1
|
Sharma B, Schienbein P, Forbert H, Marx D. Theoretical terahertz spectroscopy of free radical solutes in solution: an EPR spin probe in water. Phys Chem Chem Phys 2024; 26:27879-27890. [PMID: 39318322 DOI: 10.1039/d4cp02070g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Free radical species are used as spin labels in electron paramagnetic resonance (EPR) spectroscopy of biomolecular systems in water, for instance in the frame of Overhauser dynamic nuclear polarization (ODNP) relaxometry to probe the local hydration water dynamics close to protein surfaces in aqueous environments. Widely used in this context are nitroxide spin probes such as TEMPO, PROXYL or MTSL derivatives. Here, we study the THz spectroscopy of HMI (2,2,3,4,5,5-HexaMethylImidazolidin-1-oxyl) in water at ambient conditions which has been recently investigated as to how its EPR properties depend on its solvation pattern in water. To enable theoretical THz spectroscopy of molecular radicals in solution, we have generalized well-established methodologies for THz spectral decomposition of closed-shell systems, namely the supermolecular solvation complex (SSC) and cross-correlation analysis (CCA) techniques, to open-shell polyatomic solute species in water. Based on this methodological advance, we have decomposed and assigned the THz response of HMI including its solvation shell by employing the generalized SSC and CCA methods to cope with the open-shell character of this free radical solute, in particular its unpaired electron localized at the nitroxy group. We reveal that the main modulations of the far-IR spectrum of HMI are dominated by the low-frequency intramolecular modes of the spin probe molecule itself while the solvation of its two hydrogen bonding sites contribute much less intensely in this spectral window. Finally, we have computed THz spectra of HMI with its local solvation water with an aim to provide a theoretical analogue of experimental THz difference spectroscopy. Beyond the specific case, our decomposition methodology that now is able to include open shells can be applied in future work to analyze the low-frequency vibrational response of the solvation shell of other free radicals in solution.
Collapse
Affiliation(s)
- Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
2
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
Dempsey JA, Gibbons TD. Rethinking O 2, CO 2 and breathing during wakefulness and sleep. J Physiol 2024; 602:5571-5585. [PMID: 37750243 DOI: 10.1113/jp284551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
We have examined the importance of three long-standing questions concerning chemoreceptor influences on cardiorespiratory function which are currently experiencing a resurgence of study among physiologists and clinical investigators. Firstly, while carotid chemoreceptors (CB) are required for hypoxic stimulation of breathing, use of an isolated, extracorporeally perfused CB preparation in unanaesthetized animals with maintained tonic input from the CB, reveals that extra-CB hypoxaemia also provides dose-dependent ventilatory stimulation sufficient to account for 40-50% of the total ventilatory response to steady-state hypoxaemia. Extra-CB hyperoxia also provides a dose- and time-dependent hyperventilation. Extra-CB sites of O2-driven ventilatory stimulation identified to date include the medulla, kidney and spinal cord. Secondly, using the isolated or denervated CB preparation in awake animals and humans has demonstrated a hyperadditive effect of CB sensory input on central CO2 sensitivity, so that tonic CB activity accounts for as much as 35-40% of the normal, air-breathing eupnoeic drive to breathe. Thirdly, we argue for a key role for CO2 chemoreception and the neural drive to breathe in the pathogenesis of upper airway obstruction during sleep (OSA), based on the following evidence: (1) removal of the wakefulness drive to breathe enhances the effects of transient CO2 changes on breathing instability; (2) oscillations in respiratory motor output precipitate pharyngeal obstruction in sleeping subjects with compliant, collapsible airways; and (3) in the majority of patients in a large OSA cohort, a reduced neural drive to breathe accompanied reductions in both airflow and pharyngeal airway muscle dilator activity, precipitating airway obstruction.
Collapse
Affiliation(s)
| | - Travis D Gibbons
- University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Maiti A, Manna SK, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging. Chem Res Toxicol 2024; 37:1682-1690. [PMID: 39287930 DOI: 10.1021/acs.chemrestox.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hypochlorite, as an important reactive oxygen species (ROS), plays a vital role in many physiological and pathological processes, but an excess concentration of hypochlorite (ClO-) may become toxic to humans and cause disease. Hence, the selective and rapid detection of hypochlorite (ClO-) is necessary for human safety. Here, we report a novel near-infrared (NIR) fluorescence "turn-on" and highly selective benzophenoxazinium chloride-based fluorescent probe, BPH (benzophenoxazinium dihydroxy benzaldehyde), for hypochlorite detection. Due to hypochlorite-induced vicinal diol oxidation to the corresponding ortho benzoquinone derivative, the photoinduced electron transfer (PET) process, which was operating from vicinal diol to the benzophenoxazinium chloride receptor moiety, was suddenly inhibited, as a result of which strong NIR fluorescence "turn-on" emission was observed. The detection limit of BPH was found to be 2.39 × 10-10 M, or 0.23 nM. BPH was successfully applied for exogenous and endogenous hypochlorite detection in live MDA-MB 231 cells.
Collapse
Affiliation(s)
- Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, Debhog, West Bengal 721657, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| |
Collapse
|
5
|
da Silva AD, Fracasso M, Bottari NB, Palma TV, Engelmann AM, Castro MFV, Assmann CE, Mostardeiro V, Reichert KP, Nauderer J, da Veiga ML, da Rocha MIUM, Milleti LC, das Neves GB, Gundel S, Ourique AF, Monteiro SG, Morsch VM, Chitolina MR, Da Silva AS. Effects of Free and Nanoencapsulated Benznidazole in Acute Trypanosoma cruzi Infection: Role of Cholinergic Pathway and Redox Status. Pharmaceuticals (Basel) 2024; 17:1397. [PMID: 39459036 PMCID: PMC11510717 DOI: 10.3390/ph17101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The Trypanosoma cruzi infection promotes an intense inflammatory process that affects several tissues. The cholinergic system may exert a regulatory immune response and control the inflammatory process. This study aimed to evaluate the comparative effect of free and nanoencapsulated benznidazole in acute T. cruzi infection to assess hematological, biochemical, and oxidative status triggered by the cholinergic system. Methods: For this, fifty female Swiss mice were distributed in eight groups, i.e., uninfected and infected animals under four treatment protocols: untreated (control-CT); vehicle treatment (Eudragit L 100-EL-100); benznidazole treatment (BNZ); and nanoencapsulated benznidazole treatment (NBNZ). After eight treatment days, the animals were euthanized for sample collection. Results: The peak of parasitemia was at day 7 p.i., and the BNZ and NBNZ controlled and reduced the parasite rate but showed no efficacy in terms of total elimination of parasites analyzed by RT-PCR in both infected groups. The infection promotes significant anemia, leukopenia, and thrombocytopenia, which the BNZ improves. There was an increase in AChE activity during infection, leading to a pro-inflammatory response and an increase in M1 and M2 mACh receptors in the BNZ group, showing that the treatment interacted with the cholinergic pathway. In addition, a pro-oxidative response was characterized in the infection and mainly in the infected BNZ and NBNZ groups. The histopathological analysis showed significative splenomegaly and inflammatory infiltrate in the heart, liver, and spleen. Conclusions: The administration of the BNZ or NBNZ reverses hematological, hepatic, and renal alterations through cholinergic signaling and stimulates a pro-inflammatory response during acute T. cruzi infection.
