1
|
Wang J, Wang Z, Yu Y, Cheng S, Wu J. Advances in research on metabolic dysfunction-associated steatotic liver disease. Life Sci 2025; 362:123362. [PMID: 39761743 DOI: 10.1016/j.lfs.2024.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The global increase in obesity-related metabolic disorders has led to metabolic dysfunction-associated steatotic liver disease (MASLD) emerging as one of the most prevalent chronic liver disease worldwide. Despite growing concerns, the exact pathogenesis of MASLD remains unclear and no definitive treatments have been made available. Consequently, the need for comprehensive research on MASLD is more critical than ever. Gaining insight into the mechanisms of the disease can lay the groundwork for identifying new therapeutic targets and can facilitate the development of diagnostic tools that enable the early detection and intervention of MASLD. Research has discovered a multifactorial etiology for MASLD, suggesting that potential therapeutic strategies should be considered from a variety of perspectives. This review delves into the pathogenesis of MASLD, current diagnostic approaches, potential therapeutic targets, the status of clinical trials for emerging drugs, and the most promising treatment methods available today. With a focus on therapeutic targets, the aim is to offer fresh insights and guide for future research in the treatment of MASLD.
Collapse
Affiliation(s)
- Jiawang Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhongyu Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Yao Yu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Si Cheng
- Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Department of Pharmacology, Hubei University of Medicine, Shiyan 440070, China; Beijing Tiantan Hospital, Capital Medical University, Beijing 10070, China; China National Clinical Research Center for Neurological Diseases, Beijing 10070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 10070, China.
| |
Collapse
|
2
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, FitzGerald JA, Crispie F, Cotter PD, Aranaz P. Pediococcus acidilactici CECT 9879 (pA1c®) and heat inactivated pA1c® (pA1c® HI) ameliorate gestational diabetes mellitus in mice. Life Sci 2025; 362:123359. [PMID: 39761739 DOI: 10.1016/j.lfs.2024.123359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/14/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
AIMS Gestational diabetes mellitus (GDM) is the most common complication of pregnancy and is known to be associated with an increased risk of postpartum metabolic disease. Based on the important role that the intestinal microbiota plays in blood glucose regulation and insulin sensitivity, supplementation of probiotic and postbiotic strains could improve glucose metabolism and tolerance in GDM. MAIN METHODS 56 4-week-old female C57BL/6J-mice were divided into 4 groups (n = 14 animals/group): control (CNT), high-fat/high-sucrose (HFS), pA1c® alive (pA1c®) and heat-inactivated pA1c® (pA1c®HI). Serum biochemical parameters were analyzed, gene expression analyses were conducted, and fecal microbiota composition was evaluated by shot-gun sequencing. KEY FINDINGS pA1c®- and pA1c® HI-supplemented groups presented reduced fasting blood glucose levels and reduced insulin resistance during gestation and exhibited lower visceral adiposity and increased muscle tissue, together with an improvement in intrahepatic TGs content and ALT levels. Liver gene expression analyses demonstrated that pA1c® and pA1c® HI activities were mediated by modulation of the insulin receptor, but also by an overexpression of beta-oxidation genes, and downregulation of fatty acid biosynthesis genes. Shot-gun metagenomics demonstrated that Pediococcus acidilactici was detected in the feces of all the pA1c® and pA1c® HI-group after the supplementation period (75 % of the microbial profile was Pediococcus acidilactici) in only nine weeks of supplementation, and modulated gut microbiota composition. SIGNIFICANCE These results may be considered as future perspectives for the development of preventive, even therapeutic options for GDM based on hyperglycemia reduction, blood glucose regulation, hepatic steatosis attenuation and insulin resistance alleviation.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain; University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Fermín I Milagro
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - María Oneca
- Genbioma Aplicaciones SL. Polígono Industrial Noain-Esquiroz, Calle S, Nave 4, Esquíroz, Navarra, Spain
| | - Ignacio Goyache
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Miguel López-Yoldi
- University of Navarra, Faculty of Pharmacy & Nutrition, Department of Nutrition, Food Science & Physiology, 31008 Pamplona, Spain; University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jamie A FitzGerald
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, P61 C996 Cork, Ireland; APC Microbiome Ireland, University College Cork, College Road, T12 YT20 Cork, Ireland
| | - Paula Aranaz
- University of Navarra, Center for Nutrition Research, c/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
3
|
Wang YF, Wang XY, Chen BJ, Yang YP, Li H, Wang F. Impact of microplastics on the human digestive system: From basic to clinical. World J Gastroenterol 2025; 31:100470. [PMID: 39877718 PMCID: PMC11718642 DOI: 10.3748/wjg.v31.i4.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention. We reviewed the literature regarding toxicity of MPs and observed that they have different effects on multiple organs of the digestive system. The mechanism may be related to the toxic effects of MPs themselves, interactions with various substances in the biological body, and participation in various signaling pathways to induce adverse reactions as a carrier of toxins to increase the time and amount of body absorption. Based on the toxicity mechanism of MPs, we propose specific suggestions to provide a theoretical reference for the government and relevant departments.
