1
|
Wanninger TG, Saldarriaga OA, Arroyave E, Millian DE, Comer JE, Paessler S, Stevenson HL. Hepatic and pulmonary macrophage activity in a mucosal challenge model of Ebola virus disease. Front Immunol 2024; 15:1439971. [PMID: 39635525 PMCID: PMC11615675 DOI: 10.3389/fimmu.2024.1439971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background The inflammatory macrophage response contributes to severe Ebola virus disease, with liver and lung injury in humans. Objective We sought to further define the activation status of hepatic and pulmonary macrophage populations in Ebola virus disease. Methods We compared liver and lung tissue from terminal Ebola virus (EBOV)-infected and uninfected control cynomolgus macaques challenged via the conjunctival route. Gene and protein expression was quantified using the nCounter and GeoMx Digital Spatial Profiling platforms. Macrophage phenotypes were further quantified by digital pathology analysis. Results Hepatic macrophages in the EBOV-infected group demonstrated a mixed inflammatory/non-inflammatory profile, with upregulation of CD163 protein expression, associated with macrophage activation syndrome. Hepatic macrophages also showed differential expression of gene sets related to monocyte/macrophage differentiation, antigen presentation, and T cell activation, which were associated with decreased MHC-II allele expression. Moreover, hepatic macrophages had enriched expression of genes and proteins targetable with known immunomodulatory therapeutics, including S100A9, IDO1, and CTLA-4. No statistically significant differences in M1/M2 gene expression were observed in hepatic macrophages compared to controls. The significant changes that occurred in both the liver and lung were more pronounced in the liver. Conclusion These data demonstrate that hepatic macrophages in terminal conjunctivally challenged cynomolgus macaques may express a unique inflammatory profile compared to other macaque models and that macrophage-related pharmacologically druggable targets are expressed in both the liver and the lung in Ebola virus disease.
Collapse
Affiliation(s)
- Timothy G. Wanninger
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jason E. Comer
- Department of Microbiology and Immunology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Mularoni A, Cona A, Bulati M, Busà R, Miele M, Timoneri F, Di Bella M, Castelbuono S, Barbera F, Di Carlo D, Volpe L, Gallo A, Maria de Luca A, Coniglione G, Todaro F, Barozzi P, Riva G, Pietrosi G, Gruttadauria S, Bertani A, Vitulo P, Fontana A, Cipriani M, Rizzo S, Arcadipane A, Luca A, Mikulska M, Conaldi PG, Grossi PA, Luppi M. Serologic screening and molecular surveillance of Kaposi sarcoma herpesvirus/human herpesvirus-8 infections for early recognition and effective treatment of Kaposi sarcoma herpesvirus-associated inflammatory cytokine syndrome in solid organ transplant recipients. Am J Transplant 2024:S1600-6135(24)00697-X. [PMID: 39551265 DOI: 10.1016/j.ajt.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Kaposi sarcoma (KS) herpesvirus/human herpesvirus-8 (HHV-8) neoplastic and nonneoplastic disease in solid organ transplant recipients can be life-threatening. We evaluated the seroprevalence of HHV-8 infection among donors (D) and recipients (R), the incidence of HHV-8 transmission/reactivation, and the clinical characteristics, management, and outcomes of HHV-8-related diseases, including KS herpesvirus-associated inflammatory cytokine syndrome (KICS), in consecutive SOT patients from 2011 to 2023. HHV-8 seroprevalence was 3.3% in 1349 donors and 8.4% in 1856 recipients screened (P < .0001). In the D+/R- group (n = 49), 13 patients developed HHV-8-related diseases: 7 liver recipients had KICS, and 1 lung recipient had KS with subsequent KICS. Four KICS patients treated with rituximab survived, whereas the 3 patients not treated with rituximab died. Within the D-/R- group, of 5 (0.3%) patients with non-donor-derived primary HHV-8 infection, 3 liver recipients developed KICS. Of the R+ patients (n = 155), 3 developed KS. In our cohort, 25/944 (2.6%) liver transplant recipients had a primary HHV-8 infection, and 10 of them (40%) developed KICS; 40% (4/10) of HHV-8 seropositive heart transplant recipients developed reactivation, and 2 of them (50%) had fatal KS. Serologic screening and molecular surveillance of D+/R- patient groups facilitate early recognition and effective therapy of KICS.
Collapse
Affiliation(s)
- Alessandra Mularoni
- Unit of Infectious Diseases and Infection Control, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Andrea Cona
- Unit of Infectious Diseases and Infection Control, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy.
| | - Matteo Bulati
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Rosalia Busà
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Monica Miele
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Ri MED Foundation, Palermo, Italy
| | - Francesca Timoneri
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Ri MED Foundation, Palermo, Italy
| | - Mariangela Di Bella
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Ri MED Foundation, Palermo, Italy
| | - Salvatore Castelbuono
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Department of Engineering, University of Palermo, Palermo, Italy
| | - Floriana Barbera
- Pathology Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Daniele Di Carlo
- Pathology Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Lorenzo Volpe
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Alessia Gallo
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Anna Maria de Luca
- Unit of Infectious Diseases and Infection Control, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Unit of Infectious Diseases, A.O.U.R. Dulbecco, Catanzaro, Italy
| | - Giulia Coniglione
- Unit of Infectious Diseases and Infection Control, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy; Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesca Todaro
- Dermatology Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, Modena, Italy
| | - Giovanni Riva
- Diagnostic Hematology and Clinical Genomics Laboratory, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, Modena, Italy
| | - Giada Pietrosi
- Department for Treatment and Study of Abdominal Disease and Abdominal Transplantation, Abdominal Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Salvatore Gruttadauria
- Department for Treatment and Study of Abdominal Disease and Abdominal Transplantation, Abdominal Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Alessandro Bertani
- Division of Thoracic Surgery and Lung Transplantation, Chest Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Patrizio Vitulo
- Division of Pulmonology, Chest Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Alessandra Fontana
- Division of Cardiology, Heart Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Manlio Cipriani
- Division of Cardiology, Heart Center Department, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Sergio Rizzo
- Medical Oncology Unit, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Angelo Luca
- Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Department of Health Sciences, University of Genoa, Genoa, Italy; IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pier Giulio Conaldi
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT-IRCCS), Palermo, Italy
| | - Paolo Antonio Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Modena, Modena, Italy
| |
Collapse
|
3
|
Naumov DE, Kotova OO, Gassan DA, Sugaylo IY, Sheludko EG, Gorchakova YG. Transriptome Analysis of Peripheral Blood Monocytes in Chronic Obstructive Pulmonary Disease Patients. DOKL BIOCHEM BIOPHYS 2024:10.1134/S1607672924701199. [PMID: 39480635 DOI: 10.1134/s1607672924701199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024]
Abstract
It is known that monocytes can make a significant contribution to the development of chronic obstructive pulmonary disease (COPD); however, the features of the transcriptome of these cells associated with the disease remain poorly understood. AIM : The aim of the study was to perform monocyte transcriptome analysis for identification of differentially expressed genes and key disturbances in biological processes in these cells in COPD. MATERIALS AND METHODS . The study included three COPD patients and three smokers without bronchial obstruction. Monocytes were obtained from peripheral blood mononuclear cells using the plastic adhesion method. The cell purity achieved as a result of enrichment was approximately 90% according to flow cytometry data. The isolated RNA samples were purified from genomic DNA and ribosomal RNA. The samples were sequenced on a MGISEQ-200 sequencer in SE50 mode. Read mapping and transcript counting were performed in Salmon v1.10.1 software; further data processing was carried out in R software environment. RESULTS : As a result of the analysis, 21 upregulated and 29 downregulated genes were found in monocytes from COPD patients. Among the genes with increased expression, the most significant were the noncoding RNAs PKD1P5-LOC105376752 and PKD1P4-NPIPA8, the role of which remains unclear, as well as SETDB2, RNASE6, SERPINE1, and MRC1. Downregulated genes, of which F8A2, ZDHHC19, CXCL9, CXCL10, HBA1, HBB, C2, CFB, CFD, MT1B, MT1G, and TIMP3 were of most interest, showed enrichment in seven gene ontology (GO) terms, including those related to response to lipopolysaccharides, hydrogen peroxide, copper ions, and complement activation. CONCLUSIONS . The data obtained indicate inhibition of monocyte functional activity in COPD patients with a decrease in the ability to provide effective protection against microbial pathogens while weakening self-protection against reactive oxygen species. Upregulation of SERPINE1 and downregulation of TIMP3 may significantly contribute to airway remodeling and emphysema development in COPD.
Collapse
Affiliation(s)
- D E Naumov
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia.
| | - O O Kotova
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - D A Gassan
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - I Yu Sugaylo
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - E G Sheludko
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| | - Y G Gorchakova
- Far Eastern Scientific Center of Physiology and Pathology of Respiration, Blagoveshchensk, Russia
| |
Collapse
|
4
|
Macowan M, Pattaroni C, Bonner K, Chatzis R, Daunt C, Gore M, Custovic A, Shields MD, Power UF, Grigg J, Roberts G, Ghazal P, Schwarze J, Turner S, Bush A, Saglani S, Lloyd CM, Marsland BJ. Deep multiomic profiling reveals molecular signatures that underpin preschool wheeze and asthma. J Allergy Clin Immunol 2024:S0091-6749(24)00869-8. [PMID: 39214237 DOI: 10.1016/j.jaci.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Wheezing in childhood is prevalent, with over one-half of all children experiencing at least 1 episode by age 6. The pathophysiology of wheeze, especially why some children develop asthma while others do not, remains unclear. OBJECTIVES This study addresses the knowledge gap by investigating the transition from preschool wheeze to asthma using multiomic profiling. METHODS Unsupervised, group-agnostic integrative multiomic factor analysis was performed using host/bacterial (meta)transcriptomic and bacterial shotgun metagenomic datasets from bronchial brush samples paired with metabolomic/lipidomic data from bronchoalveolar lavage samples acquired from children 1-17 years old. RESULTS Two multiomic factors were identified: one characterizing preschool-aged recurrent wheeze and another capturing an inferred trajectory from health to wheeze and school-aged asthma. Recurrent wheeze was driven by type 1-immune signatures, coupled with upregulation of immune-related and neutrophil-associated lipids and metabolites. Comparatively, progression toward asthma from ages 1 to 18 was dominated by changes related to airway epithelial cell gene expression, type 2-immune responses, and constituents of the airway microbiome, such as increased Haemophilus influenzae. CONCLUSIONS These factors highlighted distinctions between an inflammation-related phenotype in preschool wheeze, and the predominance of airway epithelial-related changes linked with the inferred trajectory toward asthma. These findings provide insights into the differential mechanisms driving the progression from wheeze to asthma and may inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Matthew Macowan
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Céline Pattaroni
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia.
| | - Katie Bonner
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Roxanne Chatzis
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Carmel Daunt
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Mindy Gore
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Adnan Custovic
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom; Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Michael D Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Jonathan Grigg
- Centre for Child Health, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Graham Roberts
- Human Development in Health School, University of Southampton Faculty of Medicine, Southampton, United Kingdom; National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom; David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, United Kingdom
| | - Peter Ghazal
- School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jürgen Schwarze
- Centre for Inflammation Research, Child Life and Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, United Kingdom; National Health Service Grampian, Aberdeen, United Kingdom
| | - Andrew Bush
- Imperial Centre for Paediatrics and Child Health, and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sejal Saglani
- Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
5
|
Zhang M, Dai G, Smith DL, Zacco E, Shimoda M, Kumar N, Girling V, Gardner K, Hunt PW, Huang L, Lin J. Interferon-signaling pathways are upregulated in people with HIV with abnormal pulmonary diffusing capacity (DL CO ). AIDS 2024; 38:1523-1532. [PMID: 38819840 PMCID: PMC11239097 DOI: 10.1097/qad.0000000000003946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE People with HIV (PWH) are at greater risk of developing lung diseases even when they are antiretroviral therapy (ART)-adherent and virally suppressed. The most common pulmonary function abnormality in PWH is that of impaired diffusing capacity of the lungs for carbon monoxide (DL CO ), which is an independent risk factor for increased mortality in PWH. Earlier work has identified several plasma biomarkers of inflammation and immune activation to be associated with decreased DL CO . However, the underpinning molecular mechanisms of HIV-associated impaired DL CO are largely unknown. DESIGN Cross-sectional pilot study with PWH with normal DL CO (values greater than or equal to the lower limit of normal, DL CO ≥ LLN, N = 9) or abnormal DL CO (DL CO < LLN, N = 9). METHODS We compared the gene expression levels of over 900 inflammation and immune exhaustion genes in PBMCs from PWH with normal vs. abnormal DL CO using the NanoString technology. RESULTS We found that 26 genes were differentially expressed in the impaired DL CO group. These genes belong to 4 categories: 1. Nine genes in inflammation and immune activation pathways, 2. seven upregulated genes that are direct targets of the interferon signaling pathway, 3. seven B-cell specific genes that are downregulated, and 4. three miscellaneous genes. These results were corroborated using the bioinformatics tools DAVID (Database for Annotation, Visualization and Integrated Discovery) and GSEA (Gene Sets Enrichment Analysis). CONCLUSION The data provides preliminary evidence for the involvement of sustained interferon signaling as a molecular mechanism for impaired DL CO in PWH.