Collapse
Affiliation(s)
- Aniélen D. da Silva
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Mateus Fracasso
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Nathieli B. Bottari
- Department of Microbiology and Parasitology, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil;
| | - Taís V. Palma
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Ana M. Engelmann
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Milagros F. V. Castro
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Charles E. Assmann
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Vitor Mostardeiro
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Karine P. Reichert
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Jelson Nauderer
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Marcelo L. da Veiga
- Department of Pathology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.L.d.V.); (M.I.U.M.d.R.)
| | - Maria Izabel U. M. da Rocha
- Department of Pathology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.L.d.V.); (M.I.U.M.d.R.)
| | - Luiz Claudio Milleti
- Department of Animal Production, Universidade do Estado de Santa Catarina, Lages 88520-000, SC, Brazil; (L.C.M.); (G.B.d.N.)
| | - Gabriella B. das Neves
- Department of Animal Production, Universidade do Estado de Santa Catarina, Lages 88520-000, SC, Brazil; (L.C.M.); (G.B.d.N.)
| | - Samanta Gundel
- Center Science Heath, Universidade Franciscana, Santa Maria 97010-491, RS, Brazil; (S.G.); (A.F.O.)
| | - Aline F. Ourique
- Center Science Heath, Universidade Franciscana, Santa Maria 97010-491, RS, Brazil; (S.G.); (A.F.O.)
| | - Silvia G. Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Vera M. Morsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Maria Rosa Chitolina
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (A.D.d.S.); (M.F.); (T.V.P.); (A.M.E.); (M.F.V.C.); (C.E.A.); (V.M.); (K.P.R.); (J.N.); (V.M.M.); (M.R.C.)
| | - Aleksandro S. Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, SC, Brazil
| |
Collapse
|
6
|
Tsyganova AV, Gorshkov AP, Vorobiev MG, Tikhonovich IA, Brewin NJ, Tsyganov VE. Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS (BASEL, SWITZERLAND) 2024; 13:2923. [PMID: 39458872 PMCID: PMC11510766 DOI: 10.3390/plants13202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium-legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Maxim G. Vorobiev
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Igor A. Tikhonovich
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | | | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| |
Collapse
|
7
|
Gurhan H, Barnes F. Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields. Antioxidants (Basel) 2024; 13:1237. [PMID: 39456490 PMCID: PMC11504554 DOI: 10.3390/antiox13101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the complex relationship between radio frequency (RF) exposure and cancer cells, focusing on the HT-1080 human fibrosarcoma cell line. We investigated the modulation of reactive oxygen species (ROS) and key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase, and glutathione (GSH), as well as mitochondrial superoxide levels and cell viability. Exposure to RF fields in the 2-5 MHz range at very weak intensities (20 nT) over 4 days resulted in distinct, frequency-specific cellular effects. Significant increases in SOD and GSH levels were observed at 4 and 4.5 MHz, accompanied by reduced mitochondrial superoxide levels and enhanced cell viability, suggesting improved mitochondrial function. In contrast, lower frequencies like 2.5 MHz induced oxidative stress, evidenced by GSH depletion and increased mitochondrial superoxide levels. The findings demonstrate that cancer cells exhibit frequency-specific sensitivity to RF fields even at intensities significantly below current safety standards, highlighting the need to reassess exposure limits. Additionally, our analysis of the radical pair mechanism (RPM) offers deeper insight into RF-induced cellular responses. The modulation of ROS and antioxidant enzyme activities is significant for cancer treatment and has broader implications for age-related diseases, where oxidative stress is a central factor in cellular degeneration. The findings propose that RF fields may serve as a therapeutic tool to selectively modulate oxidative stress and mitochondrial function in cancer cells, with antioxidants playing a key role in mitigating potential adverse effects.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
9
|
Fagundes MÍ, Galvani NC, De-Pieri E, Lima IR, Corrêa MEAB, Cruz LA, de Andrade TAM, Chávez-Olórtegui C, Silveira PCL, Machado-de-Ávila RA. Ultrasound and Gold Nanoparticles Improve Tissue Repair for Muscle Injury Caused by Snake Venom. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00340-5. [PMID: 39395869 DOI: 10.1016/j.ultrasmedbio.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE To develop a treatment that enhances recovery from envenomation-induced lesions caused by Bothrops jararaca venom by using ultrasound in combination with gold nanoparticles (GNPs). METHODS A total of 108 Swiss mice were arranged into nine groups. The animals underwent necrotic induction with 250 µg B. jararaca venom (BjV) and were treated with ultrasound (U) at 1 MHz frequency at an intensity of 0.8 W/cm² for 5 min, 30 mg/L GNPs, and anti-bothropic serum (AS) in the following combinations: saline solution (SS); BjV; BjV + AS; BjV + AS + U; BjV + GNPs + AS; BjV + GNPs + AS + U; BjV + GNPs; BjV + GNPs + U; and BjV + U. The necrotic area, histology, oxidative stress, oxidative damage, and anti-oxidant system were assessed to evaluate the effects of the treatments. RESULTS Treatments that included GNPs, U, and/or AS demonstrated reductions in necrotic area, increases in angiogenesis and fibroblast means, decreases in inflammatory infiltrates, and improvements in collagen synthesis. Additionally, there was an increase in oxidants and oxidant damage within the gastrocnemius muscle, along with an increase in anti-oxidants. Furthermore, systemic effects appear to have been achieved, improving the anti-oxidant system at the cardiovascular and renal levels. CONCLUSION The use of GNPs and U may be effective at treating lesions caused by B. jararaca snake venom.
Collapse
Affiliation(s)
- Mírian Ívens Fagundes
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Nathalia Coral Galvani
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ellen De-Pieri
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Igor Ramos Lima
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Lidiane Anastácio Cruz
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| |
Collapse
|
10
|
Hu H, Sun Y, Yang Z, Che L, Cai M, Li X, Huang X, Bagen H, Qiqige W, Guleng W, Ma L, Tong H. Zhachong Shisanwei pill drug-containing serum protects H 2O 2-Induced PC12 cells injury by suppressing apoptosis, oxidative stress via regulating the MAPK signaling pathway. Front Pharmacol 2024; 15:1445597. [PMID: 39449968 PMCID: PMC11500078 DOI: 10.3389/fphar.2024.1445597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Zhachong Shisanwei Pill (ZSP) is a classical Mongolian formula that combines 13 types of Chinese medicinal materials and has been used for treating ischemic stroke (IS) for centuries. However, the underlying molecular mechanisms have yet to be fully elucidated. The aim of this study is to explore potential mechanism of ZSP on nerve cells in cerebral ischemic injury. Methods To simulate the pathological process of oxidative stress following IS, an injury model using PC12 cells was induced with hydrogen peroxide (H2O2). Afterward, PC12 cells were treated with ZSP medicated serum at low, medium, and high doses. Various assays were conducted to assess cell viability and oxidative stress indicators, including lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Cell apoptosis was evaluated through morphological assessment and flow cytometry. Additionally, the expression levels of apoptosis-related proteins (Bcl-2, Bax, Caspase-9, Caspase-3, PARP) and signaling pathway proteins (JNK, phosphorylated JNK, ERK, phosphorylated ERK, p38, and phosphorylated p38) were measured using automated Western blotting. Results Our findings indicate that ZSP medicated serum preconditioning improves the condition of PC12 cells injured by H2O2. Specifically, it increased cell survival rates and reduced LDH release. Additionally, ZSP treatment decreased ROS levels and MDA content, while enhancing the activity of SOD and CAT in the injured PC12 cells. ZSP also reversed the depolarization of mitochondrial membrane potential and protected cells from apoptosis by modulating the expression of apoptosis-related proteins, including Bcl-2, Bax, Caspase-9, Caspase-3, and PARP. Furthermore, the overactivation of the MAPK signaling pathway due to H2O2-induced injury was inhibited, as evidenced by the downregulation of phosphorylated JNK, ERK, and p38 levels. Discussion Mongolian medicine ZSP demonstrates protective effects against H2O2-induced oxidative stress and apoptosis in PC12 cells. The underlying mechanism may involve the inhibition of the MAPK signaling pathway, enhancement of antioxidant enzyme activity, reduction of intracellular peroxidation levels, and suppression of intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Hanqiong Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Limuge Che
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, China
| | - Mingyang Cai
- Hospital of Pediatrics, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Pediatric Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiaoxuan Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xianju Huang
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, China
| | - Hurile Bagen
- Mongolian Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wulan Qiqige
- Mongolian Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wuyunsiri Guleng
- Psychosomatic Medicine Department, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Liqun Ma
- College of Pharmaceutical Science, South-Central Minzu University, Wuhan, China
| | - Haiying Tong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Cao H, Jiang J, Chen L, Gao L. Mimicomes: Mimicking Multienzyme System by Artificial Design. Adv Healthc Mater 2024:e2402372. [PMID: 39380346 DOI: 10.1002/adhm.202402372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Enzymes are widely distributed in organelles of cells, which are capable of carrying out specific catalytic reactions. In general, several enzymes collaborate to facilitate complex reactions and engage in vital biochemical processes within cells, which are also called cascade systems. The cascade systems are highly efficient, and their dysfunction is associated with a multitude of endogenous diseases. The advent of nanotechnology makes it possible to mimic these cascade systems in nature and realize partial functions of natural biological processes both in vitro and in vivo. To emphasize the significance of artificial cascade systems, mimicomes is first proposed, a new concept that refers to the artificial cascade catalytic systems. Typically, mimicomes are able to mimic specific natural biochemical catalytic processes or facilitate the overall catalytic efficiency of cascade systems. Subsequently, the evolution and development of different types of mimicomes in recent decades are elucidated exhaustedly, from the natural enzyme-based mimicomes (immobilized enzyme and vesicle mimicomes) to the nanozyme-based mimicomes and enzyme-nanozyme hybrid mimicomes. In conclusion, the remaining challenges in the design of multifunctional mimicomes and their potential applications are summarized, offering insights into their future prospects.
