1
|
Gao P, Zhao A, Zhang X, Tang P, Li D, Liu T, Li J, Zhu Y, Wang Z. Potential role of N-acyl homoserine lactone-mediated quorum sensing in the adaptation of anammox granular sludge system to salinity stress. BIORESOURCE TECHNOLOGY 2025; 416:131758. [PMID: 39515434 DOI: 10.1016/j.biortech.2024.131758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Anammox granular sludge (AnGS) systems efficiently remove nitrogen from saline wastewater, but their adaptation mechanisms to salt stress are unclear. This study explores the adaptability of the AnGS system when exposed to salinity (0-30 g NaCl/L), focusing on the role of N-acyl homoserine lactone-mediated quorum sensing (AHL-QS) in microbial responses and community symbiosis under stress. Based on Hill model assessments, AnGS tolerates salt stress up to 15.73 g/L. Within this range, AnGS maintains cellular stability by enhancing extracellular polymeric substances (EPS) release, regulating oxidative stress; and drives nitrogen metabolism by increasing cytochrome c-activity to maintain electron transfer. With the mantel test and validation experiments, salt stimulates QS, leading to increased AHL (C6-HSL and C8-HSL) secretion associated with EPS release, extracellular electron transfer, and oxidative stress. Stabilization of AHL-QS genera supports AHL secretion and microbial symbiosis, promoting AnGS adaptation to salt stress. These insights facilitate optimizing AnGS for saline wastewater treatment.
Collapse
Affiliation(s)
- Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Andong Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Tingting Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Zhaozhao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| |
Collapse
|
2
|
Konno N, Togashi A, Miyanishi H, Azuma M, Nakamachi T, Matsuda K. Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39718083 DOI: 10.1002/jez.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl- secretion for SW adaptation, while alternative Cl- excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment. In situ hybridization revealed ANO1 mRNA in chloride cells co-expressing CFTR and Na+, K+-ATPase under hyperosmotic conditions. ANO1 inhibition elevated plasma Cl- concentration, indicating impaired Cl- excretion. CORT or dexamethasone administration in freshwater (FW) fish significantly increased branchial ANO1 and CFTR mRNA expression, an effect attenuated by the glucocorticoid receptor (GR) antagonist RU486. Hyperosmotic treatment of isolated gill tissues rapidly induced ANO1 mRNA expression independent of CFTR mRNA changes, and this induction was unaffected by RU486. These findings highlight the dual regulation of ANO1 expression via hyperosmolality-induced cellular response and the CORT-GR system. Thus, branchial ANO1 may likely complement CFTR in Cl⁻ excretion, playing a key role in the hyperosmotic adaptation of euryhaline teleosts.
Collapse
Affiliation(s)
- Norifumi Konno
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Ayane Togashi
- Departement of Biology, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomoya Nakamachi
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Kouhei Matsuda
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
3
|
Fu J, Ni Q, Wu Y, Gupta A, Ge Z, Yang H, Afrida Y, Barman I, Sun S. Cells Prioritize the Regulation of Cell Mass Density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627803. [PMID: 39713365 PMCID: PMC11661194 DOI: 10.1101/2024.12.10.627803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change. We find that while the cell volume and mass exhibit complex behavior after osmotic shock, CMD follows a straightforward monotonic recovery in 48 hours. The recovery is cell-cycle independent and relies on a coordinated adjustment of protein synthesis and volume growth rates. Surprisingly, we find that the protein synthesis rate decreases when CMD increases. This result is explained by CMD-dependent nucleoplasm-cytoplasm transport, which serves as negative regulatory feedback on CMD. The Na+/H+ exchanger NHE plays a role in regulating CMD by affecting both protein synthesis and volume change. Taken together, we reveal that cells possess a robust control system that actively regulates CMD during environmental change.
Collapse
|
4
|
Kleene SJ. Hyperosmolality activates polycystin-2 and TRPM4 in renal primary cilium. Pflugers Arch 2024:10.1007/s00424-024-03050-8. [PMID: 39688695 DOI: 10.1007/s00424-024-03050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/09/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating disease characterized by renal cysts. It arises from mutations in proteins expressed in part in the primary cilia of renal epithelial cells. One of these, polycystin-2 (PC2), is an ion-conducting channel. To date, ion channels in the cilium have only been characterized in standard normosmolar external solutions, but the osmolality of the renal filtrate bathing the cilia varies widely. Here I report that urine, which better represents the filtrate, activates a large cation-conducting current in the cilia. With defined external solutions, hyperosmolality through addition of urea, NaCl, or D-mannitol activates a similar current. Most but not all of this current is conducted through TRPM4 channels. It is greatly reduced by internal MgATP or 9-phenanthrol, which inhibit TRPM4, or by shRNA knockdown of TRPM4. However, part of the current activated by urea conducts Ca2+ through channels that remain to be identified. External hyperosmolality also greatly increases the activity of ciliary PC2 channels; this is the first physiological stimulus identified for these channels. Possibilities are discussed for the mechanisms of channel activation and the roles for these activities in regulatory volume increase and cystogenesis.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Bino T, Goto Y, Maryu G, Arakawa K, Aoki K. Possible roles of CAHS proteins from Tardigrade in osmotic stress tolerance in mammalian cells. Cell Struct Funct 2024; 49:123-133. [PMID: 39566968 DOI: 10.1247/csf.24035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Anhydrobiosis, a phenomenon in which organisms survive extreme dehydration by entering a reversible ametabolic state, is a remarkable example of survival strategies. This study focuses on anhydrobiosis in tardigrades, which are known for their resilience to severe environmental conditions. Tardigrades utilize several protective mechanisms against desiccation, notably the constitutive expression of cytoplasmic abundant heat soluble (CAHS) proteins in Ramazzottius varieornatus. These proteins share similarities in their amphiphatic alpha helices with late embryogenesis abundant (LEA) proteins, but differ significantly in their amino acid sequences. In this study, we further explored the functionality of CAHS proteins by analyzing their role in aggregation and tolerance to hyperosmotic stress in mammalian cells. Using live cell imaging, we examined the subcellular localization of several CAHS and LEA proteins in response to hyperosmotic stress. The expression of CAHS1, CAHS3, and CAHS8 tended to enhance the resilience to the hyperosmotic conditions. These findings not only deepen our understanding of the molecular mechanisms of anhydrobiosis but also highlight the potential of CAHS proteins as cryoprotectants.Key words: anhydrobiosis, Tardigrades, live imaging, disordered proteins, desiccation tolerance.
Collapse
Affiliation(s)
- Takahiro Bino
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Yuhei Goto
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University
| | - Gembu Maryu
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
| | - Kazuharu Arakawa
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Institute for Advanced Biosciences, Keio University
- Graduate School of Media and Governance, Keio University
- Faculty of Environment and Information Studies, Keio University
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)
- Laboratory of Cell Cycle Regulation, Graduate School of Biostudies, Kyoto University
- Center for Living Systems Information Science, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
6
|
Ben Messaoud N, López JM. p38α and p38β regulate osmostress-induced apoptosis. J Biol Chem 2024; 301:108061. [PMID: 39653241 DOI: 10.1016/j.jbc.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes. Different signaling pathways engaged by osmostress converge on the mitochondria to trigger cell death. The mitogen-activated protein kinases (MAPKs) JNK1-1 and JNK1-2 are early activated by hyperosmotic shock and sustained activation of both isoforms accelerates the apoptotic program. Indeed, sustained activation of p38 accelerates osmostress-induced cell death, but the p38 isoforms involved are not well characterized. Here we study the expression and activation of Xenopus p38 isoforms in response to hyperosmotic stress. We find that p38α, p38β, and p38γ are early activated by hyperosmotic shock and sustained activation of p38α and p38β accelerates osmostress-induced apoptosis. Moreover, microinjection of cytochrome c in the oocytes induces caspase-3 activation and p38α and p38β phosphorylation suggesting that caspases and kinases are interlinked in a positive feedback loop to promote cell death. In summary, we present a more complete view of the mechanisms involved in osmostress-induced apoptosis.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - José M López
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Yang W, Wang Y, Liu G, Wang Y, Wu C. TPM4 condensates glycolytic enzymes and facilitates actin reorganization under hyperosmotic stress. Cell Discov 2024; 10:120. [PMID: 39622827 PMCID: PMC11612400 DOI: 10.1038/s41421-024-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/20/2024] [Indexed: 12/06/2024] Open
Abstract
Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein tropomyosin 4 (TPM4). TPM4 condensates recruit glycolytic enzymes such as HK2, PFKM, and PKM2, while wetting actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filament assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impairs osmolarity-induced actin reorganization. At tissue level, colocalized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
Collapse
Affiliation(s)
- Wenzhong Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yuan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- International Cancer Institute, Peking University, Beijing, China.