Collapse
Affiliation(s)
- Michelle Zhang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | - Guorui Dai
- Department of Biochemistry and Biophysics
| | | | - Emanuela Zacco
- Laboratory for Cell Analysis, Helen Diller Comprehensive Cancer Center
| | | | - Nitasha Kumar
- Core Immunology Lab, Division of Experimental Medicine
| | | | - Kendall Gardner
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
| | | | - Laurence Huang
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics
| |
Collapse
|
6
|
Gonçalves M, Furgiuele A, Rasini E, Legnaro M, Ferrari M, Luini A, Rodrigues-Santos P, Caramelo F, Marino F, Pereira FC, Cosentino M. A peripheral blood mononuclear cell-based in vitro model: A tool to explore indoleamine 2, 3-dioxygenase-1 (IDO1). Eur J Pharmacol 2024; 968:176420. [PMID: 38367683 DOI: 10.1016/j.ejphar.2024.176420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Proinflammatory cytokines powerfully induce the rate-limiting enzyme indoleamine 2, 3-dioxygenase-1 (IDO-1) in dendritic cells (DCs) and monocytes, it converts tryptophan (Trp) into L-kynurenine (KYN), along the kynurenine pathway (KP). This mechanism represents a crucial innate immunity regulator that can modulate T cells. This work explores the role of IDO1 in lymphocyte proliferation within a specific pro-inflammatory milieu. METHODS Peripheral blood mononuclera cells (PBMCs) were isolated from buffy coats taken from healthy blood donors and exposed to a pro-inflammatory milieu triggered by a double-hit stimulus: lipopolysaccharide (LPS) plus anti-CD3/CD28. The IDO1 mRNA levels in the PBMCs were measured by RT-PCR; the IDO1 activity was analyzed using the KYN/Trp ratio, measured by HPLC-EC; and lymphocyte proliferation was measured by flow cytometry. Trp and epacadostat (EP) were used as an IDO1 substrate and inhibitor, respectively. KYN, which is known to modulate Teffs, was tested as a positive control in lymphocyte proliferation. RESULTS IDO1 expression and activity in PBMCs increased in an in vitro pro-inflammatory milieu. The lymphoid stimulus increased IDO1 expression and activity, which supports the interaction between the activated lymphocytes and the circulating myeloid IDO1-expressing cells. The addition of Trp decreased lymphocyte proliferation but EP, which abrogated the IDO1 function, had no impact on proliferation. Additionally, incubation with KYN seemed to decrease the lymphocyte proliferation. CONCLUSION IDO1 inhibition did not change T lymphocyte proliferation. We present herein an in vitro experimental model suitable to measure IDO1 expression and activity in circulating myeloid cells.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Alessia Furgiuele
- Center for Research in Medical Pharmacology, Univ Insubria, Varese, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, Univ Insubria, Varese, Italy
| | | | - Marco Ferrari
- Center for Research in Medical Pharmacology, Univ Insubria, Varese, Italy
| | - Alessandra Luini
- Center for Research in Medical Pharmacology, Univ Insubria, Varese, Italy
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Francisco Caramelo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
| | - Franca Marino
- Center for Research in Medical Pharmacology, Univ Insubria, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Marco Cosentino
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
7
|
Wu C, Li J, Jia H, Zhao J, Qin M, Shi H, Liu C, Lin J, Cai M, Gu Y, Liu B, Gao L. Indoleamine 2,3-dioxygenase 1-mediated iron metabolism in macrophages contributes to lipid deposition in nonalcoholic steatohepatitis. J Gastroenterol 2024; 59:342-356. [PMID: 38402297 DOI: 10.1007/s00535-024-02082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/17/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a rapidly progressing chronic liver disease of global significance. However, the underlying mechanisms responsible for NASH remain unknown. Indoleamine 2,3-dioxygenase 1 (IDO1) has been recognized as essential factor in immune response and metabolic regulation. Here we aimed to investigate the functions and mechanisms of the IDO1 in macrophages on hepatic lipid deposition and iron metabolism in NASH. METHODS The effect of IDO1 in NASH was evaluated by WT and IDO1-/- mice model fed with methionine/choline-deficient (MCD) diet in vivo. Macrophages scavenger clodronate liposomes (CL) and overexpressing of IDO1 in macrophages by virus were employed as well. Lipid deposition was assessed through pathological examination and lipid droplet staining, while iron levels were measured using an iron assay kit and western blotting. Primary hepatocytes and bone marrow-derived macrophages were treated with oleic acid/palmitic acid (OA/PA) to assess IDO1 expression via Oil Red O staining and immunofluorescence staining in vitro. RESULTS Pathological images demonstrated that the increase of IDO1 exacerbated lipid accumulation in the livers of mice with MCD diet, while reduction of iron accumulation was observed in the liver and the serum of MCD-fed mice. Scavenging of macrophages effectively mitigated both lipid and iron accumulation. In addition, the deficiency of IDO1 in macrophages significantly mitigated lipid accumulation and iron overload in hepatic parenchymal cells. Finally, lentivirus-mediated overexpression of IDO1 in liver macrophages exacerbated hepatic steatosis and iron deposition in NASH. CONCLUSIONS Our results demonstrated that effective inhibition of IDO1 expression in macrophages in NASH alleviated hepatic parenchymal cell lipid accumulation and iron deposition, which provided new insights for the future treatment of NASH.
Collapse
Affiliation(s)
- Chaofeng Wu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Junjie Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamin Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengchen Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiajie Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Cai
- Department of Hepatology, Hainan Provincial Hospital of Chinese Medicine, Haikou, China
| | - Yong Gu
- Clinical Research Center, Hainan Provincial Hospital of Chinese Medicine, Haikou, China
| | - Bin Liu
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Lei Gao
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Amanollahi S, Bahrami AR, Haghighitalab A, Shaterzadeh Yazdi H, Kazemi Mehrjerdi H. Immediate administration of hTERT-MSCs-IDO1-EVs reduces hypoalbuminemia after spinal cord injury. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:27-34. [PMID: 38464608 PMCID: PMC10921135 DOI: 10.30466/vrf.2023.2003942.3903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 03/12/2024]
Abstract
Spinal cord injury (SCI) presents challenging and unpredictable neurological recovery. During inflammatory conditions, the amount of serum albumin and nutrition consumption decreases. Currently, it is proposed to measure serum albumin and glucose content in human or animal subjects to predict the recovery rate and the efficiency of treatments following SCI. In this study, the effect of extra-cellular vesicles (EVs) from immortalized human adipose tissue-derived mesenchymal stem cells (hTERT-MSCs) equipped with the ectopic expression of the human indoleamine 2,3-dioxygenase-1 (IDO1) gene on serum albumin and glucose levels was investigated. After pre-clearing steps of 72-hr conditioned media, small EVs (sEVs) were isolated based on the ultra-filtration method. They were encapsulated with a chitosan-based hydrogel. Five experimental groups (female rats, N = 30, ~ 230 g) were considered, including SCI, sham, hydrogel, control green fluorescent protein (GFP)-EVs and IDO1-EVs. The 60.00 µL of hydrogel or hydrogels containing 100 µg sEVs from GFP or IDO1-EVs were locally injected immediately after SCI (laminectomy of the T10 vertebra and clip compression). After 8 weeks, non-fasting serum glucose and albumin levels were measured. The results indicated that the level of serum albumin in the animals received IDO1-EVs (3.52 ± 0.04) was increased in comparison with the SCI group (3.00 ± 0.94). Also, these animals indicated higher glucose levels in their serum (250.17 ± 69.61) in comparison with SCI ones (214 ± 45.34). Although these changes were not statistically significant, they could be considered as evidence for the beneficial effects of IDO1-EVs administration in the context of SCI to reduce hypoalbuminemia and improve energy consumption. More detailed experiments are required to confirm these results.
Collapse
Affiliation(s)
- Shiva Amanollahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran;
| | - Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran;
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran;
| | | | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran;
| |
Collapse
|
9
|
Kaminski VDL, Preite NW, Borges BM, Dos Santos BV, Calich VLG, Loures FV. The immunosuppressive activity of myeloid-derived suppressor cells in murine Paracoccidioidomycosis relies on Indoleamine 2,3-dioxygenase activity and Dectin-1 and TLRs signaling. Sci Rep 2023; 13:12391. [PMID: 37524886 PMCID: PMC10390561 DOI: 10.1038/s41598-023-39262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis with a high incidence in Latin America. Prior studies have demonstrated the significance of the enzyme Indoleamine 2,3-dioxygenase (IDO-1) in the immune regulation of PCM as well as the vital role of myeloid-derived suppressor cells (MDSCs) in moderating PCM severity. Additionally, Dectin-1 and Toll-Like Receptors (TLRs) signaling in cancer, infection, and autoimmune diseases have been shown to impact MDSC-IDO-1+ activity. To expand our understanding of MDSCs and the role of IDO-1 and pattern recognition receptors (PRRs) signaling in PCM, we generated MDSCs in vitro and administered an IDO-1 inhibitor before challenging the cells with Paracoccidioides brasiliensis yeasts. By co-culturing MDSCs with lymphocytes, we assessed T-cell proliferation to examine the influence of IDO-1 on MDSC activity. Moreover, we utilized specific antibodies and MDSCs from Dectin-1, TLR4, and TLR2 knockout mice to evaluate the effect of these PRRs on IDO-1 production by MDSCs. We confirmed the importance of these in vitro findings by assessing MDSC-IDO-1+ in the lungs of mice following the fungal infection. Taken together, our data show that IDO-1 expression by MDSCs is crucial for the control of T-cell proliferation, and the production of this enzyme is partially dependent on Dectin-1, TLR2, and TLR4 signaling during murine PCM.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Bianca Vieira Dos Santos
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil
| | - Vera Lucia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, SP, Brazil.
| |
Collapse
|
10
|
Jose S, Jerome R, Krishnan A, Jagan OA, Li D, Menon V. Differential Expression Patterns of Indoleamine 2,3-Dioxygenase 1 and Other Tryptophan and Arginine Catabolic Pathway Genes in Dengue Correlate with Clinical Severity-Pilot Study Results. Viral Immunol 2023; 36:268-281. [PMID: 36921291 DOI: 10.1089/vim.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The kynurenine pathway of tryptophan catabolism can modulate inflammatory responses inducing immunotolerance or immunosuppressive effects. Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in this pathway. Early aberrant inflammation is implicated in severe dengue, and herein we investigate and characterize the expression of IDO pathway genes in severe dengue patients. We use a SyBR green-based qPCR to evaluate the leukocyte expression levels of IDO1, IDO2, AhR, TGF-β, ARG1, IFNγ, and IFNα in a dengue patient cohort (n = 51). Twenty-two cases were identified as severe dengue using the WHO case classification (2009) criteria. Principal component analysis (PCA) was employed to examine the relationships of gene expression profiles with disease severity and laboratory markers of clinical severity. We find that two principal components describe most of the variance (65.3%) in the expression patterns of the cohort. Reduced expression of IDO1, TGF-β, and AhR, represented by low Component 2 scores, was significantly associated with disease severity, thrombocytopenia, and leukopenia. Higher expression levels of IDO2, IFNγ, and IFNα positively correlated with Component 1 scores, and were significantly associated with elevated ALT (p = 0.018) and AST (p = 0.017) enzymes. Our results suggest that profiling the baseline expression patterns of the IDO pathway genes may aid in the identification of dengue patients most at risk of severe disease.