Collapse
Affiliation(s)
- Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
12
|
Fumimoto C, Yamauchi N, Minagawa E, Umeda M. MiR-146a Is Mutually Regulated by High Glucose-Induced Oxidative Stress in Human Periodontal Ligament Cells. Int J Mol Sci 2024; 25:10702. [PMID: 39409031 PMCID: PMC11476635 DOI: 10.3390/ijms251910702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The high-glucose conditions caused by diabetes mellitus (DM) exert several effects on cells, including inflammation. miR-146a, a kind of miRNA, is involved in inflammation and may be regulated mutually with reactive oxygen species (ROS), which are produced under high-glucose conditions. In the present study, we used human periodontal ligament cells (hPDLCs) to determine the effects of the high-glucose conditions of miR-146a and their involvement in the regulation of oxidative stress and inflammatory cytokines using Western blotting, PCR, ELISA and other methods. When hPDLCs were subjected to high glucose (24 mM), cell proliferation was not affected; inflammatory cytokine expression, ROS induction, interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) expression increased, but miR-146a expression decreased. Inhibition of ROS induction with the antioxidant N-acetyl-L-cysteine restored miR-146a expression and decreased inflammatory cytokine expression compared to those under high-glucose conditions. In addition, overexpression of miR-146a significantly suppressed the expression of the inflammatory cytokines IRAK1 and TRAF6, regardless of the glucose condition. Our findings suggest that oxidative stress and miR-146a expression are mutually regulated in hPDLCs under high-glucose conditions.
Collapse
Affiliation(s)
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata 573-1121, Osaka, Japan; (C.F.); (E.M.); (M.U.)
| | | | | |
Collapse
|
13
|
Cebrian RAV, Dalmagro M, Pinc MM, Donadel G, Engel LA, Bariccatti RA, de Almeida RM, de Aguiar KMFR, Lourenço ELB, Hoscheid J. Development and Characterization of Film-Forming Solution Loaded with Syzygium cumini (L.) Skeels for Topical Application in Post-Surgical Therapies. Pharmaceutics 2024; 16:1294. [PMID: 39458623 PMCID: PMC11510759 DOI: 10.3390/pharmaceutics16101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Considering the antioxidant and antimicrobial properties attributed to compounds in Syzygium cumini extract, this research aimed to advance postoperative therapeutic innovations. Specifically, the study assessed the physicochemical properties of a film-forming solution (FFS) incorporated with S. cumini, evaluating its therapeutic potential for postoperative applications. METHODS The S. cumini extract was meticulously characterized to determine its chemical composition, with particular emphasis on the concentration of phenolic compounds. Antioxidant and antimicrobial assays were conducted to assess the extract's efficacy in these domains. Following this, an FFS containing S. cumini was formulated and evaluated comprehensively for skin adhesion, mechanical and barrier properties, and thermal behavior. RESULTS The antioxidant and antimicrobial activities of the S. cumini extract demonstrated promising results, indicating its potential utility as an adjunct in postoperative care. The developed FFS exhibited favorable physicochemical properties for topical application, including adequate skin adhesion and appropriate pH levels. Moreover, chemical and thermal analyses confirmed the formulation's stability and the retention of the extract's beneficial properties. CONCLUSIONS Overall, the findings suggest that the S. cumini-loaded FFS holds significant potential as a valuable therapeutic tool for post-surgical management.
Collapse
Affiliation(s)
- Rosinéia Aparecida Vilela Cebrian
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Larissa Aparecida Engel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | | | | | | | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| |
Collapse
|
14
|
Xu Y, Liang H, Mao X, Song Z, Shen X, Ge D, Chen Y, Hou B, Hao Z. Puerarin alleviates apoptosis and inflammation in kidney stone cells via the PI3K/AKT pathway: Network pharmacology and experimental verification. J Cell Mol Med 2024; 28:e70180. [PMID: 39462270 PMCID: PMC11512754 DOI: 10.1111/jcmm.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Puerarin(PUE), an isoflavonoid extracted from Pueraria root, has anti-apoptotic effects. The objective of this research is to examine the impact of PUE on renal apoptosis and inflammation resulting from renal calculi and to elucidate its mechanism. The approach of network pharmacology and molecular docking was employed to discover potential targets and pathways of PUE. An animal model of calcium oxalate crystal deposition by intraperitoneal injection of glyoxylate and a model of COM-induced human renal tubular epithelial cells (HK2) were used to investigate the pharmacological mechanisms of PUE against apoptosis and inflammation. We used haematoxylin-eosin (H&E) and Periodic Acid-Schiff staining (PAS) to assess the effect of PUE on crystal deposition and damage. The mechanism of PUE was elucidated and validated using Western blotting, histology and immunohistochemical staining. Network pharmacology findings indicated that the PI3K/AKT pathway plays a crucial role in PUE. We experimentally demonstrate that PUE alleviated COM-induced changes in apoptotic proteins, increased inflammatory indicators and changes in oxidative stress-related indicators in HK2 cells by activating the PI3K/AKT pathway, reduced serum creatinine and urea nitrogen levels in mice caused by CaOx, alleviated crystal deposition and damage, and alleviated apoptosis, oxidative stress and inflammation. Puerarin attenuates renal apoptosis and inflammation caused by kidney stones through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yuexian Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Hu Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xike Mao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zhenyu Song
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Xudong Shen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Defeng Ge
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Yang Chen
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Bingbing Hou
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| | - Zongyao Hao
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical TransformationAnhui Medical UniversityHefeiChina
| |
Collapse
|
15
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
16
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
17
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2024:10.1007/s00204-024-03874-4. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
18
|
France Štiglic A, Stajnko A, Sešek Briški A, Snoj Tratnik J, Mazej D, Jerin A, Skitek M, Horvat M, Marc J, Falnoga I. Associations between APOE genotypes, urine 8-isoprostane and blood trace elements in middle-aged mothers (CROME study). ENVIRONMENT INTERNATIONAL 2024; 193:109034. [PMID: 39447471 DOI: 10.1016/j.envint.2024.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND There is almost no data on the combined associations between apolipoprotein E gene (APOE) genotypes, trace elements (TEs), and lipid peroxidation in vivo. The aim of our study was to evaluate the association between APOE genotypes and TE levels in blood (B-TEs) and erythrocytes (E-TEs), and 8-isoprostane in urine (U-8-isoprostane) in women with low exposure to potentially toxic TEs and with adequate supply of essential TEs. METHODS B-TEs, E-TEs and U-8-isoprostane were determined in 172 healthy women of childbearing age (30.1-51.4 years) using ICP-MS and ELISA competitive assay, respectively. All women were divided into three APOE genotype groups according to the presence of the ɛ4 allele, ɛ2 allele or ɛ3 homozygotic allele. The associations between B-TEs, E-TE, U-8-isoprostane, and the APOE genotype groups were estimated by multiple variable linear regression models with relevant explanatory variables (e.g., age, BMI, and seafood). RESULTS All TE and U-8-isoprostane levels were inside the reference ranges for the healthy population. In the multiple variable linear regression models, our results showed that urine 8-isoprostane levels increased by up to 43.3% in the APOE4 group compared to the APOE3 group and a negligible negative modifying effect for essential TEs. However, the APOE genotype groups were associated also with some TEs. A clear positive association was found between the APOE2 and APOE4 groups (vs. APOE3) with B-molybdenum. CONCLUSIONS Our study suggests that the APOE4 genotype played an important role in 8-isoprostane variability in a population with an adequate supply of essential and with low exposure to potentially toxic TEs. Adequate copper, zinc and selenium status seemed to be protective against, while the levels of nonessential TEs were probably too low to play a decisive role in 8-isoprostane formation. The observed impact of the APOE2 and APOE4 groups on increased B-molybdenum opens a new research topic.
