1
|
Arora S, Houdek P, Čajka T, Dočkal T, Sládek M, Sumová A. Chronodisruption that dampens output of the central clock abolishes rhythms in metabolome profiles and elevates acylcarnitine levels in the liver of female rats. Acta Physiol (Oxf) 2025; 241:e14278. [PMID: 39801395 PMCID: PMC11726269 DOI: 10.1111/apha.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Exposure to light at night and meal time misaligned with the light/dark (LD) cycle-typical features of daily life in modern 24/7 society-are associated with negative effects on health. To understand the mechanism, we developed a novel protocol of complex chronodisruption (CD) in which we exposed female rats to four weekly cycles consisting of 5-day intervals of constant light and 2-day intervals of food access restricted to the light phase of the 12:12 LD cycle. METHODS We examined the effects of CD on behavior, estrous cycle, sleep patterns, glucose homeostasis and profiles of clock- and metabolism-related gene expression (using RT qPCR) and liver metabolome and lipidome (using untargeted metabolomic and lipidomic profiling). RESULTS CD attenuated the rhythmic output of the central clock in the suprachiasmatic nucleus via Prok2 signaling, thereby disrupting locomotor activity, the estrous cycle, sleep patterns, and mutual phase relationship between the central and peripheral clocks. In the periphery, CD abolished Per1,2 expression rhythms in peripheral tissues (liver, pancreas, colon) and worsened glucose homeostasis. In the liver, it impaired the expression of NAD+, lipid, and cholesterol metabolism genes and abolished most of the high-amplitude rhythms of lipids and polar metabolites. Interestingly, CD abolished the circadian rhythm of Cpt1a expression and increased the levels of long-chain acylcarnitines (ACar 18:2, ACar 16:0), indicating enhanced fatty acid oxidation in mitochondria. CONCLUSION Our data show the widespread effects of CD on metabolism and point to ACars as biomarkers for CD due to misaligned sleep and feeding patterns.
Collapse
Affiliation(s)
- Shiyana Arora
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Pavel Houdek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Čajka
- Laboratory of Translational MetabolismInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Dočkal
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Martin Sládek
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Alena Sumová
- Laboratory of Biological RhythmsInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
2
|
Hussain Y, Dar MI, Pan X. Circadian Influences on Brain Lipid Metabolism and Neurodegenerative Diseases. Metabolites 2024; 14:723. [PMID: 39728504 DOI: 10.3390/metabo14120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Circadian rhythms are intrinsic, 24 h cycles that regulate key physiological, mental, and behavioral processes, including sleep-wake cycles, hormone secretion, and metabolism. These rhythms are controlled by the brain's suprachiasmatic nucleus, which synchronizes with environmental signals, such as light and temperature, and consequently maintains alignment with the day-night cycle. Molecular feedback loops, driven by core circadian "clock genes", such as Clock, Bmal1, Per, and Cry, are essential for rhythmic gene expression; disruptions in these feedback loops are associated with various health issues. Dysregulated lipid metabolism in the brain has been implicated in the pathogenesis of neurological disorders by contributing to oxidative stress, neuroinflammation, and synaptic dysfunction, as observed in conditions such as Alzheimer's and Parkinson's diseases. Disruptions in circadian gene expression have been shown to perturb lipid regulatory mechanisms in the brain, thereby triggering neuroinflammatory responses and oxidative damage. This review synthesizes current insights into the interconnections between circadian rhythms and lipid metabolism, with a focus on their roles in neurological health and disease. It further examines how the desynchronization of circadian genes affects lipid metabolism and explores the potential mechanisms through which disrupted circadian signaling might contribute to the pathophysiology of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Mansingh S, Maier G, Delezie J, Westermark PO, Ritz D, Duchemin W, Santos G, Karrer‐Cardel B, Steurer SA, Albrecht U, Handschin C. More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα. J Physiol 2024; 602:6373-6402. [PMID: 38850551 PMCID: PMC11607892 DOI: 10.1113/jp285585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Circadian rhythms, governed by the dominant central clock, in addition to various peripheral clocks, regulate almost all biological processes, including sleep-wake cycles, hormone secretion and metabolism. In certain contexts, the regulation and function of the peripheral oscillations can be decoupled from the central clock. However, the specific mechanisms underlying muscle-intrinsic clock-dependent modulation of muscle function and metabolism remain unclear. We investigated the outcome of perturbations of the primary and secondary feedback loops of the molecular clock in skeletal muscle by specific gene ablation of Period circadian regulator 2 (Per2) and RAR-related orphan receptor alpha (Rorα), respectively. In both models, a dampening of core clock gene oscillation was observed, while the phase was preserved. Moreover, both loops seem to be involved in the homeostasis of amine groups. Highly divergent outcomes were seen for overall muscle gene expression, primarily affecting circadian rhythmicity in the PER2 knockouts and non-oscillating genes in the RORα knockouts, leading to distinct outcomes in terms of metabolome and phenotype. These results highlight the entanglement of the molecular clock and muscle plasticity and allude to specific functions of different clock components, i.e. the primary and secondary feedback loops, in this context. The reciprocal interaction between muscle contractility and circadian clocks might therefore be instrumental to determining a finely tuned adaptation of muscle tissue to perturbations in health and disease. KEY POINTS: Specific perturbations of the primary and secondary feedback loop of the molecular clock result in specific outcomes on muscle metabolism and function. Ablation of Per2 (primary loop) or Rorα (secondary loop) blunts the amplitude of core clock genes, in absence of a shift in phase. Perturbation of the primary feedback loop by deletion of PER2 primarily affects muscle gene oscillation. Knockout of RORα and the ensuing modulation of the secondary loop results in the aberrant expression of a large number of non-clock genes and proteins. The deletion of PER2 and RORα affects muscle metabolism and contractile function in a circadian manner, highlighting the central role of the molecular clock in modulating muscle plasticity.
Collapse
Affiliation(s)
| | | | | | - Pål O. Westermark
- Leibniz‐Institut für NutztierbiologieInstitut für Genetik und BiometrieDummerstorfGermany
| | - Danilo Ritz
- Biozentrum, University of BaselBaselSwitzerland
| | - Wandrille Duchemin
- sciCORE Center for Scientific ComputingUniversity of BaselBaselSwitzerland
| | - Gesa Santos
- Biozentrum, University of BaselBaselSwitzerland
| | | | | | - Urs Albrecht
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | | |
Collapse
|
4
|
Harmsen J, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, de Kam S, Moonen‐Kornips E, Cissen J, Doligkeit D, van de Weijer T, Erazo‐Tapia E, Buitinga M, Hoeks J, Schrauwen P. Exercise training modifies skeletal muscle clock gene expression but not 24-hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol 2024; 602:6417-6433. [PMID: 38051503 PMCID: PMC11607886 DOI: 10.1113/jp285523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.
Collapse
Affiliation(s)
- Jan‐Frieder Harmsen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Marit Kotte
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Ivo Habets
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Frederieke Bosschee
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Koen Frenken
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Johanna A. Jorgensen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Soraya de Kam
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Esther Moonen‐Kornips
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jochem Cissen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Daniel Doligkeit
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Tineke van de Weijer
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Edmundo Erazo‐Tapia
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mijke Buitinga
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement SciencesNUTRIM School for Nutrition and Translational Research in MetabolismMaastricht University Medical CenterMaastrichtThe Netherlands
| |
Collapse
|
5
|
Chen M, Ouyang Y, Yang Y, Liu Z, Zhao M. Impact of sleep problems on the cardiometabolic risks: an integrated epidemiological and metabolomics study. Diabetol Metab Syndr 2024; 16:267. [PMID: 39523349 PMCID: PMC11552365 DOI: 10.1186/s13098-024-01505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND We investigated the association between sleep problems and cardiometabolic risks and the potential linking effect of metabolites and metabolic pathways based on multi-layered research, including observational, mendelian randomization (MR), and metabolomics analysis. METHODS A cross-sectional analysis of the 2015-2018 National Health and Nutrition Examination Survey (NHANES) dataset was conducted to identify the association between sleep problems and cardiometabolic risks. A subsequent MR study based on genetic data was performed to explore the causal correlation of significant associations in the NHANES study. The underlying alteration of metabolism was explored by constructing zebrafish models and wide-targeted metabolomics analysis. RESULTS The cross-sectional analysis of the NHANES database revealed a significant association of snoring with obesity [OR = 2.65, 95% confidence intervals (CI): 1.87, 3.74]; sleep apnea with hypertension (OR = 1.68, 95% CI: 1.14, 2.48) and obesity (OR = 1.44, 95% CI: 1.05, 1.96); trouble sleeping with hypertension (OR = 1.84, 95% CI: 1.18, 2.86), obesity (OR = 1.56, 95% CI: 1.07, 2.26), and type 2 diabetes (T2DM) (OR = 1.52, 95% CI: 1.02, 2.25). MR analysis verified the causal relationship between genetically proxied sleep apnea or snoring and obesity. The decreased activity levels and altered expression levels of six circadian genes (bmal1b, cry1aa, cry1ab, clock1a, per1b, per2) were identified in the zebrafish of the sleep disorder group. Multiple metabolites related to disturbed glucose metabolism (e.g., 20-HETE), lipid metabolism (e.g., inosine), and vascular-related metabolites (e.g., riboflavin) were finally identified, indicating the latent effect of metabolism. CONCLUSIONS This study identified the chain of sleep-circadian rhythm-metabolism-cardiometabolic risks. These findings can promote improved prevention implementation and therapeutic strategies.