Collapse
Affiliation(s)
- Soumya Jose
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Roshni Jerome
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Ajai Krishnan
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University, Washington, District of Columbia, USA
| | - Veena Menon
- Clinical Virology Laboratory, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
11
|
Tezcan D, Onmaz DE, Sivrikaya A, Körez MK, Hakbilen S, Gülcemal S, Yılmaz S. Kynurenine pathway of tryptophan metabolism in patients with familial Mediterranean fever. Mod Rheumatol 2023; 33:398-407. [PMID: 35139221 DOI: 10.1093/mr/roac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autoinflammatory syndrome characterized by recurrent episodes of fever and aseptic polyserositis. Subclinical inflammation generates a hidden threat to the development of FMF complications such as amyloidosis in attack-free intervals. The kynurenine pathway (KP) has been considered an important player in inflammation and immune response. The study was aimed to measure serum levels of KP metabolites in patients with FMF in the attack-free period. METHODS A total of 161 participants were recruited from the rheumatology department in this single-centre, case-control study. Participants meeting the eligibility criteria were divided into healthy controls (n = 80) and FMF (n = 81). The laboratory data were obtained from the electronic registration database. Serum tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid, 3-hydroxykynurenine (3HK), and quinolinic acid (QUIN) concentrations were measured with tandem mass spectrometry. Laboratory findings of FMF patients and healthy controls subjects were compared and evaluated. RESULTS Serum TRP and KYNA levels were significantly decreased in both FMF groups compared to the control group, while the levels of KYN, QUIN, 3HK, the KYN/TRP ratio, and red cell distribution width were higher. CONCLUSION TRP degradation by the KP is increased in patients with FMF. KP metabolites can be useful in demonstrating subclinical inflammation.
Collapse
Affiliation(s)
- Dilek Tezcan
- Department of Internal Medicine, Division of Rheumatology, Gülhane Faculty of Medicine, University of Health Sciences Turkey, Ankara, Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Muslu Kazım Körez
- Division of Biostatistics, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Selda Hakbilen
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Semral Gülcemal
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Sema Yılmaz
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| |
Collapse
|
12
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
13
|
McDew-White M, Lee E, Alvarez X, Sestak K, Ling BJ, Byrareddy SN, Okeoma CM, Mohan M. Cannabinoid control of gingival immune activation in chronically SIV-infected rhesus macaques involves modulation of the indoleamine-2,3-dioxygenase-1 pathway and salivary microbiome. EBioMedicine 2022; 75:103769. [PMID: 34954656 PMCID: PMC8715300 DOI: 10.1016/j.ebiom.2021.103769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting people living with HIV (PLWH) on combination anti-retroviral therapy (cART). PD is characterized by chronic inflammation and dysbiosis. Nevertheless, the molecular mechanisms and use of feasible therapeutic strategies to reduce/reverse inflammation and dysbiosis remain understudied and unaddressed. METHODS Employing a systems biology approach, we report molecular, metabolome and microbiome changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or Δ9-THC (THC/SIV). FINDINGS VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-β, NFκB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in the gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs at 5 months post SIV infection (MPI). Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae at 5MPI. INTERPRETATION The data provides deeper insights into the molecular mechanisms underlying HIV/SIV-induced PD and more importantly, the anti-inflammatory and anti-dysbiotic properties of THC in the oral cavity. Overall, these translational findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis and potentially metabolic disease/syndrome in PLWH on cART and those with no access to cART or do not suppress the virus under cART. FUNDING Research reported in this publication was supported by the National Institutes of Health Award Numbers R01DA052845 (MM and SNB), R01DA050169 (MM and CO), R01DA042524 and R56DE026930 (MM), and P51OD011104 and P51OD011133. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Marina McDew-White
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Eunhee Lee
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Xavier Alvarez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, United States; Tulane National Primate Research Center, Covington LA 70433, United States
| | - Binhua J Ling
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Chioma M Okeoma
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States.
| |
Collapse
|
14
|
NAD+-consuming enzymes in immune defense against viral infection. Biochem J 2021; 478:4071-4092. [PMID: 34871367 PMCID: PMC8718269 DOI: 10.1042/bcj20210181] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.
Collapse
|
15
|
Ostaszewski M, Niarakis A, Mazein A, Kuperstein I, Phair R, Orta‐Resendiz A, Singh V, Aghamiri SS, Acencio ML, Glaab E, Ruepp A, Fobo G, Montrone C, Brauner B, Frishman G, Monraz Gómez LC, Somers J, Hoch M, Kumar Gupta S, Scheel J, Borlinghaus H, Czauderna T, Schreiber F, Montagud A, Ponce de Leon M, Funahashi A, Hiki Y, Hiroi N, Yamada TG, Dräger A, Renz A, Naveez M, Bocskei Z, Messina F, Börnigen D, Fergusson L, Conti M, Rameil M, Nakonecnij V, Vanhoefer J, Schmiester L, Wang M, Ackerman EE, Shoemaker JE, Zucker J, Oxford K, Teuton J, Kocakaya E, Summak GY, Hanspers K, Kutmon M, Coort S, Eijssen L, Ehrhart F, Rex DAB, Slenter D, Martens M, Pham N, Haw R, Jassal B, Matthews L, Orlic‐Milacic M, Senff Ribeiro A, Rothfels K, Shamovsky V, Stephan R, Sevilla C, Varusai T, Ravel J, Fraser R, Ortseifen V, Marchesi S, Gawron P, Smula E, Heirendt L, Satagopam V, Wu G, Riutta A, Golebiewski M, Owen S, Goble C, Hu X, Overall RW, Maier D, Bauch A, Gyori BM, Bachman JA, Vega C, Grouès V, Vazquez M, Porras P, Licata L, Iannuccelli M, Sacco F, Nesterova A, Yuryev A, de Waard A, Turei D, Luna A, Babur O, Soliman S, Valdeolivas A, Esteban‐Medina M, Peña‐Chilet M, Rian K, Helikar T, Puniya BL, Modos D, Treveil A, Olbei M, De Meulder B, Ballereau S, Dugourd A, Naldi A, Noël V, Calzone L, Sander C, Demir E, Korcsmaros T, Freeman TC, Augé F, Beckmann JS, Hasenauer J, Wolkenhauer O, Wilighagen EL, Pico AR, Evelo CT, Gillespie ME, Stein LD, Hermjakob H, D'Eustachio P, Saez‐Rodriguez J, Dopazo J, Valencia A, Kitano H, Barillot E, Auffray C, Balling R, Schneider R. COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms. Mol Syst Biol 2021; 17:e10387. [PMID: 34664389 PMCID: PMC8524328 DOI: 10.15252/msb.202110387] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.
Collapse
Affiliation(s)
- Marek Ostaszewski
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Anna Niarakis
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
- Lifeware GroupInria Saclay‐Ile de FrancePalaiseauFrance
| | - Alexander Mazein
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Inna Kuperstein
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Robert Phair
- Integrative Bioinformatics, Inc.Mountain ViewCAUSA
| | - Aurelio Orta‐Resendiz
- Institut PasteurUniversité de Paris, Unité HIVInflammation et PersistanceParisFrance
- Bio Sorbonne Paris CitéUniversité de ParisParisFrance
| | - Vidisha Singh
- Université Paris‐SaclayLaboratoire Européen de Recherche pour la Polyarthrite rhumatoïde ‐ GenhotelUniv EvryEvryFrance
| | - Sara Sadat Aghamiri
- Inserm‐ Institut national de la santé et de la recherche médicaleParisFrance
| | - Marcio Luis Acencio
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Andreas Ruepp
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Gisela Fobo
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Corinna Montrone
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Barbara Brauner
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Goar Frishman
- Institute of Experimental Genetics (IEG)Helmholtz Zentrum München‐German Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Luis Cristóbal Monraz Gómez
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Julia Somers
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | - Matti Hoch
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | | | - Julia Scheel
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Hanna Borlinghaus
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
| | - Tobias Czauderna
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
- Faculty of Information TechnologyDepartment of Human‐Centred ComputingMonash UniversityClaytonVic.Australia
| | | | | | - Akira Funahashi
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Yusuke Hiki
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Noriko Hiroi
- Graduate School of Media and GovernanceResearch Institute at SFCKeio UniversityKanagawaJapan
| | - Takahiro G Yamada
- Department of Biosciences and InformaticsKeio UniversityYokohamaJapan
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
- German Center for Infection Research (DZIF), partner siteTübingenGermany
| | - Alina Renz
- Computational Systems Biology of Infections and Antimicrobial‐Resistant PathogensInstitute for Bioinformatics and Medical Informatics (IBMI)University of TübingenTübingenGermany
- Department of Computer ScienceUniversity of TübingenTübingenGermany
| | - Muhammad Naveez
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
- Institute of Applied Computer SystemsRiga Technical UniversityRigaLatvia
| | - Zsolt Bocskei
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | - Francesco Messina
- Dipartimento di Epidemiologia Ricerca Pre‐Clinica e Diagnostica AvanzataNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.S.RomeItaly
- COVID‐19 INMI Network Medicine for IDs Study GroupNational Institute for Infectious Diseases 'Lazzaro Spallanzani' I.R.C.C.SRomeItaly
| | - Daniela Börnigen
- Bioinformatics Core FacilityUniversitätsklinikum Hamburg‐EppendorfHamburgGermany
| | - Liam Fergusson
- Royal (Dick) School of Veterinary MedicineThe University of EdinburghEdinburghUK
| | - Marta Conti
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Marius Rameil
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Vanessa Nakonecnij
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Jakob Vanhoefer
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
| | - Leonard Schmiester
- Faculty of Mathematics and Natural SciencesUniversity of BonnBonnGermany
- Center for MathematicsChair of Mathematical Modeling of Biological SystemsTechnische Universität MünchenGarchingGermany
| | - Muying Wang
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Emily E Ackerman
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
| | - Jason E Shoemaker
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPAUSA
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | | | | | | | | | | | - Kristina Hanspers
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Martina Kutmon
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Susan Coort
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Lars Eijssen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | - Friederike Ehrhart
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht University Medical CentreMaastrichtThe Netherlands
| | | | - Denise Slenter
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Marvin Martens
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Nhung Pham
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Robin Haw
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Bijay Jassal
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | | | - Andrea Senff Ribeiro
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Universidade Federal do ParanáCuritibaBrasil
| | - Karen Rothfels
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | | | - Ralf Stephan
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
| | - Cristoffer Sevilla
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Thawfeek Varusai
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Jean‐Marie Ravel
- INSERM UMR_S 1256Nutrition, Genetics, and Environmental Risk Exposure (NGERE)Faculty of Medicine of NancyUniversity of LorraineNancyFrance
- Laboratoire de génétique médicaleCHRU NancyNancyFrance
| | - Rupsha Fraser
- Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial MicroorganismsCenter for BiotechnologyBielefeld UniversityBielefeldGermany
| | - Silvia Marchesi
- Department of Surgical ScienceUppsala UniversityUppsalaSweden
| | - Piotr Gawron
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Ewa Smula
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Laurent Heirendt
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Venkata Satagopam
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Guanming Wu
- Department of Medical Informatics and Clinical EpidemiologyOregon Health & Science UniversityPortlandORUSA
| | - Anders Riutta
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | | | - Stuart Owen
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Carole Goble
- Department of Computer ScienceThe University of ManchesterManchesterUK
| | - Xiaoming Hu
- Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE) DresdenDresdenGermany
- Center for Regenerative Therapies Dresden (CRTD)Technische Universität DresdenDresdenGermany
- Institute for BiologyHumboldt University of BerlinBerlinGermany
| | | | | | - Benjamin M Gyori
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - John A Bachman
- Harvard Medical SchoolLaboratory of Systems PharmacologyBostonMAUSA
| | - Carlos Vega
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Valentin Grouès
