1
|
Kervella M, Bertile F, Bouillaud F, Criscuolo F. The cell origin of reactive oxygen species and its implication for evolutionary trade-offs. Open Biol 2025; 15:240312. [PMID: 40237040 PMCID: PMC12001088 DOI: 10.1098/rsob.240312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 02/09/2025] [Indexed: 04/17/2025] Open
Abstract
The allocation of resources in animals is shaped by adaptive trade-offs aimed at maximizing fitness. At the heart of these trade-offs, lies metabolism and the conversion of food resources into energy, a process mostly occurring in mitochondria. Yet, the conversion of nutrients to utilizable energy molecules (adenosine triphosphate) inevitably leads to the by-production of reactive oxygen species (ROS) that may cause damage to important biomolecules such as proteins or lipids. The 'ROS theory of ageing' has thus proposed that the relationship between lifespan and metabolic rate may be mediated by ROS production. However, the relationship is not as straightforward as it may seem: not only are mitochondrial ROS crucial for various cellular functions, but mitochondria are also actually equipped with antioxidant systems, and many extra-mitochondrial sources also produce ROS. In this review, we discuss how viewing the mitochondrion as a regulator of cellular oxidative homeostasis, not merely a ROS producer, may provide new insights into the role of oxidative stress in the reproduction-survival trade-off. We suggest several avenues to test how mitochondrial oxidative buffering capacity might complement current bioenergetic and evolutionary studies.
Collapse
|
2
|
Coluk Y, Yildirim G, Yildirmak S, Peker EGG. Altered brain-derived neurotrophic factor levels and oxidative stress in REM sleep deprivation: a rat model study. BMC Neurol 2025; 25:122. [PMID: 40119302 PMCID: PMC11927282 DOI: 10.1186/s12883-025-04127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is among the modulators associated with cognition and sleep that play a role in sleep disorders. This study aimed at investigating the effects of chronic sleep deprivation and REM sleep deprivation on BDNF levels and oxidative stress markers. METHODS A total of 24 healthy male Wistar albino rats were separated into 3 groups as REM sleep deprivation group, control sleep deprivation group and control group. To create models of 21-day REM sleep deprivation and control sleep deprivation, we used the platform technique. After 21 days blood BDNF, brain tissue BDNF, brain tissue malondialdehyde, glutathione, ascorbic acid, nitrite and nitrate were evaluated. RESULTS Compared with the control group, control sleep deprivation group showed a significant increase in brain tissue levels of BDNF (p = 0.038), whereas a significant decrease was observed in the levels of glutathione (GSH) and nitric oxide (NO) (p:0.036). No statistical difference was observed between the blood levels of BDNF in either group (p: 0.795). CONCLUSION Our results showed decreases in GSH and NO levels and increases in malondialdehyde levels in the sleep deprivation models, reflecting oxidative stress in the brain. Additionally, we observed increases in brain BDNF levels in the control sleep deprivation model.
Collapse
Affiliation(s)
- Yonca Coluk
- Department of Otorhinolaryngology, Faculty of Medicine, Giresun University, Giresun, 28200, Turkey.
| | | | - Sembol Yildirmak
- Department of Biochemistry, Faculty of Medicine, Mersin University, Mersin, 33000, Turkey
| | | |
Collapse
|
3
|
Ishida H, Sasaki Y, Shibata T, Sasaki H, Chhunchha B, Singh DP, Kubo E. Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice. Biomolecules 2025; 15:442. [PMID: 40149978 PMCID: PMC11940285 DOI: 10.3390/biom15030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H2O2) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (Txnip) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H2O2-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced Txnip and increased thioredoxin (Trx) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.
Collapse
Affiliation(s)
- Hidetoshi Ishida
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Yu Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200293, Japan; (H.I.); (Y.S.); (T.S.); (H.S.)
| |
Collapse
|
4
|
Mohallem R, Schaser AJ, Aryal UK. Proteomic and phosphoproteomic signatures of aging mouse liver. GeroScience 2025:10.1007/s11357-025-01601-0. [PMID: 40087212 DOI: 10.1007/s11357-025-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The liver is a metabolic powerhouse, crucial for regulating carbohydrates, fats, and protein metabolism. In this study, we conducted a comparative proteomic and phosphoproteomic analysis of aging mouse livers from young adults (3-4 months) and old (19-21 months) mice to identify age-related changes in liver proteins and phosphosites, which were linked to various metabolic pathways. In old mice, proteins associated with the "complement and coagulation cascade," "age-rage signaling in diabetic complications," and "biosynthesis of unsaturated fatty acids" were increased, while those linked to "oxidative phosphorylation," "steroid hormone biosynthesis," and "tryptophan metabolism" were decreased. Interestingly, aging was marked by a significant decrease in liver protein phosphorylation, with nearly 90% of significant phosphosites being downregulated. Pathway analysis of the downregulated phosphosites highlighted connections to "non-small cell lung cancer," "lysine degradation," "cell differentiation," and "glycerophospholipid metabolism." Decreased phosphorylation of several kinases that are linked to cell proliferation, particularly those in the MAPK signaling pathway, including Erk1, EGFR, RAF1, and BRAF was also observed highlighting their important role in the liver. This study identified an important relationship between proteins, phosphosites, and their connections to known as well as new pathways, expanding upon our current knowledge and providing a basis for future studies focused on age-related metabolic traits.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Li CWD, Herpich C, Haß U, Kochlik B, Weber D, Grune T, Norman K. Essential amino acids and branched-chain amino acids are associated with skeletal muscle and inflammatory parameters in older age. Biogerontology 2025; 26:66. [PMID: 40045114 PMCID: PMC11882671 DOI: 10.1007/s10522-025-10206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025]
Abstract
Aging is associated with a decline in muscle mass and function, increasing the risk of adverse health outcomes. Amino acid profiling has emerged as a potential tool for assessing skeletal muscle health. This study examines the associations between fasting plasma amino acids, muscle function, and inflammation in healthy older and young adults. Data from 131 participants (101 older adults, 71.5±4.9 years; 30 young adults, 25.5±3.9 years) were analyzed. Skeletal muscle mass was assessed using bioimpedance analysis, and hand grip strength was measured with a dynamometer. Plasma amino acids, kynurenine, and inflammatory markers (CRP, IL-6) were quantified using ultraperformance liquid chromatography with tandem mass spectrometry and commercial immunosorbent assays, respectively. Older adults exhibited lower levels of glutamic acid, isoleucine, leucine, phenylalanine, kynurenine, and kynurenine-to-tryptophan (KYN:TRP) ratio compared to younger individuals (all p<0.05). In older adults, branched-chain and essential amino acids correlated positively with skeletal muscle index (SMI) and hand grip strength, whereas in young adults, only glutamic acid, proline, and KYN:TRP showed positive associations with SMI (all p<0.05). CRP and IL-6 were associated with several amino acids in older adults but not in younger individuals. These findings suggest that age-related shifts in amino acid profiles may reflect underlying changes in muscle metabolism and function, highlighting their potential as early indicators of muscle decline.
Collapse
Affiliation(s)
- Ching Wah Donna Li
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558
| | - Catrin Herpich
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558
| | - Ulrike Haß
- Faculty of Health Science Brandenburg, Department of Rehabilitation Medicine, University of Potsdam, Potsdam, Germany, 14476
| | - Bastian Kochlik
- Department of Food Safety, Federal Institute for Risk Assessment, Berlin, Germany, 10589
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 14558
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany, 14558
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany, 14558.
- Department of Geriatrics and Medical Gerontology, Charité - Unniversitätsmedizin Berlin, Berlin, Germany, 13347.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Zeng W, Zhou W, Pu J, Tong B, Li D, Yao Y, Shang S. Physical frailty trajectories in older stroke survivors: Findings from a national cohort study. J Clin Nurs 2025; 34:912-920. [PMID: 38528345 DOI: 10.1111/jocn.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Physical frailty (PF) is highly prevalent and associated with undesirable outcomes in stroke survivors aged 65 years or older. However, the long-term trajectories of PF are understudied in those older stroke survivors. AIMS To identify PF trajectories and relative predictors associated with the PF trajectories in older stroke survivors. DESIGN This is a secondary analysis of a population-based cohort study in the United States. METHODS Six hundred and sixty-three older stroke survivors from the National Health and Ageing Trends Study from 2015 to 2021 were included. PF was operationally assessed based on the Fried Frailty Phenotype. Trajectories were identified by group-based trajectory modelling. The associations between sociodemographic characteristics, clinical factors, symptoms, cognitive factors and PF trajectories were examined using the design-based logistic regression method. RESULTS Most older stroke survivors were 75 and older (63.32%), female (53.99%), white (80.54%) and partnered (50.64%). Two PF trajectory groups were identified (Group 1: low risk, robust; 49.47%; Group 2: high risk, deteriorating; 50.53%). Individuals were at a higher risk to be assigned to Group 2 if they were 75-84 years (adjusted odds ratio [aOR]: 2.16, 95% CI: 1.23-3.80) or 85+ years (aOR: 2.77, 95% CI: 1.52-5.04), had fair self-reported health (aOR: 2.78, 95% CI: 1.53-5.07) or poor self-reported health (aOR: 3.37, 95% CI: 1.51-7.52), had comorbidities (aOR: 8.44, 95% CI: 1.31-54.42), had breathing problems (aOR: 2.18, 95% CI: 1.18-4.02) and had balance problems (aOR: 1.70, 95% CI: 1.06-2.73). CONCLUSION PF trajectories in older stroke survivors were heterogeneous and were associated with age, self-rated health status, comorbidities, breathing problems and balance problems. IMPLICATION TO CLINICAL PRACTICE Early, routine, dynamic screening for stroke-related physical frailty (PF) and relative predictors might be beneficial for identifying the most vulnerable individuals. Our findings might help develop strategies to manage PF progression. REPORTING METHOD The reporting followed the STROBE guideline.