Collapse
Affiliation(s)
- Alenka France Štiglic
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Stajnko
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Alenka Sešek Briški
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Aleš Jerin
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milan Skitek
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Janja Marc
- Clinical Institute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Njegoševa 4, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Tuersuntuoheti M, Zhou L, Li J, Yang S, Zhou S, Gong H. Investigation of crucial genes and mitochondrial function impairment in diabetic cardiomyopathy. Gene 2024; 923:148563. [PMID: 38754569 DOI: 10.1016/j.gene.2024.148563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a special type of cardiovascular disease, termed as a situation of abnormal myocardial structure and function that occurs in diabetic patients. However, the most fundamental mechanisms of DCM have not been fully explicated, and useful targets for the therapeutic strategies still need to be explored. METHODS In the present study, we combined bioinformatics analysis and in vitro experiments throughout the process of DCM. Differentially Expressed Genes (DEGs) analysis was performed and the weighted gene co-expression network analysis (WGCNA) was constructed to determine the crucial genes that were tightly connected to DCM. Additionally, Functional enrichment analysis was conducted to define biological pathways. To identify the specific molecular mechanism, the human cardiomyocyte cell line (AC16) was stimulated by high glucose (HG, 50 mM D-glucose) and used to imitate DCM condition. Then, we tentatively examined the effect of high glucose on cardiomyocytes, the expression levels of crucial genes were further validated by in vitro experiments. RESULTS Generally, NPPA, IGFBP5, SERPINE1, and C3 emerged as potential therapeutic targets. Functional enrichment analysis performed by bioinformatics indicated that the pathogenesis of DCM is mainly related to heart muscle contraction and calcium (Ca2+) release activation. In vitro, we discovered that high glucose treatment induced cardiomyocyte injury and exacerbated mitochondrial dysfunction remarkably. CONCLUSION Our research defined four crucial genes, as well as determined that mitochondrial function impairment compromises calcium homeostasis ultimately resulting in contractile dysfunction is a central contributor to DCM progression. Hopefully, this study will offer more effective biomarkers for DCM diagnosis and treatment.
Collapse
Affiliation(s)
- Maierhaba Tuersuntuoheti
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shangneng Yang
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Suying Zhou
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Rafiyian M, Reiter RJ, Rasooli Manesh SM, Asemi R, Sharifi M, Mohammadi S, Mansournia MA, Asemi Z. Programmed cell death and melatonin: A comprehensive review. Funct Integr Genomics 2024; 24:169. [PMID: 39313718 DOI: 10.1007/s10142-024-01454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Melatonin (MLT), a main product of pineal gland, recently has attracted the attention of scientists due to its benefits in various diseases and also regulation of cellular homeostasis. Its receptor scares widely distributed indicating that it influences numerous organs. Programmed cell death (PCD), of which there several types, is a regulated by highly conserved mechanisms and important for development and function of different organs. Enhancement or inhibition of PCDs could be a useful technique for treatment of different diseases and MLT, due to its direct effects on these pathways, is a good candidate for this strategy. Many studies investigated the role of MLT on PCDs in different diseases and in this review, we summarized some of the most significant studies in this field to provide a better insight into the mechanisms of modulation of PCD by MLT modulation.
Collapse
Affiliation(s)
- Mahdi Rafiyian
- Student Research Committee, Kashan University of Reiter Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | | | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sotoudeh Mohammadi
- Department of Obstetrics and Gynecology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
21
|
Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, Jeon TJ. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants (Basel) 2024; 13:1135. [PMID: 39334794 PMCID: PMC11428522 DOI: 10.3390/antiox13091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are chemically reactive oxygen-containing compounds generated by various factors in the body. Antioxidants mitigate the damaging effects of ROS by playing a critical role in regulating redox balance and signaling. In this study, the interplay between reactive oxygen species (ROS) and antioxidants in the context of lipid dynamics were investigated. The interaction between hydrogen peroxide (H2O2) as an ROS and vitamin E (α-tocopherol) as an antioxidant was examined. Model membranes containing both saturated and unsaturated lipids served as experimental platforms to investigate the influence of H2O2 on phospholipid unsaturation and the role of antioxidants in this process. The results demonstrated that H2O2 has a negative effect on membrane stability and disrupts the lipid membrane structure, whereas the presence of antioxidants protects the lipid membrane from the detrimental effects of ROS. The model membranes used here are a useful tool for understanding ROS-antioxidant interactions at the molecular level in vitro.
Collapse
Affiliation(s)
- Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ki Hyok Lee
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Hyung Kyo Kim
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
22
|
Liu K, Liu J, Xu A, Ding J. The role of polydatin in inhibiting oxidative stress through SIRT1 activation: A comprehensive review of molecular targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118322. [PMID: 38729537 DOI: 10.1016/j.jep.2024.118322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reynoutria japonica Houtt is a medicinal plant renowned for its diverse pharmacological properties, including heat-clearing, toxin-removing, blood circulation promotion, blood stasis removal, diuretic action, and pain relief. The plant is commonly utilized in Traditional Chinese Medicine (TCM), and its major bioactive constituents consist of polydatin (PD) and resveratrol (RES). AIM OF THE STUDY To summarize the relevant targets of PD in various oxidative stress-related diseases through the activation of Silence information regulator1 (SIRT1). Furthermore, elucidating the pharmacological effects and signaling mechanisms to establish the basis for PD's secure clinical implementation and expanded range of application. MATERIALS AND METHODS Literature published before November 2023 on the structural analysis and pharmacological activities of PD was collected using online databases such as Google Scholar, PubMed, and Web of Science. The keywords were "polydatin", "SIRT1" and "oxidative stress". The inclusion criteria were research articles published in English, including in vivo and in vitro experiments and clinical studies. Non-research articles such as reviews, meta-analyses, and letters were excluded. RESULTS PD has been found to have significantly protective and curative effects on diseases associated with oxidative stress by regulating SIRT1-related targets including peroxisome proliferator-activated receptor γ coactivator 1-alpha (PGC-1α), nuclear factor erythroid2-related factor 2 (Nrf2), high mobility group box 1 protein (HMGB1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), p38/p53, as well as endothelial nitric oxide synthase (eNOs), among others. Strong evidence suggests that PD is an effective natural product for treating diseases related to oxidative stress. CONCLUSION PD holds promise as an effective treatment for a wide range of diseases, with SIRT1-mediated oxidative stress as its potential pathway.
Collapse
Affiliation(s)
- Ke Liu
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jiaxi Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Anjian Xu
- Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Junying Ding
- Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
Wang T, Wang H, Chu Y, Bao M, Li X, Zhang G, Feng J. Daily Brain Metabolic Rhythms of Wild Nocturnal Bats. Int J Mol Sci 2024; 25:9850. [PMID: 39337348 PMCID: PMC11432702 DOI: 10.3390/ijms25189850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are found in a wide range of organisms and have garnered significant research interest in the field of chronobiology. Under normal circadian function, metabolic regulation is temporally coordinated across tissues and behaviors within a 24 h period. Metabolites, as the closest molecular regulation to physiological phenotype, have dynamic patterns and their relationship with circadian regulation remains to be fully elucidated. In this study, untargeted brain metabolomics was employed to investigate the daily rhythms of metabolites at four time points corresponding to four typical physiological states in Vespertilio sinensis. Key brain metabolites and associated physiological processes active at different time points were detected, with 154 metabolites identified as rhythmic. Analyses of both metabolomics and transcriptomics revealed that several important physiological processes, including the pentose phosphate pathway and oxidative phosphorylation, play key roles in regulating rhythmic physiology, particularly in hunting and flying behaviors. This study represents the first exploration of daily metabolic dynamics in the bat brain, providing insights into the complex regulatory network of circadian rhythms in mammals at a metabolic level. These findings serve as a valuable reference for future studies on circadian rhythms in nocturnal mammals.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
24
|
Li L, Liu X, Han C, Tian L, Wang Y, Han B. Ferroptosis in radiation-induced brain injury: roles and clinical implications. Biomed Eng Online 2024; 23:93. [PMID: 39261942 PMCID: PMC11389269 DOI: 10.1186/s12938-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
Collapse
Affiliation(s)
- Lifang Li
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Chunfeng Han
- Department of Pharmacy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Licheng Tian
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Yongzhi Wang
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| |
Collapse
|
25
|
Wu D, An R, Wang D, Jiang L, Huang L, Lu T, Xu W, Xu J, Zhang J. Regulatory Effects of Maternal Intake of Microbial-Derived Antioxidants on Colonization of Microbiota in Breastmilk and That of Intestinal Microbiota in Offspring. Animals (Basel) 2024; 14:2582. [PMID: 39272367 PMCID: PMC11394528 DOI: 10.3390/ani14172582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, sixteen Sprague Dawley (SD) female rats and eight SD male rats were co-housed to mate. Pregnant SD female rats were fed with a control diet or an MA diet. Breast milk, maternal ileum, and intestinal samples of the offspring were collected at the day of birth and ten days afterwards. The results showed that the impact of MA was more obvious on the microbiota of mature milk (p = 0.066) than on that of colostrum. In addition, MA additive did not significantly affect maternal ileal microbiota, but affected offsprings' colonic microbiota significantly ten days after birth (p = 0.035). From the day of giving birth to ten days afterwards, in addition to the increase in microbial richness and diversity, at genus level, the dominant bacteria of breastmilk changed from Pseudomonas veronii to Bacillus and Lactococcus. Different from breastmilk microbiota, ten days after giving birth, the maternal ileal microbiota and the offsprings' intestinal microbiota were dominated by Lactobacillus. Instead of ileal microbiota, offsprings' colonic microbiota is a key action site of maternal MA additive. Therefore, the current findings have significant implications for the development of maternal feed aimed at modulating the intestinal microbiota of offspring, ultimately leading to improved health outcomes for both mothers and their offspring.