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | | - Pablo Porras
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | - Luana Licata
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | - Francesca Sacco
- Department of BiologyUniversity of Rome Tor VergataRomeItaly
| | | | | | | | - Denes Turei
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Augustin Luna
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | | | - Alberto Valdeolivas
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
| | - Marina Esteban‐Medina
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Maria Peña‐Chilet
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
| | - Kinza Rian
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
| | - Tomáš Helikar
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | - Dezso Modos
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Agatha Treveil
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | - Marton Olbei
- Quadram Institute BioscienceNorwichUK
- Earlham InstituteNorwichUK
| | | | - Stephane Ballereau
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Aurélien Dugourd
- Institute for Computational BiomedicineHeidelberg UniversityHeidelbergGermany
- Institute of Experimental Medicine and Systems BiologyFaculty of Medicine, RWTHAachen UniversityAachenGermany
| | | | - Vincent Noël
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Laurence Calzone
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Chris Sander
- cBio Center, Divisions of Biostatistics and Computational BiologyDepartment of Data SciencesDana‐Farber Cancer InstituteBostonMAUSA
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Emek Demir
- Department of Molecular and Medical GeneticsOregon Health & Sciences UniversityPortlandORUSA
| | | | - Tom C Freeman
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Franck Augé
- Sanofi R&DTranslational SciencesChilly‐MazarinFrance
| | | | - Jan Hasenauer
- Helmholtz Zentrum München – German Research Center for Environmental HealthInstitute of Computational BiologyNeuherbergGermany
- Interdisciplinary Research Unit Mathematics and Life SciencesUniversity of BonnBonnGermany
| | - Olaf Wolkenhauer
- Department of Systems Biology and BioinformaticsUniversity of RostockRostockGermany
| | - Egon L Wilighagen
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
| | - Alexander R Pico
- Institute of Data Science and BiotechnologyGladstone InstitutesSan FranciscoCAUSA
| | - Chris T Evelo
- Department of Bioinformatics ‐ BiGCaTNUTRIMMaastricht UniversityMaastrichtThe Netherlands
- Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Marc E Gillespie
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- St. John’s University College of Pharmacy and Health SciencesQueensNYUSA
| | - Lincoln D Stein
- MaRS CentreOntario Institute for Cancer ResearchTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Henning Hermjakob
- European Bioinformatics Institute (EMBL‐EBI)European Molecular Biology LaboratoryHinxton, CambridgeshireUK
| | | | | | - Joaquin Dopazo
- Clinical Bioinformatics AreaFundación Progreso y Salud (FPS)Hospital Virgen del RocioSevillaSpain
- Computational Systems Medicine GroupInstitute of Biomedicine of Seville (IBIS)Hospital Virgen del RocioSevillaSpain
- Bioinformatics in Rare Diseases (BiER)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)FPS, Hospital Virgen del RocíoSevillaSpain
- FPS/ELIXIR‐esHospital Virgen del RocíoSevillaSpain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Hiroaki Kitano
- Systems Biology InstituteTokyoJapan
- Okinawa Institute of Science and Technology Graduate SchoolOkinawaJapan
| | - Emmanuel Barillot
- Institut CuriePSL Research UniversityParisFrance
- INSERMParisFrance
- MINES ParisTechPSL Research UniversityParisFrance
| | - Charles Auffray
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Rudi Balling
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Reinhard Schneider
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
16
|
Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021; 288:5055-5070. [PMID: 33124149 PMCID: PMC8518758 DOI: 10.1111/febs.15613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 01/08/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a large-scale pandemic that is afflicting millions of individuals in over 200 countries. The clinical spectrum caused by SARS-CoV-2 infections can range from asymptomatic infection to mild undifferentiated febrile illness to severe respiratory disease with multiple complications. Elderly patients (aged 60 and above) with comorbidities such as cardiovascular diseases and diabetes mellitus appear to be at highest risk of a severe disease outcome. To protect against pulmonary immunopathology caused by SARS-CoV-2 infection, the host primarily depends on two distinct defense strategies: resistance and disease tolerance. Resistance is the ability of the host to suppress and eliminate incoming viruses. By contrast, disease tolerance refers to host responses that promote host health regardless of their impact on viral replication. Disruption of either resistance or disease tolerance mechanisms or both could underpin predisposition to elevated risk of severe disease during viral infection. Aging can disrupt host resistance and disease tolerance by compromising immune functions, weakening of the unfolded protein response, progressive mitochondrial dysfunction, and altering metabolic processes. A comprehensive understanding of the molecular mechanisms underlying declining host defense in elderly individuals could thus pave the way to provide new opportunities and approaches for the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Darren Z. L. Mok
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| | | | - Eng Eong Ooi
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
- Viral Research & Experimental Medicine Center @ SingHealth/Duke‐NUS (ViREMiCS)SingaporeSingapore
- Singapore‐MIT Alliance in Research and TechnologyAntimicrobial Resistance Interdisciplinary Research GroupSingaporeSingapore
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Kuan Rong Chan
- Emerging Infectious Diseases ProgramDuke‐NUS Medical SchoolSingaporeSingapore
| |
Collapse
|
17
|
Huang YJ, Choong LXC, Panyod S, Lin YE, Huang HS, Lu KH, Wu WK, Sheen LY. Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress-induced depression mouse model. Phytother Res 2021; 35:5133-5142. [PMID: 34327733 DOI: 10.1002/ptr.7091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
Gastrodia elata Blume has multiple bioactive functions, such as antioxidant and antidepressant activities, immune modulation, neuroplasticity, and neuroprotection. We previously found that the water extract of G. elata exerts antidepressant-like effects in unpredictable chronic mild stress models and animals exposed to the forced swimming test. We aimed to investigate the mechanisms by which the water extract of G. elata protects against subchronic- and mild-social defeat-stress-induced dysbiosis. After a 10-day subchronic and mild-social-defeat-stress program, oral treatment with the water extract of G. elata (500 mg/kg bw) resulted in reversal of depression-like behavior. In addition, monoamine analyses showed that the water extract of G. elata normalized the 5-hydroxyindoleacetic acid:5-HT ratio in the prefrontal cortex and colon and reduced the defeat-stress-induced kynurenine:tryptophan ratio in the colon. After the 10-day subchronic and mild social-defeat-stress program, the water extract of G. elata altered the intestinal microbiome by increasing Actinobacteria levels, modulating intestinal inflammation, and shifting the relative abundances of multiple bacterial groups in the gut. Our results suggest that the water extract of G. elata exhibits a potent antidepressant-like effect via the regulation of monoaminergic neurotransmission and alteration of gut microbiota composition and function, and that it may be an effective prevention for depression.
Collapse
Affiliation(s)
- Yun-Ju Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Le-Xin Chrystal Choong
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Wei-Kai Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- National Taiwan University Hospital Bei-Hu Bench, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan, ROC
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Alterations in the Kynurenine Pathway of Tryptophan Metabolism Are Associated With Depression in People Living With HIV. J Acquir Immune Defic Syndr 2021; 87:e177-e181. [PMID: 33633032 DOI: 10.1097/qai.0000000000002664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND People living with HIV have increased risk of depression compared with uninfected controls. The determinants of this association are unclear. Alterations in kynurenine (Kyn) metabolism have been associated with depression in uninfected individuals, but whether they are involved in the development of depression in the context of HIV infection is unknown. METHODS A total of 909 people living with HIV were recruited from the Copenhagen Comorbidity in HIV infection study. Information regarding demographics and depression was obtained from questionnaires. HIV-related variables and use of antidepressant medication were collected from patient records. Logistic regression models before and after adjustment for confounders were used to test our hypotheses. RESULTS The prevalence of depression was 11%. Among traditional risk factors, only being unmarried was associated with greater odds of depression. Higher levels of quinolinic-to-kynurenic acid ratio (P = 0.018) and higher concentrations of quinolinic acid (P = 0.048) were found in individuals with depression than in those without. After adjusting for confounders, high levels of quinolinic-to-kynurenic acid ratio and high concentrations of quinolinic acid remained associated with depression [adjusted odds ratio 1.61 (1.01; 2.59) and adjusted odds ratio 1.68 (1.02; 2.77), respectively]. CONCLUSIONS The results from this study suggest that alterations in the kynurenine pathway of tryptophan metabolism are associated with the presence of depression in the context of HIV infection.
Collapse
|
19
|
Won E, Kim YK. Neuroinflammation-Associated Alterations of the Brain as Potential Neural Biomarkers in Anxiety Disorders. Int J Mol Sci 2020; 21:ijms21186546. [PMID: 32906843 PMCID: PMC7555994 DOI: 10.3390/ijms21186546] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Stress-induced changes in the immune system, which lead to neuroinflammation and consequent brain alterations, have been suggested as possible neurobiological substrates of anxiety disorders, with previous literature predominantly focusing on panic disorder, agoraphobia, and generalized anxiety disorder, among the anxiety disorders. Anxiety disorders have frequently been associated with chronic stress, with chronically stressful situations being reported to precipitate the onset of anxiety disorders. Also, chronic stress has been reported to lead to hypothalamic–pituitary–adrenal axis and autonomic nervous system disruption, which may in turn induce systemic proinflammatory conditions. Preliminary evidence suggests anxiety disorders are also associated with increased inflammation. Systemic inflammation can access the brain, and enhance pro-inflammatory cytokine levels that have been shown to precipitate direct and indirect neurotoxic effects. Prefrontal and limbic structures are widely reported to be influenced by neuroinflammatory conditions. In concordance with these findings, various imaging studies on panic disorder, agoraphobia, and generalized anxiety disorder have reported alterations in structure, function, and connectivity of prefrontal and limbic structures. Further research is needed on the use of inflammatory markers and brain imaging in the early diagnosis of anxiety disorders, along with the possible efficacy of anti-inflammatory interventions on the prevention and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence: ; Tel.: +82-31-412-5140; Fax: +82-31-412-5144
| |
Collapse
|
20
|
Effect of Pingchuan Formula on Toll-Like Receptors and Dendritic Cells in an Asthmatic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7407016. [PMID: 32953887 PMCID: PMC7481997 DOI: 10.1155/2020/7407016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Pingchuan formula (PCF) was created by Professor Yu Jianer. The purpose of this study was to investigate the effect of PCF on dendritic cells (DCs) and toll-like receptors (TLRs) in initiating immunity. A bronchial asthma BALB/c mouse model was established using an OVA excitation method. PCF was immediately administered by gavage after the first excitation. After 7 d, hematoxylin and eosin (HE) staining was used to observe the pathological changes in the asthma model. Eosinophil infiltration and concentrations of IL-4, IFN-r, IL-12, and IFN-α in BALF were determined by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to determine mRNA levels of IL-12 and IFN-α. Protein expression levels of ERK, Toll-2, IDO, and Toll-9 were measured by immunoblot. HE and ELISA showed that PCF could improve lung pathological changes and significantly decrease the concentration of IL-4 in BALF. Moreover, PCF could increase IL-12, IFN-α, and IFN-r in BALF. Real-time PCR and western blot showed that PCF restored the DCs and TLRs in initiating immunity. In summary, this study found that PCF can improve the pathological changes and reduce the symptoms of asthma in a BALB/c mouse model. It can facilitate the initiation of immunity by restoring the DCs and TLRs.
Collapse
|
21
|
Determination of a Tumor-Promoting Microenvironment in Recurrent Medulloblastoma: A Multi-Omics Study of Cerebrospinal Fluid. Cancers (Basel) 2020; 12:cancers12061350. [PMID: 32466393 PMCID: PMC7352284 DOI: 10.3390/cancers12061350] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.