Collapse
Affiliation(s)
- Wen Zeng
- Nursing School of Peking University Health Science Center, Beijing, China
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Weijiao Zhou
- Nursing School of Peking University Health Science Center, Beijing, China
| | - Junlan Pu
- Nursing School of Peking University Health Science Center, Beijing, China
| | - Beibei Tong
- Nursing School of Peking University Health Science Center, Beijing, China
| | - Dan Li
- Nursing School of Peking University Health Science Center, Beijing, China
| | - Yuanrong Yao
- Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shaomei Shang
- Nursing School of Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
Ženíšková K, Stopka P, Martín-Pérez T, Chevreux G, Grechnikova M, Drncová E, Malych R, Mach J, Walochnik J, Camadro JM, Sutak R. Molecular Mechanisms of Acanthamoeba castellanii Response to Different Sources of Oxidative Stress. J Proteome Res 2025; 24:449-458. [PMID: 39829028 PMCID: PMC11812009 DOI: 10.1021/acs.jproteome.4c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Oxidative stress is a biological principle affecting all life on Earth and is also an important factor in the pathogen-host relationship. The pathogenic free-living amoeba Acanthamoeba castellanii has several pathways to cope with reactive oxygen species and the damage that they cause. In this study, we aimed to provide a comprehensive analysis of the amoeba's response to different sources of oxidative stress. Using whole-cell proteomic analysis, we obtained a complex picture of the changes in the proteome and identified potential key players in the defense against oxidative stress. Importantly, from the differential proteomics analysis, we identified a candidate efflux pump that may be involved in Acanthamoeba drug resistance.
Collapse
Affiliation(s)
- Kateřina Ženíšková
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Pavel Stopka
- Department
of Zoology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Tania Martín-Pérez
- Center
for Pathophysiology, Infectiology and Immunology, Institute of Specific
Prophylaxis and Tropical Medicine, Medical
University of Vienna, Vienna 1090, Austria
| | - Guillaume Chevreux
- Université
de Paris Cité, CNRS, Institut Jacques Monod, Paris F-75013, France
| | - Maria Grechnikova
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Eliška Drncová
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Ronald Malych
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Jan Mach
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| | - Julia Walochnik
- Center
for Pathophysiology, Infectiology and Immunology, Institute of Specific
Prophylaxis and Tropical Medicine, Medical
University of Vienna, Vienna 1090, Austria
| | - Jean-Michel Camadro
- Université
de Paris Cité, CNRS, Institut Jacques Monod, Paris F-75013, France
| | - Robert Sutak
- Department
of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec 25250, Czech Republic
| |
Collapse
|
8
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2025; 480:721-731. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
9
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
10
|
Chen C, He J, Huang W, Xu D, Li Z, Yang A. PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress. Sci Rep 2025; 15:2612. [PMID: 39837970 PMCID: PMC11751325 DOI: 10.1038/s41598-025-86867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025] Open
Abstract
Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (H2O2)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system. 601 differentially expressed genes (DEGs) associated with OS, cell cycle regulation, and intracellular processes were identified. These DEGs were significantly enriched in critical aging pathways, including the p53 signaling pathway, autophagy, and cellular senescence. Protein-protein interaction (PPI) network analysis unveiled 15 key genes related to cell cycle and DNA replication, with polo-like kinase 3 (PLK3) exhibiting increased expression under OS. In vitro, PLK3 knockdown significantly enhanced the viability and antioxidant capacity of LCs under OS. This study deepens our understanding of how LCs respond to OS and provides new therapeutic targets for enhancing cellular resistance to oxidative damage and promoting tissue health.
Collapse
Affiliation(s)
- Chujie Chen
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- College of Life Sciences and Resource Environment, Yichun university, Yichun, Jiangxi, China
| | - Jinyan He
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weixian Huang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dong Xu
- Department of Biological and Environmental Engineering, Yueyang Vocational Technical College, Yueyang, Hunan, China
| | - Zhaohui Li
- Xiangtan Livestock Breeding Station, Xiangtan, Hunan, China
| | - Anqi Yang
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
11
|
Santacruz-Márquez R, Safar AM, Laws MJ, Fletcher EJ, Meling DD, Nowak RA, Raetzman LT, Flaws JA. Dietary exposure to di(2-ethylhexyl) phthalate for 6 months alters markers of female reproductive aging in mice†. Biol Reprod 2025; 112:191-202. [PMID: 39520286 DOI: 10.1093/biolre/ioae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss. Other markers of reproductive aging include increased fibrosis and shortening of telomeres in ovarian cells. The factors that accelerate reproductive aging are unclear, but likely involve exposure to endocrine-disrupting chemicals such as phthalates. Di(2-ethylhexyl) phthalate (DEHP) is a widely used phthalate and humans are exposed to it daily. Several studies show that DEHP induces reproductive toxicity by affecting estrous cyclicity, follicle numbers, and hormone levels. However, little is known about the mechanisms underlying DEHP-induced early onset of reproductive aging. Thus, this study tested the hypothesis that dietary exposure to DEHP induces early reproductive aging by affecting inflammation, fibrosis, and the expression of telomere regulators and antioxidant enzymes. Adult CD-1 female mice were exposed to vehicle (corn oil) or DEHP (0.5, 1.5, or 1500 ppm) via the chow for 6 months. Exposure to DEHP increased the expression of antioxidant enzymes and Caspase 3, increased expression of telomere-associated genes, and increased fibrosis levels in the ovary. In addition, DEHP exposure for 6 months altered ovarian and systemic inflammatory status. Collectively, our novel data suggest that 6-month dietary exposure to DEHP may accelerate reproductive aging by affecting several reproductive aging markers in female mice.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Endia J Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
12
|
Jara C, Torres AK, Park-Kang HS, Sandoval L, Retamal C, Gonzalez A, Ricca M, Valenzuela S, Murphy MP, Inestrosa NC, Tapia-Rojas C. Curcumin Improves Hippocampal Cell Bioenergetics, Redox and Inflammatory Markers, and Synaptic Proteins, Regulating Mitochondrial Calcium Homeostasis. Neurotox Res 2025; 43:3. [PMID: 39775210 DOI: 10.1007/s12640-024-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/09/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Mitochondria produces energy through oxidative phosphorylation (OXPHOS), maintaining calcium homeostasis, survival/death cell signaling mechanisms, and redox balance. These mitochondrial functions are especially critical for neurons. The hippocampus is crucial for memory formation in the brain, which is a process with high mitochondrial function demand. Loss of hippocampal function in aging is related to neuronal damage, where mitochondrial impairment is critical. Synaptic and mitochondrial dysfunction are early events in aging; both are regulated reciprocally and contribute to age-associated memory loss together. We previously showed that prolonged treatment with Curcumin or Mitoquinone (MitoQ) improves mitochondrial functions in aged mice, exerting similar neuroprotective effects. Curcumin has been described as an anti-inflammatory and antioxidant compound, and MitoQ is a potent antioxidant directly targeting mitochondria; however, whether Curcumin exerts a direct impact on the mitochondria is unclear. In this work, we study whether Curcumin could have a mechanism similar to MitoQ targeting the mitochondria. We utilized hippocampal slices of 4-6-month-old C57BL6 mice to assess the cellular changes induced by acute Curcumin treatment ex-vivo compared to MitoQ. Our results strongly suggest that both compounds improve the synaptic structure, oxidative state, and energy production in the hippocampus. Nevertheless, Curcumin and MitoQ modify mitochondrial function differently; MitoQ improves the mitochondrial bioenergetics state, reducing ROS production and increasing ATP generation. In contrast, Curcumin reduces mitochondrial calcium levels and prevents calcium overload related to mitochondrial swelling. Thus, Curcumin is described as a new regulator of mitochondrial calcium homeostasis and could be used in pathological events involving calcium deregulation and excitotoxicity, such as aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Claudia Jara
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
| | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Alfonso Gonzalez
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Lota 2465, Santiago, 7510157, Chile
| | - Micaela Ricca
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Sebastián Valenzuela
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Avenida Los Flamencos, Punta Arenas, 01364, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida del Valle Norte 725, Huechuraba, Santiago, 8580702, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, 7510157, Chile.