Collapse
Affiliation(s)
- Mingcong Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yuzhen Ouyang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zihao Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Huizer K, Banga IK, Kumar RM, Muthukumar S, Prasad S. Dynamic Real-Time Biosensing Enabled Biorhythm Tracking for Psychiatric Disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2021. [PMID: 39654328 DOI: 10.1002/wnan.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 01/12/2025]
Abstract
This review article explores the transformative potential of dynamic, real-time biosensing in biorhythm tracking for psychiatric disorders. Psychiatric diseases, characterized by a complex, heterogeneous, and multifactorial pathophysiology, pose challenges in both diagnosis and treatment. Common denominators in the pathophysiology of psychiatric diseases include disruptions in the stress response, sleep-wake cycle, energy metabolism, and immune response: all of these are characterized by a strong biorhythmic regulation (e.g., circadian), leading to dynamic changes in the levels of biomarkers involved. Technological and practical limitations have hindered the analysis of such dynamic processes to date. The integration of biosensors marks a paradigm shift in psychiatric research. These advanced technologies enable multiplex, non-invasive, and near-continuous analysis of biorhythmic biomarkers in real time, overcoming the constraints of conventional approaches. Focusing on the regulation of the stress response, sleep/wake cycle, energy metabolism, and immune response, biosensing allows for a deeper understanding of the heterogeneous and multifactorial pathophysiology of psychiatric diseases. The potential applications of nanobiosensing in biorhythm tracking, however, extend beyond observation. Continuous monitoring of biomarkers can provide a foundation for personalized medicine in Psychiatry, and allow for the transition from syndromal diagnostic entities to pathophysiology-based psychiatric diagnoses. This evolution promises enhanced disease tracking, early relapse prediction, and tailored disease management and treatment strategies. As non-invasive biosensing continues to advance, its integration into biorhythm tracking holds promise not only to unravel the intricate etiology of psychiatric disorders but also for ushering in a new era of precision medicine, ultimately improving the outcomes and quality of life for individuals grappling with these challenging conditions.
Collapse
Affiliation(s)
- Karin Huizer
- Parnassia Academy, Parnassia Psychiatric Institute, Hague, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Yang T, Wang HR, Mou YK, Liu WC, Wang Y, Song XY, Ren C, Song XC. Mutual Influence Between Allergic Rhinitis and Sleep: Factors, Mechanisms, and interventions-A Narrative Review. Nat Sci Sleep 2024; 16:1451-1467. [PMID: 39318396 PMCID: PMC11420902 DOI: 10.2147/nss.s482258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Patients with allergic rhinitis (AR) have a high incidence of sleep disorders, such as insomnia, which can easily exacerbate nasal symptoms. The aggravation of nasal symptoms further promotes the deterioration of sleep disorders, forming a vicious cycle. Severe cases may even trigger psychological and neurological issues, such as anxiety, depression, and cognitive impairment, causing significant distress to patients, making clinical diagnosis and treatment difficult, and increasing costs. Furthermore, satisfactory therapeutics remain lacking. As the pathogenesis of AR-associated sleep disorders is not clear and research is still insufficient, paying attention to and understanding AR-related sleep disorders is crucial in clinical practice. Multiple studies have shown that the most crucial issues in current research on AR and sleep are analyzing the relationship between AR and sleep disorders, searching for the influencing factors, and investigating potential targets for diagnosis and treatment. This review aimed to identify and summarize the results of relevant studies using "AR" and "sleep disorders" as search terms. In addition, we evaluated the correlation between AR and sleep disorders and examined their interaction and potential mechanisms, offering a foundation for additional screening of potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Han-Rui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Ya-Kui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Wan-Chen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xiao-Yu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| |
Collapse
|
8
|
Park H, Metwally AA, Delfarah A, Wu Y, Perelman D, Rodgar M, Mayer C, Celli A, McLaughlin T, Mignot E, Snyder M. Lifestyle Profiling Using Wearables and Prediction of Glucose Metabolism in Individuals with Normoglycemia or Prediabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.05.24312545. [PMID: 39281757 PMCID: PMC11398605 DOI: 10.1101/2024.09.05.24312545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
This study examined the relationship between lifestyles (diet, sleep, and physical activity) and glucose responses at a personal level. 36 healthy adults in the Bay Area were monitored for their lifestyles and glucose levels using wearables and continuous glucose monitoring (NCT03919877). Gold-standard metabolic tests were conducted to phenotype metabolic characteristics. Through the lifestyle data (2,307 meals, 1,809 nights, and 2,447 days) and 231,206 CGM readings from metabolically-phenotyped individuals with normoglycemia or prediabetes, we found: 1) eating timing was associated with hyperglycemia, muscle insulin resistance (IR), and incretin dysfunction, whereas nutrient intakes were not; 2) timing of increased activity in muscle IS and IR participants was associated with differential benefits of glucose control; 3) Integrated ML models using lifestyle factors predicted distinct metabolic characteristics (muscle, adipose IR or incretin dysfunction). Our data indicate the differential impact of lifestyles on glucose regulation among individuals with different metabolic phenotypes, highlighting the value of personalized lifestyle modifications.
Collapse
Affiliation(s)
- Heyjun Park
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, U.S.A
| | - Ahmed A. Metwally
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Alireza Delfarah
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Yue Wu
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Dalia Perelman
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Majid Rodgar
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Caleb Mayer
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Alessandra Celli
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| | - Tracey McLaughlin
- Department of Medicine, Stanford University, Stanford, CA 94305, U.S.A
| | - Emmanuel Mignot
- Center for Sleep, Sciences and Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, U.S.A
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
9
|
Xie X, Zhang M, Luo H. Regulation of metabolism by circadian rhythms: Support from time-restricted eating, intestinal microbiota & omics analysis. Life Sci 2024; 351:122814. [PMID: 38857654 DOI: 10.1016/j.lfs.2024.122814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Circadian oscillatory system plays a key role in coordinating the metabolism of most organisms. Perturbation of genetic effects and misalignment of circadian rhythms result in circadian dysfunction and signs of metabolic disorders. The eating-fasting cycle can act on the peripheral circadian clocks, bypassing the photoperiod. Therefore, time-restricted eating (TRE) can improve metabolic health by adjusting eating rhythms, a process achieved through reprogramming of circadian genomes and metabolic programs at different tissue levels or remodeling of the intestinal microbiota, with omics technology allowing visualization of the regulatory processes. Here, we review recent advances in circadian regulation of metabolism, focus on the potential application of TRE for rescuing circadian dysfunction and metabolic disorders with the contribution of intestinal microbiota in between, and summarize the significance of omics technology.