Collapse
|
22
|
Srdić M, Ovčina I, Fotschki B, Haros CM, Laparra Llopis JM. C. quinoa and S. hispanica L. Seeds Provide Immunonutritional Agonists to Selectively Polarize Macrophages. Cells 2020; 9:E593. [PMID: 32131465 PMCID: PMC7140429 DOI: 10.3390/cells9030593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Diet-related immunometabolic-based diseases are associated with chronic inflammation in metabolic tissues, and infiltrated macrophages have been suggested as mediators for tissue- damaging inflammation. Growing evidence implicates Chenopodium quinoa and Salvia hispanica L. as important contributors to immunonutritional health. However, the functional roles of the immunonutritional protease inhibitors (PPIs) found in these crops on the macrophages' metabolic and phenotypic adaptation remain to be elucidated. The salt soluble fraction of proteins was extracted and analyzed confirming the presence of 11S and 2S albumin. The <30 kDa fraction of the extract from both crops was subjected to simulated gastrointestinal digestion, where (RP-LC-MS/MS analyses) polypeptides from 2S-type of proteins were found, along with the 2S albumin (13 kDa) for S. hispanica in the bioaccessible fraction (BAF). Using human-like macrophage cells to deepen our understanding of the modulatory effects of this BAF, FACS analyses revealed their potential as TLR4 agonists, favoring increased phenotypic CD68/CD206 ratios. The results of mitochondrial stress tests showed that cells increased oxygen consumption rates and non-mitochondrial respiration, confirming negligible deleterious effects on mitochondrial function. At molecular-level, adaptation responses shed light on changes showing biological correlation with TLR4 signaling. The resulting immunometabolic effects triggered by PPIs can be a part of a tailored nutritional intervention strategy in immunometabolic-based diseases.
Collapse
Affiliation(s)
- Maša Srdić
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| | - Ivana Ovčina
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| | - Bartosz Fotschki
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Claudia Monika Haros
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Paterna, Valencia, Spain;
| | - Jose Moises Laparra Llopis
- Madrid Institute for Advanced Studies in Food (IMDEA Food). Ctra. Cantoblanco 8, 28049 Madrid, Spain; (M.S.); (I.O.)
| |
Collapse
|
23
|
Grunewald ME, Shaban MG, Mackin SR, Fehr AR, Perlman S. Murine Coronavirus Infection Activates the Aryl Hydrocarbon Receptor in an Indoleamine 2,3-Dioxygenase-Independent Manner, Contributing to Cytokine Modulation and Proviral TCDD-Inducible-PARP Expression. J Virol 2020; 94:e01743-19. [PMID: 31694960 PMCID: PMC7000979 DOI: 10.1128/jvi.01743-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor/transcription factor that modulates several cellular and immunological processes following activation by pathogen-associated stimuli, though its role during virus infection is largely unknown. Here, we show that AhR is activated in cells infected with mouse hepatitis virus (MHV), a coronavirus (CoV), and contributes to the upregulation of downstream effector TCDD-inducible poly(ADP-ribose) polymerase (TiPARP) during infection. Knockdown of TiPARP reduced viral replication and increased interferon expression, suggesting that TiPARP functions in a proviral manner during MHV infection. We also show that MHV replication induced the expression of other genes known to be downstream of AhR in macrophages and dendritic cells and in livers of infected mice. Further, we found that chemically inhibiting or activating AhR reciprocally modulated the expression levels of cytokines induced by infection, specifically, interleukin 1β (IL-1β), IL-10, and tumor necrosis factor alpha (TNF-α), consistent with a role for AhR activation in the host response to MHV infection. Furthermore, while indoleamine 2,3-dioxygenase (IDO1) drives AhR activation in other settings, MHV infection induced equal expression of downstream genes in wild-type (WT) and IDO1-/- macrophages, suggesting an alternative pathway of AhR activation. In summary, we show that coronaviruses elicit AhR activation by an IDO1-independent pathway, contributing to upregulation of downstream effectors, including the proviral factor TiPARP, and to modulation of cytokine gene expression, and we identify a previously unappreciated role for AhR signaling in CoV pathogenesis.IMPORTANCE Coronaviruses are a family of positive-sense RNA viruses with human and agricultural significance. Characterizing the mechanisms by which coronavirus infection dictates pathogenesis or counters the host immune response would provide targets for the development of therapeutics. Here, we show that the aryl hydrocarbon receptor (AhR) is activated in cells infected with a prototypic coronavirus, mouse hepatitis virus (MHV), resulting in the expression of several effector genes. AhR is important for modulation of the host immune response to MHV and plays a role in the expression of TiPARP, which we show is required for maximal viral replication. Taken together, our findings highlight a previously unidentified role for AhR in regulating coronavirus replication and the immune response to the virus.
Collapse
Affiliation(s)
- Matthew E Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Mohamed G Shaban
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Samantha R Mackin
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Anthony R Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Ray A, Song Y, Du T, Tai YT, Chauhan D, Anderson KC. Targeting tryptophan catabolic kynurenine pathway enhances antitumor immunity and cytotoxicity in multiple myeloma. Leukemia 2019; 34:567-577. [PMID: 31462737 DOI: 10.1038/s41375-019-0558-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/09/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022]
Abstract
Our prior studies showed that dysfunctional plasmacytoid dendritic cells (pDCs) contribute to multiple myeloma (MM) pathogenesis. Specifically, pDC interactions with tumor and T/NK effector cells in the bone marrow (BM) milieu induce immune suppression and MM cell proliferation. Delineation of the mechanism(s) mediating pDC-MM-T-NK cell interactions will identify novel therapeutic targets to both enhance cytotoxicity and anti-MM immunity. Here, we utilized gene expression profiling (GEP) to show that pDC-MM interactions trigger upregulation of immunosuppressive tryptophan catabolic kynurenine (Kyn) pathway. In particular, we show that Kyn pathway enzyme kynurenine-3-monooxygenase (KMO) is upregulated during pDC-MM interactions. Using our coculture models of patient autologous pDC-T-NK-MM cells, we show that pharmacological blockade of KMO activates pDCs and triggers both MM-specific cytotoxic T-cell lymphocytes (CTL) and NK cells cytolytic activity against tumor cells. Furthermore, we show that simultaneous inhibition of Kyn pathway and immune checkpoint PD-L1 enhances antitumor immunity and cytotoxicity in MM. Our preclinical data therefore provide the basis for novel immune-based therapeutic approaches targeting Kyn metabolic pathway enzyme KMO, alone or in combination with anti-PD-L1 Ab, to restore anti-MM immune responses in MM.
Collapse
Affiliation(s)
- Arghya Ray
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yan Song
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ting Du
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dharminder Chauhan
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- The LeBow Institute for Myeloma Therapeutics and Jerome Lipper Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Nezos A, Evangelopoulos ME, Mavragani CP. Genetic contributors and soluble mediators in prediction of autoimmune comorbidity. J Autoimmun 2019; 104:102317. [PMID: 31444033 DOI: 10.1016/j.jaut.2019.102317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/20/2022]
Abstract
Comorbidities including subclinical atherosclerosis, neuropsychological aberrations and lymphoproliferation represent a major burden among patients with systemic autoimmune diseases; they occur either as a result of intrinsic disease related characteristics including therapeutic interventions or traditional risk factors similar to those observed in general population. Soluble molecules recently shown to contribute to subclinical atherosclerosis in the context of systemic lupus erythematosus (SLE) include among others B-cell activating factor (BAFF), hyperhomocysteinemia, parathormone (PTH) levels and autoantibodies against oxidized lipids. Variations of the 5, 10- methylenetetrahydrofolate reductase (MTHFR) gene -the main genetic determinant of hyperhomocystenemia in humans-as well the interferon regulatory factor-8 (IRF8), FcγRIIA and BAFF genes have been all linked to subclinical atherosclerosis in SLE. BAFF variants have been also found to confer increased risk for subclinical atherosclerosis and lymphoma development in Sjogren's syndrome (SS) patients. Other genes shown to be implicated in SS lymphoproliferation include genes involved a. in inflammatory responses such as the NFκB regulator Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and the Leukocyte immunoglobulin-like receptor A3 (LILRA3) immunoreceptor, b. B cell activation and signaling (BAFF/BAFF-receptor), c. type I IFN pathway such as three-prime repair exonuclease 1 (TREX1), d. epigenetic processes including DNA methylation (MTHFR rs1801133, 677T allele) and e. genomic instability (MTHFR rs1801131, 1298C allele). Emerging soluble biomarkers for SS related lymphoma include mediators of B cell growth and germinal center formation such as BAFF, FMS-like tyrosine kinase 3 ligand (Flt-3L) and CXCL13 as well as inflammatory contributors such as inteleukin (IL)-17, IL-18, ASC, LILRA3 and the extracellular lipoprotein-associated phospholipase A2 (Lp-PLA2). In regard to fatigue and neuropsychologic features in the setting of SS, contributing factors such as BAFF variants, antibodies against neuropeptides, proteins involved in nervous system function as well as inflammatory cytokines have been reported.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleutheria Evangelopoulos
- First Department of Neurology, Demyelinating Diseases Unit, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
26
|
Bjørndal B, Bruheim I, Lysne V, Ramsvik MS, Ueland PM, Nordrehaug JE, Nygård OK, Berge RK. Plasma choline, homocysteine and vitamin status in healthy adults supplemented with krill oil: a pilot study. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:527-532. [PMID: 30261756 DOI: 10.1080/00365513.2018.1512716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plasma concentrations of metabolites along the choline oxidation and tryptophan degradation pathways have been linked to lifestyle diseases and dietary habits. This study aimed to investigate how krill oil, a source of ω-3 polyunsaturated fatty acids (PUFAs) with a high phosphatidylcholine content, affected these parameters. The pilot study was conducted as a 28 days intervention in 17 healthy volunteers (18-36 years), who received a supplement of 4.5 g krill oil per day, providing 833 mg ω-3 PUFAs, and 1750 mg phosphatidylcholine. Krill oil supplementation increased fasting plasma choline (+28.4%, p < .001), betaine (+26.6%, p < .001), dimethylglycine (+33.7%, p < .001) and sarcosine (+16.8%, p < .001), whereas no statistically significant changes were seen for plasma glycine, serine, methionine, total homocysteine, cysteine, cystathionine, methionine sulfoxide, folate, cobalamin, B2-, B3-, and B6 vitamers, tryptophan, kynurenines, nicotinamide, vitamin A and vitamin E. In summary, krill oil supplementation influenced choline metabolite levels, but not plasma metabolites of the tryptophan-kynurenine-nicotinamide pathways and vitamins. These observations should be confirmed in a placebo-controlled trial, including an ω-3 PUFA supplement without phospholipids to explore the potential additive effects of the different active ingredients.