Collapse
Affiliation(s)
- Ya-Fen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bang-Jie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Pin Yang
- First Clinical Medical College, Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
4
|
Michalopoulou E, Thymis J, Lampsas S, Pavlidis G, Katogiannis K, Vlachomitros D, Katsanaki E, Kostelli G, Pililis S, Pliouta L, Kountouri A, Papanikolaou IS, Lambadiari V, Ikonomidis I. The Triad of Risk: Linking MASLD, Cardiovascular Disease and Type 2 Diabetes; From Pathophysiology to Treatment. J Clin Med 2025; 14:428. [PMID: 39860434 PMCID: PMC11765821 DOI: 10.3390/jcm14020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and it is not only the keystone precursor of eventual liver-related morbidity, but it also places patients at considerably higher cardiovascular risk, which is still a leading cause of death in these patients. The most important common underlying pathophysiological mechanisms in these diseases are primarily related to insulin resistance, chronic inflammation and oxidative stress. The presence of MASLD with cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) elevates the risk for poor outcomes, thus this review highlights a method to the therapeutic approaches. Given the intertwined nature of MASLD, T2DM, and CVD, there is an urgent need for therapeutic strategies that address all three conditions. Although lifestyle changes are important as treatment, medication plays a crucial role in managing hyperglycemia, enhancing liver function and lowering cardiovascular risk. The onset and progression of MASLD should be addressed through a multifaceted therapeutic approach, targeting inflammatory, immune, metabolic, oxidative stress, hormonal and gutaxis pathways, alongside the treatment strategies for T2DM. In this review, we discuss the effects of antidiabetic drugs with an impact on both liver outcomes and cardiovascular risk in patients affected by MASLD, T2DM and CDV.
Collapse
Affiliation(s)
- Eleni Michalopoulou
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - John Thymis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Stamatios Lampsas
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - George Pavlidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Konstantinos Katogiannis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Dimitrios Vlachomitros
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Eleni Katsanaki
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Gavriella Kostelli
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| | - Sotirios Pililis
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Loukia Pliouta
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Aikaterini Kountouri
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ioannis S. Papanikolaou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Rimini 1, Chaidari, 12462 Athens, Greece;
| | - Vaia Lambadiari
- Diabetes Center, 2nd Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (S.L.); (S.P.); (L.P.); (A.K.); (V.L.)
| | - Ignatios Ikonomidis
- 2nd Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece; (E.M.); (J.T.); (G.P.); (K.K.); (D.V.); (E.K.); (G.K.)
| |
Collapse
|
5
|
Ding YY, Lan J, Wang Y, Pan Y, Song T, Liu S, Gu Z, Ge Y. Structure characterization of Grifola frondosa polysaccharide and its effect on insulin resistance in HFD-fed mice. NPJ Sci Food 2025; 9:3. [PMID: 39774946 PMCID: PMC11707143 DOI: 10.1038/s41538-024-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2. The molecular weight of GFP-N1 and GFP-N2 was 3.323×103 kDa and 10.8 kDa, respectively. GFP-N1 was composed of glucose and galactose and 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP-N2 was composed of glucose, galactose and mannose and 1 → 2, 1 → 3, 1 → 4, and 1 → 6 glycosidic bonds. GFP could significantly relieve the insulin resistance induced by HFD. GFP significantly alleviated gut microbiota disturbance caused by HFD and increased the production of short-chain fatty acids, and further reduced the expression of LPS/TLR4 inflammatory pathway. GFP significantly reduced the oxidative stress induced by HFD, increased the expression of the Nrf2/ARE signaling pathway. These results indicated that GFP could be developed as a potential ingredient for the management of insulin resistance.