| |
Collapse
|
13
|
Stoldt M, Negroni MA, Feldmeyer B, Foitzik S. Molecular Adjustment to a Social Niche: Brain Transcriptomes Reveal Divergent Influence of Social Environment on the Two Queen Morphs of the Ant Temnothorax rugatulus. Mol Ecol 2025:e17649. [PMID: 39775902 DOI: 10.1111/mec.17649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 01/11/2025]
Abstract
Social insects form complex societies with division of labour between different female castes. In most species, a single queen heads the colony; in others, several queens share the task of reproduction. These different social organisations are often associated with distinct queen morphologies and life-history strategies and occur in different environments. In the ant Temnothorax rugatulus, queens are dimorphic. Macrogynes and microgynes reside in mono- and polygynous colonies and at lower and higher elevations, respectively. We analysed plastic changes in brain transcriptomes in response to the social environment in these queen morphs and their workers. We manipulated the number of queens over 4 months to investigate whether transcriptional activity is influenced by queen morph, social environment or their interaction. Changes in gene expression in the queens' brains in response to our manipulations were largely influenced by the interaction between social environment and queen morph, rather than independently by these factors. Macrogynes and microgynes thus adjust differently to their social environment. Similarly, worker transcriptomes were influenced by an interaction between behavioural type, that is, nurses or foragers, and queen morph. Nurses differentially regulated genes related to nutrition depending on queen morph, suggesting a link between social environment and metabolic dynamics in ant colonies. Overall, our study sheds light on how the social environment influences the molecular physiology of social insects. Furthermore, we demonstrate that in this ant with two queen morphs, worker physiology depends on queen morph and their role in the colony.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Mosayyeb Zadeh A, Mirghelenj SA, Daneshyar M, Eslami M, Karimi Torshizi MA, Zhandi M, Nadri T, Kastelic JP, Hasanloo P, Nabiloo M. Dietary supplementation with 15% tomato pomace (Solanum lycopersicum L.) improves sperm production and antioxidant status in aged male broiler breeders. Poult Sci 2025; 104:104553. [PMID: 39631284 PMCID: PMC11665380 DOI: 10.1016/j.psj.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The objective was to investigate effects of dietary tomato pomace (TP) and L-Arginine (L-Arg; 10% above nutritional recommendation) in aged male broiler breeders. Thirty male broiler breeders (Ross 308), 58 wk old, were randomly and equally allocated into five experimental groups: basal diet (C); 5% TP-supplemented (T-5); 10% TP-supplemented (T-10); 15% TP-supplemented (T-15); and L-Arg supplemented (L-10) groups. In contrast to the Control and TP-supplemented groups, sperm of L-10 roosters had higher C14:1, C16:0 and C18:1 n-9c proportions, total saturated fatty acid (FA) contents, and n-6:n-3 ratios, but a lower C22:4 n-6 content (P<0.05). However, sperm of T-15 roosters had increased C18:2 n-6, C22:6 n-3 and total unsaturated FA contents but reduced n-6:n-3 ratios compared to Control birds (P<0.05). Additionally, serum of T-15 roosters had lower cholesterol and triglyceride (TG) concentrations, along with decreased aspartate aminotransferase (AST) activity (P<0.05). In serum of T-15 and L-10 roosters, there were increases (P<0.05) in total antioxidant capacity (TAC) and uric acid (UA) and a reduction (P<0.05) in malondialdehyde (MDA) concentration. The T-15 roosters had higher (P<0.05) serum testosterone concentration and testes glutathione peroxidase (GPx) activity. Superoxide dismutase (SOD) content was reduced (P<0.05) in L-10 roosters. Seminiferous tubule diameter (STD) and seminiferous epithelium thickness (SET) were increased in all groups fed TP (P<0.05) and T-10 and T-15 roosters had increases (P<0.05) in tubular differentiation indices (TDI). The T-15 and L-10 groups had higher mRNA expressions of AKT1 and Nrf2 (P<0.05). In conclusion, in aged male broiler breeders, up to 15% TP supplementation is recommended to improve reproductive performance by enhancing testes histology and antioxidant status.
Collapse
Affiliation(s)
- Amir Mosayyeb Zadeh
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran.
| | | | - Mohsen Daneshyar
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran
| | - Mohsen Eslami
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Mahdi Zhandi
- Department of Animal Science, Faculty of Agriculture, University College of Agriculture and Natural Resources, University of Tehran, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran
| | | | - Peyman Hasanloo
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran
| | - Mehdi Nabiloo
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
15
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
16
|
Dar SA, Malla S, Martinek V, Payea MJ, Lee CTY, Martin J, Khandeshi AJ, Martindale JL, Belair C, Maragkakis M. Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress. eLife 2024; 13:RP96284. [PMID: 39699162 DOI: 10.7554/elife.96284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Matthew John Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Christopher Tai-Yi Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Aditya Jignesh Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, United States
| |
Collapse
|
17
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Mao Y, Ye Q, Zhao S, Sun X, Li B, Ping Y, Jiang T, Gao J, Chen W, Jiang H, Wu G, Huang S, Chen Y, Jaspers RT. Integrated analysis of transcriptome and proteome reveals a core set of genes involved in osteoblast under oxidative stress. Biochem Biophys Res Commun 2024; 738:150910. [PMID: 39522232 DOI: 10.1016/j.bbrc.2024.150910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Osteoblasts dysfunction, induced by oxidative stress (OS), is a significant contributor to the pathogenesis of osteoporosis. However, the genes implicated in regulating osteoblast dysfunction remain unclear. Here, we employed the hydrogen peroxide (H2O2)-induced osteoblast dysfunction model to assess its impact on osteoblast phenotype and to conduct transcriptome and proteome analyses in osteoblasts under OS. We identified 164 genes and 186 proteins with altered expression (differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively). Functional analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed enrichment in pathways associated with apoptosis and osteoblast differentiation. We constructed a protein-protein interaction (PPI) network of DEPs, which comprised 175 DEPs as nodes. Furthermore, seven key DEGs and DEPs with positive correlation (cor-DEGs-DEPs genes) were characterized based on the integrated analysis of mRNA-protein expression. Among these seven genes, Ho-1, Fosl1, and Fosl2 were shown to be upregulated, associated with OS-induced cell differentiation impairment and apoptosis. Conversely, Ccnd2, Col1α1, Col12α1, and Fgfr2 were shown to be downregulated, linked to OS-induced cell cycle delay, apoptosis, impaired mineralization, and differentiation. PPI analysis revealed interactions between these key genes. Lastly, we validated these genes at both mRNA and protein levels using qRT-PCR and Western blot experiments. This study identified seven candidate genes potentially involved in the detrimental effects of OS on MC3T3-E1 apoptosis and dysfunction. These findings offer new insights into how OS disrupts bone formation and may contribute to the development of osteoporosis.
Collapse
Affiliation(s)
- Yixin Mao
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Sciences, Amsterdam, 1081 HZ, Netherlands
| | - Qianru Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shufan Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Department of Oral and Maxillofacial Surgery, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yifan Ping
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tianle Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jia Gao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenxia Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haofu Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Gang Wu
- Savaid Stomatology School, Hangzhou Medical college, Hangzhou, Zhejiang, 311399, China.
| | - Shengbin Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yang Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Sciences, Amsterdam, 1081 HZ, Netherlands
| |
Collapse
|
19
|
Ramatchandirane M, Rajendran P, Athira MP, Suchiang K. Coniferaldehyde activates autophagy and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans via par-4/aak-2/skn-1 pathway. Biogerontology 2024; 26:25. [PMID: 39674829 DOI: 10.1007/s10522-024-10163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Aging represents the gradual accumulation of alterations within an organism over time. The physical and chemical characteristics of our cells gradually change as we age, making it more difficult for our tissues and organs to self-regulate, regenerate, and maintain their structural and functional integrity. AMP- activated protein kinase (AMPK), a well-known sensor of cellular energy status acts as a central regulator of an integrated signalling network that control homeostasis, metabolism, stress resistance, cell survival and autophagy. Coniferaldehyde (CFA), a phenolic compound found in many edible plants, has multiple biological and pharmacological functions. Our findings demonstrated that 50 µM CFA could significantly activate autophagy and reduce oxidative stress, which enhanced the activity of antioxidant enzymes and increased resistance under oxidative stress. CFA treatment could efficiently decrease reactive oxygen species (ROS) levels and positively enhance the expression of antioxidant genes in Caenorhabditis elegans (C. elegans). On the other hand, CFA did not have any role in the lifespan extension of the several mutants linked to the AAK-2/AMPK pathway and it promotes SKN-1 (Skinhead-1) localization into the nucleus, which modulates downstream gene gst-4 (Glutathione S-transferase). In depth investigations revealed that CFA could lower oxidative stress and enhance the lifespan of C. elegans by activating the PAR-4/LKB-1-AAK-2/AMPK-SKN-1/NRF-2 pathway, with crucial involvement of bec-1 and lgg-1 genes for autophagy mediated lifespan extension. This study might contribute to understanding the interactions and mechanisms that allow natural compounds like CFA to treat age-related disorders among several species.