Collapse
Affiliation(s)
- Bodil Bjørndal
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Inge Bruheim
- b Rimfrost AS , Fosnavåg , Norway.,c Møreforskning AS , Ålesund , Norway
| | - Vegard Lysne
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Marie S Ramsvik
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Per M Ueland
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Jan E Nordrehaug
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Ottar K Nygård
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,d Department of Heart Disease , Haukeland University Hospital , Bergen , Norway.,e KG Jebsen Centre for Diabetes Research, University of Bergen , Bergen , Norway
| | - Rolf K Berge
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,d Department of Heart Disease , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
27
|
Schmid PM, Bouazzaoui A, Schmid K, Birner C, Schach C, Maier LS, Holler E, Endemann DH. Acute Renal Graft-Versus-Host Disease in a Murine Model of Allogeneic Bone Marrow Transplantation. Cell Transplant 2018; 26:1428-1440. [PMID: 28901194 PMCID: PMC5680976 DOI: 10.1177/0963689717720295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) is a very common complication after allogeneic bone marrow transplantation (BMT) and is associated with a poor prognosis. Generally, the kidneys are assumed to not be no direct targets of graft-versus-host disease (GvHD), and renal impairment is often attributed to several other factors occurring in the early phase after BMT. Our study aimed to prove the existence of renal GvHD in a fully major histocompatibility complex (MHC)-mismatched model of BALB/c mice conditioned and transplanted according to 2 different intensity protocols. Syngeneically transplanted and untreated animals served as controls. Four weeks after transplantation, allogeneic animals developed acute GvHD that was more pronounced in the high-intensity protocol (HIP) group than in the low-intensity protocol (LIP) group. Urea and creatinine as classic serum markers of renal function could not verify renal impairment 4 weeks after BMT. Creatinine levels were even reduced as a result of catabolic metabolism and loss of muscle mass due to acute GvHD. Proteinuria, albuminuria, and urinary N-acetyl-beta-d-glucosaminidase (NAG) levels were measured as additional renal markers before and after transplantation. Albuminuria and NAG were only significantly increased after allogeneic transplantation, correlating with disease severity between HIP and LIP animals. Histological investigations of the kidneys showed renal infiltration of T cells and macrophages with endarteriitis, interstitial nephritis, tubulitis, and glomerulitis. T cells consisted of CD4+, CD8+, and FoxP3+ cells. Renal expression analysis of allogeneic animals showed increases in indoleamine-2,3 dioxygenase (IDO), different cytokines (tumor necrosis factor α, interferon-γ, interleukin 1 α [IL-1α], IL-2, IL-6, and IL-10), and adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1), resembling findings from other tissues in acute GvHD. In summary, our study supports the entity of renal GvHD with histological features suggestive of cell-mediated renal injury. Albuminuria and urinary NAG levels may serve as early markers of renal impairment.
Collapse
Affiliation(s)
- Peter M Schmid
- 1 Department of Internal Medicine 2-Cardiology, University Medical Center, Regensburg, Germany
| | - Abdellatif Bouazzaoui
- 2 Department of Internal Medicine 3-Hematology/Oncology, University Medical Center, Regensburg, Germany.,3 Science and Technology Unit, Umm AlQura University, Makkah, Saudi Arabia.,4 Department of Medical Genetics, Umm AlQura University, Makkah, Saudi Arabia
| | - Karin Schmid
- 2 Department of Internal Medicine 3-Hematology/Oncology, University Medical Center, Regensburg, Germany
| | - Christoph Birner
- 1 Department of Internal Medicine 2-Cardiology, University Medical Center, Regensburg, Germany
| | - Christian Schach
- 1 Department of Internal Medicine 2-Cardiology, University Medical Center, Regensburg, Germany
| | - Lars S Maier
- 1 Department of Internal Medicine 2-Cardiology, University Medical Center, Regensburg, Germany
| | - Ernst Holler
- 2 Department of Internal Medicine 3-Hematology/Oncology, University Medical Center, Regensburg, Germany
| | - Dierk H Endemann
- 1 Department of Internal Medicine 2-Cardiology, University Medical Center, Regensburg, Germany
| |
Collapse
|
28
|
Kuwano N, Kato TA, Setoyama D, Sato-Kasai M, Shimokawa N, Hayakawa K, Ohgidani M, Sagata N, Kubo H, Kishimoto J, Kang D, Kanba S. Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naïve patients with major depressive disorder: An exploratory pilot case-control study. J Affect Disord 2018; 231:74-82. [PMID: 29454180 DOI: 10.1016/j.jad.2018.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/26/2017] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Early intervention in depression has been critical to prevent its negative impact including suicide. Recent blood biomarker studies for major depressive disorder (MDD) have suggested that tryptophan-kynurenine and lipid related metabolites are involved in the pathophysiology of MDD. However, there have been limited studies investigating these blood biomarkers in first-episode drug-naïve MDD, which are particularly important for early intervention in depression. METHODS As an exploratory pilot case-control study, we examined the above blood biomarkers, and analyzed how these biomarkers are associated with clinical variables in first-episode drug-naïve MDD patients, based on metabolome/lipidome analysis. RESULTS Plasma tryptophan and kynurenine levels were significantly lower in MDD group (N = 15) compared to healthy controls (HC) group (N = 19), and plasma tryptophan was the significant biomarker to identify MDD group (area under the curve = 0.740). Lower serum high density lipoprotein-cholesterol (HDL-C) was the predictive biomarker for severity of depression in MDD group (R2 = 0.444). Interestingly, depressive symptoms were variously correlated with plasma tryptophan-kynurenine and lipid related metabolites. Moreover, plasma tryptophan-kynurenine metabolites and cholesteryl esters (CEs) were significantly correlated in MDD group, but not in HC group. LIMITATIONS This study had small sample size, and we did not use the multiple test correction. CONCLUSIONS This is the first study to suggest that not only tryptophan-kynurenine metabolites but also HDL-C and CEs are important blood biomarkers for first-episode drug-naïve MDD patients. The present study sheds new light on early intervention in clinical practice in depression, and further clinical studies especially large-scale prospective studies are warranted.
Collapse
Affiliation(s)
- Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mina Sato-Kasai
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Norihiro Shimokawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Hayakawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Kubo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junji Kishimoto
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigenob Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Schafer CC, Wang Y, Hough KP, Sawant A, Grant SC, Thannickal VJ, Zmijewski J, Ponnazhagan S, Deshane JS. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment. Oncotarget 2018; 7:75407-75424. [PMID: 27705910 PMCID: PMC5340181 DOI: 10.18632/oncotarget.12249] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO−/− MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO−/− CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.
Collapse
Affiliation(s)
- Cara C Schafer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yong Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth P Hough
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anandi Sawant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefan C Grant
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor J Thannickal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Jessy S Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
30
|
Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget 2018; 7:66540-66557. [PMID: 27572319 PMCID: PMC5341819 DOI: 10.18632/oncotarget.11658] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022] Open
Abstract
Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC.
Collapse
|
31
|
Schmid PM, Bouazzaoui A, Schmid K, Birner CM, Schach C, Maier LS, Holler E, Endemann DH. Vascular Alterations in a Murine Model of Acute Graft-Versus-Host Disease Are Associated with Decreased Serum Levels of Adiponectin and an Increased Activity and Vascular Expression of Indoleamine 2,3-Dioxygenase. Cell Transplant 2018; 25:2051-2062. [PMID: 27196361 DOI: 10.3727/096368916x691646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the limiting complication after bone marrow transplantation (BMT), and its pathophysiology seems to be highly influenced by vascular factors. Our study aimed at elucidating possible mechanisms involved in vascular GVHD. For this purpose, we used a fully MHC-mismatched model of BALB/c mice conditioned according to two different intensity protocols with total body irradiation and transplantation of allogeneic (C57BL/6) or syngeneic bone marrow cells and splenocytes. Mesenteric resistance arteries were studied in a pressurized myograph. We also quantified the expression of indoleamine 2,3-dioxygenase (IDO), endothelial (eNOS), and inducible NO synthase (iNOS), as well as several pro- and anti-inflammatory cytokines. We measured the serum levels of tryptophan (trp) and kynurenine (kyn), the kyn/trp ratio (KTR) as a marker of IDO activity, and adiponectin (APN). The myographic study showed a correlation of GVHD severity after allogeneic BMT with functional vessel alterations that started with increased vessel stress and ended in eccentric vessel remodeling, increased vessel strain, and endothelial dysfunction. These alterations were accompanied by increasing IDO activity and decreasing APN levels in the serum of allogeneic animals. The mRNA expression showed significantly elevated IDO, decreased eNOS, and elevation of most studied pro- and anti-inflammatory cytokines. Our study provides further data supporting the importance of vessel alterations in GVHD and is the first to show an association of vascular GVHD with hypoadiponectinemia and an increased activity and vascular expression of IDO. Whether there is also a causative involvement of these two factors in the development of GVHD needs to be further investigated.
Collapse
Affiliation(s)
- Peter M Schmid
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Abdellatif Bouazzaoui
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Karin Schmid
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Christoph M Birner
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Schach
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine 3-Hematology and Oncology, University Medical Center Regensburg, Regensburg, Germany
| | - Dierk H Endemann
- Department of Internal Medicine 2-Cardiology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 2018; 103:35-51. [PMID: 29345056 DOI: 10.1002/jlb.4ri0917-358r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are linchpins of innate immunity, responding to invading microorganisms by initiating coordinated inflammatory and antimicrobial programs. Immediate antimicrobial responses, such as NADPH-dependent reactive oxygen species (ROS), are triggered upon phagocytic receptor engagement. Macrophages also detect and respond to microbial products through pattern recognition receptors (PRRs), such as TLRs. TLR signaling influences multiple biological processes including antigen presentation, cell survival, inflammation, and direct antimicrobial responses. The latter enables macrophages to combat infectious agents that persist within the intracellular environment. In this review, we summarize our current understanding of TLR-inducible direct antimicrobial responses that macrophages employ against bacterial pathogens, with a focus on emerging evidence linking TLR signaling to reprogramming of mitochondrial functions to enable the production of direct antimicrobial agents such as ROS and itaconic acid. In addition, we describe other TLR-inducible antimicrobial pathways, including autophagy/mitophagy, modulation of nutrient availability, metal ion toxicity, reactive nitrogen species, immune GTPases (immunity-related GTPases and guanylate-binding proteins), and antimicrobial peptides. We also describe examples of mechanisms of evasion of such pathways by professional intramacrophage pathogens, with a focus on Salmonella, Mycobacteria, and Listeria. An understanding of how TLR-inducible direct antimicrobial responses are regulated, as well as how bacterial pathogens subvert such pathways, may provide new opportunities for manipulating host defence to combat infectious diseases.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Wang Y, Qi W, Zhang L, Ying Z, Sha O, Li C, Lü L, Chen X, Li Z, Niu F, Xue F, Wang D, Ng TB, Zhang L. The novel targets of DL-3-n-butylphthalide predicted by similarity ensemble approach in combination with molecular docking study. Quant Imaging Med Surg 2017; 7:532-536. [PMID: 29184765 DOI: 10.21037/qims.2017.10.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background DL-3-n-butylphthalide (NBP) is a drug for treating acute ischemic stroke, and may play a neuroprotective role by acting on multiple active targets. The aim of this study was to predict the target proteins of NBP in mammalian cells. Methods The similarity ensemble approach search tool (SEArch), one of the commonly used public bioinformatics tools for target prediction, was employed in the experiment. The molecular docking of NBP to target proteins was performed by using the three-dimensional (3-D) crystal structure, substrate free. The software AutoDock Vina was used for all dockings. The binding targets of NBP were illustrated as 3-D and 2-D diagrams. Results Firstly, the results showed that NBP bounded to the same binding site on NAD(P)H quinone oxidoreductases (NQO1) as the substrate FAD, leading to competitive inhibition for the catalytic site with -7.2 kcal/mol. This might break the 3-D structure of NQO1 and bring about P53 degradation, resulting in a decrease of p53-mediated apoptosis in ischemic brain cells. Secondly, NBP might exert its therapeutic effect on acute ischemic stroke via modulating indoleamine 2,3-dioxygenase (IDO) bioactivity after associating with it. NBP could alleviate the depression following ischemic stroke by inhibiting IDO. Thirdly, NBP might modulate the function of NADH-ubiquinone oxidoreductase by competitively embedding itself into this complex, further affecting mitochondrial respiration in cerebrovascular diseases as an anti-oxidant agent. Conclusions Three potential target proteins of NBP were identified, which may provide a novel aspect for better understanding the protective effects of NBP on the nervous system at the molecular level.