Collapse
Affiliation(s)
- Yin-Yi Ding
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jinchi Lan
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxin Wang
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuxiang Pan
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Tianyuan Song
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co. Ltd, Lishui, 323800, China
| | - Zhenyu Gu
- National Experimental Teaching Demonstration Center of Food Engineering and Quality and Safety, Food (Edible Fungi) Processing Technology Research Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yujun Ge
- Central blood station of Jiaxing, Jiaxing, 314000, China
| |
Collapse
|
6
|
Burger K, Jung F, Staltner R, Csarmann K, Schweiger K, Brandt A, Baumann A, Scholda J, Kopp F, Bergheim I. A weekly 4-methylpyrazole treatment attenuates the development of non-obese metabolic dysfunction-associated steatotic liver disease (MASLD) in male mice: Role of JNK. Eur J Clin Invest 2025; 55:e14320. [PMID: 39344016 PMCID: PMC11628662 DOI: 10.1111/eci.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND 4-methylpyrazole (4MP, fomepizole) is a competitive inhibitor of alcohol dehydrogenase (ADH) preventing the metabolism of ethylene glycol and methanol, respectively, into their toxic metabolites. 4MP seems also to possess a potential in the treatment of intoxication from other substance, for example, acetaminophen, and to modulate JNK-dependent signalling. Here, we determined if a treatment with 4MP once weekly affects the development of diet-induced non-obese metabolic dysfunction-associated steatotic liver disease (MASLD) in C57BL/6 mice. METHODS Male C57BL/6 mice (6-8 weeks old, n = 7-8/group) were pair-fed either a liquid control diet (C) or a liquid sucrose-, fat- and cholesterol-rich diet (SFC) for 8 weeks while being concomitantly treated with 4MP (50 mg/kg bw i.p.) or vehicle once a week. Liver damage, inflammatory markers and glucose tolerance were assessed. Moreover, in endotoxin-challenged J774A.1 cells pretreated with 4MP, pro-inflammatory markers were assessed. RESULTS The concomitant treatment of SFC-fed mice with 4MP attenuated the increase in JNK phosphorylation and pro-inflammatory markers like IFNγ, IL-6 and 3-nitrotyrosine protein adducts in liver tissue found in vehicle-treated SFC-fed mice, while not affecting impairments of glucose tolerance or the increase in portal endotoxin levels. Moreover, a pretreatment of endotoxin-stimulated J774A.1 cells with 4MP significantly attenuated the increases in JNK phosphorylation and pro-inflammatory mediators like IL-6 and Mcp1. CONCLUSIONS Taken together, our results suggest that a treatment with 4MP once weekly attenuates the activation of JNK and dampens the development of non-obese MASLD in mice.
Collapse
Affiliation(s)
- Katharina Burger
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Finn Jung
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Katja Csarmann
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Kerstin Schweiger
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| | - Julia Scholda
- Department of Pharmaceutical Sciences, Clinical Pharmacy GroupUniversity of ViennaViennaAustria
| | - Florian Kopp
- Department of Pharmaceutical Sciences, Clinical Pharmacy GroupUniversity of ViennaViennaAustria
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional ScienceUniversity of ViennaViennaAustria
| |
Collapse
|
7
|
Mohamed AS, Ahmad HM, Sharawy MA, Kamel FMM. The effect of vildagliptin versus metformin on hepatic steatosis in type 2 diabetic patients: a randomized controlled trial. BMC Pharmacol Toxicol 2024; 25:94. [PMID: 39673064 PMCID: PMC11645785 DOI: 10.1186/s40360-024-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The risk of hepatic steatosis (HS) is elevated in patients with type 2 diabetes mellitus (T2D). Antidiabetic medications may contribute to the prevention or treatment of HS. This study aimed to compare the effects of vildagliptin and metformin on hepatic steatosis in newly diagnosed T2D patients, using the Hepatic Steatosis Index (HSI) and ultrasound grading. METHODS The study included 246 newly diagnosed T2D patients who were randomly assigned to two groups. The first group (117 patients) received 50 mg of vildagliptin orally twice daily. The second group (129 patients) received 500 mg of metformin orally twice daily with meals, and the dosage could be gradually increased by 500 mg per week, up to a maximum daily dose of 2000 mg. Baseline and 6-month follow-up assessments