Collapse
Affiliation(s)
- Mahesh Ramatchandirane
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Ponsankaran Rajendran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - M P Athira
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
20
|
Yao G, Wang Z, Xie R, Zhanghuang C, Yan B. Trace element zinc metabolism and its relation to tumors. Front Endocrinol (Lausanne) 2024; 15:1457943. [PMID: 39717098 PMCID: PMC11664221 DOI: 10.3389/fendo.2024.1457943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Zinc is an essential trace element in the human body, playing a crucial role in cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal cellular metabolism, contributing to diseases and closely related to tumor development. Adequate zinc intake can maintain zinc homeostasis in the body and support normal cellular metabolism. This review discusses the metabolic processes of zinc in the human body and its close relationship with tumorigenesis. It briefly describes zinc absorption, transport, storage, and release, as well as its important role in gene expression, signal transduction, oxidative stress, immune response, and apoptosis. It focuses on the abnormal cellular metabolism caused by excessive or insufficient zinc, the relationship between zinc homeostasis disruption and metabolic syndrome, and the mechanisms involved in tumor development. It analyzes how changes in the expression and activity of zinc transporters may lead to disrupted zinc homeostasis in tumor tissues. It points out that zinc deficiency is associated with various cancers, including prostate cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer, ovarian cancer, esophageal squamous cell carcinoma, and breast cancer. The summary emphasizes that zinc metalloproteins could serve as potential targets for cancer therapy, and regulating the expression and activity of zinc transport proteins may offer new methods and strategies for clinical cancer treatment.
Collapse
Affiliation(s)
- Guiping Yao
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zhiwei Wang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rui Xie
- Department of Orthopedics, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Bing Yan
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
21
|
Hui H, Jin H, Yang X, Wang X, Qin B. The structure elucidation, anti-aging and hypoglycemic effects of an O-acetyl mannoglucan from the bulbs of Lanzhou lily. Fitoterapia 2024; 179:106240. [PMID: 39332504 DOI: 10.1016/j.fitote.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
An O-acetyl mannoglucan (BHP-1) from Lanzhou lily bulbs was structurally elucidated using partial acid hydrolysis, GC-MS, and 2D NMR techniques (COSY, NOESY, HSQC and HMBC) built on prior research, revealing a backbone of -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp- with the most potential side chains -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp-α-D-(1 → 4)-Glcp-α-D-(1 → Glcp- and -α-D-(1 → 4)-Glcp-β-D-(1 → 4)-Manp-α-D-(1 → Glcp-, attached to O-2 and O-3 of glucose and mannose residues, and featuring O-acetyl groups at O-2 or O-3 position of mannose. The terminal residue was α-D-(1 → Glcp. BHP-1 demonstrated anti-aging and hypoglycemic effects, as assessed by C. elegans model and glycolytic enzyme effect in vitro, respectively. The results showed that BHP-1 dose-dependently prolonged lifespan of C. elegans by 33 % at 4 mg/mL under normal conditions, with greater extensions under thermal and oxidative stress (50 % and 80 % increases, respectively, p < 0.05), which were attributed to enhanced antioxidant enzymes (SOD and CAT) and lowered MDA levels of C. elegans. Additionally, BHP-1 exhibited remarkable inhibition on α-glucosidase (93 %) and moderate inhibition on α-amylase (53 %) at 4 mg/mL, with competitive inhibition of α-glucosidase and mixed non-competitive inhibition of α-amylase, respectively. These potential effects might be linked to BHP-1's diverse sugar linkages, higher content of Glc, and certain O-acetyl contents.
Collapse
Affiliation(s)
- Heping Hui
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, PR China
| | - Hui Jin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xuejun Wang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, PR China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
22
|
Nguyen HVM, Ran Q, Salmon AB, Bumsoo A, Chiao YA, Bhaskaran S, Richardson A. Mouse models used to test the role of reactive oxygen species in aging and age-related chronic diseases. Free Radic Biol Med 2024; 225:617-629. [PMID: 39419456 PMCID: PMC11624111 DOI: 10.1016/j.freeradbiomed.2024.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
With the development of the technology to generate transgenic and knockout mice in the 1990s, investigators had a powerful tool to directly test the impact of altering a specific gene on a biological process or disease. Over the past three decades, investigators have used transgenic and knockout mouse models, which have altered expression of antioxidant genes, to test the role of oxidative stress/damage in aging and age-related diseases. In this comprehensive review, we describe the studies using transgenic and knockout mouse models to test the role of oxidative stress/damage in aging (longevity) and three age-related diseases, e.g., sarcopenia, cardiac aging, and Alzheimer's Disease. While longevity was consistently altered only by one transgenic and one knockout mouse model as predicted by the Oxidative Stress Theory of Aging, the incidence/progression of the three age-related diseases (especially Alzheimer's disease) were robustly impacted when the expression of various antioxidant genes was altered using transgenic and knockout mouse models.
Collapse
Affiliation(s)
- Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Qitao Ran
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Ahn Bumsoo
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA; VA Oklahoma Health Care System, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Wu Q, Xiao J, Zhuang H, Zhao F, Li R, Zhang D. Preparation and antioxidant properties of tannic acid/copper ion nanozyme hybrid nanofibrous membranes. RSC Adv 2024; 14:35743-35753. [PMID: 39529749 PMCID: PMC11551845 DOI: 10.1039/d4ra05314a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Excess free radicals can have some negative effects on human health. In this paper, a nanozyme was successfully constructed by the coordination of copper ions and tannic acid, and its structure and elemental distribution were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. Free radical scavenging experiments confirmed that it possessed superoxide dismutase-like activity, catalase-like activity, and hydroxyl radical scavenging ability. The results of thermogravimetric analysis experiments demonstrated that it possessed good thermal stability. A polyacrylonitrile hybrid nanofibrous membrane loaded with Cu/TA nanozyme was successfully constructed by electrospinning technology, and the maximum scavenging rate of DPPH and ABTS radicals can reach 64.22% and 58.44%, respectively. The nanofiber membrane also exhibited the ability to protect cells from oxidative stress damage. Therefore, the hybrid nanofibrous membrane has a broad application prospect in fields such as food preservation and biomedicine.
Collapse
Affiliation(s)
- Qiao Wu
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| | - Jingshu Xiao
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| | - Hu Zhuang
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| | - Fenghai Zhao
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| | - Ruoxi Li
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| | - Duntie Zhang
- China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China
| |
Collapse
|
24
|
Han X, Sun B, Zhang Q, Teng L, Zhang F, Liu Z. Metabolic regulation reduces the oxidative damage of arid lizards in response to moderate heat events. Integr Zool 2024; 19:1034-1046. [PMID: 37897215 DOI: 10.1111/1749-4877.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Climate warming poses a significant threat to species worldwide, particularly those inhabiting arid and semi-arid regions where extreme temperatures are increasingly prevalent. However, empirical studies investigating how moderate heat events affect the physiological processes of arid and semi-arid animals are largely scarce. To address this knowledge gap, we used an arid and semi-arid lizard species (Phrynocephalus przewalskii) as a study system. We manipulated thermal environments to simulate moderate heat events (43.5 ± 0.3°C during the heating period) for lizards and examined physiological and biochemical traits related to survival, metabolism, locomotion, oxidative stress, and telomere length. We found that the body condition and survival of the lizards were not significantly affected by moderate heat events, despite an increase in body temperature and a decrease in locomotion at high test temperatures were detected. Mechanistically, we found that the lizards exhibited down-regulated metabolic rates and enhanced activities of antioxidative enzymes, resulting in reduced oxidative damage and stable telomere length under moderate heat events. Based on these findings, which indicated a beneficial regulation of fitness by physiological and biochemical processes, we inferred that moderate heat events did not have a detrimental effect on the toad-headed agama, P. przewalskii. Overall, our research contributes to understanding the impacts of moderate heat events on arid and semi-arid species and highlights the adaptive responses and resilience exhibited by the toad-headed agama in the face of climate warming.
Collapse
Affiliation(s)
- Xingzhi Han
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Fushun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
25
|
Mitchell ES, Lemke S, Woodhead B, Coleman D. Oral subchronic toxicity study and genetic toxicity evaluation of mitoquinone mesylate. J Appl Toxicol 2024; 44:1555-1571. [PMID: 38860421 DOI: 10.1002/jat.4654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Mitochondrial dysfunction and excessive reactive oxygen species production contributes to the pathophysiology of aging. Coenzyme Q10 is thought to protect mitochondria from oxidative damage; thus, mitoquinone was developed as mitochondria-targeted analogue with similar antioxidant activity. Mitoquinone is the oxidized form of mitoquinol. Mitoquinone/mitoquinol mesylate has been proposed as a food ingredient. As part of the safety analysis, we performed genotoxicity assays and a 39-week toxicity study to determine overall toxicity potential. Mitoquinone mesylate showed no evidence of genotoxic potential in two in vitro assays, bacterial reverse mutation and human lymphocyte chromosome aberration, nor in the in vivo micronucleus test in rats. In the 39-week study in dogs, there were no findings observed, which were considered to represent adverse systemic toxicity; therefore, the high dose level (40 mg/kg/day) was considered the NOAEL. The principal findings in this study were fecal disturbances and vomiting. These findings were considered to be due to a local, possibly irritant effect of the test substance on the gastrointestinal tract and were not considered adverse as there were no impacts on clinical or histopathology. This highest dose exceeds the expected daily human intake more than 100-fold. Data from well-designed clinical trials actively collecting safety endpoints corroborate that 20 mg/day can be safely consumed and is not likely to result in significant gastrointestinal complaints. These results support the conclusion that the use of mitoquinone/mitoquinol mesylate as a food ingredient is safe.