Collapse
Affiliation(s)
- Yan Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, China
| | - Li Zhang
- Department of Physiology and Neurology, University of Connecticut, Storrs 06269USA
| | - Zhenguang Ying
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen 518060, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen 518060, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen 518060, China
| | - Lanhai Lü
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville 40202, USA
| | - Xiangyan Chen
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Feng Niu
- Central Institute of Pharmaceutical Research, Shijiazhuang Pharmaceutical Group Co., Ltd., Shijiazhuang 050035, China
| | - Fang Xue
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Dong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Tzi-Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
34
|
Kim YK, Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav Brain Res 2017; 329:6-11. [DOI: 10.1016/j.bbr.2017.04.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022]
|
35
|
Gelpi M, Hartling HJ, Ueland PM, Ullum H, Trøseid M, Nielsen SD. Tryptophan catabolism and immune activation in primary and chronic HIV infection. BMC Infect Dis 2017; 17:349. [PMID: 28511640 PMCID: PMC5434617 DOI: 10.1186/s12879-017-2456-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Kynurenine/Tryptophan ratio (KTR) is increased in HIV infection, and linked to immune activation. We hypothesized that early cART initiation results in lower KTR compared to late initiation. Furthermore, we hypothesized that KTR prior to cART is a predictor of the magnitude of subsequent reduction in immune activation. METHODS Prospective study including 57 HIV-infected individuals (primary HIV infection (N = 14), early presenters (>350 CD4+ T cells/μL, N = 24), late presenters (<200 CD4+ T cells/μL, N = 19)). Kynurenine and tryptophan were analysed by liquid chromatography-tandem mass spectrometry. Total CD4+ and CD8+ T cells were determined and proportion of activated CD38 + HLA-DR+ Tcells was measured using flow cytometry at baseline and after 6 and 12 months of cART. RESULTS At baseline, primary HIV infection had higher KTR than early presenters. However, similar KTR in primary HIV infection and early presenters was found after cART initiation, while late presenters had higher KTR at all time points. In primary HIV infection and early presenters, KTR was positively associated with proportion of activated cells at baseline. Furthermore, in early presenters the KTR at baseline was associated with proportion of activated cells after 6 and 12 months. Interestingly, in primary HIV infection the KTR at baseline was positively associated with reduction in proportion of CD8 + CD38 + HLA-DR T cells after 6 and 12 months. CONCLUSIONS Lower kynurenine/tryptophan ratio during follow-up was found after early initiation of cART. KTR in primary HIV infection and early presenters was positively associated with immune activation. Importantly, KTR in primary HIV infection predicted the magnitude of subsequent reduction in immune activation. Thus, a beneficial effect of early cART on KTR was suggested.
Collapse
Affiliation(s)
- Marco Gelpi
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Hans J Hartling
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Per M Ueland
- Section for pharmacology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Henrik Ullum
- Department of Clinical Immunology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, University Hospital Rikshospitalet, Kirkeveien 166, Oslo, Norway
| | - Susanne D Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
| |
Collapse
|
36
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Gutowska-Owsiak D, Ogg GS. Therapeutic vaccines for allergic disease. NPJ Vaccines 2017; 2:12. [PMID: 29263869 PMCID: PMC5604746 DOI: 10.1038/s41541-017-0014-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are highly prevalent worldwide and affect all age groups, contributing to a high personal and socioeconomic burden. Treatment with an “allergy vaccine” or allergen immunotherapy aims to provide long-lasting benefits by inducing unresponsiveness to the relevant antigen. The consequences of the therapy are considered disease modifying and range from dampening of the immediate immune responses to the reduction of secondary tissue remodeling. Furthermore, allergen immunotherapy interventions have a potential to slow or cease the development of additional allergic manifestations with a long-term overall effect on morbidity and quality of life. Here, we review proposed mechanisms underlying the therapeutic effects of immunotherapy for allergic diseases. Further, we discuss both standard and novel approaches and possible future directions in the development of allergen immunotherapy.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Brooks AK, Janda TM, Lawson MA, Rytych JL, Smith RA, Ocampo-Solis C, McCusker RH. Desipramine decreases expression of human and murine indoleamine-2,3-dioxygenases. Brain Behav Immun 2017; 62:219-229. [PMID: 28212884 PMCID: PMC5382643 DOI: 10.1016/j.bbi.2017.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/01/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Abundant evidence connects depression symptomology with immune system activation, stress and subsequently elevated levels of kynurenine. Anti-depressants, such as the tricyclic norepinephrine/serotonin reuptake inhibitor desipramine (Desip), were developed under the premise that increasing extracellular neurotransmitter level was the sole mechanism by which they alleviate depressive symptomologies. However, evidence suggests that anti-depressants have additional actions that contribute to their therapeutic potential. The Kynurenine Pathway produces tryptophan metabolites that modulate neurotransmitter activity. This recognition identified another putative pathway for anti-depressant targeting. Considering a recognized role of the Kynurenine Pathway in depression, we investigated the potential for Desip to alter expression of rate-limiting enzymes of this pathway: indoleamine-2,3-dioxygenases (Ido1 and Ido2). Mice were administered lipopolysaccharide (LPS) or synthetic glucocorticoid dexamethasone (Dex) with Desip to determine if Desip alters indoleamine-dioxygenase (DO) expression in vivo following a modeled immune and stress response. This work was followed by treating murine and human peripheral blood mononuclear cells (PBMCs) with interferon-gamma (IFNγ) and Desip. In vivo: Desip blocked LPS-induced Ido1 expression in hippocampi, astrocytes, microglia and PBMCs and Ido2 expression by PBMCs. Ex vivo: Desip decreased IFNγ-induced Ido1 and Ido2 expression in murine PBMCs. This effect was directly translatable to the human system as Desip decreased IDO1 and IDO2 expression by human PBMCs. These data demonstrate for the first time that an anti-depressant alters expression of Ido1 and Ido2, identifying a possible new mechanism behind anti-depressant activity. Furthermore, we propose the assessment of PBMCs for anti-depressant responsiveness using IDO expression as a biomarker.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robin A Smith
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Cecilia Ocampo-Solis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
39
|
Won E, Kim YK. Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol 2017; 14:665-73. [PMID: 27640517 PMCID: PMC5050399 DOI: 10.2174/1570159x14666151208113006] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/17/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
The autonomic nervous system is one of the major neural pathways activated by stress. In situations that are often associated with chronic stress, such as major depressive disorder, the sympathetic nervous system can be continuously activated without the normal counteraction of the parasympathetic nervous system. As a result, the immune system can be activated with increased levels of pro-inflammatory cytokines. These inflammatory conditions have been repeatedly observed in depression. In the search for the mechanism by which the immune system might contribute to depression, the enhanced activity of indoleamine 2,3-dioxygenase by pro-inflammatory cytokines has been suggested to play an important role. Indoleamine 2,3-dioxygenase is the first enzyme in the kynurenine pathway that converts tryptophan to kynurenine. Elevated activity of this enzyme can cause imbalances in downstream kynurenine metabolites. This imbalance can induce neurotoxic changes in the brain and create a vulnerable glial-neuronal network, which may render the brain susceptible to depression. This review focuses on the interaction between stress, the autonomic nervous system and the immune system which can cause imbalances in the kynurenine pathway, which may ultimately lead to major depressive disorder.
Collapse
Affiliation(s)
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 425-021, Republic of Korea
| |
Collapse
|
40
|
Larkin PB, Sathyasaikumar KV, Notarangelo FM, Funakoshi H, Nakamura T, Schwarcz R, Muchowski PJ. Tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 make separate, tissue-specific contributions to basal and inflammation-induced kynurenine pathway metabolism in mice. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2345-2354. [PMID: 27392942 PMCID: PMC5808460 DOI: 10.1016/j.bbagen.2016.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/25/2016] [Accepted: 07/04/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.
Collapse
Affiliation(s)
- Paul B Larkin
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiroshi Funakoshi
- Center for Advanced Research and Education (CARE), Asahikawa Medical University, 1-1-1- Higashinijo Midorigaoka, Asahikawa 078-8510, Japan
| | | | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Paul J Muchowski
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA; The Taube-Koret Center for Huntington's Disease Research, San Francisco, CA, USA.
| |
Collapse
|
41
|
Brooks AK, Lawson MA, Rytych JL, Yu KC, Janda TM, Steelman AJ, McCusker RH. Immunomodulatory Factors Galectin-9 and Interferon-Gamma Synergize to Induce Expression of Rate-Limiting Enzymes of the Kynurenine Pathway in the Mouse Hippocampus. Front Immunol 2016; 7:422. [PMID: 27799931 PMCID: PMC5065983 DOI: 10.3389/fimmu.2016.00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Elevated levels of circulating pro-inflammatory cytokines are associated with symptomology of several psychiatric disorders, notably major depressive disorder. Symptomology has been linked to inflammation/cytokine-dependent induction of the Kynurenine Pathway. Galectins, like pro-inflammatory cytokines, play a role in neuroinflammation and the pathogenesis of several neurological disorders but without a clearly defined mechanism of action. Their involvement in the Kynurenine Pathway has not been investigated. Thus, we searched for a link between galectins and the Kynurenine Pathway using in vivo and ex vivo models. Mice were administered LPS and pI:C to determine if galectins (Gal's) were upregulated in the brain following in vivo inflammatory challenges. We then used organotypic hippocampal slice cultures (OHSCs) to determine if Gal's, alone or with inflammatory mediators [interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), interleukin-1beta (IL-1β), polyinosine-polycytidylic acid (pI:C), and dexamethasone (Dex; synthetic glucocorticoid)], would increase expression of indoleamine/tryptophan-2,3-dioxygenases (DO's: Ido1, Ido2, and Tdo2; Kynurenine Pathway rate-limiting enzymes). In vivo, hippocampal expression of cytokines (IL-1β, TNFα, and IFNγ), Gal-3, and Gal-9 along with Ido1 and Ido2 were increased by LPS and pI:C (bacterial and viral mimetics). Of the cytokines induced in vivo, only IFNγ increased expression of two Ido1 transcripts (Ido1-FL and Ido1-v1) by OHSCs. Although ineffective alone, Gal-9 accentuated IFNγ-induced expression of only Ido1-FL. Similarly, IFNγ induced expression of several Ido2 transcripts (Ido2-v1, Ido2-v3, Ido2-v4, Ido2-v5, and Ido2-v6). Gal-9 accentuated IFNγ-induced expression of only Ido2-v1. Surprisingly, Gal-9 alone, slightly but significantly, induced expression of Tdo2 (Tdo2-v1 and Tdo2-v2, but not Tdo2-FL). These effects were specific to Gal-9 as Gal-1 and Gal-3 did not alter DO expression. These results are the first to show that brain Gal-9 is increased during LPS- and pI:C-induced neuroinflammation. Increased expression of Gal-9 may be critical for neuroinflammation-dependent induction of DO expression, either acting alone (Tdo2-v1 and Tdo2-v2) or to enhance IFNγ activity (Ido1-FL and Ido2-v1). Although these novel actions of Gal-9 are described for hippocampus, they have the potential to operate as DO-dependent immunomodulatory processes outside the brain. With the expanding implications of Kynurenine Pathway activation across multiple immune and psychiatric disorders, this synergy provides a new target for therapeutic development.
Collapse
Affiliation(s)
- Alexandra K Brooks
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marcus A Lawson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Rytych
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kevin C Yu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiffany M Janda
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert H McCusker
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Pathology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
42
|
Lee JH, Ryu JM, Han YS, Zia MF, Kwon HY, Noh H, Han HJ, Lee SH. Fucoidan improves bioactivity and vasculogenic potential of mesenchymal stem cells in murine hind limb ischemia associated with chronic kidney disease. J Mol Cell Cardiol 2016; 97:169-79. [PMID: 27216370 DOI: 10.1016/j.yjmcc.2016.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/28/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is a significant risk factor for cardiovascular and peripheral vascular disease. Although mesenchymal stem cell (MSC)-based therapy is a promising strategy for treatment of ischemic diseases associated with CKD, the associated pathophysiological conditions lead to low survival and proliferation of transplanted MSCs. To address these limitations, we investigated the effects of fucoidan, a sulfated polysaccharide, on the bioactivity of adipose tissue-derived MSCs and the potential of fucoidan-treated MSCs to improve neovascularization in ischemic tissues of CKD mice. Treatment of MSCs with fucoidan increased their proliferative potential and the expression of cell cycle-associated proteins, such as cyclin E, cyclin dependent kinase (CDK) 2, cyclin D1, and CDK4, via focal adhesion kinase and the phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt axis. Moreover, fucoidan enhanced the immunomodulatory activity of MSCs through the ERK-IDO-1 signal cascade. Fucoidan was found to augment the proliferation, incorporation, and endothelial differentiation of transplanted MSCs at ischemic sites in CKD mice hind limbs. In addition, transplantation of fucoidan-treated MSCs enhanced the ratio of blood flow and limb salvage in CKD mice with hind limb ischemia. To our knowledge, our findings are the first to reveal that fucoidan enhances the bioactivity of MSCs and improves their neovascularization in ischemic injured tissues of CKD. In conclusion, fucoidan-treated MSCs may provide an important pathway toward therapeutic neovascularization in patients with CKD.