Collapse
Affiliation(s)
- Ximei Xie
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China
| | - Mengjie Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, PR China.
| |
Collapse
|
10
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
11
|
Simonson AP, Zera JN, Banerjee P, Baker BM. Associations between Dietary Intake and Cardiovascular Disease Risk in American Career Firefighters: An Observational Study. J Funct Morphol Kinesiol 2024; 9:132. [PMID: 39189217 PMCID: PMC11348120 DOI: 10.3390/jfmk9030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Firefighters have demanding jobs, requiring high levels of fitness in stressful situations for operational readiness, yet many firefighters are at an increased risk of developing cardiovascular disease (CVD). Diet is an important factor contributing to the development of CVD. The purpose of this study was to describe the dietary intake of firefighters and examine the associations between dietary intake and the CVD risk. Forty-six male career firefighters (age = 41.2 ± 11.2 years; BMI = 29.2 ± 4.1 kg/m2; body fat = 21.7 ± 6.1%) enrolled in a fitness-focused wellness program completed a health survey and a fitness assessment. The survey responses and fitness assessment were used to calculate the Framingham CVD Risk Score. Data were analyzed using R, the residual assumptions were verified, and the alpha level was set at 0.05. The results revealed that firefighters consume a standard American diet, with the overconsumption of meat and underconsumption of fruits and vegetables. The average CVD risk approached the upper limit of low risk. The results also indicate that meat servings and preparation fat affect the CVD risk (R2 = 0.21, p = 0.006). The outcomes of this study can inform investigations aimed at improving operational readiness and reducing the CVD risk in firefighters by implementing a holistic approach combining dietary interventions with physical training.
Collapse
Affiliation(s)
- Anna Peluso Simonson
- Department of Exercise Science and Sports Leadership, John Carroll University, University Heights, OH 44122, USA;
| | - Jacquelyn N. Zera
- Department of Exercise Science and Sports Leadership, John Carroll University, University Heights, OH 44122, USA;
| | - Paromita Banerjee
- Department of Mathematics, Computer Science and Data Science, John Carroll University, University Heights, OH 44122, USA;
| | - Brianne M. Baker
- Department of Nutrition Sciences, Dominican University, River Forest, IL 60305, USA;
| |
Collapse
|
12
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Cela O, Scrima R, Pacelli C, Rosiello M, Piccoli C, Capitanio N. Autonomous Oscillatory Mitochondrial Respiratory Activity: Results of a Systematic Analysis Show Heterogeneity in Different In Vitro-Synchronized Cancer Cells. Int J Mol Sci 2024; 25:7797. [PMID: 39063035 PMCID: PMC11276763 DOI: 10.3390/ijms25147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype.
Collapse
Affiliation(s)
- Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.R.); (C.P.); (N.C.)
| | | | | | | | | |
Collapse
|
14
|
Buijink MR, van Weeghel M, Harms A, Murli DS, Meijer JH, Hankemeier T, Michel S, Kervezee L. Loss of temporal coherence in the circadian metabolome across multiple tissues during ageing in mice. Eur J Neurosci 2024; 60:3843-3857. [PMID: 38802069 DOI: 10.1111/ejn.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Circadian clock function declines with ageing, which can aggravate ageing-related diseases such as type 2 diabetes and neurodegenerative disorders. Understanding age-related changes in the circadian system at a systemic level can contribute to the development of strategies to promote healthy ageing. The goal of this study was to investigate the impact of ageing on 24-h rhythms in amine metabolites across four tissues in young (2 months of age) and old (22-25 months of age) mice using a targeted metabolomics approach. Liver, plasma, the suprachiasmatic nucleus (SCN; the location of the central circadian clock in the hypothalamus) and the paraventricular nucleus (PVN; a downstream target of the SCN) were collected from young and old mice every 4 h during a 24-h period (n = 6-7 mice per group). Differential rhythmicity analysis revealed that ageing impacts 24-h rhythms in the amine metabolome in a tissue-specific manner. Most profound changes were observed in the liver, in which rhythmicity was lost in 60% of the metabolites in aged mice. Furthermore, we found strong correlations in metabolite levels between the liver and plasma and between the SCN and the PVN in young mice. These correlations were almost completely abolished in old mice. These results indicate that ageing is accompanied by a severe loss of the circadian coordination between tissues and by disturbed rhythmicity of metabolic processes. The tissue-specific impact of ageing may help to differentiate mechanisms of ageing-related disorders in the brain versus peripheral tissues and thereby contribute to the development of potential therapies for these disorders.
Collapse
Affiliation(s)
- M Renate Buijink
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel van Weeghel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Devika S Murli
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Stephan Michel
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Kervezee
- Laboratory for Neurophysiology, Department of Cellular and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
16
|
Marehalli Srinivas SG, Avanzini F, Esposito M. Characterizing the conditions for indefinite growth in open chemical reaction networks. Phys Rev E 2024; 109:064153. [PMID: 39020892 DOI: 10.1103/physreve.109.064153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
The thermodynamic and dynamical conditions necessary to observe indefinite growth in homogeneous open chemical reaction networks (CRNs) satisfying mass action kinetics are presented in Srinivas et al. [Phys. Rev. Lett. 132, 268001 (2024)10.1103/PhysRevLett.132.268001]. Unimolecular CRNs can accumulate only equilibrium concentrations of species while multimolecular CRNs are needed to produce indefinite growth with nonequilibrium concentrations. Within multimolecular CRNs, pseudo-unimolecular CRNs produce nonequilibrium concentrations with zero efficiencies. Nonequilibrium growth with efficiencies greater than zero requires dynamically nonlinear CRNs. In this paper, we provide a detailed analysis supporting these results. Mathematical proofs are provided for growth in unimolecular and pseudo-unimolecular CRNs. For multimolecular CRNs, four models displaying very distinctive topological properties are extensively studied, both numerically and partly analytically.
Collapse
|
17
|
Cohen-Or M, Chapnik N, Froy O. β-Hydroxy-β-methylbutyrate (HMB) leads to phospholipase D2 (PLD2) activation and alters circadian rhythms in myotubes. Food Funct 2024; 15:4389-4398. [PMID: 38563085 DOI: 10.1039/d3fo04174c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.
Collapse
Affiliation(s)
- Meytal Cohen-Or
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Huang CH, Yu S, Yu HS, Tu HP, Yeh YT, Yu HS. Chronic blue light-emitting diode exposure harvests gut dysbiosis related to cholesterol dysregulation. Front Cell Infect Microbiol 2024; 13:1320713. [PMID: 38259967 PMCID: PMC10800827 DOI: 10.3389/fcimb.2023.1320713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Night shift workers have been associated with circadian dysregulation and metabolic disorders, which are tightly coevolved with gut microbiota. The chronic impacts of light-emitting diode (LED) lighting at night on gut microbiota and serum lipids were investigated. Male C57BL/6 mice were exposed to blue or white LED lighting at Zeitgeber time 13.5-14 (ZT; ZT0 is the onset of "lights on" and ZT12 is the "lights off" onset under 12-hour light, 12-hour dark schedule). After 33 weeks, only the high irradiance (7.2 J/cm2) of blue LED light reduced the alpha diversity of gut microbiota. The high irradiance of white LED light and the low irradiance (3.6 J/cm2) of both lights did not change microbial alpha diversity. However, the low irradiance, but not the high one, of both blue and white LED illuminations significantly increased serum total cholesterol (TCHO), but not triglyceride (TG). There was no significant difference of microbial abundance between two lights. The ratio of beneficial to harmful bacteria decreased at a low irradiance but increased at a high irradiance of blue light. Notably, this ratio was negatively correlated with serum TCHO but positively correlated with bile acid biosynthesis pathway. Therefore, chronic blue LED lighting at a high irradiance may harvest gut dysbiosis in association with decreased alpha diversity and the ratio of beneficial to harmful bacteria to specifically dysregulates TCHO metabolism in mice. Night shift workers are recommended to be avoid of blue LED lighting for a long and lasting time.