Collapse
Affiliation(s)
| | | | | | - David Coleman
- Labcorp Early Development Laboratories Ltd., Huntingdon, UK
| |
Collapse
|
26
|
Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther 2024; 262:108710. [PMID: 39179117 DOI: 10.1016/j.pharmthera.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function. The current review examines recent advances in understanding the interplay between mitochondrial dysfunction and organ-specific aging. Thereby, we dissect molecular mechanisms underlying mitochondrial impairment associated with the deterioration of organ function, exploring the role of mitochondrial DNA, reactive oxygen species homeostasis, metabolic activity, damage-associated molecular patterns, biogenesis, turnover, and dynamics. We also highlight emerging therapeutic strategies in preclinical and clinical tests that are supposed to rejuvenate mitochondrial function, such as antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial turnover and dynamics. Furthermore, we discuss potential benefits and challenges associated with the use of these interventions, emphasizing the need for organ-specific approaches given the unique mitochondrial characteristics of different tissues. In conclusion, this review highlights the therapeutic potential of addressing mitochondrial dysfunction to mitigate organ-specific aging, focusing on the skin, liver, lung, brain, skeletal muscle, and lung, as well as on the reproductive, immune, and cardiovascular systems. Based on a comprehensive understanding of the multifaceted roles of mitochondria, innovative therapeutic strategies may be developed and optimized to combat biological aging and promote healthy aging across diverse organ systems.
Collapse
Affiliation(s)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Research Unit of Early Life Determinants, Medical University of Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Katrin Panzitt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Medical University of Graz
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Department of Anesthesiology and Intensive Care Medicine, LBI for Lung Vascular Research, Medical University of Graz, Austria.
| |
Collapse
|
27
|
Zhou Y, Zhang M, Lu S, Liu L, Duan Z, Wei F, Li G. Superoxide signal orchestrates tetrathiomolybdate-induced longevity via ARGK-1 in Caenorhabditis elegans. Free Radic Biol Med 2024; 222:650-660. [PMID: 39025156 DOI: 10.1016/j.freeradbiomed.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE While reactive oxygen species (ROS) have been identified as key redox signaling agents contributing to aging process, which and how specific oxidants trigger healthy longevity remain unclear. This paper aimed to explore the precise role and signaling mechanism of superoxide (O2•-) in health and longevity. METHODS A tool for precise regulation of O2•- levels in vivo was developed based on the inhibition of superoxide dismutase 1 (SOD1) by tetrathiomolybdate (TM) in Caenorhabditis elegans (C. elegans). Then, we examined the effects of TM on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the signaling mechanism for longevity induced by TM-O2•- was screened by transcriptome analysis and tested in sod-1 and argk-1 RNAi strains, sod-2, sod-3, and daf-16 mutants. RESULTS TM promoted longevity in C. elegans with a concomitant extension of healthy lifespan as indicated by increasing fertility and mobility and reducing lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanically, TM could precisely regulate O2•- levels in nematodes via modulating SOD1 activity. An O2•- scavenger Mn(III)TBAP abolished TM-induced lifespan extension, while an O2•- generator paraquat at low concentration mimicked the life prolongation effects. The longevity in TM-treated worms was abolished by sod-1 RNAi but was not affected in sod-2 or sod-3 mutants. Further transcriptome analysis revealed arginine kinase ARGK-1 and its downstream insulin/insulin-like growth factor 1 signaling (IIS) as potential effectors for TM-O2•‾-induced longevity, and argk-1 RNAi or daf-16 mutant nullified the longevity. CONCLUSIONS These findings indicate that it is feasible to precisely control specific oxidant in vivo and O2•- orchestrates TM-induced health and longevity in C. elegans via ARGK-1-IIS axis.
Collapse
Affiliation(s)
- Yiming Zhou
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Mengting Zhang
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Siyu Lu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Li Liu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Fang Wei
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Guolin Li
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, 410081, China; FuRong Laboratory, Changsha, 410078, Hunan, China.
| |
Collapse
|
28
|
Zhao L, Qiu J, Zhang J, Li A, Wang G. Apoptosis and Oxidative Stress in Human Intestinal Epithelial Caco-2 Cells Caused by Marine Phycotoxin Azaspiracid-2. Toxins (Basel) 2024; 16:381. [PMID: 39330839 PMCID: PMC11435587 DOI: 10.3390/toxins16090381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
When humans consume seafood contaminated by lipophilic polyether phycotoxins, such as azaspiracids (AZAs), the toxins are mainly leached and absorbed in the small intestine, potentially causing intestinal damage. In this study, human intestinal epithelial Caco-2 cells were used to investigate the adverse effects of azaspiracid-2 (AZA-2) on human intestinal epithelial cells. Cell viability, apoptosis, oxidative damage and mitochondrial ultrastructure were investigated, and ribonucleic acid sequence (RNA-seq) analysis was applied to explore the potential mechanisms of AZA-2 toxicity to Caco-2 cells. Results showed that AZA-2 significantly reduced the proliferation of Caco-2 cells in a concentration-dependent response, and the 48 h EC50 of AZA-2 was 12.65 nmol L-1. AZA-2 can induce apoptosis in Caco-2 cells in a dose-dependent manner. Visible mitochondrial swelling, cristae disintegration, membrane rupture and autophagy were observed in Caco-2 cells exposed to AZA-2. Reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased in Caco-2 cells after 48 h of exposure to 1 and 10 nmol L-1 of AZA-2. Transcriptome analysis showed that KEGG pathways related to cellular oxidative damage and lipid metabolism were affected, mainly including mitophagy, oxidative phosphorylation, cholesterol metabolism, vitamin digestion and absorption, bile secretion and the peroxisome proliferator-activated receptor signaling pathway. The cytotoxic effects of AZA-2 on Caco-2 cells may be associated with ROS-mediated autophagy and apoptosis in mitochondrial cells. Results of this study improve understanding of the cytotoxicity and molecular mechanisms of AZA-2 on Caco-2 cells, which is significant for protecting human health.
Collapse
Affiliation(s)
- Liye Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (L.Z.); (J.Z.); (G.W.)
| |
Collapse
|
29
|
Villaorduña C, Barrios-Arpi L, Lira-Mejía B, Ramos-Gonzalez M, Ramos-Coaguila O, Inostroza-Ruiz L, Romero A, Rodríguez JL. The Fungicide Ipconazole Can Activate Mediators of Cellular Damage in Rat Brain Regions. TOXICS 2024; 12:638. [PMID: 39330566 PMCID: PMC11435560 DOI: 10.3390/toxics12090638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
This study aimed to investigate the toxicity of the fungicide ipconazole on oxidative status, cell death and inflammasome complex activation in the hypothalamus, cerebral cortex, striatum and hippocampus of rats. Female albino rats were randomly divided into a control group and four groups treated with ipconazole at doses of 1, 5, 10 and 20 mg/kg b.w., administered for six days. Ipconazole significantly increased MDA and ROS levels in all brain regions studied, while reducing catalase enzyme activity. The molecular expression of cell death-related genes (AKT1, APAF1, BNIP3, CASP3 and BAX) and the inflammasome complex (CASP1, IL1β, IL6, NLRP3, NFĸB and TNFα) was also assessed, showing increased expression in at least one brain region. The findings demonstrate that ipconazole induces central nervous system toxicity in mammals, highlighting its potential role as a risk factor in the development of neurodegenerative disorders in individuals exposed to this contaminant.
Collapse
Affiliation(s)
- Carlos Villaorduña
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Barrios-Arpi
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Boris Lira-Mejía
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Mariella Ramos-Gonzalez
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Olger Ramos-Coaguila
- Zootecnia an Animal Production Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
| | - Luis Inostroza-Ruiz
- Toxicology Laboratory, Faculty of Pharmacy and Biochemistry, Major National University of San Marcos, Lima 15021, Peru
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José-Luis Rodríguez
- Animal Physiology Laboratory, Faculty of Veterinary Medicine, Major National University of San Marcos, Lima 15021, Peru
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
30
|
Dar SA, Malla S, Martinek V, Payea MJ, Lee CT, Martin J, Khandeshi AJ, Martindale JL, Belair C, Maragkakis M. Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555629. [PMID: 37693505 PMCID: PMC10491209 DOI: 10.1101/2023.08.31.555629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key determinant of RNA metabolism upon cellular stress and dependent on stress-granule formation.
Collapse
Affiliation(s)
- Showkat A. Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Matthew J. Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aditya J. Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
31
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
32
|
Viblanc VA, Pardonnet S, Tamian A, McCaw LK, Dobson FS, Boonstra R. Down-regulating the stress axis: Living in the present while preparing for the future. Gen Comp Endocrinol 2024; 354:114541. [PMID: 38685390 DOI: 10.1016/j.ygcen.2024.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The measurement of glucocorticoid (GC) hormones provides us with a window into the stress physiology of vertebrates and the adaptative responses they use to cope with predictable and unpredictable changes in the environment. Baseline GCs inform us about the metabolic demands they are subject to at that point in their yearly life-history stage, whereas GC changes (often increases) in response to acute challenges inform us on their capacity to cope with more immediate environmental challenges. However, baseline GC levels and the kinetics of GC responses to acute stressors can vary substantially among and within species, depending on individual characteristics (age, sex, condition, life-history stage). In addition, a thorough understanding of the stress status of an animal requires moving beyond the measurement of GCs alone by focusing on downstream measures of metabolic activation, such as oxidative stress. Here, we evaluated the changes in blood cortisol and oxidative stress markers in wild adult Columbian ground squirrels (Urocitellus columbianus), following a 30-min capture-handling stress performed in mid-late June. Measurements were taken when males were post-reproductive and preparing for hibernation and adult females were weaning litters. We found three key results. First, the time-course of GC increase was markedly slower (by an order of magnitude) than what is currently reported in the literature for most species of mammals, birds and reptiles. Second, there were marked differences in the male and female response, linked to differences in life-history stage: females close to weaning had abolished GC responses, whereas post-reproductive males did not. Third, there were mild to moderate increases in oxidative damage and decreases in oxidative defenses in response to our short-term challenge, consistent with the idea that short-term acute metabolic activation may carry physiological costs. However, these changes were not correlated to the changes in GCs, a novel result suggesting a disconnect between the hormonal stress response and oxidative damage.