Collapse
Affiliation(s)
- Jun Hee Lee
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, Republic of Korea; Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| | - Mohammad Farid Zia
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 330-930, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 330-930, Republic of Korea
| | - Hyunjin Noh
- Department of Internal Medicine, Soonchunhyang University, Seoul, Republic of Korea; Hyonam Kidney Laboratory, Soonchunhyang University, Seoul, Republic of Korea.
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, and BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 151-741, Republic of Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea.
| |
Collapse
|
43
|
Karageorgas T, Fragioudaki S, Nezos A, Karaiskos D, Moutsopoulos HM, Mavragani CP. Fatigue in Primary Sjögren's Syndrome: Clinical, Laboratory, Psychometric, and Biologic Associations. Arthritis Care Res (Hoboken) 2016; 68:123-31. [PMID: 26315379 DOI: 10.1002/acr.22720] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To identify independent contributors of fatigue in primary Sjögren's syndrome (SS) patients, taking into account clinical, laboratory, and psychological features, and to explore the potential role of interferon (IFN)-induced gene indoleamine 2,3-dioxygenase (IDO-1), anti-21-hydroxylase (anti-21[OH]) antibodies, and soluble BAFF. METHODS Detailed clinical and laboratory characteristics were recorded for 106 primary SS patients. The Functional Assessment of Chronic Illness Therapy-Fatigue, Zung Depression Scale, State-Trait Anxiety Inventory, Eysenck Personality Questionnaire Scale, and Athens Insomnia Scale were adopted to assess fatigue, depression, anxiety, and sleep disturbances, respectively. Peripheral whole blood expression levels of IDO-1, as well as type I and II IFN-induced genes were calculated using quantitative reverse transcriptase-polymerase chain reaction. Serum anti-21(OH) antibodies and soluble BAFF levels were determined by a radioimmunoassay and an enzyme-linked immunosorbent assay, respectively. Univariate and multivariate models were performed to identify determinants of fatigue. RESULTS Fatigue was detected in 32 of 106 (30.2%) primary SS patients. In univariate analysis, fatigue was associated with arthralgias/myalgias, fibromyalgia hydroxychloroquine therapy, both state and trait anxiety scores, depression, and neuroticism, as well as impaired sleep patterns. Multivariate analysis revealed neuroticism (odds ratio [OR] 6.9, [95% confidence interval (95% CI) 1.7-28.0]), depression (OR 3.0 [95% CI 0.8-11.0]), and fibromyalgia (OR 5.5 [95% CI 1.1-27.7]) as independent fatigue contributors. Soluble BAFF levels, anti-21(OH) autoantibodies, and IDO-1 messenger RNA expression did not significantly differ between fatigued and nonfatigued primary SS patients. CONCLUSION Depression, neuroticism, and fibromyalgia play a major role in primary SS-associated fatigue and should be addressed in clinical practice, with active collaboration between rheumatologists and mental health professionals. Further studies are warranted in order to explore underlying pathophysiologic pathways that might explain fatigue in the setting of primary SS.
Collapse
Affiliation(s)
| | | | - Adrianos Nezos
- National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
44
|
Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. JOURNAL OF AMINO ACIDS 2016; 2016:8952520. [PMID: 26881063 PMCID: PMC4737446 DOI: 10.1155/2016/8952520] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022]
Abstract
L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.
Collapse
|
45
|
The Janus-faced nature of IDO1 in infectious diseases: challenges and therapeutic opportunities. Future Med Chem 2015; 8:39-54. [PMID: 26692277 DOI: 10.4155/fmc.15.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inhibition of IDO1 is a strategy pursued to develop novel therapeutic treatments for cancer. Recent years have witnessed growing evidence that the enzyme plays a pivotal role in viral, bacterial and fungal infections. These studies have underscored the Janus-faced nature of IDO1 in the regulation of host-pathogen interactions and commensalism. Starting with an outlook on the advances in the structural features of IDO1, herein we report recent findings that pinpoint the involvement of IDO1 in infectious diseases. Then, we present an overview of IDO1 inhibitors that have been enrolled in clinical trials as well as other distinct modulators of the enzyme that may enable further investigations of IDO1 and its role in infectious disease.
Collapse
|
46
|
Mouratidis PX, George AJ. Regulation of indoleamine 2,3-dioxygenase in primary human saphenous vein endothelial cells. J Inflamm Res 2015; 8:97-106. [PMID: 26056484 PMCID: PMC4446016 DOI: 10.2147/jir.s82202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase (IDO) is an enzyme associated with the regulation of immune responses. Cytokines such as IFNγ induce its expression in endothelial cells originating from immune-privileged sites. In this study, we investigate regulators of IDO in primary endothelial cells from a non-immune-privileged site and determine whether IDO expression affects immune cell behavior. METHODS IDO expression was determined using real-time quantitative polymerase chain reaction and immunoblotting. IDO activity was estimated using an IDO enzyme assay. Primary cells were transfected using microporation, and T-cell migration was determined using a cell transmigration assay. RESULTS IDO is expressed in human saphenous vein endothelial cells after stimulation with IFNγ but not after treatment with TNFα, IL-1β, IL-2, IL-4, IL-6, or IL-10. VEGFβ and heparin negatively regulate IFNγ-driven increases in IDO. Overexpression of IDO in endothelial cells does not affect transmigration of T-cells. CONCLUSION IDO is expressed in human saphenous vein endothelial cells after stimulation with IFNγ. Heparin and angiogenesis stimulators such as VEGFβ negatively regulate its expression.
Collapse
|
47
|
Larussa T, Leone I, Suraci E, Nazionale I, Procopio T, Conforti F, Abenavoli L, Hribal ML, Imeneo M, Luzza F. Enhanced expression of indoleamine 2,3-dioxygenase in Helicobacter pylori-infected human gastric mucosa modulates Th1/Th2 pathway and interleukin 17 production. Helicobacter 2015; 20:41-8. [PMID: 25308308 DOI: 10.1111/hel.12174] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Indoleamine 2,3 dioxygenase (IDO) interferes with immune responses. Host immune response against Helicobacter pylori is involved in the persistence of the infection and its related diseases. AIM To investigate the role of IDO in the regulation of Th1/Th2 and Th17 pathways in H. pylori infection. METHODS Gastric biopsy samples were taken from 42 patients who underwent endoscopy and evaluated for the expression of IDO by Western blotting. Gastritis was assessed by the Sydney system score. In a subgroup of patients, biopsies were treated with the IDO inhibitor 1-methyl-L-tryptophan and the expression of interferon-γ (IFN-γ) mRNA and that of T-bet, interleukin-17 (IL-17), and IL-4 determined by real-time PCR and Western blotting, respectively. RESULTS IDO expression was found to be enhanced (p = .001) in gastric biopsies from H. pylori-infected (n = 18) compared with uninfected (n = 24) patients. Levels of IDO expression were inversely related to the gastritis score (r = -.684, p = .002) in H. pylori-infected gastric mucosa, but not in uninfected mucosa. In gastric biopsy cultures, IDO inhibition increased the expression of IFN-γ mRNA (p = .014), T-bet (p = .045), and IL-17 (p = .02) while decreasing that of IL-4 (p = .048). CONCLUSIONS In H. pylori-infected human gastric mucosa, an enhanced expression of IDO is capable of modulating Th1/Th2 and Th17 pathways. This mechanism lowers gastric inflammation, possibly contributing to the persistence of H. pylori. Targeting the IDO pathway may be a new strategy for modulating H. pylori-induced mucosal immune response.
Collapse
Affiliation(s)
- Tiziana Larussa
- Department of Health Science, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Interferon-γ induces a tryptophan-selective amino acid transporter in human colonic epithelial cells and mouse dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:453-62. [DOI: 10.1016/j.bbamem.2014.10.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 01/29/2023]
|
49
|
Love AC, Schwartz I, Petzke MM. Induction of indoleamine 2,3-dioxygenase by Borrelia burgdorferi in human immune cells correlates with pathogenic potential. J Leukoc Biol 2015; 97:379-90. [PMID: 25420916 PMCID: PMC4304421 DOI: 10.1189/jlb.4a0714-339r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022] Open
Abstract
Borrelia burgdorferi, the bacterial agent of Lyme disease, induces the production of type I IFNs by human DCs through TLR7 and TLR9 signaling. This type I IFN response occurs in a genotype-dependent manner, with significantly higher levels of IFN-α elicited by B. burgdorferi strains that have a greater capacity for causing disseminated infection. A B. burgdorferi strain that was previously shown to induce IFN-α was found to elicit significantly higher levels of IDO1 protein and its downstream metabolite, kynurenine, compared with a B. burgdorferi mutant that lacks a single linear plasmid (lp36); this mutant is unable to induce IFN-α and is severely attenuated for infectivity in mice. Production of IDO by mDC and pDC populations, present within human PBMCs, was concomitant with increased expression of the DC maturation markers, CD83 and CCR7. The defects in IDO production and expression of CD83 and CCR7 could be restored by complementation of the mutant with lp36. Maximal IDO production in response to the wild-type strain was dependent on contributions by both type I IFN and IFN-γ, the type II IFN. Induction of IDO was mediated by the same TLR7-dependent recognition of B. burgdorferi RNA that contributes to the production of type I IFNs by human DCs. The ability of IFN-α-inducing B. burgdorferi strains to stimulate production of IDO and kynurenines may be a mechanism that is used by the pathogen to promote localized immunosuppression and facilitate hematogenous dissemination.
Collapse
Affiliation(s)
- Andrea C Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Mary M Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
50
|
Műzes G, Sipos F, Fűri I, Constantinovits M, Spisák S, Wichmann B, Valcz G, Tulassay Z, Molnár B. Preconditioning with intravenous colitic cell-free DNA prevents DSS-colitis by altering TLR9-associated gene expression profile. Dig Dis Sci 2014; 59:2935-46. [PMID: 25217236 DOI: 10.1007/s10620-014-3325-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 08/07/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Presence of cell-free-circulating DNA (fcDNA) sequences in sera of patients with inflammatory bowel diseases (IBD) is a well-established phenomenon. Potential roles of fcDNA in diagnosis, prognosis and therapy monitoring of chronic inflammatory colonic disorders have already been examined, albeit its actual biological function still remains unclear. AIMS AND METHODS In the present experiment, we studied the immunobiological effects of isolated fcDNA of normal and inflammatory origin administered intravenously to mice prior to induction of dextran sulfate sodium (DSS)-colitis. In addition to evaluate the current disease and histological activity, changes of the gene expression profile in isolated lamina propria cells upon TLR9 ligation were assayed. RESULTS A single intravenous dose of fcDNA pretreatment with colitic fcDNA exhibited beneficial response concerning the clinical and histological severity of DSS-colitis as compared to effects of normal fcDNA. Pretreatment with colitic fcDNA substantially altered the expression of several TLR9-related and inflammatory cytokine genes in a clinically favorable manner. CONCLUSIONS During the process of acute colitis, the subsequent inflammatory environment presumably results in changes of fcDNA with the potential to facilitate the downregulation of inflammation and improvement of regeneration. Thus, preconditioning of mice with colitis-derived fcDNA via TLR9 signaling could exert a tissue-protective effect and influence beneficially the course of DSS-colitis. Elucidating mechanisms of immune response alterations by nucleic acids may provide further insight into the etiology of IBD and develop the basis of novel immunotherapies.
Collapse
Affiliation(s)
- Györgyi Műzes
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Street 46, Budapest, 1088, Hungary,
| | | | | | | | | | | | | | | | | |
Collapse
|