included fasting blood glucose (FBG), HbA1c, weight, body mass index (BMI), waist circumference (WC), hip circumference (HC), the Hepatic Steatosis Index (HSI), and hepatic steatosis grading via ultrasound. RESULTS Both groups showed significant improvements in FBG, HbA1c, weight, BMI, WC, HC, HSI, and ultrasound grading of hepatic steatosis from baseline to the 6-month follow-up (p < 0.001). The metformin group demonstrated significantly greater reductions in weight and BMI compared to the vildagliptin group (p = 0.001 and p = 0.009, respectively). However, there was no significant difference between the two groups in terms of hepatic steatosis improvement on ultrasound. Correlation analysis revealed that HSI was significantly associated with HbA1c, BMI, WC, and HC (p < 0.001 for all), as well as FBG (p = 0.008), but not with age. The lipid profile, particularly total cholesterol and LDL, was identified as a stronger predictor of hepatic steatosis, based on high AUC, sensitivity, and specificity values. CONCLUSION Both vildagliptin and metformin are effective in improving glycemic control in newly diagnosed T2D patients, as evidenced by reductions in FBG and HbA1c levels. Additionally, both drugs significantly reduced the HSI, body weight, and BMI, with metformin showing a more pronounced effect on weight and BMI. Both vildagliptin and metformin effectively decreased hepatic steatosis in T2D patients. Total cholesterol and LDL are important predictors of hepatic steatosis. TRIAL REGISTRATION Trial Registration ID: UMIN000055121, registered on 30/07/2024 (retrospectively registered).
Collapse
Affiliation(s)
- Asmaa S Mohamed
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Port said University, Port said, Egypt.
| | - Hosam M Ahmad
- Internal Medicine and Biomedical Chemistry Departments, Egypt Ministry of Health and Population, Minia, Egypt
| | - Mohammed A Sharawy
- Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Fatma M M Kamel
- Internal Medicine Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
8
|
Ribeiro AH, Crnkovic M, Pereira JL, Fisberg RM, Sarti FM, Rogero MM, Heider D, Cerqueira A. AnchorFCI: harnessing genetic anchors for enhanced causal discovery of cardiometabolic disease pathways. Front Genet 2024; 15:1436947. [PMID: 39717478 PMCID: PMC11663939 DOI: 10.3389/fgene.2024.1436947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Cardiometabolic diseases, a major global health concern, stem from complex interactions of lifestyle, genetics, and biochemical markers. While extensive research has revealed strong associations between various risk factors and these diseases, latent confounding and limited causal discovery methods hinder understanding of their causal relationships, essential for mechanistic insights and developing effective prevention and intervention strategies. Methods We introduce anchorFCI, a novel adaptation of the conservative Really Fast Causal Inference (RFCI) algorithm, designed to enhance robustness and discovery power in causal learning by strategically selecting and integrating reliable anchor variables from a set of variables known not to be caused by the variables of interest. This approach is well-suited for studies of phenotypic, clinical, and sociodemographic data, using genetic variables that are recognized to be unaffected by these factors. We demonstrate the method's effectiveness through simulation studies and a comprehensive causal analysis of the 2015 ISA-Nutrition dataset, featuring both anchorFCI for causal discovery and state-of-the-art effect size identification tools from Judea Pearl's framework, showcasing a robust, fully data-driven causal inference pipeline. Results Our simulation studies reveal that anchorFCI effectively enhances robustness and discovery power while handles latent confounding by integrating reliable anchor variables and their non-ancestral relationships. The 2015 ISA-Nutrition dataset analysis not only supports many established causal relationships but also elucidates their interconnections, providing a clearer understanding of the complex dynamics and multifaceted nature of cardiometabolic risk. Discussion AnchorFCI holds significant potential for reliable causal discovery in complex, multidimensional datasets. By effectively integrating non-ancestral knowledge and addressing latent confounding, it is well-suited for various applications requiring robust causal inference from observational studies, providing valuable insights in epidemiology, genetics, and public health.