Collapse
Affiliation(s)
- Dangjin Wu
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ran An
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Di Wang
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luoxin Jiang
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liu Huang
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tenghui Lu
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weina Xu
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- USJ-Kong Hon Academy for Cellular Nutrition, University of Saint Joseph, Macao 999078, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- USJ-Kong Hon Academy for Cellular Nutrition, University of Saint Joseph, Macao 999078, China
| | - Jing Zhang
- Shanghai Key Laboratory of Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- USJ-Kong Hon Academy for Cellular Nutrition, University of Saint Joseph, Macao 999078, China
| |
Collapse
|
26
|
Senyigit A, Durmus S, Gelisgen R, Uzun H. Oxidative Stress and Asprosin Levels in Type 2 Diabetic Patients with Good and Poor Glycemic Control. Biomolecules 2024; 14:1123. [PMID: 39334889 PMCID: PMC11430680 DOI: 10.3390/biom14091123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: HbA1c is the most widely used test as an indicator of glucoregulation in patients with type 2 diabetes mellitus (T2DM). Asprosin and oxidative stress levels can be reduced with good glycemic control (GC) and thus prevented or delayed micro/macro complications in patients with T2DM. The relationship between asprosin, which is thought to affect GC, and oxidative stress parameters such as lipid hydroperoxides (LOOHs), glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (Cu,Zn-SOD), and total antioxidant capacity (TAC) was evaluated in T2DM patients. Materials and Methods: The study was conducted prospectively in 75 healthy people admitted to the hospital for a general health check-up and 150 T2DM patients treated in the diabetes outpatient clinic. The patient's glycemic status measurements were categorized as good glycemic control group (GGC) is defined as HbA1c < 7 and poor glycemic control (PGC) group is defined as HbA1c ≥ 7. Results: The study found a consistent increase in LOOH and MDA levels across the control, GGC, and PGC groups, while GSH, Cu/Zn-SOD, and TAC levels decreased in these respective groups. Additionally, asprosin levels showed a gradual rise in all groups. Positive correlations were observed between asprosin levels and various metabolic and oxidative stress markers, including BMI, WC, FBG, insulin, homeostasis model assessment for insulin resistance (HOMA-IR), DM duration, LOOH, and MDA, while negative correlations were noted with GSH, Cu/Zn-SOD, and TAC specifically in the PGC group. Furthermore, multivariate regression analysis identified HOMA-IR as the primary influencing factor on asprosin levels in PGC patients. Conclusions: Current glycemic dysregulation may lead to increased circulating asprosin and oxidative stress, which cause complications. Since asprosin levels may be an important hormonal factor in determining GC in T2DM, the use of this hormone may be recommended in the future to accelerate therapeutic approaches in T2DM. Early diagnosis and appropriate treatment may delay the development and progression of diabetic complications.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- Department of Internal Medicine, Faculty of Medicine, Istanbul Atlas University, Istanbul 34408, Türkiye;
| | - Sinem Durmus
- Department of Medical Biochemistry, Faculty of Medicine, Izmir Katip Celebi University, Izmir 35620, Türkiye;
| | - Remise Gelisgen
- Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34320,Türkiye;
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul 34408, Türkiye
| |
Collapse
|
27
|
Zdybel M, Pilawa B, Witoszyńska T, Wrześniok D. Changes in Electron Paramagnetic Resonance Parameters Caused by Addition of Amphotericin B to Cladosporium cladosporioides Melanin and DOPA-Melanin-Free Radical Studies. Int J Mol Sci 2024; 25:9571. [PMID: 39273518 PMCID: PMC11394738 DOI: 10.3390/ijms25179571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cladosporium cladosporioides are the pigmented soil fungi containing melanin. The aim of this work was to determine the influence of amphotericin B on free radicals in the natural melanin isolated from pigmented fungi Cladosporium cladosporioides and to compare it with the effect in synthetic DOPA-melanin. Electron paramagnetic resonance (EPR) spectra were measured at X-band (9.3 GHz) with microwave power in the range of 2.2-70 mW. Amplitudes, integral intensities, linewidths of the EPR spectra, and g factors, were analyzed. The concentrations of free radicals in the tested melanin samples were determined. Microwave saturation of EPR lines indicates the presence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. o-Semiquinone free radicals in concentrations ~1020 [spin/g] exist in the tested melanin samples and in their complexes with amphotericin B. Changes in concentrations of free radicals in the examined synthetic and natural melanin point out their participation in the formation of amphotericin B binding to melanin. A different influence of amphotericin B on free radical concentration in Cladosporium cladosporioides melanin and in DOPA-melanin may be caused by the occurrence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. The advanced spectral analysis in the wide range of microwave powers made it possible to compare changes in the free radical systems of different melanin polymers. This study is important for knowledge about the role of free radicals in the interactions of melanin with drugs.
Collapse
Affiliation(s)
- Magdalena Zdybel
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Barbara Pilawa
- Department of Biophysics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Teresa Witoszyńska
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
28
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
29
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2024:10.1038/s41380-024-02725-z. [PMID: 39223276 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
30
|
Han Y, Xi J, Zhang P, Gong M, Luo T, Shao F, Li Y, Zhong L, Quan H. 5(S)-5-Carboxystrictosidine from the Root of Mappianthus iodoides Ameliorates H2O2-induced Apoptosis in H9c2 Cardiomyocytes via PI3K/AKT and ERK Pathways. PLANTA MEDICA 2024; 90:885-895. [PMID: 38857860 DOI: 10.1055/a-2341-6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Junli Xi
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Puzhao Zhang
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Ming Gong
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Tao Luo
- Blood Purification Center of the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Feng Shao
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Yongxin Li
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Hexiu Quan
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| |
Collapse
|
31
|
Selim S, Abdel-Megeid NS, Alhotan RA, Ebrahim A, Hussein E. Nutraceuticals vs. antibiotic growth promoters: differential impacts on performance, meat quality, blood lipids, cecal microbiota, and organ histomorphology of broiler chicken. Poult Sci 2024; 103:103971. [PMID: 38941788 PMCID: PMC11260365 DOI: 10.1016/j.psj.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024] Open
Abstract
The main goal of this study was to evaluate the effect of nutraceuticals vs. in-feed antibiotics on performance, blood lipids, antioxidant capacity, cecal microbiota, and organ histomorphology of broiler chickens. A total of 320 one-day-old male broiler chickens were distributed into 5 treatment groups with 8 replicates each. The control group was fed on a basal diet without any additives (NC); the antibiotic group was fed on a basal diet supplemented with 100 mg kg-1 avilamycin (PC); the algal group was fed on a basal diet supplemented with a mixture of Spirulina platensis and Chlorella vulgaris (1.5 g + 1.5 g/kg feed) (SP+CV); the essential oil group was fed with a basal diet containing 300 mg/kg feed rosemary oil (REO); and the probiotics group (a mixture of 1 × 1011 CFU/g Bacillus licheniformis, 1 × 1011 CFU/g Enterococcus facieum, 1 × 1010 CFU/g Lactobacillus acidophilus, and 2 × 108 CFU /g Saccharomyces cerevisiae) was fed with a basal diet supplemented with 0.05% probiotics (PRO). The experiment lasted for 35 d. A beneficial effect of SP+CV and PRO (P < 0.01) was noticed on final body weight, body weight gain, feed conversion ratio, and breast yield. The dietary supplementation with SP+CV, REO, and PRO increased (P < 0.001) broilers' cecal lactic acid bacteria count compared to the control. Lower cecal Clostridium perfringens and Coliform counts (P < 0.001) were noticed in chickens fed the PC and supplemental diets. Malondialdehyde (MDA) concentration was decreased, while glutathione peroxidase (GPx), superoxide dismutase, and catalase enzymes were increased in the breast and thigh meat (P < 0.001) of broiler chickens fed SP+CV, REO, and PRO diets. Dietary SP+CV, REO, and PRO supplementation decreased (P < 0.001) serum total lipids, cholesterol, triglycerides, low-density lipoprotein, and MDA, but increased serum high-density lipoprotein and GPx compared to PC and NC. No pathological lesions were noticed in the liver, kidney, or breast muscle among broilers. The SP+CV, REO, and PRO groups had greater (P < 0.001) intestinal villi height and crypt depth while lower goblet cell densities (P < 0.01) than the control. The present findings suggest that PRO and SP+CV, followed by REO could be suitable alternatives to in-feed antibiotics for enhancing the performance, health, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shibin El-Kom 32514, Egypt.
| | - Nazema S Abdel-Megeid
- Department of Cytology and Histology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alia Ebrahim
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, China
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| |
Collapse
|
32
|
Ni J, Yang M, Zheng X, Wang M, Xiao Q, Han H, Dong P. Synthesis, Antioxidant Activity, and Molecular Docking of Novel Paeoniflorin Derivatives. Chem Biol Drug Des 2024; 104:e14629. [PMID: 39327238 DOI: 10.1111/cbdd.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.