- Institute of Advanced Clinical Medicine, State Key Laboratory of Molecular Oncology, Beijing, China.
| |
Collapse
|
8
|
Palmer RM, Sandbach A, Buckley BA. Tissue-specific effects of temperature and salinity on the cell cycle and apoptosis in the Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111706. [PMID: 39033849 DOI: 10.1016/j.cbpa.2024.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The Nile Tilapia (Oreochromis niloticus) evolved in warm, freshwater rivers, but possesses a broad physiological tolerance to a range of environmental conditions. Due to this hardiness and resilience, this species has been successfully introduced to regions widely outside of its native range. Here, we examine the impact of temperature and salinity variation on this species at the sub-lethal level. Specifically, Nile Tilapia were exposed to two temperatures (21 °C or 14 °C) and three salinities (0, 16, 34 ppt) for 1-h. Given their native habitat, the 21 °C / 0 ppt exposure was considered the control condition. Both cell cycle arrest and apoptosis represent sub-lethal but deleterious responses to environmental stress. Flow cytometry was used to assess the percentage of cells in a given stage of the cell cycle as a metric of cell cycle arrest in spleen and liver. Percentage of apoptotic cells were also quantified. Spleen was more sensitive to cold stress, demonstrating an increase in cells in the G2/M phase after experimental treatment. Liver, however, was more sensitive to salinity stress, with a significant increase in cells stalled in G2/M phase at higher salinities, which is in keeping with the freshwater evolutionary history of the species. A modest apoptotic signal was observed in liver but not in spleen. Together, these findings demonstrate that even short, acute exposures to cold temperatures and elevated salinity can cause sub-lethal damage in a species that is otherwise tolerant of environmental stress at the whole organism level.
Collapse
Affiliation(s)
- Rachel M Palmer
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States
| | - Arika Sandbach
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States
| | - Bradley A Buckley
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States.
| |
Collapse
|
9
|
De Angelis E, Borghetti P, Passeri B, Cavalli V, Ferrari L, Andrani M, Martelli P, Saleri R. Hyperosmotic Stress Induces the Expression of Organic Osmolyte Transporters in Porcine Intestinal Cells and Betaine Exerts a Protective Effect on the Barrier Function. Biomedicines 2024; 12:2391. [PMID: 39457703 PMCID: PMC11503993 DOI: 10.3390/biomedicines12102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The porcine intestinal epithelium plays a fundamental role as a defence interface against pathogens. Its alteration can cause severe inflammatory conditions and diseases. Hyperosmotic stress under physiological conditions and upon pathogen challenge can cause malabsorption. Different cell types counteract the osmolarity increase by accumulating organic osmolytes such as betaine, taurine, and myo-inositol through specific transporters. Betaine is known for protecting cells from hyperosmotic stress and has positive effects when fed to pigs. The aim of this study is to demonstrate the modulation of osmolyte transporters gene expression in IPEC-J2 during osmolarity changes and assess the effects of betaine. Methods: IPEC-J2 were seeded in transwells, where differentiate as a polarized monolayer. Epithelial cell integrity (TEER), oxidative stress (NO) and gene expression of osmolyte transporters, tight junction proteins (TJp) and pro-inflammatory cytokines were evaluated. Results: Cells treated with NaCl hyperosmolar medium (500 mOsm/L) showed a TEER decrease at 3 h and detachment within 24 h, associated with an osmolyte transporters reduction. IPEC-J2 treated with mannitol hyperosmolar medium (500 mOsm/L) upregulated taurine (TauT), myo-inositol (SMIT) and betaine (BGT1) transporters expression. A decrease in TJp expression was associated with a TEER decrease and an increase in TNFα, IL6, and IL8. Betaine could attenuate the hyperosmolarity-induced reduction in TEER and TJp expression, the NO increase and cytokines upregulation. Conclusions: This study demonstrates the expression of osmolyte transporters in IPEC-J2, which was upregulated upon hyperosmotic treatment. Betaine counteracts changes in intracellular osmolarity by contributing to maintaining the epithelial barrier function and reducing the inflammatory condition. Compatible osmolytes may provide beneficial effects in therapies for diseases characterized by inflammation and TJp-related dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (E.D.A.); (P.B.); (B.P.); (V.C.); (L.F.); (P.M.); (R.S.)
| | | | | |
Collapse
|
10
|
Ryuno H, Hanafusa Y, Fujisawa T, Ogawa M, Adachi H, Naguro I, Ichijo H. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Commun Biol 2024; 7:1290. [PMID: 39384976 PMCID: PMC11464898 DOI: 10.1038/s42003-024-06997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hanafusa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| | - Motoyuki Ogawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
| | - Hiroki Adachi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan.
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
11
|
Biswas P, Roy P, Jana S, Ray D, Das J, Chaudhuri B, Basunia RR, Sinha B, Sinha DK. Exploring the role of macromolecular crowding and TNFR1 in cell volume control. eLife 2024; 13:e92719. [PMID: 39297502 PMCID: PMC11581439 DOI: 10.7554/elife.92719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/18/2024] [Indexed: 11/22/2024] Open
Abstract
The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favoring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with nuclear factor kappa beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that tumor necrosis factor receptor 1 (TNFR1) initiates the hypertonicity-induced NFkB signaling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders receptor interacting protein kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signaling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signaling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.
Collapse
Affiliation(s)
- Parijat Biswas
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Priyanka Roy
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Subhamoy Jana
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Bipasa Chaudhuri
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Ridita Ray Basunia
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkataIndia
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of ScienceKolkataIndia
| |
Collapse
|
12
|
van Setten GB. Cellular Stress in Dry Eye Disease-Key Hub of the Vicious Circle. BIOLOGY 2024; 13:669. [PMID: 39336096 PMCID: PMC11428556 DOI: 10.3390/biology13090669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024]
Abstract
Disturbance or insufficiency of the tear film challenges the regulatory systems of the ocular surfaces. The reaction of the surfaces includes temporary mechanisms engaged in the preservation of homeostasis. However, strong or persisting challenges can lead to the potential exhaustion of the coping capacity. This again activates the vicious circle with chronic inflammation and autocatalytic deterioration. Hence, the factors challenging the homeostasis should be addressed in time. Amongst them are a varying osmolarity, constant presence of small lesions at the epithelium, acidification, attrition with mechanical irritation, and onset of pain and discomfort. Each of them and, especially when occurring simultaneously, impose stress on the coping mechanisms and lead to a stress response. Many stressors can culminate, leading to an exhaustion of the coping capacity, outrunning normal resilience. Reaching the limits of stress tolerance leads to the manifestation of a lubrication deficiency as the disease we refer to as dry eye disease (DED). To postpone its manifestation, the avoidance or amelioration of stress factors is one key option. In DED, this is the target of lubrication therapy, substituting the missing tear film or its components. The latter options include the management of secondary sequelae such as the inflammation and activation of reparative cascades. Preventive measures include the enhancement in resilience, recovery velocity, and recovery potential. The capacity to handle the external load factors is the key issue. The aim is to guard homeostasis and to prevent intercellular stress responses from being launched, triggering and invigorating the vicious circle. Considering the dilemma of the surface to have to cope with increased time of exposure to stress, with simultaneously decreasing time for cellular recovery, it illustrates the importance of the vicious circle as a hub for ocular surface stress. The resulting imbalance triggers a continuous deterioration of the ocular surface condition. After an initial phase of the reaction and adaption of the ocular surface to the surrounding challenges, the normal coping capacity will be exhausted. This is the time when the integrated stress response (ISR), a protector for cellular survival, will inevitably be activated, and cellular changes such as altered translation and ribosome pausing are initiated. Once activated, this will slow down any recovery, in a phase where apoptosis is imminent. Premature senescence of cells may also occur. The process of prematurization due to permanent stress exposures contributes to the risk for constant deterioration. The illustrated flow of events in the development of DED outlines that the ability to cope, and to recover, has limited resources in the cells at the ocular surface. The reduction in and amelioration of stress hence should be one of the key targets of therapy and begin early. Here, lubrication optimization as well as causal treatment such as the correction of anatomical anomalies (leading to anatomical dry eye) should be a prime intent of any therapy. The features of cellular stress as a key hub for the vicious circle will be outlined and discussed.