Collapse
Affiliation(s)
- Cheng-Hsieh Huang
- Ph. D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsu-Sheng Yu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung, Taiwan
- Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Zhu H, Wu M, Mou J, Yang X, Xu Q, Zhang Y, Zhang H, Wang X, Xue H, Xu J, Chen L, Xu L. Behavior and physiology in female Cricetulus barabensis are associated with the expression of circadian genes. Front Endocrinol (Lausanne) 2024; 14:1281617. [PMID: 38374960 PMCID: PMC10875996 DOI: 10.3389/fendo.2023.1281617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 02/21/2024] Open
Abstract
The circadian clock regulates the behavior, physiology, and metabolism of mammals, and these characteristics, such as sleep-wake cycles, exercise capacity, and hormone levels, exhibit circadian rhythms. Light signaling is the main stimulator of the mammalian circadian system. The photoperiod regulates the reproductive cycle of seasonal breeding animals, and the circadian clock plays a pivotal role in this process. However, the role of the clock in coordinating animal behavior and physiology in response to photoperiodic changes needs further investigation. The present study investigated the changes and correlation of behavioral activities, physiological indicators, and gene expression in female striped hamsters (Cricetulus barabensis) within 24 h under a 12L:12D photoperiod. We found that the daily rhythms of sleep-wake and open field were significant in hamsters. The expression of clock genes, melatonin receptor genes, and genes involved in general metabolism oscillated significantly in central and peripheral tissues (brain, hypothalamus, liver, ovary, and thymus) and was significantly associated with behavior and physiology. Our results revealed that the neuroendocrine system regulated the rhythmicity of behavior and physiology, and central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1, and Cry2), melatonin receptor genes (MT1, MT2, and GPR50), and metabolizing genes (SIRT1, FGF21, and PPARα) played important roles. Our results suggest that central and peripheral circadian clocks, melatonin receptors, and genes involved in general metabolism may play key roles in maintaining circadian behavior and metabolic homeostasis in striped hamsters. Our results may have important implication for rodent pest control.
Collapse
|
21
|
Li J, Liu Y, Li Y, Sun T, Xiang H, He Z. The Role of Gut Microbiota and Circadian Rhythm Oscillation of Hepatic Ischemia-Reperfusion Injury in Diabetic Mice. Biomedicines 2023; 12:54. [PMID: 38255161 PMCID: PMC10813792 DOI: 10.3390/biomedicines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm oscillation and the gut microbiota play important roles in several physiological functions and pathology regulations. In this study, we aimed to elucidate the characteristics of diabetic hepatic ischemia-reperfusion injury (HIRI) and the role of the intestinal microbiota in diabetic mice with HIRI. Hepatic ischemia-reperfusion injury surgery was performed at ZT0 or ZT12. The liver pathological score and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed to evaluate liver injury. We conducted an FMT experiment to examine the role of intestinal microbiota in diabetic mice with HIRI. The 16S rRNA gene sequencing of fecal samples was performed for microbial analysis. Our results showed that hyperglycemia aggravated HIRI in diabetic mice, but there was no diurnal variation seen in diabetic HIRI. We also demonstrated that there were significant alterations in the gut microbiota composition between the diabetic and control mice and that gut microbiota transplantation from diabetic mice had obvious harmful effects on HIRI. These findings provide some useful information for the future research of diabetic mice with HIRI.
Collapse
Affiliation(s)
| | | | | | | | - Hongbing Xiang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| | - Zhigang He
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| |
Collapse
|
22
|
Zhang Y, Yan Z, Nan N, Qin G, Sang N. Circadian rhythm disturbances involved in ozone-induced glucose metabolism disorder in mouse liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167316. [PMID: 37742977 DOI: 10.1016/j.scitotenv.2023.167316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Ozone (O3) is a key environmental factor for developing diabetes. Nevertheless, the underlying mechanisms remain unclear. This study aimed to investigate alterations of glycometabolism in mice after O3 exposure and the role of circadian rhythms in this process. C57BL/6 male mice were randomly assigned to O3 (0.5 ppm) or filtered air for four weeks (4 h/day). Then, hepatic tissues of mice were collected at 4 h intervals within 24 h after O3 exposure to test. The results showed that hepatic circadian rhythm genes oscillated abnormally, mainly at zeitgeber time (ZT)8 and ZT20 after O3 exposure. Furthermore, detection of glycometabolism (metabolites, enzymes, and genes) revealed that O3 caused change in the daily oscillations of glycometabolism. The serum glucose content decreased at ZT4 and ZT20, while hepatic glucose enhanced at ZT16 and ZT24(0). Both G6pc and Pck1, which are associated with hepatic gluconeogenesis, significantly increased at ZT20. O3 exposure disrupted glycometabolism by increasing gluconeogenesis and decreasing glycolysis in mice liver. Finally, correlation analysis showed that the association between Bmal1 and O3-induced disruption of glycometabolism was the strongest. The findings emphasized the interaction between adverse outcomes of circadian rhythms and glycometabolism following O3 exposure.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
23
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Bettini S, Schiff S, Carraro E, Callegari C, Gusella B, Pontesilli GM, D’Angelo M, Baldan V, Zattarin A, Romanelli G, Angeli P, Girardi P, Spinella P, Vettor R, Busetto L. Chrono-Nutritional Patterns, Medical Comorbidities, and Psychological Status in Patients with Severe Obesity. Nutrients 2023; 15:5003. [PMID: 38068861 PMCID: PMC10707777 DOI: 10.3390/nu15235003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Chrono-nutrition studies dietary habits and their role in the onset of metabolic diseases. The aim of this study is to describe chrono-nutritional patterns based on the analysis of the eating habits of patients with severe obesity during the 24-h cycle and investigate a possible relationship between these profiles, the comorbidities, and the psychological status. From the overall evaluation of the chrono-nutritional profiles of 173 patients with severe obesity, four predominant eating patterns were obtained with a refined statistical model. A regression analysis was performed to determine the relationship between chrono-nutritional patterns, medical comorbidities, and psychological status. Profile 1 was the most frequent (46.2%) and characterised by the regular presence of the three main meals. The distribution of the chrono-nutritional profiles did not vary with BMI. Chrono-nutritional profiles affected predominantly psychological variables, with lower performances among chrono-nutritional profiles 3 (to eat during all the 24-h, with nibbling and snacking also during the night) and 4 (like the fourth but without night-eating). This finding could be useful in the assessment and treatment of patients with obesity, allowing the identification of patients with a higher probability of suffering from a psychopathological condition simply by knowing the patients' dietary profiles.
Collapse
Affiliation(s)
- Silvia Bettini
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 3, Padova University Hospital, 35128 Padova, Italy
| | - Sami Schiff
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 5, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Carraro
- Department of Statistical Sciences, University of Padova, 35121 Padova, Italy;
| | - Chiara Callegari
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 5, Padova University Hospital, 35128 Padova, Italy
| | - Beatrice Gusella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 3, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Maria Pontesilli
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Department of General Medicine, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Matteo D’Angelo
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Dietetics and Clinical Nutrition Unit, Padova University Hospital, 35128 Padova, Italy
| | - Valeria Baldan
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Dietetics and Clinical Nutrition Unit, Padova University Hospital, 35128 Padova, Italy
| | - Alessandra Zattarin
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Dietetics and Clinical Nutrition Unit, Padova University Hospital, 35128 Padova, Italy
| | - Giulia Romanelli
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Dietetics and Clinical Nutrition Unit, Padova University Hospital, 35128 Padova, Italy
| | - Paolo Angeli
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 5, Padova University Hospital, 35128 Padova, Italy
| | - Paolo Girardi
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30172 Venezia, Italy;
| | - Paolo Spinella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Dietetics and Clinical Nutrition Unit, Padova University Hospital, 35128 Padova, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 3, Padova University Hospital, 35128 Padova, Italy
| | - Luca Busetto
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.S.); (C.C.); (B.G.); (G.M.P.); (M.D.); (V.B.); (A.Z.); (G.R.); (P.A.); (P.S.); (R.V.); (L.B.)
- Internal Medicine Unit 3, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
25
|
Daniels LJ, Kay D, Marjot T, Hodson L, Ray DW. Circadian regulation of liver metabolism: experimental approaches in human, rodent, and cellular models. Am J Physiol Cell Physiol 2023; 325:C1158-C1177. [PMID: 37642240 PMCID: PMC10861179 DOI: 10.1152/ajpcell.00551.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/15/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.