Collapse
Affiliation(s)
- Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France.
| | - Sylvia Pardonnet
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Anouch Tamian
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Laura K McCaw
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Rudy Boonstra
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
33
|
Morla J, Salin K, Lassus R, Favre-Marinet J, Sentis A, Daufresne M. Multigenerational exposure to temperature influences mitochondrial oxygen fluxes in the Medaka fish (Oryzias latipes). Acta Physiol (Oxf) 2024; 240:e14194. [PMID: 38924292 DOI: 10.1111/apha.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
AIM Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.
Collapse
Affiliation(s)
- Julie Morla
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Karine Salin
- Départment of Environment and Resources, IFREMER, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané, France
| | - Rémy Lassus
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | | | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Martin Daufresne
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
34
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
35
|
Lonare S, Rode S, Verma P, Verma S, Kaur H, Alam MS, Wangmo P, Kumar P, Roy P, Sharma AK. Characterization of AICAR transformylase/IMP cyclohydrolase (ATIC) bifunctional enzyme from Candidatus Liberibacer asiaticus. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141015. [PMID: 38615986 DOI: 10.1016/j.bbapap.2024.141015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The bifunctional enzyme, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/inosine monophosphate (IMP) cyclohydrolase (ATIC) is involved in catalyzing penultimate and final steps of purine de novo biosynthetic pathway crucial for the survival of organisms. The present study reports the characterization of ATIC from Candidatus Liberibacer asiaticus (CLasATIC) along with the identification of potential inhibitor molecules and evaluation of cell proliferative activity. CLasATIC showed both the AICAR Transformylase (AICAR TFase) activity for substrates, 10-f-THF (Km, 146.6 μM and Vmax, 0.95 μmol/min/mg) and AICAR (Km, 34.81 μM and Vmax, 0.56 μmol/min/mg) and IMP cyclohydrolase (IMPCHase) activitiy (Km, 1.81 μM and Vmax, 2.87 μmol/min/mg). The optimum pH and temperature were also identified for the enzyme activity. In-silico study has been conducted to identify potential inhibitor molecules through virtual screening and MD simulations. Out of many compounds, HNBSA, diosbulbin A and lepidine D emerged as lead compounds, exhibiting higher binding energy and stability for CLasATIC than AICAR. ITC study reports higher binding affinities for HNBSA and diosbulbin A (Kd, 12.3 μM and 34.2 μM, respectively) compared to AICAR (Kd, 83.4 μM). Likewise, DSC studies showed enhanced thermal stability for CLasATIC in the presence of inhibitors. CD and Fluorescence studies revealed significant conformational changes in CLasATIC upon binding of the inhibitors. CLasATIC demonstrated potent cell proliferative, wound healing and ROS scavenging properties evaluated by cell-based bioassays using CHO cells. This study highlights CLasATIC as a promising drug target with potential inhibitors for managing CLas and its unique cell protective, wound-healing properties for future biotechnological applications.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Preeti Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Padma Wangmo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
| |
Collapse
|
36
|
He B, Zeng Q, Tian Y, Luo Y, Liao M, Huang W, Wu B, Luo Z, Huang X, Liu W, Tang S. PGC1-Alpha/Sirt3 Signaling Pathway Mediates the Anti-Pulmonary Fibrosis Effect of Hirudin by Inhibiting Fibroblast Senescence. Biomedicines 2024; 12:1436. [PMID: 39062010 PMCID: PMC11274105 DOI: 10.3390/biomedicines12071436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease for which there is a lack of effective pharmacological treatments. Hirudin, a natural peptide extracted from leeches, has been used for broad pharmacological purposes. In this study, we investigated the therapeutic effects of hirudin on IPF and its related mechanism of action. By constructing a mouse model of pulmonary fibrosis and treating it with hirudin in vivo, we found that hirudin exerted anti-fibrotic, anti-oxidative, and anti-fibroblast senescence effects. Moreover, using an in vitro model of stress-induced premature senescence in primary mouse lung fibroblasts and treating with hirudin, we observed inhibition of fibroblast senescence and upregulation of PGC1-alpha and Sirt3 expression. However, specific silencing of PGC1-alpha or Sirt3 suppressed the anti-fibroblast senescence effect of hirudin. Thus, the PGC1-alpha/Sirt3 pathway mediates the anti-fibroblast senescence effect of hirudin, potentially serving as a molecular mechanism underlying its anti-fibrosis and anti-oxidative stress effects exerted on the lungs.
Collapse
Affiliation(s)
- Bin He
- School of Nursing, Hunan University of Medicine, Huaihua 418000, China; (B.H.); (Y.T.); (W.H.); (B.W.)
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Qian Zeng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Yumei Tian
- School of Nursing, Hunan University of Medicine, Huaihua 418000, China; (B.H.); (Y.T.); (W.H.); (B.W.)
| | - Yuyang Luo
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Minlin Liao
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Wenjie Huang
- School of Nursing, Hunan University of Medicine, Huaihua 418000, China; (B.H.); (Y.T.); (W.H.); (B.W.)
| | - Bin Wu
- School of Nursing, Hunan University of Medicine, Huaihua 418000, China; (B.H.); (Y.T.); (W.H.); (B.W.)
| | - Ziqiang Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China;
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (M.L.); (X.H.)
| |
Collapse
|
37
|
Nazzi C, Avenanti A, Battaglia S. The Involvement of Antioxidants in Cognitive Decline and Neurodegeneration: Mens Sana in Corpore Sano. Antioxidants (Basel) 2024; 13:701. [PMID: 38929140 PMCID: PMC11200558 DOI: 10.3390/antiox13060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
With neurodegenerative disorders being on the rise, a great deal of research from multiple fields is being conducted in order to further knowledge and propose novel therapeutic interventions. Among these investigations, research on the role of antioxidants in contrasting cognitive decline is putting forward interesting and promising results. In this review, we aim to collect evidence that focused on the role of a variety of antioxidants and antioxidant-rich foods in improving or stabilizing cognitive functions, memory, and Alzheimer's disease, the most common neurodegenerative disorder. Specifically, we considered evidence collected on humans, either through longitudinal studies or randomized, placebo-controlled ones, which evaluated cognitive performance, memory abilities, or the progression level of neurodegeneration. Overall, despite a great deal of variety between study protocols, cohorts of participants involved, neuropsychological tests used, and investigated antioxidants, there is a solid trend that suggests that the properties of antioxidants may be helpful in hampering cognitive decline in older people. Thus, the help of future research that will further elucidate the role of antioxidants in neuroprotection will lead to the development of novel interventions that will take into account such findings to provide a more global approach to treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Claudio Nazzi
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - Simone Battaglia
- Dipartimento di Psicologia, Università degli Studi di Torino, 10134 Torino, Italy;
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Alma Mater Studiorum Università di Bologna, Campus di Cesena, 47521 Cesena, Italy;
| |
Collapse
|
38
|
Berwanger C, Terres D, Pesta D, Eggers B, Marcus K, Wittig I, Wiesner RJ, Schröder R, Clemen CS. Immortalised murine R349P desmin knock-in myotubes exhibit a reduced proton leak and decreased ADP/ATP translocase levels in purified mitochondria. Eur J Cell Biol 2024; 103:151399. [PMID: 38412640 DOI: 10.1016/j.ejcb.2024.151399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Desmin gene mutations cause myopathies and cardiomyopathies. Our previously characterised R349P desminopathy mice, which carry the ortholog of the common human desmin mutation R350P, showed marked alterations in mitochondrial morphology and function in muscle tissue. By isolating skeletal muscle myoblasts from offspring of R349P desminopathy and p53 knock-out mice, we established an immortalised cellular disease model. Heterozygous and homozygous R349P desmin knock-in and wild-type myoblasts could be well differentiated into multinucleated spontaneously contracting myotubes. The desminopathy myoblasts showed the characteristic disruption of the desmin cytoskeleton and desmin protein aggregation, and the desminopathy myotubes showed the characteristic myofibrillar irregularities. Long-term electrical pulse stimulation promoted myotube differentiation and markedly increased their spontaneous contraction rate. In both heterozygous and homozygous R349P desminopathy myotubes, this treatment restored a regular myofibrillar cross-striation pattern as seen in wild-type myotubes. High-resolution respirometry of mitochondria purified from myotubes by density gradient ultracentrifugation revealed normal oxidative phosphorylation capacity, but a significantly reduced proton leak in mitochondria from the homozygous R349P desmin knock-in cells. Consistent with a reduced proton flux across the inner mitochondrial membrane, our quantitative proteomic analysis of the purified mitochondria revealed significantly reduced levels of ADP/ATP translocases in the homozygous R349P desmin knock-in genotype. As this alteration was also detected in the soleus muscle of R349P desminopathy mice, which, in contrast to the mitochondria purified from cultured cells, showed a variety of other dysregulated mitochondrial proteins, we consider this finding to be an early step in the pathogenesis of secondary mitochondriopathy in desminopathy.