Collapse
Affiliation(s)
- Gysbert-Botho van Setten
- St. Eriks Eye Hospital, 17164 Solna, Sweden
- Department of Clinical Neuroscience, Division of Eye and Vision, Lab of DOHF and Wound Healing, Karolinska Institutet, Eugeniavägen 12/Level 6, 17104 Solna, Sweden
| |
Collapse
|
13
|
Biswas S, Masum MA, Sarkar SK, Saud B, Akter R, Islam KS, Karim SJI, Rahman MM, Golbar HM, Alam ME, Islam MA, Begum M, Rahman MM, Ichii O, Kon Y. Salinity negatively correlates with the production and immunity of chicken: A molecular insight for food security and safety issues. Heliyon 2024; 10:e34819. [PMID: 39170109 PMCID: PMC11336352 DOI: 10.1016/j.heliyon.2024.e34819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Salinity intrusion into the freshwater system due to climate change and anthropogenic activities is a growing global concern, which has made humans and domesticated animals more susceptible to diseases, resulting in less productivity. However, the effects of salinity on domesticated and wild birds, especially in terms of production and immunity, have not been fully elucidated yet. Therefore, this study was designed to examine the effects of salinity on the production and immunity of birds and the mechanisms by which immunity is compromised. Broiler chicks were subjected to different concentrations of salty water (control = normal water, treatment = 5 g/L, treatment = 10 g/L, and treatment = 15 g/L). The collected blood and organs from different groups of broilers were biochemically and histopathologically examined. Birds in salt-treated groups consumed significantly less feed than the control group, while the feed conversion ratio (FCR) was significantly higher. Body weight gain was significantly lower in salt-treated groups compared to control. Serum analysis revealed a lower systemic antibody titer in the salt-treated groups compared to the control. Primary lymphoid organs (thymus and bursa of Fabricius) were reduced in size in the salt-treated group due to cellular migration and depletion from these organs. Importantly, most of the parenchyma of lymphoid organs was replaced with fibrotic tissue. Gut microbes, Escherichia coli (E. coli) and Salmonella spp., from salt-treated groups, showed less viability but developed antibiotic resistance. Levels of salinity were significantly and negatively correlated with feed intake, body weight gain, antibody titer, lymphoid organ size, and viable count of gut microbes, while FCR, fibrosis of lymphoid organs, and antibiotic resistance were significant positively correlated. In conclusion, increased salinity is a possible threat to food security and safety as it decreases body weight gain, reduces immunity, and influences the development of multi-drug resistance in gut microbes.
Collapse
Affiliation(s)
- Subrato Biswas
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Abdul Masum
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Sujan Kumar Sarkar
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Basant Saud
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Rupa Akter
- Department of Anatomy, Histology & Physiology, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - K.B.M. Saiful Islam
- Department of Medicine & Public Health, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shah Jungy Ibna Karim
- Department of Medicine & Public Health, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Hossain M. Golbar
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md. Emtiaj Alam
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Akhtarul Islam
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Maksuda Begum
- Department of Poultry Science, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | | | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, 0600818, Japan
- Laboratory of Agrobiomedical Science, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Hokkaido University, Sapporo, 0600818, Japan
| |
Collapse
|
14
|
Wang C, Wang X, Zhou P, Li C. Genome-Wide Identification and Characterization of RdHSP Genes Related to High Temperature in Rhododendron delavayi. PLANTS (BASEL, SWITZERLAND) 2024; 13:1878. [PMID: 38999718 PMCID: PMC11244423 DOI: 10.3390/plants13131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that play essential roles in plant development and in response to various environmental stresses. Understanding R. delavayi HSP genes is of great importance since R. delavayi is severely affected by heat stress. In the present study, a total of 76 RdHSP genes were identified in the R. delavayi genome, which were divided into five subfamilies based on molecular weight and domain composition. Analyses of the chromosome distribution, gene structure, and conserved motif of the RdHSP family genes were conducted using bioinformatics analysis methods. Gene duplication analysis showed that 15 and 8 RdHSP genes were obtained and retained from the WGD/segmental duplication and tandem duplication, respectively. Cis-element analysis revealed the importance of RdHSP genes in plant adaptations to the environment. Moreover, the expression patterns of RdHSP family genes were investigated in R. delavayi treated with high temperature based on our RNA-seq data, which were further verified by qRT-PCR. Further analysis revealed that nine candidate genes, including six RdHSP20 subfamily genes (RdHSP20.4, RdHSP20.8, RdHSP20.6, RdHSP20.3, RdHSP20.10, and RdHSP20.15) and three RdHSP70 subfamily genes (RdHSP70.15, RdHSP70.21, and RdHSP70.16), might be involved in enhancing the heat stress tolerance. The subcellular localization of two candidate RdHSP genes (RdHSP20.8 and RdHSP20.6) showed that two candidate RdHSPs were expressed and function in the chloroplast and nucleus, respectively. These results provide a basis for the functional characterization of HSP genes and investigations on the molecular mechanisms of heat stress response in R. delavayi.
Collapse
Affiliation(s)
- Cheng Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| | - Xiaojing Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ping Zhou
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Changchun Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Xiaogan 432000, China
| |
Collapse
|
15
|
Zou J, Mitra K, Anees P, Oettinger D, Ramirez JR, Veetil AT, Gupta PD, Rao R, Smith JJ, Kratsios P, Krishnan Y. A DNA nanodevice for mapping sodium at single-organelle resolution. Nat Biotechnol 2024; 42:1075-1083. [PMID: 37735265 PMCID: PMC11004682 DOI: 10.1038/s41587-023-01950-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cellular sodium ion (Na+) homeostasis is integral to organism physiology. Our current understanding of Na+ homeostasis is largely limited to Na+ transport at the plasma membrane. Organelles may also contribute to Na+ homeostasis; however, the direction of Na+ flow across organelle membranes is unknown because organellar Na+ cannot be imaged. Here we report a pH-independent, organelle-targetable, ratiometric probe that reports lumenal Na+. It is a DNA nanodevice containing a Na+-sensitive fluorophore, a reference dye and an organelle-targeting domain. By measuring Na+ at single endosome resolution in mammalian cells and Caenorhabditis elegans, we discovered that lumenal Na+ levels in each stage of the endolysosomal pathway exceed cytosolic levels and decrease as endosomes mature. Further, we find that lysosomal Na+ levels in nematodes are modulated by the Na+/H+ exchanger NHX-5 in response to salt stress. The ability to image subcellular Na+ will unveil mechanisms of Na+ homeostasis at an increased level of cellular detail.
Collapse
Affiliation(s)
- Junyi Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Koushambi Mitra
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Daphne Oettinger
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Joseph R Ramirez
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Priyanka Dutta Gupta
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayson J Smith
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Jiang J, Tang Y, Cao Z, Zhou C, Yu Z. Effects of hypo-osmotic stress on osmoregulation, antioxidant response, and energy metabolism in sea cucumber Holothuria moebii under desalination environment. ENVIRONMENTAL RESEARCH 2024; 252:118800. [PMID: 38555088 DOI: 10.1016/j.envres.2024.118800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
With global climate changing, hypo-salinity events are increasing in frequency and duration because of continuous rainfall and freshwater inflow, which causes reduced cytosolic osmolarity and cellular stress responses in aquatic animals. Sea cucumbers are considered stenohaline because they lack osmoregulatory organs and are vulnerable to salinity fluctuations. In this study, we performed multiple biochemical assays, de novo transcriptomics, and widely targeted metabolomics to comprehensively explore the osmoregulatory mechanisms and physiological responses of sea cucumber Holothuria moebii to hypo-osmotic stress, which is a representative specie that is frequently exposed to hypo-saline intertidal zones. Our results found that H. moebii contracted their ambulacral feet and oral tentacles, and the coelomic fluid ion concentrations were reduced to be consistent with the environment. The microvilli of intestines and respiratory trees underwent degeneration, and the cytoplasm exhibited swelling and vacuolation. Moreover, the Na+, K+, and Cl- concentrations and Na+/K+-ATPase activity were significantly reduced under hypo-osmotic stress. The decrease in protein kinase A activity and increase in 5'-AMP level indicated a significant inhibition of the cAMP signaling pathway to regulate ion concentrations. And small intracellular organic molecules (amino acids, nucleotides and their derivatives) also play crucial roles in osmoregulation through oxidative deamination of glutamate, nucleotide catabolism, and nucleic acid synthesis. Moreover, lysosomes and peroxisomes removed oxidative damage, whereas antioxidant metabolites, such as N-acetyl amino acids and glutathione, were increased to resist oxidative stress. With prolonged hypo-osmotic stress, glycerophospholipid metabolism was enhanced to maintain membrane stability. Furthermore, acyl-CoA-binding protein activity was significantly inhibited, and only a small amount of acylcarnitine was significantly accumulated, which indicated a disruption in energy metabolism. PPAR signaling pathway and choline content were up-regulated to promote fatty acid metabolism under hypo-osmotic stress. Overall, our results provide new insights into the osmoregulatory mechanisms and physiological responses of sea cucumbers to hypo-osmotic stress.
Collapse
Affiliation(s)
- Junyang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanna Tang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaozhao Cao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zonghe Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
17
|
Dmitrieva NI, Boehm M, Yancey PH, Enhörning S. Long-term health outcomes associated with hydration status. Nat Rev Nephrol 2024; 20:275-294. [PMID: 38409366 DOI: 10.1038/s41581-024-00817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance. Underhydration occurs when a decrease in body water availability, due to high losses or low gains, stimulates adaptive responses within the water balance network that are aimed at decreasing losses and increasing gains. This stimulation is also accompanied by cardiovascular adjustments. Epidemiological and experimental studies have linked markers of low fluid intake and underhydration - such as increased plasma concentration of vasopressin and sodium, as well as elevated urine osmolality - with an increased risk of new-onset chronic diseases, accelerated aging and premature mortality, suggesting that persistent activation of adaptive responses may be detrimental to long-term health outcomes. The causative nature of these associations is currently being tested in interventional trials. Understanding of the physiological responses to underhydration may help to identify possible mechanisms that underlie potential adverse, long-term effects of underhydration and inform future research to develop preventative and treatment approaches to the optimization of hydration status.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA.