Collapse
Affiliation(s)
- Lorna J Daniels
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danielle Kay
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
- Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Park H, Jeon H, Lee KJ, Kim CG, Shin D. Seaweed intake modulates the association between VIPR2 variants and the incidence of metabolic syndrome in middle-aged Koreans. Food Funct 2023; 14:9446-9456. [PMID: 37807848 DOI: 10.1039/d3fo02425c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Vasoactive intrinsic peptide receptor (VIPR2), a circadian gene, is involved in metabolic homeostasis and metabolic syndrome (MetS). Seaweeds contain polysaccharides that regulate metabolic homeostasis, possibly by altering the effects of VIPR2 variants. We examined the relationship between VIPR2 expression and the incidence of MetS based on seaweed consumption. This study included 4979 Koreans aged ≥40 years using data from the Ansan-Ansung cohort of the Korean Genome and Epidemiology Study. The total seaweeds included were laver, kelp, and sea mustard. A multivariable Cox proportional hazards model was used to analyze the interactions between the VIPR2 rs6950857 genotype associated with MetS incidence and seaweed intake after adjusting for covariates such as region. A total of 2134 patients with MetS were followed for an average of 8.9 years. In men with the GG genotype of rs6950857, the highest quintile of seaweed consumption was associated with a decreased incidence of MetS compared with that of the lowest quintile (hazard ratio, 0.78; 95% confidence interval, 0.62-0.98). We identified a unique association between the rs6950857 genotype, seaweed intake, and MetS. These findings highlight the importance of VIPR2 and the regulatory role of seaweed consumption in MetS incidence.
Collapse
Affiliation(s)
- Haeun Park
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| | - Hyunyu Jeon
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| | - Kyung Ju Lee
- Department of Women's Rehabilitation, National Rehabilitation Center, 58, Samgaksan-ro, Gangbuk-gu, Seoul 01022, Republic of Korea
| | - Choong-Gon Kim
- Ocean Climate Response & Ecosystem Research Department, Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea
| | - Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
27
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Luengo-Mateos M, González-Vila A, Vicente Dragano NR, Ohinska N, Silveira-Loureiro M, González-Domínguez M, Estévez-Salguero Á, Novelle-Rodríguez P, López M, Barca-Mayo O. Hypothalamic astrocytic-BMAL1 regulates energy homeostasis in a sex-dependent manner. Cell Rep 2023; 42:112949. [PMID: 37542717 DOI: 10.1016/j.celrep.2023.112949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nathalia Romanelli Vicente Dragano
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Nataliia Ohinska
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - María Silveira-Loureiro
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paula Novelle-Rodríguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Ghosh P, Sinha S, Katkar GD, Vo D, Taheri S, Dang D, Das S, Sahoo D. Machine learning identifies signatures of macrophage reactivity and tolerance that predict disease outcomes. EBioMedicine 2023; 94:104719. [PMID: 37516087 PMCID: PMC10388732 DOI: 10.1016/j.ebiom.2023.104719] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Single-cell transcriptomic studies have greatly improved organ-specific insights into macrophage polarization states are essential for the initiation and resolution of inflammation in all tissues; however, such insights are yet to translate into therapies that can predictably alter macrophage fate. METHOD Using machine learning algorithms on human macrophages, here we reveal the continuum of polarization states that is shared across diverse contexts. A path, comprised of 338 genes accurately identified both physiologic and pathologic spectra of "reactivity" and "tolerance", and remained relevant across tissues, organs, species, and immune cells (>12,500 diverse datasets). FINDINGS This 338-gene signature identified macrophage polarization states at single-cell resolution, in physiology and across diverse human diseases, and in murine pre-clinical disease models. The signature consistently outperformed conventional signatures in the degree of transcriptome-proteome overlap, and in detecting disease states; it also prognosticated outcomes across diverse acute and chronic diseases, e.g., sepsis, liver fibrosis, aging, and cancers. Crowd-sourced genetic and pharmacologic studies confirmed that model-rationalized interventions trigger predictable macrophage fates. INTERPRETATION These findings provide a formal and universally relevant definition of macrophage states and a predictive framework (http://hegemon.ucsd.edu/SMaRT) for the scientific community to develop macrophage-targeted precision diagnostics and therapeutics. FUNDING This work was supported by the National Institutes for Health (NIH) grant R01-AI155696 (to P.G, D.S and S.D). Other sources of support include: R01-GM138385 (to D.S), R01-AI141630 (to P.G), R01-DK107585 (to S.D), and UG3TR003355 (to D.S, S.D, and P.G). D.S was also supported by two Padres Pedal the Cause awards (Padres Pedal the Cause/RADY #PTC2017 and San Diego NCI Cancer Centers Council (C3) #PTC2017). S.S, G.D.K, and D.D were supported through The American Association of Immunologists (AAI) Intersect Fellowship Program for Computational Scientists and Immunologists. We also acknowledge support from the Padres Pedal the Cause #PTC2021 and the Torey Coast Foundation, La Jolla (P.G and D.S). D.S, P.G, and S.D were also supported by the Leona M. and Harry B. Helmsley Charitable Trust.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, USA; Department of Medicine, University of California San Diego, USA; Moores Cancer Center, University of California San Diego, USA.
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, USA; Department of Pediatrics, University of California San Diego, USA
| | - Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, USA
| | - Daniella Vo
- Department of Pediatrics, University of California San Diego, USA
| | - Sahar Taheri
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, USA
| | - Dharanidhar Dang
- Department of Pediatrics, University of California San Diego, USA
| | - Soumita Das
- Moores Cancer Center, University of California San Diego, USA; Department of Pathology, University of California San Diego, USA
| | - Debashis Sahoo
- Moores Cancer Center, University of California San Diego, USA; Department of Pediatrics, University of California San Diego, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, USA.
| |
Collapse
|
30
|
Petkovic M, Yalçin M, Heese O, Relógio A. Differential expression of the circadian clock network correlates with tumour progression in gliomas. BMC Med Genomics 2023; 16:154. [PMID: 37400829 DOI: 10.1186/s12920-023-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gliomas are tumours arising mostly from astrocytic or oligodendrocytic precursor cells. These tumours are classified according to the updated WHO classification from 2021 in 4 grades depending on molecular and histopathological criteria. Despite novel multimodal therapeutic approaches, the vast majority of gliomas (WHO grade III and IV) are not curable. The circadian clock is an important regulator of numerous cellular processes and its dysregulation had been found during the progression of many cancers, including gliomas. RESULTS In this study, we explore expression patterns of clock-controlled genes in low-grade glioma (LGG) and glioblastoma multiforme (GBM) and show that a set of 45 clock-controlled genes can be used to distinguish GBM from normal tissue. Subsequent analysis identified 17 clock-controlled genes with a significant association with survival. The results point to a loss of correlation strength within elements of the circadian clock network in GBM compared to LGG. We further explored the progression patterns of mutations in LGG and GBM, and showed that tumour suppressor APC is lost late both in LGG and GBM. Moreover, HIF1A, involved in cellular response to hypoxia, exhibits subclonal losses in LGG, and TERT, involved in the formation of telomerase, is lost late in the GBM progression. By examining multi-sample LGG data, we find that the clock-controlled driver genes APC, HIF1A, TERT and TP53 experience frequent subclonal gains and losses. CONCLUSIONS Our results show a higher level of disrgulation at the gene expression level in GBM compared to LGG, and indicate an association between the differentially expressed clock-regulated genes and patient survival in both LGG and GBM. By reconstructing the patterns of progression in LGG and GBM, our data reveals the relatively late gains and losses of clock-regulated glioma drivers. Our analysis emphasizes the role of clock-regulated genes in glioma development and progression. Yet, further research is needed to asses their value in the development of new treatments.