Collapse
Affiliation(s)
- Adèle H. Ribeiro
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Milena Crnkovic
- Department of Statistics, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Jaqueline Lopes Pereira
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Flavia Mori Sarti
- School of Arts, Sciences and Humanities (EACH), University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Dominik Heider
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Andressa Cerqueira
- Department of Statistics, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
9
|
Luo Y, Sun S, Zhang Y, Liu S, Zeng H, Li JE, Huang J, Fang L, Yang S, Yu P, Liu J. Effects of Oltipraz on the Glycolipid Metabolism and the Nrf2/HO-1 Pathway in Type 2 Diabetic Mice. Drug Des Devel Ther 2024; 18:5685-5700. [PMID: 39654602 PMCID: PMC11626977 DOI: 10.2147/dddt.s485729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Oltipraz has various applications, including for treating cancer, liver fibrosis, and cirrhosis. However, its role in regulating metabolic processes, inflammation, oxidative stress, and insulin resistance in STZ-induced T2DM remains unclear. Hence, a comprehensive understanding of how oltipraz ameliorates diabetes, particularly inflammation and oxidative stress, is imperative. Methods The negative control (NC), T2DM model (T2DM), and T2DM models treated with oltipraz (OLTI) and metformin (MET) were constructed. The RNA sequencing (RNA-Seq) was performed on the pancreatic tissues. H&E staining was conducted on the liver and pancreatic tissues. The intraperitoneal glucose tolerance test (IPGTT), blood glucose and lipids, inflammatory factors, and oxidative stress indexes were measured. qPCR and Western blotting examined the nuclear factor erythroid-derived 2-like 2 (Nrf2)/ hemoglobin-1 (HO-1) signaling pathway, cell apoptosis-related genes, and Reg3g levels. Immunofluorescence (IF) analysis of the pancreas was performed to measure insulin secretion. Results A total of 256 DEGs were identified in OLTI_vs_T2DM, and they were mainly enriched in circadian rhythm, cAMP, AMPK, insulin, and MAPK signaling pathways. Moreover, Reg3g exhibits reduced expression in T2DM_vs_NC, and elevated expression in OLTI_vs_T2DM, yet remains unchanged in MET_vs_T2DM. OLTI reduced fasting blood glucose and alleviated T2DM-induced weight loss. It improved blood glucose and insulin resistance, decreased blood lipid metabolism, reduced inflammation and oxidative stress through the Nrf2/HO-1 signaling pathway, mitigated pancreatic and liver tissue injury, and enhanced pancreatic β-cell insulin secretion. OLTI exhibited anti-apoptosis effects in T2DM. Moreover, OLTI exhibits superior antioxidant activity than metformin. Conclusion In summary, OLTI improves blood glucose and insulin resistance, decreases blood lipid metabolism, reduces inflammation and apoptosis, suppresses oxidative stress through the Nrf2/HO-1 signaling pathway, mitigates pancreatic and liver tissue injury, and enhances pancreatic β-cell insulin secretion, thereby mitigating T2DM symptoms. Moreover, Reg3g could be an important target for OLTI treatment of T2DM.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shaohua Sun
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Department of Metabolism and Endocrinology, XinSteel Center Hospital, Xinyu, Jiangxi, 338000, People’s Republic of China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shuang Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jiadian Huang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Lixuan Fang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Peng Yu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, Jiangxi, 330031, People’s Republic of China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, Jiangxi, 330031, People’s Republic of China
| |
Collapse
|
10
|
Januario E, Barakat A, Rajsundar A, Fatima Z, Nanda Palienkar V, Bullapur AV, Singh Brar S, Kharel P, Koyappathodi Machingal MM, Backosh A. A Comprehensive Review of Pathophysiological Link Between Non-alcoholic Fatty Liver Disease, Insulin Resistance, and Metabolic Syndrome. Cureus 2024; 16:e75677. [PMID: 39807459 PMCID: PMC11725408 DOI: 10.7759/cureus.75677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted. The review indicates that IR contributes to hepatic lipid accumulation through increased lipolysis, elevated free fatty acid flux, and impaired fatty acid oxidation, while MetS exacerbates the condition by promoting visceral adiposity, chronic inflammation, and impaired lipid metabolism. Additionally, dysbiosis and increased intestinal permeability in the gut-liver axis worsen IR, leading to a vicious cycle of metabolic dysfunction. In conclusion, addressing these interconnected pathways could enhance therapeutic strategies and reduce the burden of NAFLD-related complications.