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, National Heart Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Paul H Yancey
- Biology Department, Whitman College, Walla Walla, Washington, USA
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
18
|
Geleta RJ, Roro AG, Terfa MT. Phenotypic and yield responses of common bean (Phaseolus vulgaris l.) varieties to different soil moisture levels. BMC PLANT BIOLOGY 2024; 24:242. [PMID: 38575870 PMCID: PMC10993436 DOI: 10.1186/s12870-024-04856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Morphological plasticity is one of the capacities of plants to modify their morphological appearance in response to external stimuli. A plant's morphology and physiology are constantly tuned to its variable surroundings by complex interactions between environmental stimuli and internal signals. In most of plant species,, such phenotypic and physiological expression varies among different varieties based on their levels of particular environmental stress conditions. However, the morphological and yield responses of common bean varieties to different environmental conditions are not well known. The purpose of the study was to evaluate morphological and yield response of common bean to soil moisture stress and to investigate the morphological mechanism by which common bean varieties tolerate fluctuations in moisture stress. METHODS A pot experiment was carried out to investigate the effects of different moisture levels on the phenotypic and yield responses of common bean varieties. A factorial combination of five common bean varieties (Hirna, kufanzik, Awash-1, Ado, and Chercher) and three moisture levels (control, waterlogging stress, and moisture deficit stress) was used in three replications. Moisture stress treatments were started 20 days after planting, at the trifoliate growth stage. To evaluate the response of each variety, morphological and yield data were collected at week intervals. MAIN RESULTS The results indicated that moisture levels and varieties had a significant influence on all growth parameters. Crop phenology was significantly influenced by the interaction effect of moisture level and variety. Exposing Hirna variety to moisture stress led to extended flowering and pod setting by 23 and 24 days, respectively, compared to the other treatments. The results showed that the phenotypic responses to moisture deficit and waterlogging stress varied between varieties. Waterlogging stress had a stronger reduction effect on the fresh weight, dry weight and leaf area of common bean varieties than moisture deficit and the control. Pods per plant, seeds per plant, grain yield per plant, and harvest index were significantly influenced by the varieties, moisture stress levels and their interaction. Except for Chercher and Hirna. However, varieties Ado, kufanzik and Awasha-1 did not show significant differences on the time of flower initiation due to moisture level. Biomass and growth in leaf fresh weight, leaf dry weight, leaf area, leaf number and plant height were significantly influenced by moisture level. When moisture deficit and waterlogging stress occurred, Ado and Awash-1 were more responsive to moisture stress than Hirna, Chercher, and Kufanzik. CONCLUSION Hence, Hirna and Kufanzik varieties were found to be tolerant because they produced higher yields than the Chercher, Awash-1, and Ado varieties.
Collapse
Affiliation(s)
| | - Amsalu Gobena Roro
- School of Plant and Horticultural Sciences, Hawassa University, P.O. Box 05, Hawassa, Ethiopia.
| | - Meseret Tesema Terfa
- School of Plant and Horticultural Sciences, Hawassa University, P.O. Box 05, Hawassa, Ethiopia
| |
Collapse
|
19
|
Ono M, Izumi Y, Maruyama K, Yasuoka Y, Hiramatsu A, Aramburu J, López-Rodríguez C, Nonoguchi H, Kakizoe Y, Adachi M, Kuwabara T, Mukoyama M. Characterization of gene expression in the kidney of renal tubular cell-specific NFAT5 knockout mice. Am J Physiol Renal Physiol 2024; 326:F394-F410. [PMID: 38153851 DOI: 10.1152/ajprenal.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states. Pathophysiological roles of NFAT5 in renal tubular cells, however, still remain obscure. We conducted comprehensive analysis by performing transcription start site (TSS) sequencing on the kidney of inducible and renal tubular cell-specific NFAT5 knockout (KO) mice. Mice were subjected to unilateral ureteral obstruction to examine the relevance of renal tubular NFAT5 in renal fibrosis. TSS sequencing analysis identified 722 downregulated TSSs and 1,360 upregulated TSSs, which were differentially regulated ≤-1.0 and ≥1.0 in log2 fold, respectively. Those TSSs were annotated to 532 downregulated genes and 944 upregulated genes, respectively. Motif analysis showed that sequences that possibly bind to NFAT5 were enriched in TSSs of downregulated genes. Gene Ontology analysis with the upregulated genes suggested disorder of innate and adaptive immune systems in the kidney. Unilateral ureteral obstruction significantly exacerbated renal fibrosis in the renal medulla in KO mice compared with wild-type mice, accompanied by enhanced activation of immune responses. In conclusion, NFAT5 in renal tubules could have pathophysiological roles in renal fibrosis through modulating innate and adaptive immune systems in the kidney.NEW & NOTEWORTHY TSS-Seq analysis of the kidney from renal tubular cell-specific NFAT5 KO mice uncovered novel genes that are possibly regulated by NFAT5 in the kidney under physiological conditions. The study further implied disorders of innate and adaptive immune systems in NFAT5 KO mice, thereby exacerbating renal fibrosis at pathological states. Our results may implicate the involvement of renal tubular NFAT5 in the progression of renal fibrosis. Further studies would be worthwhile for the development of novel therapy to treat chronic kidney disease.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kosuke Maruyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Hiramatsu
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra and Barcelona Biomedical Research Park, Barcelona, Spain
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Saitama, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
20
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
21
|
Azam I, Benson JD. Multiscale transport and 4D time-lapse imaging in precision-cut liver slices (PCLS). PeerJ 2024; 12:e16994. [PMID: 38426134 PMCID: PMC10903333 DOI: 10.7717/peerj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
22
|
Chui JS, Izuel‐Idoype T, Qualizza A, de Almeida RP, Piessens L, van der Veer BK, Vanmarcke G, Malesa A, Athanasouli P, Boon R, Vriens J, van Grunsven L, Koh KP, Verfaillie CM, Lluis F. Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF-κВ and WNT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307554. [PMID: 38037844 PMCID: PMC10870039 DOI: 10.1002/advs.202307554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/02/2023]
Abstract
Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
Collapse
Affiliation(s)
- Jonathan Sai‐Hong Chui
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Teresa Izuel‐Idoype
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Alessandra Qualizza
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Rita Pires de Almeida
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Lindsey Piessens
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Gert Vanmarcke
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Aneta Malesa
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Paraskevi Athanasouli
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Ruben Boon
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive MedicineDepartment of Development and RegenerationKU LeuvenHerestraat 49Leuven3000Belgium
| | - Leo van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit BrusselLaarbeeklaan 103Brussels1090Belgium
| | - Kian Peng Koh
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Catherine M. Verfaillie
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Frederic Lluis
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| |
Collapse
|
23
|
Parra LG, Erjavec LC, Casali CI, Zerpa Velazquez A, Weber K, Setton-Avruj CP, Fernández Tome MDC. Cytosolic phospholipase A 2 regulates lipid homeostasis under osmotic stress through PPARγ. FEBS J 2024; 291:722-743. [PMID: 37947039 DOI: 10.1111/febs.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.
Collapse
Affiliation(s)
- Leandro Gastón Parra
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Cecilia Erjavec
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrea Zerpa Velazquez
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Karen Weber
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Clara Patricia Setton-Avruj
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departaemento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
24
|
Chivasso C, Parisis D, Cabrol X, Datlibagi A, Delforge V, Gregoire F, Bolaky N, Soyfoo MS, Perret J, Delporte C. Involvement of CCL2 in Salivary Gland Response to Hyperosmolar Stress Related to Sjögren's Syndrome. Int J Mol Sci 2024; 25:915. [PMID: 38255988 PMCID: PMC10815633 DOI: 10.3390/ijms25020915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In primary Sjögren's syndrome (pSS) patients, salivary gland (SG) epithelial cells (SGECs) could be exposed to chronic hyperosmotic stress (HOS), consecutive to their destruction and deregulation, that exacerbates an inflammatory response. The aims of this study were to assess the mechanism accounting for C-C motif chemokine ligand 2 (CCL2) expression in an immortalized human salivary gland epithelial acinar cell line (NS-SV-AC) subjected to HOS, as well as the involvement of CCL2 in pSS. CCL2 mRNA and protein levels were determined via RT-qPCR and ELISA. Reporter plasmids and a promoter pull-down assay were used to identify transcription factors associated with CCL2 mRNA increase. Our data showed that HOS-induced CCL2 mRNA increase was independent of the nuclear factor of activated T-cells 5 (NFAT5) and nuclear factor-kappa B (NFkB) but involved Kruppel-like factor 5 (KLF5). CCL2 protein levels, quantified by enzyme-linked immunosorbent assay (ELISA) in sera samples from pSS patients, correlated with the European Alliance of Associations for Rheumatology's Sjogren's syndrome disease activity index (ESSDAI) score for systemic activity. In addition, CCL2 protein levels were higher in patients with biological activity, cutaneous manifestations, and ESSDAI score superior or equal to five. Our data suggest that chronic HOS could exacerbate pSS disease by contributing to the inflammatory process induced by the expression and secretion of CCL2.