Collapse
Affiliation(s)
- Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Dominic Terres
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Medical Faculty, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, and Medical Proteome Analysis, Center for Proteindiagnostics (PRODI), Ruhr-University Bochum, Bochum, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
39
|
Zeng Q, Luo Y, Sang X, Liao M, Wen B, Hu Z, Sun M, Luo Z, Huang X, Liu W, Tang S. Senegenin Attenuates Pulmonary Fibrosis by Inhibiting Oxidative-Stress-Induced Epithelial Cell Senescence through Activation of the Sirt1/Pgc-1α Signaling Pathway. Antioxidants (Basel) 2024; 13:675. [PMID: 38929114 PMCID: PMC11200506 DOI: 10.3390/antiox13060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial lung disease for which effective drug therapies are lacking. Senegenin, an effective active compound from the traditional Chinese herb Polygala tenuifolia Willd, has been shown to have a wide range of pharmacological effects. In this study, we investigated the therapeutic effects of senegenin on pulmonary fibrosis and their associated mechanisms of action. We found that senegenin inhibited the senescence of epithelial cells and thus exerted anti-pulmonary-fibrosis effects by inhibiting oxidative stress. In addition, we found that senegenin promoted the expression of Sirt1 and Pgc-1α and that the antioxidative and antisenescent effects of senegenin were suppressed by specific silencing of the Sirt1 and Pgc-1α genes, respectively. Moreover, the senegenin-induced effects of antioxidation, antisenescence of epithelial cells, and antifibrosis were inhibited by treatment with Sirt1 inhibitors in vivo. Thus, the Sirt1/Pgc-1α pathway exerts its antifibrotic effect on lung fibrosis by mediating the antioxidative and antisenescent effects of senegenin.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Yuyang Luo
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Xiaoxue Sang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Minlin Liao
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Binbin Wen
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Zhengang Hu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Z.H.); (Z.L.)
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Ziqiang Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (Z.H.); (Z.L.)
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (Q.Z.); (Y.L.); (X.S.); (M.L.); (B.W.); (M.S.); (X.H.)
| |
Collapse
|
40
|
Yang T, Li Z, Chen S, Lan T, Lu Z, Fang L, Zhao H, Li Q, Luo Y, Yang B, Shu J. Ultra-sensitive analysis of exhaled biomarkers in ozone-exposed mice via PAI-TOFMS assisted with machine learning algorithms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134151. [PMID: 38554517 DOI: 10.1016/j.jhazmat.2024.134151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.
Collapse
Affiliation(s)
- Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China.
| | - Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020 China
| | - Huan Zhao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinwei Luo
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Lahoud E, Moynier F, Luu TH, Mahan B, Borgne ML. Impact of aging on copper isotopic composition in the murine brain. Metallomics 2024; 16:mfae008. [PMID: 38289854 PMCID: PMC11494240 DOI: 10.1093/mtomcs/mfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024]
Abstract
Aging is the main risk factor for Alzheimer's disease (AD). AD is linked to alterations in metal homeostasis and changes in stable metal isotopic composition can occur, possibly allowing the latter to serve as relevant biomarkers for potential AD diagnosis. Copper stable isotopes are used to investigate changes in Cu homeostasis associated with various diseases. Prior work has shown that in AD mouse models, the accumulation of 63Cu in the brain is associated with the disease's progression. However, our understanding of how the normal aging process influences the brain's isotopic composition of copper remains limited. In order to determine the utility and predictive power of Cu isotopes in AD diagnostics, we aim-in this study-to develop a baseline trajectory of Cu isotopic composition in the normally aging mouse brain. We determined the copper concentration and isotopic composition in brains of 30 healthy mice (WT) ranging in age from 6 to 12 mo, and further incorporate prior data obtained for 3-mo-old healthy mice; this range approximately equates to 20-50 yr in human equivalency. A significant 65Cu enrichment has been observed in the 12-mo-old mice compared to the youngest group, concomitant with an increase in Cu concentration with age. Meanwhile, literature data for brains of AD mice display an enrichment in 63Cu isotope compared to WT. It is acutely important that this baseline enrichment in 65Cu is fully constrained and normalized against if any coherent diagnostic observations regarding 63Cu enrichment as a biomarker for AD are to be developed.
Collapse
Affiliation(s)
- Esther Lahoud
- Université Paris Cité, Institut de Physique du Globe de Paris, 1 rue Jussieu 75005, Paris, France
| | - Frédéric Moynier
- Université Paris Cité, Institut de Physique du Globe de Paris, 1 rue Jussieu 75005, Paris, France
| | - Tu-Han Luu
- Université Paris Cité, Institut de Physique du Globe de Paris, 1 rue Jussieu 75005, Paris, France
| | - Brandon Mahan
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Marie Le Borgne
- Université Paris Cité, LVTS, Inserm U1148, F-75018, Paris, France
| |
Collapse
|
42
|
Gillooly JF, Khazan ES. Telomeres and the Rate of Living: Linking Biological Clocks of Senescence. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:157-163. [PMID: 38875139 DOI: 10.1086/730588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
AbstractTwo prominent theories of aging, one based on telomere dynamics and the other on mass-specific energy flux, propose biological time clocks of senescence. The relationship between these two theories, and the biological clocks proposed by each, remains unclear. Here, we examine the relationships between telomere shortening rate, mass-specific metabolic rate, and lifespan among vertebrates (mammals, birds, fishes). Results show that telomere shortening rate increases linearly with mass-specific metabolic rate and decreases nonlinearly with increasing body mass in the same way as mass-specific metabolic rate. Results also show that both telomere shortening rate and mass-specific metabolic rate are similarly related to lifespan and that both strongly predict differences in lifespan, although the slopes of the relationships are less than linear. On average, then, telomeres shorten a fixed amount per unit of mass-specific energy flux. So the mitotic clock of telomere shortening and the energetics-based clock described by metabolic rate can be viewed as alternative measures of the same biological clock. These two processes may be linked, we speculate, through the process of cell division.
Collapse
|
43
|
Burbaitė E, Čechovičienė S, Sarapinienė I, Karvelienė B, Riškevičienė V, Daunoras G, Juodžentė D. Effects of Medetomidine-Butorphanol and Medetomidine-Buprenorphine on Oxidative Stress and Vital Parameters in Dogs Undergoing Ovariohysterectomy. Animals (Basel) 2024; 14:1349. [PMID: 38731353 PMCID: PMC11083284 DOI: 10.3390/ani14091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Oxidative stress (OS) is caused by an imbalance between the production of oxygen-containing free radicals and their elimination. General anesthesia increases the production of reactive oxygen species (ROS) and therefore causes oxidative stress. Our objective was to determine the effects of medetomidine-butorphanol (MEDBUT) and medetomidine-buprenorphine (MEDBUP) on oxidative stress and cardiorespiratory parameters in dogs undergoing ovariohysterectomy (OHE). Ten healthy female dogs were randomly assigned to two groups: the MEDBUT group (n = 5) received medetomidine and butorphanol, while the MEDBUP group (n = 5) received medetomidine and buprenorphine. OS was evaluated by measuring total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) during five different time points (from the administration of anesthetic drugs to 2 h after surgery). The observed vital cardiorespiratory parameters included heart rate (HR), respiratory rate (fR), noninvasive systolic (SAP) and diastolic (DAP) arterial blood pressures, oxygen saturation (SpO2), end-tidal CO2 (EtCO2), and body temperature (BT). Cardiorespiratory parameters were altered at a significantly greater degree in animals sedated with MEDBUT (p < 0.05). The administration of medetomidine-butorphanol was more likely to increase OS parameters, while medetomidine-buprenorphine showed decreased levels of oxidative stress throughout the study.