Collapse
Affiliation(s)
- Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Yang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Zheng
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingtao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Xiao
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
33
|
Saravanan J, Nair A, Krishna SS, Viswanad V. Nanomaterials in biology and medicine: a new perspective on its toxicity and applications. Drug Chem Toxicol 2024; 47:767-784. [PMID: 38682270 DOI: 10.1080/01480545.2024.2340002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Nanotechnology offers excellent prospects for application in biology and medicine. It is used for detecting biological molecules, imaging, and as therapeutic agents. Due to nano-size (1-100 nm) and high surface-to-volume ratio, nanomaterials possess highly specific and distinct characteristics in the biological environment. Recently, the use of nanomaterials as sensors, theranostic, and drug delivery agents has become popular. The safety of these materials is being questioned because of their biological toxicity, such as inflammatory responses, cardiotoxicity, cytotoxicity, inhalation problems, etc., which can have a negative impact on the environment. This review paper focuses primarily on the toxicological effects of nanomaterials along with the mechanisms involved in cell interactions and the generation of reactive oxygen species by nanoparticles, which is the fundamental source of nanotoxicity. We also emphasize the greener synthesis of nanomaterials in biomedicine, as it is non-hazardous, feasible, and economical. The review articles shed light on the complexities of nanotoxicology in biosystems and the environment.
Collapse
Affiliation(s)
- Janani Saravanan
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ayushi Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sivadas Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
34
|
Chettouh-Hammas N, Grillon C. Physiological skin oxygen levels: An important criterion for skin cell functionality and therapeutic approaches. Free Radic Biol Med 2024; 222:259-274. [PMID: 38908804 DOI: 10.1016/j.freeradbiomed.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The skin is made up of different layers with various gradients, which maintain a complex microenvironment, particularly in terms of oxygen levels. However, all types of skin cells are cultured in conventional incubators that do not reproduce physiological oxygen levels. Instead, they are cultured at atmospheric oxygen levels, a condition that is far removed from physiology and may lead to the generation of free radicals known to induce skin ageing. This review aims to summarize the current literature on the effect of physiological oxygen levels on skin cells, highlight the shortcomings of current in vitro models, and demonstrate the importance of respecting skin oxygen levels. We begin by clarifying the terminology used about oxygen levels and describe the specific distribution of oxygen in the skin. We review and discuss how skin cells adapt their oxygen consumption and metabolism to oxygen levels environment, as well as the changes that are induced, particularly, their redox state, life cycle and functions. We examine the effects of oxygen on both simple culture models and more complex reconstructed skin models. Finally, we present the implications of oxygen modulation for a more therapeutic approach.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
35
|
Esteban-Collado J, Fernández-Mañas M, Fernández-Moreno M, Maeso I, Corominas M, Serras F. Reactive oxygen species activate the Drosophila TNF receptor Wengen for damage-induced regeneration. EMBO J 2024; 43:3604-3626. [PMID: 39020149 PMCID: PMC11377715 DOI: 10.1038/s44318-024-00155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024] Open
Abstract
Tumor necrosis factor receptors (TNFRs) control pleiotropic pro-inflammatory functions that range from apoptosis to cell survival. The ability to trigger a particular function will depend on the upstream cues, association with regulatory complexes, and downstream pathways. In Drosophila melanogaster, two TNFRs have been identified, Wengen (Wgn) and Grindelwald (Grnd). Although several reports associate these receptors with JNK-dependent apoptosis, it has recently been found that Wgn activates a variety of other functions. We demonstrate that Wgn is required for survival by protecting cells from apoptosis. This is mediated by dTRAF1 and results in the activation of p38 MAP kinase. Remarkably, Wgn is required for apoptosis-induced regeneration and is activated by the reactive oxygen species (ROS) produced following apoptosis. This ROS activation is exclusive for Wgn, but not for Grnd, and can occur after knocking down Eiger/TNFα. The extracellular cysteine-rich domain of Grnd is much more divergent than that of Wgn, which is more similar to TNFRs from other animals, including humans. Our results show a novel TNFR function that responds to stressors by ensuring p38-dependent regeneration.
Collapse
Affiliation(s)
- José Esteban-Collado
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Mar Fernández-Mañas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Fernández-Moreno
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute for Biodiversity Research (IRBio), Barcelona, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
36
|
Li X, Yang C, Wu H, Chen H, Gao X, Zhou S, Zhang TC, Ma W. DSB-induced oxidative stress: Uncovering crosstalk between DNA damage response and cellular metabolism. DNA Repair (Amst) 2024; 141:103730. [PMID: 39018963 DOI: 10.1016/j.dnarep.2024.103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
While that ROS causes DNA damage is well documented, there has been limited investigation into whether DNA damages and their repair processes can conversely induce oxidative stress. By generating a site-specific DNA double strand break (DSB) via I-SceI endonuclease expression in S. cerevisiae without damaging other cellular components, this study demonstrated that DNA repair does trigger oxidative stress. Deleting genes participating in the initiation of the resection step of homologous recombination (HR), like the MRX complex, resulted in stimulation of ROS. In contrast, deleting genes acting downstream of HR resection suppressed ROS levels. Additionally, blocking non-homologous end joining (NHEJ) also suppressed ROS. Further analysis identified Rad53 as a key player that relays DNA damage signals to alter redox metabolism in an HR-specific manner. These results suggest both HR and NHEJ can drive metabolism changes and oxidative stress, with NHEJ playing a more prominent role in ROS stimulation. Further analysis revealed a correlation between DSB-induced ROS increase and enhanced activity of NADPH oxidase Yno1 and various antioxidant enzymes. Deleting the antioxidant gene SOD1 induced synthetic lethality in HR-deficient mutants like mre11Δ and rad51Δ upon DSB induction. These findings uncover a significant interplay between DNA repair mechanisms and cellular metabolism, providing insights into understanding the side effects of genotoxic therapies and potentially aiding development of more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Xinyu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Caini Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hengyu Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Gao
- Qilu Institute of Technology, Shandong, China
| | - Sa Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.
| | - Tong-Cun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China; Qilu Institute of Technology, Shandong, China.