Collapse
Affiliation(s)
- Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Dorian Parisis
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
- Department of Rheumatology, The Brussels University Hospital—Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (X.C.); (M.S.S.)
| | - Xavier Cabrol
- Department of Rheumatology, The Brussels University Hospital—Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (X.C.); (M.S.S.)
| | - Azine Datlibagi
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Valérie Delforge
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Françoise Gregoire
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Nargis Bolaky
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Muhammad Shahnawaz Soyfoo
- Department of Rheumatology, The Brussels University Hospital—Erasme Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium; (X.C.); (M.S.S.)
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium; (C.C.); (D.P.); (A.D.); (V.D.); (F.G.); (N.B.); (J.P.)
| |
Collapse
|
25
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
26
|
Mogilnicka I, Jaworska K, Koper M, Maksymiuk K, Szudzik M, Radkiewicz M, Chabowski D, Ufnal M. Hypertensive rats show increased renal excretion and decreased tissue concentrations of glycine betaine, a protective osmolyte with diuretic properties. PLoS One 2024; 19:e0294926. [PMID: 38166023 PMCID: PMC10760924 DOI: 10.1371/journal.pone.0294926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/10/2023] [Indexed: 01/04/2024] Open
Abstract
Hypertension leads to water-electrolyte disturbances and end-organ damage. Betaine is an osmolyte protecting cells against electrolyte imbalance and osmotic stress, particularly in the kidneys. This study aimed to evaluate tissue levels and hemodynamic and renal effects of betaine in normotensive and hypertensive rats. Betaine levels were assessed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) in normotensive rats (Wistar-Kyoto, WKYs) and Spontaneously Hypertensive rats (SHRs), a model of genetic hypertension. Acute effects of IV betaine on blood pressure, heart rate, and minute diuresis were evaluated. Gene and protein expression of chosen kidney betaine transporters (SLC6a12 and SLC6a20) were assessed using real-time PCR and Western blot. Compared to normotensive rats, SHRs showed significantly lower concentration of betaine in blood serum, the lungs, liver, and renal medulla. These changes were associated with higher urinary excretion of betaine in SHRs (0.20 ± 0.04 vs. 0.09 ± 0.02 mg/ 24h/ 100g b.w., p = 0.036). In acute experiments, betaine increased diuresis without significantly affecting arterial blood pressure. The diuretic response was greater in SHRs than in WKYs. There were no significant differences in renal expression of betaine transporters between WKYs and SHRs. Increased renal excretion of betaine contributes to decreased concentration of the protective osmolyte in tissues of hypertensive rats. These findings pave the way for studies evaluating a causal relation between depleted betaine and hypertensive organ damage, including kidney injury.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kinga Jaworska
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Koper
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Klaudia Maksymiuk
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
27
|
Tian M, Yuan J, Yu F, He P, Zhang Q, Zha Y. Decreased intracellular water is associated with sarcopenic obesity in chronic haemodialysis patients. BMC Geriatr 2023; 23:630. [PMID: 37803331 PMCID: PMC10559522 DOI: 10.1186/s12877-023-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE To explore the association between intracellular water (ICW) and sarcopenic obesity in patients undergoing chronic haemodialysis (HD). METHODS A multicentre, cross-sectional study of 3354 adult chronic HD patients was conducted in 20 haemodialysis centres from June 1, 2021, to August 30, 2021. The diagnosis of sarcopenic obesity was made according to the revised Asian Working Group's definition of sarcopenia combined with obesity per the body fat percentage definition. Body composition was evaluated by a body composition monitor using bioimpedance spectroscopy. Multiple logistic regression models, stratified analyses, interactive analyses, and receiver-operating characteristic analyses were conducted. RESULTS A total of 752 patients were diagnosed with sarcopenic obesity among 3354 participants. The patients were grouped by sex-specific ICW median levels, and the prevalence of sarcopenic obesity was significantly higher in the low ICW group than in the high ICW group (41.3%vs 3.0%). Decreased ICW was significantly associated with sarcopenic obesity. The association remained statistically significant even after adjusting for dialysis vintage, age, body mass index, biochemical indicators, and various medical histories. The odds ratios of the low ICW group were much higher than those of the high ICW group in both males and females (P for trend < 0.001). The association was stable across subgroups, and the interaction analysis showed that age, body mass index and history of diabetes had interactive roles in the association between ICW and sarcopenic obesity (P for interaction < 0.05). Furthermore, the ICW cut-off values for identifying sarcopenic obesity were 19.1 kg and 14.5 kg for males and females, respectively. CONCLUSION Decreased ICW was an independent risk factor for sarcopenic obesity in chronic HD patients. The measurement of ICW by bioimpedance spectroscopy might be a non-invasive and valid means for identifying the risk of future sarcopenic obesity in HD patients.
Collapse
Affiliation(s)
- Maolu Tian
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, #83, Zhongshan Road, Nanming District, Guiyang, Guizhou, 550002, China
- Medical College, Guizhou University, Guiyang, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, #83, Zhongshan Road, Nanming District, Guiyang, Guizhou, 550002, China
| | - Fangfang Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Pinghong He
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qian Zhang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China.
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, #83, Zhongshan Road, Nanming District, Guiyang, Guizhou, 550002, China.
| |
Collapse
|
28
|
Tian M, Yuan J, Yu F, He P, Hu S, Zha Y. Low intracellular water and incident cognitive impairment in chronic hemodialysis patients. Int J Geriatr Psychiatry 2023; 38:e6023. [PMID: 37876244 DOI: 10.1002/gps.6023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE To explore the effect of intracellular water (ICW) evaluated by the bioelectrical Impedance Spectroscopy (BIS) on the risk of incident cognitive impairment (CI) in chronic hemodialysis (HD) patients. METHODS Three thousand three hundred eighty-five patients were recruited and monitored prospectively for up to 3 years (the median follow-up time, 2 years) in this observational cohort study. Mini-Mental State Examination score (MMSE) was used to assess the global cognitive function. ICW was measured by body composition monitor based on BIS. Multiple Cox regression models, stratified analyses, and interactive analyses were conducted. RESULTS During the follow-up period, 1256 patients (37.1%) experienced incident CI. The incidence of CI was increased with decreasing quartiles of ICW (27.4%, 32.2%, 38.9%, and 50.1% for the fourth, third, second, and first quartiles, respectively). Decreased ICW was significantly associated with incident CI. The association remained statistically significant even after adjusting for age, sex, education, albumin, C-reactive protein, residual renal function and various medical histories. The hazard ratios were 1.38 (1.17-1.64) and 1.28 (1.08-1.52) for ICW quartile 1 and quartile 2, respectively (reference, quartile 4). The association stably existed across subgroups, and the residual renal function had an interactive role in the association between ICW and incident CI (p = 0.014). CONCLUSION Low baseline ICW was an independent risk factor for CI in chronic HD patients. Our finding highlights the necessity of using BIS to measure body composition when assessing the risk of CI in HD patients.
Collapse
Affiliation(s)
- Maolu Tian
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
- Medical College, Guizhou University, Guiyang, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fangfang Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Pinghong He
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shanshan Hu
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, China
- Medical College, Guizhou University, Guiyang, China
| |
Collapse
|
29
|
Khandwala CB, Sarkar P, Schmidt HB, Ma M, Kinnebrew M, Pusapati GV, Patel BB, Tillo D, Lebensohn AM, Rohatgi R. Direct ionic stress sensing and mitigation by the transcription factor NFAT5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559074. [PMID: 37886503 PMCID: PMC10602047 DOI: 10.1101/2023.09.23.559074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.