Collapse
Affiliation(s)
- Marina Petkovic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany.
| |
Collapse
|
31
|
Rucker F, Taylor C, Kaser-Eichberger A, Schroedl F. Parasympathetic and sympathetic control of emmetropization in chick. Exp Eye Res 2023; 232:109508. [PMID: 37230289 PMCID: PMC10452042 DOI: 10.1016/j.exer.2023.109508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Emmetropization can be altered by temporal visual stimulation and the spectral properties of the visual environment. The goal of the current experiment is to test the hypothesis that there is an interaction between these properties and autonomic innervation. For that purpose, selective lesions of the autonomic nervous system were performed in chickens followed by temporal stimulation. Parasympathetic lesioning involved transection of both the ciliary ganglion and the pterygopalatine ganglion (PPG_CGX; n = 38), while sympathetic lesioning involved transection of the superior cervical ganglion (SCGX; n = 49). After one week of recovery, chicks were then exposed to temporally modulated light (3 days, 2 Hz, Mean: 680 lux) that was either achromatic (with blue [RGB], or without blue [RG]), or chromatic (with blue [B/Y] or without blue [R/G]). Control birds with lesions, or unlesioned, were exposed to white [RGB] or yellow [RG] light. Ocular biometry and refraction (Lenstar and a Hartinger refractometer) was measured before and after exposure to light stimulation. Measurements were statistically analyzed for the effects of a lack of autonomic input and the type of temporal stimulation. In PPG_CGX lesioned eyes, there was no effect of the lesions one-week post-surgery. However, after exposure to achromatic modulation, the lens thickened (with blue) and the choroid thickened (without blue) but there was no effect on axial growth. Chromatic modulation thinned the choroid with R/G. In the SGX lesioned eye, there was no effect of the lesion 1-week post-surgery. However, after exposure to achromatic modulation (without blue), the lens thickened and there was a reduction in vitreous chamber depth and axial length. Chromatic modulation caused a small increase in vitreous chamber depth with R/G. Both autonomic lesion and visual stimulation were necessary to affect the growth of ocular components. The bidirectional responses observed in axial growth and in choroidal changes suggest that autonomic innervation combined with spectral cues from longitudinal chromatic aberration may provide a mechanism for homeostatic control of emmetropization.
Collapse
Affiliation(s)
- Frances Rucker
- New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA.
| | - Chris Taylor
- New England College of Optometry, 424 Beacon St., Boston, MA, 02115, USA
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
32
|
Barrio-Alonso E, Lituma PJ, Notaras MJ, Albero R, Bouchekioua Y, Wayland N, Stankovic IN, Jain T, Gao S, Calderon DP, Castillo PE, Colak D. Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling. Cell Rep 2023; 42:112375. [PMID: 37043347 PMCID: PMC10564971 DOI: 10.1016/j.celrep.2023.112375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The regulation of neurons by circadian clock genes is thought to contribute to the maintenance of neuronal functions that ultimately underlie animal behavior. However, the impact of specific circadian genes on cellular and molecular mechanisms controlling synaptic plasticity and cognitive function remains elusive. Here, we show that the expression of the circadian protein TIMELESS displays circadian rhythmicity in the mammalian hippocampus. We identify TIMELESS as a chromatin-bound protein that targets synaptic-plasticity-related genes such as phosphodiesterase 4B (Pde4b). By promoting Pde4b transcription, TIMELESS negatively regulates cAMP signaling to modulate AMPA receptor GluA1 function and influence synaptic plasticity. Conditional deletion of Timeless in the adult forebrain impairs working and contextual fear memory in mice. These cognitive phenotypes were accompanied by attenuation of hippocampal Schaffer-collateral synapse long-term potentiation. Together, these data establish a neuron-specific function of mammalian TIMELESS by defining a mechanism that regulates synaptic plasticity and cognitive function.
Collapse
Affiliation(s)
- Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Robert Albero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Youcef Bouchekioua
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Natalie Wayland
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Isidora N Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Tanya Jain
- Program of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA; Gale & Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer's disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110721. [PMID: 36702452 DOI: 10.1016/j.pnpbp.2023.110721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An association with circadian clock function and pathophysiology of aging, major depressive disorder (MDD), and Alzheimer's disease (AD) is well established and has been proposed as a factor in the development of these diseases. Depression and changes in circadian rhythm have been increasingly suggested as the two primary overlapping and interpenetrating changes that occur with aging. The relationship between AD and depression in late life is not completely understood and probably is complex. Patients with major depression or AD suffer from disturbed sleep/wake cycles and altered rhythms in daily activities. Although classical monoaminergic hypotheses are traditionally proposed to explain the pathophysiology of MDD, several clinical and preclinical studies have reported a strong association between circadian rhythm and mood regulation. In addition, a large body of evidence supports an association between disruption of circadian rhythm and AD. Some clock genes are dysregulated in rodent models of depression. If aging, AD, and MDD share a common biological basis in pathophysiology, common therapeutic tools could be investigated for their prevention and treatment. Nitro-oxidative stress (NOS), for example, plays a fundamental role in aging, as well as in the pathogenesis of AD and MDD and is associated with circadian clock disturbances. Thus, development of therapeutic possibilities with these NOS-related conditions is advisable. This review describes recent findings that link disrupted circadian clocks to aging, MDD, and AD and summarizes the experimental evidence that supports connections between the circadian clock and molecular pathologic factors as shared common pathophysiological mechanisms underlying aging, AD, and MDD.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Michelle Lima Garcez
- Laboratory of Translational Neuroscience, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
34
|
Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int J Mol Sci 2023; 24:ijms24076154. [PMID: 37047134 PMCID: PMC10094444 DOI: 10.3390/ijms24076154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Ulloi u. 78, 1082 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
35
|
Villanueva-Carmona T, Cedó L, Madeira A, Ceperuelo-Mallafré V, Rodríguez-Peña MM, Núñez-Roa C, Maymó-Masip E, Repollés-de-Dalmau M, Badia J, Keiran N, Mirasierra M, Pimenta-Lopes C, Sabadell-Basallote J, Bosch R, Caubet L, Escolà-Gil JC, Fernández-Real JM, Vilarrasa N, Ventura F, Vallejo M, Vendrell J, Fernández-Veledo S. SUCNR1 signaling in adipocytes controls energy metabolism by modulating circadian clock and leptin expression. Cell Metab 2023; 35:601-619.e10. [PMID: 36977414 DOI: 10.1016/j.cmet.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023]
Abstract
Adipose tissue modulates energy homeostasis by secreting leptin, but little is known about the factors governing leptin production. We show that succinate, long perceived as a mediator of immune response and lipolysis, controls leptin expression via its receptor SUCNR1. Adipocyte-specific deletion of Sucnr1 influences metabolic health according to nutritional status. Adipocyte Sucnr1 deficiency impairs leptin response to feeding, whereas oral succinate mimics nutrient-related leptin dynamics via SUCNR1. SUCNR1 activation controls leptin expression via the circadian clock in an AMPK/JNK-C/EBPα-dependent manner. Although the anti-lipolytic role of SUCNR1 prevails in obesity, its function as a regulator of leptin signaling contributes to the metabolically favorable phenotype in adipocyte-specific Sucnr1 knockout mice under standard dietary conditions. Obesity-associated hyperleptinemia in humans is linked to SUCNR1 overexpression in adipocytes, which emerges as the major predictor of adipose tissue leptin expression. Our study establishes the succinate/SUCNR1 axis as a metabolite-sensing pathway mediating nutrient-related leptin dynamics to control whole-body homeostasis.