| |
Collapse
|
37
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
38
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
39
|
Qian YW, Guo YQ, Li YL, Wang Y, Guo S, Niu QQ, Zhu ML, Li P. The antihypertensive effect of Alizarin is achieved by activating VEGFR2/eNOS pathway, attenuating oxidative stress-induced mitochondrial damage and premature senescence. Life Sci 2024; 351:122862. [PMID: 38917872 DOI: 10.1016/j.lfs.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/10/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
The primary and initial manifestations of hypertension encompass arterial hypoelasticity and histiocyte senescence. Oxidative stress plays a pivotal role in the progression of senescence. Elevated intracellular oxidative stress levels will directly induce cell damage, disrupt normal physiological signal transduction, which can cause mitochondrial dysfunction to accelerate the process of senescence. Alizarin, an anthraquinone active ingredient isolated from Rubia cordifolia L., has a variety of pharmacological effects, including antioxidant, anti-inflammatory and anti-platelet. Nevertheless, its potential in lowering blood pressure (BP) and mitigating hypertension-induced vascular senescence remains uncertain. In this study, we used spontaneously hypertensive rats (SHR) and human umbilical vein endothelial cells (HUVECs) to establish a model of vascular senescence in hypertension. Our aim was to elucidate the mechanisms underpinning the vascular protective effects of Alizarin. By assessing systolic blood pressure (SBP) and diastolic blood pressure (DBP), H&E staining, SA-β-Gal staining, vascular function, oxidative stress levels, calcium ion concentration and mitochondrial membrane potential, we found that Alizarin not only restored SBP and increased endothelium-dependent relaxation (EDR) in SHR, but also inhibited oxidative stress-induced mitochondrial damage and significantly delayed the vascular senescence effect in hypertension, and the mechanism may be related to the activation of VEGFR2/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yi-Wen Qian
- Department of Pharmacy, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Ya-Qi Guo
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Yang Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Qian-Qian Niu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Mo-Li Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
40
|
Martinez-Canton M, Galvan-Alvarez V, Martin-Rincon M, Calbet JAL, Gallego-Selles A. Unlocking peak performance: The role of Nrf2 in enhancing exercise outcomes and training adaptation in humans. Free Radic Biol Med 2024; 224:168-181. [PMID: 39151836 DOI: 10.1016/j.freeradbiomed.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Since the discovery of the nuclear factor erythroid-derived 2-like 2 (Nrf2) transcription factor thirty years ago, it has been shown that it regulates more than 250 genes involved in a multitude of biological processes, including redox balance, mitochondrial biogenesis, metabolism, detoxification, cytoprotection, inflammation, immunity, autophagy, cell differentiation, and xenobiotic metabolism. In skeletal muscle, Nrf2 signalling is primarily activated in response to perturbation of redox balance by reactive oxygen species or electrophiles. Initial investigations into human skeletal muscle Nrf2 responses to exercise, dating back roughly a decade, have consistently indicated that exercise-induced ROS production stimulates Nrf2 signalling. Notably, recent studies employing Nrf2 knockout mice have revealed impaired skeletal muscle contractile function characterised by reduced force output and increased fatigue susceptibility compared to wild-type counterparts. These deficiencies partially stem from diminished basal mitochondrial respiratory capacity and an impaired capacity to upregulate specific mitochondrial proteins in response to training, findings corroborated by inducible muscle-specific Nrf2 knockout models. In humans, baseline Nrf2 expression in skeletal muscle correlates with maximal oxygen uptake and high-intensity exercise performance. This manuscript delves into the mechanisms underpinning Nrf2 signalling in response to acute exercise in human skeletal muscle, highlighting the involvement of ROS, antioxidants and Keap1/Nrf2 signalling in exercise performance. Furthermore, it explores Nrf2's role in mediating adaptations to chronic exercise and its impact on overall exercise performance. Additionally, the influence of diet and certain supplements on basal Nrf2 expression and its role in modulating acute and chronic exercise responses are briefly addressed.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806, Oslo, Norway; School of Kinesiology, Faculty of Education, The University of British Columbia, Vancouver, BC, Canada.
| | - Angel Gallego-Selles
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, 35017, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" s/n, 35017, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
41
|
Sen B, Benoit B, Brand MD. Hypoxia decreases mitochondrial ROS production in cells. Free Radic Biol Med 2024; 224:1-8. [PMID: 39147069 DOI: 10.1016/j.freeradbiomed.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
We re-examined the reported increase in mitochondrial ROS production during acute hypoxia in cells. Using the Amplex Ultrared/horseradish peroxidase assay we found a decrease, not increase, in hydrogen peroxide release from HEK293 cells under acute hypoxia, at times ranging from 1 min to 3 h. The rates of superoxide/hydrogen peroxide production from each of the three major sites (site IQ in complex I and site IIIQo in complex III in mitochondria, and NADH oxidases (NOX) in the cytosol) were decreased to the same extent by acute hypoxia, with no change in the cells' ability to degrade added hydrogen peroxide. A similar decrease in ROS production under acute hypoxia was found using the diacetyldichlorofluorescein assay. Using a HIF1α reporter cell line we confirmed earlier observations that suppression of superoxide production by site IIIQo decreases HIF1α expression, and found similar effects of suppressing site IQ or NOX. We conclude that increased mitochondrial ROS do not drive the response of HIF1α to acute hypoxia, but suggest that cytosolic H2O2 derived from site IQ, site IIIQo and NOX in cells is necessary to permit HIF1α stabilization by other signals.
Collapse
Affiliation(s)
- Bijoya Sen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Bérengère Benoit
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
42
|
Cui X, Zhou Z, Tu H, Wu J, Zhou J, Yi Q, Liu O, Dai X. Mitophagy in fibrotic diseases: molecular mechanisms and therapeutic applications. Front Physiol 2024; 15:1430230. [PMID: 39183973 PMCID: PMC11341310 DOI: 10.3389/fphys.2024.1430230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Mitophagy is a highly precise process of selective autophagy, primarily aimed at eliminating excess or damaged mitochondria to maintain the stability of both mitochondrial and cellular homeostasis. In recent years, with in-depth research into the association between mitophagy and fibrotic diseases, it has been discovered that this process may interact with crucial cellular biological processes such as oxidative stress, inflammatory responses, cellular dynamics regulation, and energy metabolism, thereby influencing the occurrence and progression of fibrotic diseases. Consequently, modulating mitophagy holds promise as a therapeutic approach for fibrosis. Currently, various methods have been identified to regulate mitophagy to prevent fibrosis, categorized into three types: natural drug therapy, biological therapy, and physical therapy. This review comprehensively summarizes the current understanding of the mechanisms of mitophagy, delves into its biological roles in fibrotic diseases, and introduces mitophagy modulators effective in fibrosis, aiming to provide new targets and theoretical basis for the investigation of fibrosis-related mechanisms and disease prevention.
Collapse
Affiliation(s)
- Xinyan Cui
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Zekun Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Hua Tu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jianjun Wu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiao Yi
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research, Hunan Clinical Research Center of Oral Major Diseases, Oral Health and Academician Workstation for Oral-maxilofacial, Regenerative Medicine and Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
43
|
Birsa ML, Sarbu LG. A Structure-Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones. Antioxidants (Basel) 2024; 13:963. [PMID: 39199209 PMCID: PMC11351990 DOI: 10.3390/antiox13080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
The antioxidant properties of 3-dithiocarbamic flavanones have been investigated. The influence of the halogen substituents on ring A of the flavanones and the nature of the secondary amine from the dithiocarbamic moiety have been accounted. The results indicated that the presence of a halogen substituent at the C-8 position of the benzopyran ring induce better antioxidant properties against DPPH and ABTS than butylated hydroxytoluene (BHT) and ascorbic acid. The presence of a halogen substituent at the mentioned position appears to induce a higher stability for a free radical intermediate at the C-3 position of the benzopyran ring. A free radical enolate is most likely to be involved in the antioxidant activity of this dithiocarbamic flavanone. It is a stable intermediate that supports the influence of dithiocarbamic moiety on the antioxidant properties of the reported flavanones.
Collapse
Affiliation(s)
- Mihail Lucian Birsa
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Laura Gabriela Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, No. 11 Carol I Boulevard, 700506 Iasi, Romania
| |
Collapse
|
44
|
Krobthong S, Jaroenchuensiri T, Yingchutrakul Y, Sukmak P, Visessanguan W, Pongkorpsakol P, Tulyananda T, Aonbangkhen C. Protective Effects of an Octapeptide Identified from Riceberry™ ( Oryza sativa) Protein Hydrolysate on Oxidative and Endoplasmic Reticulum (ER) Stress in L929 Cells. Foods 2024; 13:2467. [PMID: 39123656 PMCID: PMC11312331 DOI: 10.3390/foods13152467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Reactive oxygen species (ROS) play a critical role in oxidative stress and cellular damage, underscoring the importance of identifying potent antioxidants. This research focuses on the antioxidant capabilities of Riceberry™-derived peptides and their protective effects against oxidative and endoplasmic reticulum (ER) stress in L929 cells. By simulating human digestion, Riceberry™ protein hydrolysate was generated, from which antioxidant peptides were isolated using OFFGEL electrophoresis and LC-MS/MS. Notably, an octapeptide (VPAGVAHW) from the hydrolysate demonstrated significant antioxidant activity, particularly against oxidative stress induced by iodoacetic acid (IAA) or hydrogen peroxide (H2O2) and ER stress caused by tunicamycin (TM) in L929 cells. This peptide's effectiveness was evident in its dose-dependent ability to enhance cell viability and mitigate stress effects, although its efficiency varied with the stress inducer. Our study suggests that Riceberry™-derived peptides could serve as a promising natural antioxidant with potential benefits for health promotion and applications in the food industry, offering an environmentally friendly alternative to synthetic antioxidants.