Collapse
Affiliation(s)
- Chandni B. Khandwala
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parijat Sarkar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H. Broder Schmidt
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bhaven B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Desiree Tillo
- Center for Cancer Research Genomics Core, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Sänger CS, Cernakova M, Wietecha MS, Garau Paganella L, Labouesse C, Dudaryeva OY, Roubaty C, Stumpe M, Mazza E, Tibbitt MW, Dengjel J, Werner S. Serine protease 35 regulates the fibroblast matrisome in response to hyperosmotic stress. SCIENCE ADVANCES 2023; 9:eadh9219. [PMID: 37647410 PMCID: PMC10468140 DOI: 10.1126/sciadv.adh9219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Catharina S. Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Mateusz S. Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Oksana Y. Dudaryeva
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Carole Roubaty
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Mark W. Tibbitt
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Jörn Dengjel
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Peng X, Cheng J, Li H, Feijó A, Xia L, Ge D, Wen Z, Yang Q. Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments. BMC Biol 2023; 21:182. [PMID: 37649052 PMCID: PMC10469962 DOI: 10.1186/s12915-023-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Environmental conditions vary among deserts across the world, spanning from hyper-arid to high-elevation deserts. However, prior genomic studies on desert adaptation have focused on desert and non-desert comparisons overlooking the complexity of conditions within deserts. Focusing on the adaptation mechanisms to diverse desert environments will advance our understanding of how species adapt to extreme desert environments. The hairy-footed jerboas are well adapted to diverse desert environments, inhabiting high-altitude arid regions, hyper-arid deserts, and semi-deserts, but the genetic basis of their adaptation to different deserts remains unknown. RESULTS Here, we sequenced the whole genome of 83 hairy-footed jerboas from distinct desert zones in China to assess how they responded under contrasting conditions. Population genomics analyses reveal the existence of three species in hairy-footed jerboas distributed in China: Dipus deasyi, Dipus sagitta, and Dipus sowerbyi. Analyses of selection between high-altitude desert (elevation ≥ 3000m) and low-altitude desert (< 500m) populations identified two strongly selected genes, ATR and HIF1AN, associated with intense UV radiation and hypoxia in high-altitude environments. A number of candidate genes involved in energy and water homeostasis were detected in the comparative genomic analyses of hyper-arid desert (average annual precipitation < 70mm) and arid desert (< 200mm) populations versus semi-desert (> 360mm) populations. Hyper-arid desert animals also exhibited stronger adaptive selection in energy homeostasis, suggesting water and resource scarcity may be the main drivers of desert adaptation in hairy-footed jerboas. CONCLUSIONS Our study challenges the view of deserts as homogeneous environments and shows that distinct genomic adaptations can be found among desert animals depending on their habitats.
Collapse
Affiliation(s)
- Xingwen Peng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Hong Li
- Novogene Bioinformatics Institute, Haidian District, Beijing, 100083, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
32
|
Liu C, Lin J, Yang H, Li N, Tang L, Neumann D, Ding X, Zhu L. NFAT5 Restricts Bovine Herpesvirus 1 Productive Infection in MDBK Cell Cultures. Microbiol Spectr 2023; 11:e0011723. [PMID: 37227295 PMCID: PMC10434061 DOI: 10.1128/spectrum.00117-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine viral pathogen, causes severe disease in the upper respiratory tract and reproductive system. Tonicity-responsive enhancer-binding protein (TonEBP), also known as nuclear factor of activated T cells 5 (NFAT5), is a pleiotropic stress protein involved in a range of cellular processes. In this study, we showed that the knockdown of NFAT5 by siRNA increased BoHV-1 productive infection and overexpression of NFAT5 via plasmid transfection decreased virus production in bovine kidney (MDBK) cells. Virus productive infection at later stages significantly increased transcription of NFAT5 but not appreciably alter measurable NFAT5 protein levels. Virus infection relocalized NFAT5 protein and decreased the cytosol accumulation. Importantly, we found a subset of NFAT5 resides in mitochondria, and virus infection led to the depletion of mitochondrial NFAT5. In addition to full-length NFAT5, another two isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection. In addition, virus infection differentially altered mRNA levels of PGK1, SMIT, and BGT-1, the canonical downstream targets regulated by NFAT5. Taken together, NFAT5 is a potential host factor that restricts BoHV-1 productive infection, and virus infection hijacks NFAT5 signaling transduction by relocalization of NFAT5 molecules in cytoplasm, nucleus, and mitochondria, as well as altered expression of its downstream targets. IMPORTANCE Accumulating studies have revealed that NFAT5 regulates disease development due to infection of numerous viruses, underlying the importance of the host factor in virus pathogenesis. Here, we report that NFAT5 has capacity to restrict BoHV-1 productive infection in vitro. And virus productive infection at later stages may alter NFAT5 signaling pathway as observed by relocalization of NFAT5 protein, reduced accumulation of NFAT5 in cytosol, and differential expression of NFAT5 downstream targets. Importantly, for the first time, we found that a subset of NFAT5 resides in mitochondria, implying that NFAT5 may regulate mitochondrial functions, which will extend our knowledge on NFAT5 biological activities. Moreover, we found two NFAT5 isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection, representing a novel regulation mechanism on NFAT5 function in response to BoHV-1infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jiayu Lin
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Ningxi Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
33
|
Schvartzman C, Zhao H, Ibarboure E, Ibrahimova V, Garanger E, Lecommandoux S. Control of Enzyme Reactivity in Response to Osmotic Pressure Modulation Mimicking Dynamic Assembly of Intracellular Organelles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301856. [PMID: 37149761 DOI: 10.1002/adma.202301856] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Indexed: 05/08/2023]
Abstract
In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid-liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells' interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp ) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.
Collapse
Affiliation(s)
- Clémence Schvartzman
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Hang Zhao
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Emmanuel Ibarboure
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Vusala Ibrahimova
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Elisabeth Garanger
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Sébastien Lecommandoux
- Centre national de la recherche scientifique, University of Bordeaux, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
34
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
35
|
Contreras MJ, Arias ME, Fuentes F, Muñoz E, Bernecic N, Fair S, Felmer R. Cellular and Molecular Consequences of Stallion Sperm Cryopreservation: Recent Approaches to Improve Sperm Survival. J Equine Vet Sci 2023; 126:104499. [PMID: 37105416 DOI: 10.1016/j.jevs.2023.104499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Cryopreservation of stallion semen does not achieve the post-thaw quality or fertility results observed in other species like cattle. There are many reasons for this, but the membrane composition and intracellular changes in stallion sperm predispose them to low resistance to the cooling, freezing, and subsequent thawing process. Damage to the sperm results from different processes activated during cryopreservation, including oxidative stress, apoptosis, and structural modifications in the sperm membrane that increase the deleterious effect on sperm. In addition, significant individual variability is observed among stallions in the ability of sperm to survive the freeze-thaw process. Recent advances in genomics, transcriptomics, proteomics, metabolomics, and epigenetics are making it possible to advance our understanding of the cellular and molecular processes involved in the cryopreservation process, opening new possibilities for improvement. This review addresses the ongoing research on stallion semen cryopreservation, focusing on the cellular and molecular consequences of this procedure in stallions and discusses the new tools currently available to increase the tolerance of equine spermatozoa to freeze-thaw.
Collapse
Affiliation(s)
- María José Contreras
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Fernanda Fuentes
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Erwin Muñoz
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Naomi Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de la Frontera, Temuco, Chile.
| |
Collapse
|
36
|
Calvani R, Picca A, Coelho-Júnior HJ, Tosato M, Marzetti E, Landi F. "Diet for the prevention and management of sarcopenia". Metabolism 2023:155637. [PMID: 37352971 DOI: 10.1016/j.metabol.2023.155637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Sarcopenia is a geriatric condition characterized by a progressive loss of skeletal muscle mass and strength, with an increased risk of adverse health outcomes (e.g., falls, disability, institutionalization, reduced quality of life, mortality). Pharmacological remedies are currently unavailable for preventing the development of sarcopenia, halting its progression, or impeding its negative health outcomes. The most effective strategies to contrast sarcopenia rely on the adoption of healthier lifestyle behaviors, including adherence to high-quality diets and regular physical activity. In this review, the role of nutrition in the prevention and management of sarcopenia is summarized. Special attention is given to current "blockbuster" dietary regimes and agents used to counteract age-related muscle wasting, together with their putative mechanisms of action. Issues related to the design and implementation of effective nutritional strategies are discussed, with a focus on unanswered questions on the most appropriate timing of nutritional interventions to preserve muscle health and function into old age. A brief description is also provided on new technologies that can facilitate the development and implementation of personalized nutrition plans to contrast sarcopenia.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| |
Collapse
|
37
|
Dobrijević D, Pastor K, Nastić N, Özogul F, Krulj J, Kokić B, Bartkiene E, Rocha JM, Kojić J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023; 28:4824. [PMID: 37375378 DOI: 10.3390/molecules28124824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Betaine is a non-essential amino acid with proven functional properties and underutilized potential. The most common dietary sources of betaine are beets, spinach, and whole grains. Whole grains-such as quinoa, wheat and oat brans, brown rice, barley, etc.-are generally considered rich sources of betaine. This valuable compound has gained popularity as an ingredient in novel and functional foods due to the demonstrated health benefits that it may provide. This review study will provide an overview of the various natural sources of betaine, including different types of food products, and explore the potential of betaine as an innovative functional ingredient. It will thoroughly discuss its metabolic pathways and physiology, disease-preventing and health-promoting properties, and further highlight the extraction procedures and detection methods in different matrices. In addition, gaps in the existing scientific literature will be emphasized.