Collapse
Affiliation(s)
- Evelina Burbaitė
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania
- Neurology and Neurosurgery Division, San Marco Veterinary Clinic, 35030 Veggiano, Italy
| | - Sandra Čechovičienė
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania
| | - Ieva Sarapinienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave 15, 44307 Kaunas, Lithuania
| | - Birutė Karvelienė
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania
| | - Vita Riškevičienė
- Department of Veterinary Pathobiology, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania;
| | - Gintaras Daunoras
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania
| | - Dalia Juodžentė
- Dr. L. Kriaučeliūnas Small Animal Clinic, Faculty of Veterinary, Veterinary Academy, Lithuanian University of Health Sciences, Tilžės str 18, 44307 Kaunas, Lithuania
| |
Collapse
|
44
|
Bradley CE, Fletcher E, Wilkinson T, Ring A, Ferrer L, Miserlis D, Pacher P, Koutakis P. Mitochondrial fatty acid beta-oxidation: a possible therapeutic target for skeletal muscle lipotoxicity in peripheral artery disease myopathy. EXCLI JOURNAL 2024; 23:523-533. [PMID: 38741727 PMCID: PMC11089102 DOI: 10.17179/excli2024-7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease impacting over 200 million individuals and the prevalence increases with age. PAD occurs when plaque builds up within the peripheral arteries, leading to reduced blood flow and oxygen supply to the outer extremities. Individuals who experience PAD suffer from ischemia, which is typically accompanied by significant damage to skeletal muscles. Additionally, this tissue damage affects mitochondria, causing them to become dysregulated and dysfunctional, resulting in decreased metabolic rates. As there is no known cure for PAD, researchers are exploring potential therapeutic targets by examining coexisting cardiovascular conditions and metabolic risk factors, such as the aging process. Among these comorbidities, type-two diabetes mellitus and obesity are particularly common in PAD cases. These conditions, along with aging itself, are associated with an elevated accumulation of ectopic lipids within skeletal muscles, similar to what is observed in PAD. Researchers have attempted to reduce excess lipid accumulation by increasing the rate of fatty acid beta oxidation. Manipulating acetyl coenzyme A carboxylase 2, a key regulatory protein of fatty acid beta oxidation, has been the primary focus of such research. When acetyl coenzyme A carboxylase 2 is inhibited, it interrupts the conversion of acetyl-CoA into malonyl-CoA, resulting in an increase in the rate of fatty acid beta oxidation. By utilizing samples from PAD patients and applying the pharmacological strategies developed for acetyl coenzyme A carboxylase 2 in diabetes and obesity to PAD, a potential new therapeutic avenue may emerge, offering hope for improved quality of life for individuals suffering from PAD.
Collapse
Affiliation(s)
- Cassandra E. Bradley
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Trevor Wilkinson
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Andrew Ring
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, 1601 Trinity St, Room 6708A, Austin, TX 78712, USA
| | - Pal Pacher
- National Institutes of Health, Bethesda, MD, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798, USA
| |
Collapse
|
45
|
Banse SA, Jackson EG, Sedore CA, Onken B, Hall D, Coleman-Hulbert A, Huynh P, Garrett T, Johnson E, Harinath G, Inman D, Guo S, Morshead M, Xue J, Falkowski R, Chen E, Herrera C, Kirsch AJ, Perez VI, Guo M, Lithgow GJ, Driscoll M, Phillips PC. The coupling between healthspan and lifespan in Caenorhabditis depends on complex interactions between compound intervention and genetic background. Aging (Albany NY) 2024; 16:5829-5855. [PMID: 38613792 PMCID: PMC11042945 DOI: 10.18632/aging.205743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/11/2024] [Indexed: 04/15/2024]
Abstract
Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.
Collapse
Affiliation(s)
- Stephen A. Banse
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - E. Grace Jackson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Christine A. Sedore
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Brian Onken
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David Hall
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Phu Huynh
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Theo Garrett
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Erik Johnson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Girish Harinath
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Delaney Inman
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Suzhen Guo
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Jian Xue
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ron Falkowski
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Herrera
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Allie J. Kirsch
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Viviana I. Perez
- Division of Aging Biology, National Institute on Aging, Bethesda, MD 20892, USA
| | - Max Guo
- Division of Aging Biology, National Institute on Aging, Bethesda, MD 20892, USA
| | | | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
46
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
47
|
Xu J, Guan G, Ye Z, Zhang C, Guo Y, Ma Y, Lu C, Lei L, Zhang XB, Song G. Enhancing lipid peroxidation via radical chain transfer reaction for MRI guided and effective cancer therapy in mice. Sci Bull (Beijing) 2024; 69:636-647. [PMID: 38158292 DOI: 10.1016/j.scib.2023.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Lipid peroxidation (LPO), the process of membrane lipid oxidation, is a potential new form of cell death for cancer treatment. However, the radical chain reaction involved in LPO is comprised of the initiation, propagation (the slowest step), and termination stages, limiting its effectiveness in vivo. To address this limitation, we introduce the radical chain transfer reaction into the LPO process to target the propagation step and overcome the sluggish rate of lipid peroxidation, thereby promoting endogenous lipid peroxidation and enhancing therapeutic outcomes. Firstly, radical chain transfer agent (CTA-1)/Fe nanoparticles (CTA-Fe NPs-1) was synthesized. Notably, CTA-1 convert low activity peroxyl radicals (ROO·) into high activity alkoxyl radicals (RO·), creating the cycle of free radical oxidation and increasing the propagation of lipid peroxidation. Additionally, CTA-1/Fe ions enhance reactive oxygen species (ROS) generation, consume glutathione (GSH), and thereby inactivate GPX-4, promoting the initiation stage and reducing termination of free radical reaction. CTA-Fe NPs-1 induce a higher level of peroxidation of polyunsaturated fatty acids in lipid membranes, leading to highly effective treatment in cancer cells. In addition, CTA-Fe NPs-1 could be enriched in tumors inducing potent tumor inhibition and exhibit activatable T1-MRI contrast of magnetic resonance imaging (MRI). In summary, CTA-Fe NPs-1 can enhance intracellular lipid peroxidation by accelerating initiation, propagation, and inhibiting termination step, promoting the cycle of free radical reaction, resulting in effective anticancer outcomes in tumor-bearing mice.
Collapse
Affiliation(s)
- Juntao Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guoqiang Guan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhifei Ye
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Cheng Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yibo Guo
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuan Ma
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
48
|
Sirakawin C, Lin D, Zhou Z, Wang X, Kelleher R, Huang S, Long W, Pires‐daSilva A, Liu Y, Wang J, Vinnikov IA. SKN-1/NRF2 upregulation by vitamin A is conserved from nematodes to mammals and is critical for lifespan extension in Caenorhabditis elegans. Aging Cell 2024; 23:e14064. [PMID: 38100161 PMCID: PMC10928581 DOI: 10.1111/acel.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/13/2024] Open
Abstract
Vitamin A (VA) is a micronutrient essential for the physiology of many organisms, but its role in longevity and age-related diseases remains unclear. In this work, we used Caenorhabditis elegans to study the impact of various bioactive compounds on lifespan. We demonstrate that VA extends lifespan and reduces lipofuscin and fat accumulation while increasing resistance to heat and oxidative stress. This resistance can be attributed to high levels of detoxifying enzymes called glutathione S-transferases, induced by the transcription factor skinhead-1 (SKN-1). Notably, VA upregulated the transcript levels of skn-1 or its mammalian ortholog NRF2 in both C. elegans, human cells, and liver tissues of mice. Moreover, the loss-of-function genetic models demonstrated a critical involvement of the SKN-1 pathway in longevity extension by VA. Our study thus provides novel insights into the molecular mechanism of anti-aging and anti-oxidative effects of VA, suggesting that this micronutrient could be used for the prevention and/or treatment of age-related disorders.
Collapse
Affiliation(s)
- Chaweewan Sirakawin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Dongfa Lin
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory for Molecular Enzymology and Engineering, School of Life SciencesJilin UniversityChangchunChina
| | - Ziyue Zhou
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | | | - Shangyuan Huang
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Weimiao Long
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | | | - Yu Liu
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ilya A. Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
49
|
Luna-Marco C, Iannantuoni F, Hermo-Argibay A, Devos D, Salazar JD, Víctor VM, Rovira-Llopis S. Cardiovascular benefits of SGLT2 inhibitors and GLP-1 receptor agonists through effects on mitochondrial function and oxidative stress. Free Radic Biol Med 2024; 213:19-35. [PMID: 38220031 DOI: 10.1016/j.freeradbiomed.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Overloaded glucose levels in several metabolic diseases such as type 2 diabetes (T2D) can lead to mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS). Oxidative stress and altered mitochondrial homeostasis, particularly in the cardiovascular system, contribute to the development of chronic comorbidities of diabetes. Diabetes-associated hyperglycemia and dyslipidemia can directly damage vascular vessels and lead to coronary artery disease or stroke, and indirectly damage other organs and lead to kidney dysfunction, known as diabetic nephropathy. The new diabetes treatments include Na+-glucose cotransporter 2 inhibitors (iSGLT2) and glucagon-like 1 peptide receptor agonists (GLP-1RA), among others. The iSGLT2 are oral anti-diabetic drugs, whereas GLP-1RA are preferably administered through subcutaneous injection, even though GLP-1RA oral formulations have recently become available. Both therapies are known to improve both carbohydrate and lipid metabolism, as well as to improve cardiovascular and cardiorenal outcomes in diabetic patients. In this review, we present an overview of current knowledge on the relationship between oxidative stress, mitochondrial dysfunction, and cardiovascular therapeutic benefits of iSGLT2 and GLP-1RA. We explore the benefits, limits and common features of the treatments and remark how both are an interesting target in the prevention of obesity, T2D and cardiovascular diseases, and emphasize the lack of a complete understanding of the underlying mechanism of action.
Collapse
Affiliation(s)
- Clara Luna-Marco
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain
| | - Francesca Iannantuoni
- Service of di Immunohematology and Transfusion Medicine, Ospedale Infermi, AUSL Romagna, Rimini, Italy
| | - Alberto Hermo-Argibay
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Deédeni Devos
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Juan D Salazar
- Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain
| | - Víctor M Víctor
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia; National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd).
| | - Susana Rovira-Llopis
- INCLIVA (Biomedical Research Institute Valencia), Valencia, Spain; Service of Endocrinology and Nutrition, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia.
| |
Collapse
|
50
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|