Collapse
Affiliation(s)
- Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Theeranuch Jaroenchuensiri
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pichayapa Sukmak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tatpong Tulyananda
- Plant Biology & Astrobotany Laboratory, School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Salaya Campus, Nakhon Pathom 73170, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
45
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2024:10.1007/s12035-024-04394-z. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
46
|
Gershner GH, Hunter CJ. Redox Chemistry: Implications for Necrotizing Enterocolitis. Int J Mol Sci 2024; 25:8416. [PMID: 39125983 PMCID: PMC11312856 DOI: 10.3390/ijms25158416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Reduction-oxidation (redox) chemistry plays a vital role in human homeostasis. These reactions play critical roles in energy generation, as part of innate immunity, and in the generation of secondary messengers with various functions such as cell cycle progression or the release of neurotransmitters. Despite this cornerstone role, if left unchecked, the body can overproduce reactive oxygen species (ROS) or reactive nitrogen species (RNS). When these overwhelm endogenous antioxidant systems, oxidative stress (OS) occurs. In neonates, OS has been associated with retinopathy of prematurity (ROP), leukomalacia, and bronchopulmonary dysplasia (BPD). Given its broad spectrum of effects, research has started to examine whether OS plays a role in necrotizing enterocolitis (NEC). In this paper, we will discuss the basics of redox chemistry and how the human body keeps these in check. We will then discuss what happens when these go awry, focusing mostly on NEC in neonates.
Collapse
Affiliation(s)
- Grant H. Gershner
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA;
- Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| | - Catherine J. Hunter
- Division of Pediatric Surgery, Oklahoma Children’s Hospital, 1200 Everett Drive, ET NP 2320, Oklahoma City, OK 73104, USA;
- Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Research Parkway, Suite 449, Oklahoma City, OK 73104, USA
| |
Collapse
|
47
|
Sal Moyano MP, Mitton FM, Luppi TA, Snitman SM, Nuñez JD, Lorusso MI, Ceraulo M, Gavio MA, Buscaino G. Noise accelerates embryonic development in a key crab species: Morphological and physiological carryover effects on early life stages. MARINE POLLUTION BULLETIN 2024; 205:116564. [PMID: 38861799 DOI: 10.1016/j.marpolbul.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Anthropogenic noise is considered one important global pollutant. The impact of noise on marine invertebrates has been less assessed. The present study evaluated the chronic effect of the motorboat noise obtained from a lagoon's soundscape, the natural habitat of the key crab Neohelice granulata, on its whole embryonic development, considering morphological and physiological carryover effects on embryos and hatched larvae. Results demonstrated that embryonic development was shortened under noise exposure. The effects on advanced embryos, larvae and adult females were: increased heartbeats and non-viable eggs, and decreased fecundity. Biochemical responses showed lipid peroxidation in embryos while antioxidant enzymes were activated in larvae and adults, indicating a counteracting effect related to the life stage. The negative effects on fitness offspring may imply ecological consequences at the population level. Results are discussed in terms of the ecosystem engineer species studied and the habitat, a MAB UNESCO Reserve lagoon, suggesting the urgent need to develop mitigation plans.
Collapse
Affiliation(s)
- María Paz Sal Moyano
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina.
| | - Francesca Maria Mitton
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Paseo Victoria Ocampo N°1 Escollera Norte (B7602HSA), 7600 Mar del Plata, Argentina
| | - Tomas Atilio Luppi
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Solana Morena Snitman
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Jesús Darío Nuñez
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Martín Ignacio Lorusso
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Maria Ceraulo
- Institute of Anthropic Impact and Sustainability in Marine Environment (IAS)-CNR National Research Council, Via del Mare 3, 91021 Torretta Granitola, TP, Italy
| | - María Andrea Gavio
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata-CONICET, CC1260, 7600 Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Giuseppa Buscaino
- Institute of Anthropic Impact and Sustainability in Marine Environment (IAS)-CNR National Research Council, Via del Mare 3, 91021 Torretta Granitola, TP, Italy
| |
Collapse
|
48
|
Chouchene L, Boughammoura S, Ben Rhouma M, Mlouka R, Banni M, Messaoudi I, Kessabi K. Effect of thyroid disruption on ovarian development following maternal exposure to Bisphenol S. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52596-52614. [PMID: 39153066 DOI: 10.1007/s11356-024-34666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Thyroid hormones play a crucial role in numerous physiological processes, including reproduction. Bisphenol S (BPS) is a structural analog of Bisphenol A known for its toxic effects. Interference of this substitute with normal thyroid function has been described. To investigate the effect of thyroid disruption on ovarian development following maternal exposure to BPS, female rats were exposed, daily, to either AT 1-850 (a thyroid hormone receptor antagonist) (10 nmol/rat) or BPS (0.2 mg/kg) during gestation and lactation. The effects on reproductive outcome, offspring development, histological structures, hormone levels, oxidative status, cytoskeleton proteins expression, and oocyte development gene expression were examined. Our results are in favor of offspring ovarian development disruption due to thyroid disturbance in adult pregnant females. During both fetal and postnatal stages, BPS considerably altered the histological structure of the thyroid tissue as well as oocyte and follicular development, which led to premature ovarian failure and stimulation of oocyte atresia, being accompanied with oxidative stress, hypothalamic-pituitary-ovarian axis disorders, and cytoskeletal dynamic disturbance. Crucially, our study underscores that BPS may induce reproductive toxicity by blocking nuclear thyroid hormone receptors, evidenced by the parallelism and the perfect meshing between the data obtained following exposure to AT 1-850 and those after the treatment by this substitute.
Collapse
Affiliation(s)
- Lina Chouchene
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| | - Sana Boughammoura
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Mariem Ben Rhouma
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Imed Messaoudi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Kaouthar Kessabi
- Laboratory of Genetics, Biodiversity and Bio-Resources Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
49
|
Liu Y, Chen W, Zhang S, Zhu X, Wu H, Meng Q, Khan MZ, Yu Z, Zhou Z. N-acetyl-l-methionine dietary supplementation improves meat quality by oxidative stability of finishing Angus heifers. Meat Sci 2024; 214:109499. [PMID: 38677056 DOI: 10.1016/j.meatsci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/29/2024]
Abstract
Methionine plays a vital role in protein synthesis, and regulation of antioxidant response in ruminants. This study aimed to assess the effects of dietary supplementation with N-acetyl-l-methionine (NALM), which serves a source of rumen-protected methionine, on growth performance, carcass traits, meat quality, and oxidative stability. Sixty Angus heifers (initial body weight = 408 ± 51.2 kg, 15-18 months) were stratified by body weight and randomly assigned to four dietary treatments: a control group (0% NALM), and experimental groups receiving diets containing 0.125%, 0.25%, and 0.50% NALM (dry matter (DM) basis), respectively. The experiment included a 2-week adaptation and a 22-week data and sample collection period. Results indicated that blood urea nitrogen in the plasma of the 0.25% NALM group was lower compared to the control and the 0.50% NALM groups (P = 0.02). The plasma methionine (P = 0.04), proline (P < 0.01), and tryptophan (P = 0.05) were higher in the 0.25% and 0.50% NALM groups, as well as the methionine and proline in the muscle of the 0.25% NALM group (P < 0.01). The muscle pH (P < 0.01) was increased by supplementing 0.25% and 0.50% NALM in diets but decreased the lactate (P < 0.01). The 0.25% NALM group also increased a* (P = 0.05), decreased L* (P = 0.05), drip loss (P = 0.01), and glycolytic potential in the muscle (P < 0.01). The total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, and glutathione in muscle of 0.25% NALM group were higher than that of the control (P < 0.01), and the malondialdehyde and protein carbonyl were lower (P < 0.01). In conclusion, the dietary supplement with NALM improves meat quality by enhancing the antioxidant effect of lipids and proteins.
Collapse
Affiliation(s)
- Yue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Wanbao Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Shuo Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaohui Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, PR China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
50
|
Beaulieu M. Oxidative status: A general but overlooked indicator of welfare across animal species? Bioessays 2024; 46:e2300205. [PMID: 38837433 DOI: 10.1002/bies.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Because of their ubiquity, plasticity, and direct effects on the nervous system, markers of oxidative status may be of great value to assess animal welfare across species and conditions in the wild. However, welfare biologists have not yet seized this opportunity, possibly because the validity of these markers as welfare indicators remains questionable. A validation process was, therefore, performed here using a meta-analytical approach considering three conditions assumed to impair the welfare of animals. With very few exceptions, two of the four considered markers consistently varied across these negatively-valenced conditions. By highlighting the current underrepresentation of markers of oxidative status in animal welfare studies, and by concretely illustrating that some of these markers can consistently reflect negative affective states, this article aims to encourage biologists to include these physiological markers in their toolbox to better measure, monitor, and perhaps also improve the welfare of animals in their natural habitat.
Collapse
|