Collapse
Affiliation(s)
- Dejan Dobrijević
- Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Institute for Children and Youth Health Care of Vojvodina, 21000 Novi Sad, Serbia
| | - Kristian Pastor
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Nataša Nastić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| | - Jelena Krulj
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojana Kokić
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, 44307 Kaunas, Lithuania
| | - João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Jovana Kojić
- Institute of Food Technology (FINS), University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
38
|
Wang X, Li H, Zhang R, Liu L, Zhu H. Effects of saline immersion on the physiological alterations of grass goldfish (Carassius auratus) during subsequent recovery in freshwater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:455-470. [PMID: 37115340 DOI: 10.1007/s10695-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
The present work aims to evaluate the tolerance, osmoregulation, metabolism, and antioxidant ability of saline water immersed grass goldfish (Carassius auratus) during the recovery in freshwater. Grass goldfish (38.15 ± 5.48g) acclimated in freshwater were immersed by salinities (0‰, 20‰ and 30‰) for different time durations (10, 20, 30 and 60 min); and the physiological responses were measured during freshwater recovery. The blood osmolalities were not significantly different at any group fish, while whereas the decline of Na+ concentration and the ratio of Na+/Cl- as well as the rise of Cl- concentration was observed in saline treated fish. Soon after freshwater recovery, the transcription of NKA-α and NKA-β mRNA in gills of salinity 20 immersed fish elevated significantly and then decreased, whereas no obvious changes were detected in salinity 30 treated fish. Till 24h post freshwater recovery, gill Na+/K+-ATPase activities in saline treated fish were lower than control group except for the fish immersed by salinity 20 for 10-30 min. At 24h of recovery, cortisol levels in salinity 20 immersed fish were lower than salinity 30 treated fish, but remained higher than control. As for serum lactic acid, fish treated by salinity 20 for 10 or 20 min did not show any fluctuation. However, higher lactic acid contents were detected in all other five salinity treated groups during recovery. Generally, at 24 h of recovery, salinity 20 treated fish exhibited higher SOD and CAT activities than fish immersed by salinity 30. In summary, grass goldfish could survive by immersion in salinity 20 less than 60 min or salinity 30 less than 30min, even though immersion by salinity 20 could minimize the negative effects.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Huijuan Li
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Rong Zhang
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Lili Liu
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China
| | - Hua Zhu
- Beijing Key Laboratory of fishery Biotechnology & Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100068, China.
- National Freshwater Fisheries Engineering Technology Research Center, Beijing, China.
| |
Collapse
|
39
|
Ito Y, Sun T, Tanaka H, Yamaguchi M, Kinashi H, Sakata F, Kunoki S, Sakai Y, Ishimoto T. Tissue Sodium Accumulation Induces Organ Inflammation and Injury in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24098329. [PMID: 37176037 PMCID: PMC10179540 DOI: 10.3390/ijms24098329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
High salt intake is a primary cause of over-hydration in chronic kidney disease (CKD) patients. Inflammatory markers are predictors of CKD mortality; however, the pathogenesis of inflammation remains unclear. Sodium storage in tissues has recently emerged as an issue of concern. The binding of sodium to tissue glycosaminoglycans and its subsequent release regulates local tonicity. Many cell types express tonicity-responsive enhancer-binding protein (TonEBP), which is activated in a tonicity-dependent or tonicity-independent manner. Macrophage infiltration was observed in the heart, peritoneal wall, and para-aortic tissues in salt-loading subtotal nephrectomized mice, whereas macrophages were not prominent in tap water-loaded subtotal nephrectomized mice. TonEBP was increased in the heart and peritoneal wall, leading to the upregulation of inflammatory mediators associated with cardiac fibrosis and peritoneal membrane dysfunction, respectively. Reducing salt loading by a diuretic treatment or changing to tap water attenuated macrophage infiltration, TonEBP expression, and inflammatory marker expression. The role of TonEBP may be crucial during the cardiac fibrosis and peritoneal deterioration processes induced by sodium overload. Anti-interleukin-6 therapy improved cardiac inflammation and fibrosis and peritoneal membrane dysfunction. Further studies are necessary to establish a strategy to regulate organ dysfunction induced by TonEBP activation in CKD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroya Tanaka
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| | - Fumiko Sakata
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Japan
| | - Shunnosuke Kunoki
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yukinao Sakai
- Department of Nephrology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
40
|
Crabtree A, Boehnke N, Bates F, Hackel B. Consequences of poly(ethylene oxide) and poloxamer P188 on transcription in healthy and stressed myoblasts. Proc Natl Acad Sci U S A 2023; 120:e2219885120. [PMID: 37094151 PMCID: PMC10161009 DOI: 10.1073/pnas.2219885120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/26/2023] [Indexed: 04/26/2023] Open
Abstract
Poly(ethylene oxide) (PEO) and poloxamers, a class of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, have many personal and medical care applications, including the stabilization of stressed cellular membranes. Despite the widespread use, the cellular transcriptional response to these molecules is relatively unknown. C2C12 myoblasts, a model muscle cell, were subjected to short-term Poloxamer 188 (P188) and PEO181 (8,000 g/mol) treatment in culture. RNA was extracted and sequenced to quantify transcriptomic impact. The addition of moderate concentrations (14 µM) of either polymer to unstressed cells caused substantial differential gene expression, including at least twofold modulation of 357 and 588 genes, respectively. In addition, evaluation of the transcriptome response to osmotic stress without polymer treatment revealed dramatic change in RNA expression. Interestingly, the addition of polymer to stressed cells-at concentrations that provide physiological protection-did not yield a significant difference in expression of any gene relative to stress alone. Genome-scale expression analysis was corroborated by single-gene quantitative real-time PCR. Changes in protein expression were measured via western blot, which revealed partial alignment with the RNA results. Collectively, the significant changes to expression of multiple genes and resultant protein translation demonstrates an unexpectedly broad biochemical response to these polymers in healthy myoblasts in vitro. Meanwhile, the lack of substantial transcriptional response to polymer treatment in stressed cells highlights the physical nature of that protective mechanism.
Collapse
Affiliation(s)
- Adelyn A. Crabtree
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| | - Benjamin J. Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
41
|
Casali CI, Pescio LG, Sendyk DE, Erjavec LC, Morel Gómez E, Parra LG, Fernández-Tomé MC. Dynamics of differentiated-renal epithelial cell monolayer after calcium oxalate injury: The role of cyclooxygenase-2. Life Sci 2023; 319:121544. [PMID: 36871933 DOI: 10.1016/j.lfs.2023.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 → PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Lucila G Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Dylan E Sendyk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Emanuel Morel Gómez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Leandro G Parra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María C Fernández-Tomé
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Rivière E, Chivasso C, Pascaud J, Bechara R, Ly B, Delporte C, Mariette X, Nocturne G. Hyperosmolar environment and salivary gland epithelial cells increase extra-cellular matrix remodeling and lymphocytic infiltration in Sjögren's syndrome. Clin Exp Immunol 2023; 212:39-51. [PMID: 36759947 PMCID: PMC10081106 DOI: 10.1093/cei/uxad020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
Salivary gland epithelial cells (SGECs) play an active role in primary Sjogren's syndrome (pSS) pathogenesis. Quantitative and qualitative abnormalities of saliva might expose SGECs to chronic hyperosmolarity. We aimed to decipher the links between hyperosmolar stimulation of SGECs and lymphocytic infiltration of the salivary glands (SG) observed in pSS. RNAseq was performed on NS-SV-AC cells stimulated with hyperosmolar media containing NaCl (100 mM) or sucrose (200 mM), or with iso-osmolar (Iso) medium. RNAseq was performed on primary cultured SGECs from pSS and controls, in the presence or not of B cells. Hyperosmolar stimulation of NS-SV-AC-cells identified an upregulation of interferon-induced (MX1, IFIT2) and MMPs genes. Enrichment analysis revealed an over-representation of fibrosis pathway. In parallel, RNAseq of SGECs comparing pSS to controls identified an over-representation of a pathway involving MMPs. Given the unexpected upregulation of collagen (COL3A1, COL1A2) and ADAMTS genes in pSS SGECs, we hypothesized that SGECs might undergo epithelial-mesenchymal transition. ZEB2 was upregulated and SLUG was down regulated in SGECs from pSS versus controls. MMP24 and ZEB2 were higher in SGECs from pSS with a focus score ≥1 versus <1. Lastly, SGECs cocultured with B cells expressed higher levels of COL1A2. These results suggest the existence of a vicious circle. Alteration of SGECs in pSS participates in the establishment of a hyperosmolar microenvironment, which in turn promotes SGECs transcriptomic modifications. These modifications include extracellular matrix remodeling and promote SG lymphocytic infiltration.