Collapse
Affiliation(s)
- Teresa Villanueva-Carmona
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Lídia Cedó
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana Madeira
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Victòria Ceperuelo-Mallafré
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - M-Mar Rodríguez-Peña
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Catalina Núñez-Roa
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Elsa Maymó-Masip
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria Repollés-de-Dalmau
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Joan Badia
- Institut d'Oncologia de la Catalunya Sud, Hospital Universitari Sant Joan de Reus, IISPV, Reus 43204, Spain
| | - Noelia Keiran
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Mercedes Mirasierra
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Joan Sabadell-Basallote
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ramón Bosch
- Department of Pathology, Oncological Pathology and Bioinformatics Research Group, Hospital de Tortosa Verge de la Cinta, IISPV, Tortosa 43500, Spain
| | - Laura Caubet
- General and Digestive Surgery Service, Hospital Sant Pau i Santa Tecla, Institut d'Investigació Sanitària Pere Virgili, Tarragona 43003, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona 08041, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Salt 17190, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CB06/03/010), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona 17004, Spain
| | - Nuria Vilarrasa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Endocrinology and Nutrition, Hospital Universitari Bellvitge - IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Mario Vallejo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid 28029, Spain
| | - Joan Vendrell
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain; Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), Reus 43201, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona Joan XXIII, Tarragona 43005, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
36
|
Parr EB, Steventon-Lorenzen N, Johnston R, Maniar N, Devlin BL, Lim KHC, Hawley JA. Time-restricted eating improves measures of daily glycaemic control in people with type 2 diabetes. Diabetes Res Clin Pract 2023; 197:110569. [PMID: 36738837 DOI: 10.1016/j.diabres.2023.110569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
AIMS Examine the effect of 5 d/wk, 9-h time-restricted eating (TRE) protocol on 24-h glycaemic control in adults with type 2 diabetes (T2D). METHODS Nineteen adults with T2D (10 F/9 M; 50 ± 9 y, HbA1c 7.6% (60 mmol/mol), BMI ∼34 kg/m2) completed a pre-post non-randomised trial comprising of a 2-wk Habitual monitoring period followed by 9-h (10:00-19:00 h) TRE for 4-wk. Glycaemic control was assessed via continuous glucose monitoring (CGM; for mean 24-h glucose concentrations, 24-h total area under the curve (AUC) and glucose variability metrics), with dietary records and physical activity monitoring. Changes in CGM measures, dietary intake and physical activity were assessed with linear mixed-effects models. RESULTS TRE did not alter dietary energy intake, macronutrient composition or physical activity, but reduced the daily eating window (-2 h 35 min, P < 0.001). Compared to the Habitual period, 24-h glucose concentrations (mean, SD) and AUC decreased in the 4-wk TRE period (mean: -0.7 ± 1.2 mmol/L, P = 0.02; SD: -0.2 ± 0.3 mmol/L, P = 0.01; 24-h AUC: -0.9 ± 1.4 mmol/L⋅h-1 P = 0.01). During TRE, participants spent 10% more time in range (3.9-10.0 mmol/L; P = 0.02) and 10% less time above range (>10.0 mmol/L; P = 0.02). CONCLUSIONS Adhering 5 d/wk. to 9-h TRE improved glycaemic control in adults with T2D, independent of changes in physical activity or dietary intake. CLINICAL TRIAL REGISTRATION Australia New Zealand Clinical Trial Registry, ACTRN12618000938202.
Collapse
Affiliation(s)
- Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia.
| | - Nikolai Steventon-Lorenzen
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia; SPRINT Research and Faculty of Health Sciences, ACU, Melbourne, VIC, Australia
| | - Richard Johnston
- SPRINT Research and Faculty of Health Sciences, ACU, Melbourne, VIC, Australia; Carnegie Applied Rugby Research Centre, School of Sport, Leeds Beckett University, United Kingdom
| | - Nirav Maniar
- SPRINT Research and Faculty of Health Sciences, ACU, Melbourne, VIC, Australia
| | - Brooke L Devlin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karen H C Lim
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia; School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University (ACU), Melbourne, VIC, Australia
| |
Collapse
|
37
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
38
|
Li Y, Zhang H, Wang Y, Li D, Chen H. Advances in circadian clock regulation of reproduction. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:83-133. [PMID: 37709382 DOI: 10.1016/bs.apcsb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The mammalian circadian clock is an endogenously regulated oscillator that is synchronized with solar time and cycle within a 24-h period. The circadian clock exists not only in the suprachiasmatic nucleus (SCN) of the hypothalamus, a central pacemaker of the circadian clock system, but also in numerous peripheral tissues known as peripheral circadian oscillators. The SCN and peripheral circadian oscillators mutually orchestrate the diurnal rhythms of various physiological and behavioral processes in a hierarchical manner. In the past two decades, peripheral circadian oscillators have been identified and their function has been determined in the mammalian reproductive system and its related endocrine glands, including the hypothalamus, pituitary gland, ovaries, testes, uterus, mammary glands, and prostate gland. Increasing evidence indicates that both the SCN and peripheral circadian oscillators play discrete roles in coordinating reproductive processes and optimizing fertility in mammals. The present study reviews recent evidence on circadian clock regulation of reproductive function in the hypothalamic-pituitary-gonadal axis and reproductive system. Additionally, we elucidate the effects of chronodisruption (as a result of, for example, shift work, jet lag, disrupted eating patterns, and sleep disorders) on mammalian reproductive performance from multiple aspects. Finally, we propose potential behavioral changes or pharmaceutical strategies for the prevention and treatment of reproductive disorders from the perspective of chronomedicine. Conclusively, this review will outline recent evidence on circadian clock regulation of reproduction, providing novel perspectives on the role of the circadian clock in maintaining normal reproductive functions and in diseases that negatively affect fertility.
Collapse
Affiliation(s)
- Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P.R. China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, P.R. China.
| |
Collapse
|
39
|
Eum SY, Schurhoff N, Teglas T, Wolff G, Toborek M. Circadian disruption alters gut barrier integrity via a ß-catenin-MMP-related pathway. Mol Cell Biochem 2023; 478:581-595. [PMID: 35976519 PMCID: PMC9938043 DOI: 10.1007/s11010-022-04536-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins. Silencing of ß-catenin resulted in disruption of barrier function in SW480 cells, with ß-catenin appearing to be an upstream regulator of the core circadian components, such as Bmal1, Clock, and Per1/2. In addition, ß-catenin silencing downregulated ZO-1 and occludin TJ proteins with only limited or no changes at their mRNA levels, suggesting post transcriptional regulation. Indeed, silencing of ß-catenin significantly upregulated expression of matrix metallopeptidase (MMP)-2 and MMP-9, and blocking MMP-2/9 activity attenuated epithelial disruption induced by ß-catenin silencing. These results indicate the regulatory role of circadian disruption on gut barrier integrity and the associations between TJ proteins and circadian rhythms, while demonstrating the regulatory role of ß-catenin in this process.
Collapse
Affiliation(s)
- Sung Yong Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA
- Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Centre Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Pontes MPD, Khatlab ADS, Del Vesco AP, Granzoto GH, Soares MAM, Sousa FCBD, Souza MLRD, Gasparino E. The effect of light regime and time of slaughter in broiler on broiler performance, liver antioxidant status, and expression of genes related to peptide absorption in the jejunum and melatonin synthesis in the brain. J Anim Physiol Anim Nutr (Berl) 2023; 107:607-620. [PMID: 35403251 DOI: 10.1111/jpn.13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to assess the effects of light regime and time of slaughter on primal cut and organ weights, peptide transporter 1 (PEPT1) gene expression in the jejunum, arylalkylamine N-acetyltransferase (AANAT) gene expression in the brain, and liver oxidant/antioxidant status in broilers aged 37 days. The experiment was conducted in a factorial completely randomized design, with two light regimes (intermittent light varying according to bird age and continuous light under an 18 h light/6 h dark photoperiod) and four times of slaughter (2:00, 8:00, 14:00 and 20:00 h). There was an interaction effect on PEPT1 and AANAT expression, lipid and protein oxidation and superoxide dismutase (SOD) activity. In both light regimes, PEPT1 expression responded cubically to slaughter time. In the continuous light group, PEPT1 expression was highest in birds slaughtered at 2:00 and 14:00 h, whereas, in the intermittent light treatment, expression was highest at 8:00 h. In the continuous light regime, AANAT expression had a cubic relationship with time of slaughter, with the greatest values recorded at 20:00 h. In the intermittent light regime, slaughter time showed a cubic effect on lipid oxidation, which was highest at 8:00 h. In the continuous light group, there was a cubic effect on nitrite concentration, lipid oxidation, protein oxidation, and SOD activity; nitrite levels, lipid oxidation, and protein oxidation were highest and SOD activity was lowest in birds slaughtered at 14:00 h. Time of slaughter influenced catalase activity, which responded cubically; catalase activity was lowest at 8:00 and 14:00 h. This study is the first to demonstrate that PEPT1 expression in the jejunum of broilers follows a diurnal rhythm and varies according to light regime. The results also suggest that mainly continuous lighting and slaughter at 14:00 h when the animals are possibly more active may be more stressful to broilers.