Collapse
Affiliation(s)
| | - Aly Barakat
- Internal Medicine, Medway NHS Foundation Trust, Gillingham, GBR
| | | | - Zahra Fatima
- Medicine, Dr. VRK Women's Medical College, Aziznagar, IND
| | | | | | | | - Punam Kharel
- Medicine, Sir Salimullah Medical College, Dhaka, BGD
| | | | - Amena Backosh
- Orthopedics, Medway Maritime Hospital, Gillingham, GBR
| |
Collapse
|
11
|
Jin J, Zhang M. Research progress on the role of extracellular vesicles in the pathogenesis of diabetic kidney disease. Ren Fail 2024; 46:2352629. [PMID: 38769599 PMCID: PMC11107856 DOI: 10.1080/0886022x.2024.2352629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.
Collapse
Affiliation(s)
- Jiangyuan Jin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
12
|
Qing W, Qian Y. Association between systemic immunity-inflammation index and glucose regulation in non-diabetic population: A population-based study from the NHANES (2005-2016). PLoS One 2024; 19:e0313488. [PMID: 39531415 PMCID: PMC11556717 DOI: 10.1371/journal.pone.0313488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND To investigated the link between the systemic immunity-inflammation index (SII), a new inflammatory biomarker, and the risk of abnormal glucose regulation in non-diabetic population. METHODS Using data from the 2005-2016 National Health and Nutrition Examination Survey (NHANES), we conducted a cross-sectional study on non-diabetic adults with data on SII and glucose regulation markers. We analyzed the relationship between SII and indicators of glucose regulation, including fasting plasma glucose, fasting insulin, hemoglobin A1c, oral glucose tolerance test (OGTT), and states of abnormal glucose regulation like impaired glucose tolerance (IGT), insulin resistance, and prediabetes. RESULTS Adjusting for confounders, higher SII levels were significantly associated with a higher OGTT and a greater likelihood of IGT (OR = 2.673, 95% CI: 1.845, 3.873). In subgroup analysis, participants without hyperlipidemia in the highest SII quartile had a 240% higher odds of IGT compared to those in the lowest quartile (OR = 3.407, 95%CI: 1.995, 5.820), an association not observed in those with hyperlipidemia (p for interaction < 0.05). CONCLUSIONS SII emerges as a useful biomarker for identifying IGT in non-diabetic individuals, specifically in those without hyperlipidemia.
Collapse
Affiliation(s)
- Wenxiang Qing
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Qian
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Zhu G, Yang N, Yi Q, Xu R, Zheng L, Zhu Y, Li J, Che J, Chen C, Lu Z, Huang L, Xiang Y, Zheng T. Explainable machine learning model for predicting the risk of significant liver fibrosis in patients with diabetic retinopathy. BMC Med Inform Decis Mak 2024; 24:332. [PMID: 39529110 PMCID: PMC11552118 DOI: 10.1186/s12911-024-02749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR), a prevalent complication in patients with type 2 diabetes, has attracted increasing attention. Recent studies have explored a plausible association between retinopathy and significant liver fibrosis. The aim of this investigation was to develop a sophisticated machine learning (ML) model, leveraging comprehensive clinical datasets, to forecast the likelihood of significant liver fibrosis in patients with retinopathy and to interpret the ML model by applying the SHapley Additive exPlanations (SHAP) method. METHODS This inquiry was based on data from the National Health and Nutrition Examination Survey 2005-2008 cohort. Utilizing the Fibrosis-4 index (FIB-4), liver fibrosis was stratified across a spectrum of grades (F0-F4). The severity of retinopathy was determined using retinal imaging and segmented into four discrete gradations. A ten-fold cross-validation approach was used to gauge the propensity towards liver fibrosis. Eight ML methodologies were used: Extreme Gradient Boosting, Random Forest, multilayer perceptron, Support Vector Machines, Logistic Regression (LR), Plain Bayes, Decision Tree, and k-nearest neighbors. The efficacy of these models was gauged using metrics, such as the area under the curve (AUC). The SHAP method was deployed to unravel the intricacies of feature importance and explicate the inner workings of the ML model. RESULTS The analysis included 5,364 participants, of whom 2,116 (39.45%) exhibited notable liver fibrosis. Following random allocation, 3,754 individuals were assigned to the training set and 1,610 were allocated to the validation cohort. Nine variables were curated for integration into the ML model. Among the eight ML models scrutinized, the LR model attained zenith in both AUC (0.867, 95% CI: 0.855-0.878) and F1 score (0.749, 95% CI: 0.732-0.767). In internal validation, this model sustained its superiority, with an AUC of 0.850 and an F1 score of 0.736, surpassing all other ML models. The SHAP methodology unveils the foremost factors through importance ranking. CONCLUSION Sophisticated ML models were crafted using clinical data to discern the propensity for significant liver fibrosis in patients with retinopathy and to intervene early. PRACTICE IMPLICATIONS Improved early detection of liver fibrosis risk in retinopathy patients enhances clinical intervention outcomes.