Collapse
Affiliation(s)
- Elodie Rivière
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
- Rheumatology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Clara Chivasso
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Juliette Pascaud
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
| | - Bineta Ly
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Xavier Mariette
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
- Rheumatology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Gaetane Nocturne
- Université Paris-Saclay, INSERM UMR 1184, Autoimmune disease laboratory, Center for immunology of viral infections and autoimmune diseases, Le Kremlin Bicêtre, France
- Rheumatology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
43
|
Wang S, Zhao D, Yang T, Deng B, Sun J, Gu L, Wang H, Wang L. Association of serum osmolality with all-cause and cardiovascular mortality in US adults: A prospective cohort study. Nutr Metab Cardiovasc Dis 2023; 33:844-852. [PMID: 36710117 DOI: 10.1016/j.numecd.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS The association between serum osmolality, an effective indicator of body hydration status, and long-term mortality in the general population remains undetermined. The present study aimed to investigate the association of serum osmolality with long-term all-cause and cardiovascular mortality among adults in the United States. METHODS AND RESULTS This cohort study used data from the National Health and Nutrition Examination Survey (NHANES) 2007-2014. Participants were linked to National Death Index mortality data from the survey date through December 31, 2019. Cox proportional hazards regression model was used to calculate hazard ratios (HRs) and 95% CIs, and restricted cubic spline (RCS) regression was conducted. A total of 18312 US adults were included. During a median follow-up of 8.7 years, 1353 total deaths occurred, including 379 cardiovascular deaths. After multivariable adjustments, compared with the 3rd quartile (Q3) of serum osmolality, participants in the 1st (Q1) and 4th (Q4) quartiles were at a significantly higher risk of all-cause mortality (HR 1.41 [95% CI, 1.14-1.75] and 1.29 [95% CI, 1.04-1.61], respectively). RCS revealed a nonlinear relationship of serum osmolality to all-cause and cardiovascular mortality, with an inflection point of 278 mmol/kg. CONCLUSION In the nationally representative cohort of US adults, serum osmolality was nonlinearly associated with all-cause and cardiovascular mortality. The risk of mortality was lowest around an osmolality of 278 mmol/kg. These findings suggest the importance of serum osmolality management for long-term health outcomes.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Di Zhao
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Bo Deng
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Lingfeng Gu
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, China.
| |
Collapse
|
44
|
Abed T, Ganser K, Eckert F, Stransky N, Huber SM. Ion channels as molecular targets of glioblastoma electrotherapy. Front Cell Neurosci 2023; 17:1133984. [PMID: 37006466 PMCID: PMC10064067 DOI: 10.3389/fncel.2023.1133984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
Therapies with weak, non-ionizing electromagnetic fields comprise FDA-approved treatments such as Tumor Treating Fields (TTFields) that are used for adjuvant therapy of glioblastoma. In vitro data and animal models suggest a variety of biological TTFields effects. In particular, effects ranging from direct tumoricidal, radio- or chemotherapy-sensitizing, metastatic spread-inhibiting, up to immunostimulation have been described. Diverse underlying molecular mechanisms, such as dielectrophoresis of cellular compounds during cytokinesis, disturbing the formation of the spindle apparatus during mitosis, and perforating the plasma membrane have been proposed. Little attention, however, has been paid to molecular structures that are predestinated to percept electromagnetic fields-the voltage sensors of voltage-gated ion channels. The present review article briefly summarizes the mode of action of voltage sensing by ion channels. Moreover, it introduces into the perception of ultra-weak electric fields by specific organs of fishes with voltage-gated ion channels as key functional units therein. Finally, this article provides an overview of the published data on modulation of ion channel function by diverse external electromagnetic field protocols. Combined, these data strongly point to a function of voltage-gated ion channels as transducers between electricity and biology and, hence, to voltage-gated ion channels as primary targets of electrotherapy.
Collapse
Affiliation(s)
- Tayeb Abed
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Katrin Ganser
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Radiation Oncology, Medical University Vienna, Vienna, Austria
| | - Nicolai Stransky
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
46
|
Kourouklis AP, Wahlsten A, Stracuzzi A, Martyts A, Paganella LG, Labouesse C, Al-Nuaimi D, Giampietro C, Ehret AE, Tibbitt MW, Mazza E. Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies. BIOMATERIALS ADVANCES 2023; 145:213241. [PMID: 36529095 DOI: 10.1016/j.bioadv.2022.213241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.
Collapse
Affiliation(s)
- Andreas P Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland.
| | - Adam Wahlsten
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Alberto Stracuzzi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Anastasiya Martyts
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Celine Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dunja Al-Nuaimi
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Alexander E Ehret
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
47
|
Cheng J, Peng X, Li H, Feijó A, Xia L, Shenbrot GI, Ge D, Wen Z, Wang D, Yang Q. Similar adaptative mechanism but divergent demographic history of four sympatric desert rodents in Eurasian inland. Commun Biol 2023; 6:33. [PMID: 36635382 PMCID: PMC9837166 DOI: 10.1038/s42003-023-04415-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Phenotypes associated with metabolism and water retention are thought to be key to the adaptation of desert species. However, knowledge on the genetic changes and selective regimes on the similar and divergent ways to desert adaptation in sympatric and phylogenetically close desert organisms remains limited. Here, we generate a chromosome level genome assembly for Northern three-toed jerboa (Dipus sagitta) and three other high-quality genome assemblies for Siberian jerboa (Orientallactaga sibirica), Midday jird (Meriones meridianus), and Desert hamster (Phodopus roborovskii). Genomic analyses unveil that desert adaptation of the four species mainly result from similar metabolic pathways, such as arachidonic acid metabolism, thermogenesis, oxidative phosphorylation, insulin related pathway, DNA repair and protein synthesis and degradation. However, the specific evolved genes in the same adaptative molecular pathway often differ in the four species. We also reveal similar niche selection but different demographic histories and sensitivity to climate changes, which may be related to the diversified genomic adaptative features. In addition, our study suggests that nocturnal rodents have evolved some specific adaptative mechanism to desert environments compared to large desert animals. Our genomic resources will provide an important foundation for further research on desert genetic adaptations.
Collapse
Affiliation(s)
- Jilong Cheng
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Xingwen Peng
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049 China
| | - Hong Li
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Anderson Feijó
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Lin Xia
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Georgy I. Shenbrot
- grid.7489.20000 0004 1937 0511Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Negev, 84990 Israel
| | - Deyan Ge
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Zhixin Wen
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Dehua Wang
- grid.9227.e0000000119573309State Key Lab of Integrated management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| | - Qisen Yang
- grid.9227.e0000000119573309Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
48
|
Mitochondria directly sense osmotic stress to trigger rapid metabolic remodeling via regulation of pyruvate dehydrogenase phosphorylation. J Biol Chem 2022; 299:102837. [PMID: 36581206 PMCID: PMC9879793 DOI: 10.1016/j.jbc.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.
Collapse
|
49
|
Monteiro MS, Torres MA, Passarelli MDS, Martins MP, Ravagnani GM, Papa FO, Alvarenga MA, Dell'Aqua Júnior JA, Yasui GS, Martins SMMK, de Andrade AFC. Impact of cryopreservation protocols (one- and two-step) on boar semen quality at 5 °C and post-thawing. Anim Reprod Sci 2022; 247:107093. [DOI: 10.1016/j.anireprosci.2022.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/01/2022]
|
50
|
The nuclear factor of activated T cells 5 (NFAT5) contributes to the renal corticomedullary differences in gene expression. Sci Rep 2022; 12:20304. [PMID: 36433977 PMCID: PMC9700710 DOI: 10.1038/s41598-022-24237-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The corticomedullary osmotic gradient between renal cortex and medulla induces a specific spatial gene expression pattern. The factors that controls these differences are not fully addressed. Adaptation to hypertonic environment is mediated by the actions of the nuclear factor of activated T-cells 5 (NFAT5). NFAT5 induces the expression of genes that lead to intracellular accumulation of organic osmolytes. However, a systematical analysis of the NFAT5-dependent gene expression in the kidneys was missing. We used primary cultivated inner medullary collecting duct (IMCD) cells from control and NFAT5 deficient mice as well as renal cortex and inner medulla from principal cell specific NFAT5 deficient mice for gene expression profiling. In primary NFAT5 deficient IMCD cells, hyperosmolality induced changes in gene expression were abolished. The majority of the hyperosmolality induced transcripts in primary IMCD culture were determined to have the greatest expression in the inner medulla. Loss of NFAT5 altered the expression of more than 3000 genes in the renal cortex and more than 5000 genes in the inner medulla. Gene enrichment analysis indicated that loss of NFAT5 is associated with renal inflammation and increased expression of kidney injury marker genes, like lipocalin-2 or kidney injury molecule-1. In conclusion we show that NFAT5 is a master regulator of gene expression in the kidney collecting duct and in vivo loss of NFAT function induces a kidney injury like phenotype.
Collapse
|