Collapse
Affiliation(s)
- Mauricio Pires de Pontes
- Graduate Program in Environmental Biotechnology, State University of Maringá, Jardim Universitário, Maringá, Paraná, Brazil
| | - Angélica de Souza Khatlab
- Department of Animal Science, State University of Maringá, Jardim Universitário, Maringá, Paraná, Brazil
| | - Ana Paula Del Vesco
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, Brazil
| | | | - Maria Amélia Menck Soares
- Department of Genetics, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | | | | | - Eliane Gasparino
- Department of Animal Science, State University of Maringá, Jardim Universitário, Maringá, Paraná, Brazil
| |
Collapse
|
41
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
42
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
43
|
Dose B, Yalçin M, Dries SPM, Relógio A. TimeTeller for timing health: The potential of circadian medicine to improve performance, prevent disease and optimize treatment. Front Digit Health 2023; 5:1157654. [PMID: 37153516 PMCID: PMC10155816 DOI: 10.3389/fdgth.2023.1157654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Circadian medicine, the study of the effects of time on health and disease has seen an uprising in recent years as a means to enhance health and performance, and optimize treatment timing. Our endogenous time generating system -the circadian clock- regulates behavioural, physiological and cellular processes. Disruptions of the clock, via external factors like shift work or jet lag, or internal perturbations such as genetic alterations, are linked to an increased risk of various diseases like obesity, diabetes, cardiovascular diseases and cancer. By aligning an individual's circadian clock with optimal times for performing daily routines, physical and mental performance, and also the effectiveness of certain therapies can be improved. Despite the benefits of circadian medicine, the lack of non-invasive tools for characterizing the clock limits the potential of the field. TimeTeller is a non-invasive molecular/digital tool for the characterization of circadian rhythms and prediction of daily routines, including treatment timing, to unlock the potential of circadian medicine and implementing it in various settings. Given the multiple known and potentially yet unknown dependent health factors of individual circadian rhythms, the utility of this emerging biomarker is best exploited in data driven, personalized medicine use cases, using health information across lifestyle, care, and research settings.
Collapse
Affiliation(s)
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | | | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Correspondence: Angela Relógio
| |
Collapse
|
44
|
Yu Y, Li W, Xu L, Wang Y. Circadian rhythm of plasminogen activator inhibitor-1 and cardiovascular complications in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1124353. [PMID: 37020596 PMCID: PMC10067678 DOI: 10.3389/fendo.2023.1124353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/27/2023] [Indexed: 03/22/2023] Open
Abstract
Cardiovascular complications are a common death cause in type 2 diabetes patients, as they are often combined. Plasminogen-activator Inhibitor 1 (PAI-1) participates in the development and progression of cardiovascular complications in diabetes. Insulin resistance increases PAI-1 production, and high PAI-1 levels lead to an environment conducive to thrombosis and earlier and more severe vascular disease. Current evidence also suggests that PAI-1 has a rhythmic profile of circadian fluctuations and acrophase in the morning within a single day, which might explain the high morning incidence of cardiovascular events. Thus, PAI-1 is a possible drug target. Although several PAI-1 inhibitors have been developed, none have yet been allowed for clinical use. Research on rhythm has also led to the concept of "chronotherapy", a rhythm-based drug regimen expected to improve the treatment of cardiovascular complications in diabetic patients. Herein, we searched several databases and reviewed relevant articles to describe the circadian rhythm characteristics and endogenous molecular mechanisms of PAI-1, its relationship with insulin resistance, the causes of cardiovascular complications caused by PAI-1, and the current development of PAI-1 inhibitors. We also summarized the possibility of using the circadian rhythm of PAI-1 to treat cardiovascular complications in diabetic patients.
Collapse
|
45
|
Sleep, circadian biology and skeletal muscle interactions: Implications for metabolic health. Sleep Med Rev 2022; 66:101700. [PMID: 36272396 DOI: 10.1016/j.smrv.2022.101700] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
There currently exists a modern epidemic of sleep loss, triggered by the changing demands of our 21st century lifestyle that embrace 'round-the-clock' remote working hours, access to energy-dense food, prolonged periods of inactivity, and on-line social activities. Disturbances to sleep patterns impart widespread and adverse effects on numerous cells, tissues, and organs. Insufficient sleep causes circadian misalignment in humans, including perturbed peripheral clocks, leading to disrupted skeletal muscle and liver metabolism, and whole-body energy homeostasis. Fragmented or insufficient sleep also perturbs the hormonal milieu, shifting it towards a catabolic state, resulting in reduced rates of skeletal muscle protein synthesis. The interaction between disrupted sleep and skeletal muscle metabolic health is complex, with the mechanisms underpinning sleep-related disturbances on this tissue often multifaceted. Strategies to promote sufficient sleep duration combined with the appropriate timing of meals and physical activity to maintain circadian rhythmicity are important to mitigate the adverse effects of inadequate sleep on whole-body and skeletal muscle metabolic health. This review summarises the complex relationship between sleep, circadian biology, and skeletal muscle, and discusses the effectiveness of several strategies to mitigate the negative effects of disturbed sleep or circadian rhythms on skeletal muscle health.
Collapse
|
46
|
Stabilization of hypoxia-inducible factor-1α alleviates osteoarthritis via interacting with Per2 and resetting the circadian clock. Tissue Cell 2022; 79:101942. [DOI: 10.1016/j.tice.2022.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
|
47
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
48
|
Chen SP, Wang DF, Ma WF, Lin XL, Yang G. Knockout of cryptochrome 1 disturbs the locomotor circadian rhythm and development of Plutella xylostella. INSECT SCIENCE 2022. [PMID: 36380712 DOI: 10.1111/1744-7917.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cryptochrome 1 (CRY1) functions as a light-responsive photoreceptor, which is crucial for circadian rhythms. The identity and function of CRY1 in Plutella xylostella remain unknown. In this study, cry1 was cloned and identified in P. xylostella. Then, a cry1-knockout strain (Cry1-KO) of P. xylostella with a 2-bp deletion was established from the strain Geneva 88 (G88) using the CRISPR/Cas9 technology. No daily temporal oscillation of cry1 was observed in G88 and Cry1-KO, and cry1 mean daily transcription of Cry1-KO was lower than that of G88. Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cry1-KO being more active than G88 in the daytime, whereas Cry1-KO completely lost rhythmicity under constant darkness. The developmental period of pre-adult of Cry1-KO was longer than that of G88; the lifespan of the Cry1-KO male adult was shorter than that of G88; the fecundity of Cry1-KO was lower than that of G88; and Cry1-KO showed lower intrinsic rate of increase (r), net reproduction rate (R0 ), finite increase rate (λ), and longer mean generation time (T) than G88. Our results indicate that cry1 is involved in the regulation of locomotor circadian rhythm and development in P. xylostella, providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Dan-Feng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wei-Feng Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiao-Lu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
49
|
Is Fasting Good When One Is at Risk of Liver Cancer? Cancers (Basel) 2022; 14:cancers14205084. [PMID: 36291868 PMCID: PMC9600146 DOI: 10.3390/cancers14205084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer-related deaths worldwide, is a multistep process that usually develops in the background of cirrhosis, but also in a non-cirrhotic state in patients with non-alcoholic fatty liver disease (NAFLD) or viral hepatis. Emerging evidence suggests that intermittent fasting can reduce the risk of cancer development and could improve response and tolerance to treatment through the metabolic and hormonal adaptations induced by the low energy availability that finally impairs cancer cells’ adaptability, survival and growth. The current review will outline the beneficial effects of fasting in NAFLD/NASH patients and the possible mechanisms that can prevent HCC development, including circadian clock re-synchronization, with a special focus on the possibility of applying this dietary intervention to cirrhotic patients.
Collapse
|
50
|
Roy S, Abudu A, Salinas I, Sinha N, Cline-Fedewa H, Yaw AM, Qi W, Lydic TA, Takahashi DL, Hennebold JD, Hoffmann HM, Wang J, Sen A. Androgen-mediated Perturbation of the Hepatic Circadian System Through Epigenetic Modulation Promotes NAFLD in PCOS Mice. Endocrinology 2022; 163:bqac127. [PMID: 35933634 PMCID: PMC9419696 DOI: 10.1210/endocr/bqac127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/19/2022]
Abstract
In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Aierken Abudu
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Irving Salinas
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Alexandra M Yaw
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd A Lydic
- Collaborative Mass Spectrometry Core, Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Hanne M Hoffmann
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|