canada; Department of Medicine, University of Montreal, Canada
| | - Olivier Dupuy
- Cardiovascular Prevention and Rehabilitation Centre (EPIC), Montreal Heart Institute, Canada; Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, France
| | - Anil Nigam
- Cardiovascular Prevention and Rehabilitation Centre (EPIC), Montreal Heart Institute, Canada; Research Center, Montreal Heart Institute and University of Montreal, Canada; Department of Medicine, University of Montreal, Canada
| | - Laurent Bosquet
- Faculty of Sport Sciences, Laboratory MOVE (EA 6314), University of Poitiers, France
| | - Alain Comtois
- Department of Kinanthropology, University of Quebec in Montreal, Canada
| | - Mathieu Gayda
- Cardiovascular Prevention and Rehabilitation Centre (EPIC), Montreal Heart Institute, Canada; Research Center, Montreal Heart Institute and University of Montreal, Canada; Department of Medicine, University of Montreal, Canada.
| |
Collapse
|
49
|
Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol 2014; 5:33. [PMID: 24550842 PMCID: PMC3912323 DOI: 10.3389/fphys.2014.00033] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/16/2014] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED ENDURANCE ATHLETES INTEGRATE FOUR CONDITIONING CONCEPTS IN THEIR TRAINING PROGRAMS: high-volume training (HVT), "threshold-training" (THR), high-intensity interval training (HIIT) and a combination of these aforementioned concepts known as polarized training (POL). The purpose of this study was to explore which of these four training concepts provides the greatest response on key components of endurance performance in well-trained endurance athletes. METHODS Forty eight runners, cyclists, triathletes, and cross-country skiers (peak oxygen uptake: (VO2peak): 62.6 ± 7.1 mL·min(-1)·kg(-1)) were randomly assigned to one of four groups performing over 9 weeks. An incremental test, work economy and a VO2peak tests were performed. Training intensity was heart rate controlled. RESULTS POL demonstrated the greatest increase in VO2peak (+6.8 ml·min·kg(-1) or 11.7%, P < 0.001), time to exhaustion during the ramp protocol (+17.4%, P < 0.001) and peak velocity/power (+5.1%, P < 0.01). Velocity/power at 4 mmol·L(-1) increased after POL (+8.1%, P < 0.01) and HIIT (+5.6%, P < 0.05). No differences in pre- to post-changes of work economy were found between the groups. Body mass was reduced by 3.7% (P < 0.001) following HIIT, with no changes in the other groups. With the exception of slight improvements in work economy in THR, both HVT and THR had no further effects on measured variables of endurance performance (P > 0.05). CONCLUSION POL resulted in the greatest improvements in most key variables of endurance performance in well-trained endurance athletes. THR or HVT did not lead to further improvements in performance related variables.
Collapse
Affiliation(s)
- Thomas Stöggl
- Department of Sport Science and Kinesiology, University of Salzburg Salzburg, Austria ; Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University Östersund, Sweden
| | - Billy Sperlich
- Institute of Sport Science, University of Würzburg Würzburg, Germany
| |
Collapse
|
50
|
Vezzoli A, Pugliese L, Marzorati M, Serpiello FR, La Torre A, Porcelli S. Time-course changes of oxidative stress response to high-intensity discontinuous training versus moderate-intensity continuous training in masters runners. PLoS One 2014; 9:e87506. [PMID: 24498121 PMCID: PMC3909150 DOI: 10.1371/journal.pone.0087506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/25/2013] [Indexed: 12/23/2022] Open
Abstract
Beneficial systemic effects of regular physical exercise have been demonstrated to reduce risks of a number of age-related disorders. Antioxidant capacity adaptations are amongst these fundamental changes in response to exercise training. However, it has been claimed that acute physical exercise performed at high intensity (>60% of maximal oxygen uptake) may result in oxidative stress, due to reactive oxygen species being generated excessively by enhanced oxygen consumption. The aim of this study was to evaluate the effect of high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on oxidative damage. Twenty long-distance masters runners (age 47.8 ± 7.8 yr) on the basis of the individual values of gas exchange threshold were assigned to a different 8-weeks training program: continuous moderate-intensity training (MOD, n = 10) or HIDT (n = 10). In both groups before (PRE) and after (POST) training we examined the following oxidative damage markers: thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation; protein carbonyls (PC) as marker of protein oxidation; 8-hydroxy-2-deoxy-guanosine (8-OH-dG) as a biomarker of DNA base modifications; and total antioxidant capacity (TAC) as indicator of the overall antioxidant system. Training induced a significant (p<0.05) decrease in resting plasma TBARS concentration in both MOD (7.53 ± 0.30 and 6.46 ± 0.27 µM, PRE and POST respectively) and HIDT (7.21 ± 0.32 and 5.85 ± 0.46 µM, PRE and POST respectively). Resting urinary 8-OH-dG levels were significantly decreased in both MOD (5.50 ± 0.66 and 4.16 ± 0.40 ng mg(-1)creatinine, PRE and POST respectively) and HIDT (4.52 ± 0.50 and 3.18 ± 0.34 ng mg(-1)creatinine, PRE and POST respectively). Training both in MOD and HIDT did not significantly modify plasma levels of PC. Resting plasma TAC was reduced in MOD while no significant changes were observed in HIDT. In conclusion, these results suggest that in masters runners high-intensity discontinuous does not cause higher level of exercise-induced oxidative stress than continuous moderate-intensity training, inducing similar beneficial effects on redox homeostasis.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
| | - Lorenzo Pugliese
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Mauro Marzorati
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
| | - Fabio Rubens Serpiello
- Institute of Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Antonio La Torre
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Simone Porcelli
- Institute of Bioimaging and Molecular Physiology, CNR, Segrate (Milano), Italy
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|