Collapse
Affiliation(s)
- Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Na Yang
- The Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Rui Xu
- Department of Rehabilitation Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang Province, China
| | - Liangjian Zheng
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Yunlong Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Junyan Li
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Jie Che
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Cixiang Chen
- The First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Li Huang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| | - Tianlei Zheng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, College of Pharmacy, Xuzhou Medical University, Xuzhou, China.
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 211166, China.
| |
Collapse
|
14
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
15
|
Dai CY, Tsai YM, Chang CY, Tsai HP, Wu KL, Wu YY, Wu LY, Jian SF, Tsai PH, Ong CT, Sun CH, Hsu YL. Reconstruction of the Hepatic Microenvironment and Pathological Changes Underlying Type II Diabetes through Single-Cell RNA Sequencing. Int J Biol Sci 2024; 20:5531-5547. [PMID: 39494341 PMCID: PMC11528452 DOI: 10.7150/ijbs.99176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) continues to rise. Therefore, it has become a major concern health issue worldwide. T2DM leads to various complications, including metabolic-associated fatty liver disease (MAFLD). However, comprehensive studies on MAFLD as a diabetic complication at different stages are still lacking. Using advanced single-cell RNA-seq technology, we explored changes of livers in two T2DM murine models. Our findings revealed that increase activation of hepatic stellate cells (HSCs) exacerbated the development of MAFLD to steatohepatitis by upregulating transforming growth factor β1 induced transcript 1 (Tgfb1i1). Upregulated thioredoxin-interacting protein (Txnip) contributed to hepatocyte damage by impairing reactive oxygen species clearance. Additionally, the capillarization of liver sinusoidal endothelial cells correlated with Fabp4 overexpression in endothelial cells. A novel subset of Kupffer cells (KCs) that expressed Cd36 exhibited an activated phenotype, potentially participating in inflammation in the liver of diabetic mice. Furthermore, ligand-receptor pair analysis indicated that activated HSCs interacted with hepatocytes or KCs through Thbs2 and Lamb2 in late-stage diseases. The reduction in cell-cell interactions within hepatocytes in diabetic mice, reflects that the mechanisms regulating liver homeostasis is disrupted. This research underscores the importance of dynamics in diabetic MAFLD, and provides new insights for targeted therapies.
Collapse
Affiliation(s)
- Chia-Yen Dai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ying-Ming Tsai
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kuan-Li Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hepato/Billiary/Pancreatic, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shu-Fang Jian
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chai-Tung Ong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Hui Sun
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- National Pingtung University of Science and Technology, Department of Biological Science and Technology, Pingtung, 912, Taiwan
| |
Collapse
|
16
|
Zhou J, Han J. Association of niacin intake and metabolic dysfunction-associated steatotic liver disease: findings from National Health and Nutrition Examination Survey. BMC Public Health 2024; 24:2742. [PMID: 39379884 PMCID: PMC11462762 DOI: 10.1186/s12889-024-20161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
AIM This study aims to explore the relationship between niacin intake and the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) within a large, multi-ethnic cohort. METHODS A total of 2946 participants from the National Health and Nutrition Examination Survey (NHANES) were carefully selected based on strict inclusion and exclusion criteria. Participants meeting the eligibility criteria underwent two dietary recall interviews, and niacin intake was calculated using the USDA's Food and Nutrient Database for Dietary Studies (FNDDS). Liver steatosis was diagnosed using a Controlled Attenuation Parameter (CAP) of 248 dB/m, and MASLD diagnosis was based on metabolic indicators. Weighted multivariate logistic regression was utilized to analyze the correlation between niacin intake and MASLD prevalence, with potential nonlinear relationships explored through restricted cubic spline (RCS) regression. RESULTS Analysis of baseline data revealed that MASLD patients had lower niacin intake levels and poorer metabolic biomarker profiles. Both RCS analysis and multivariate logistic regression indicated a U-shaped association between niacin intake and MASLD prevalence. Specifically, there was a non-linear dose-response relationship, with the odds of MASLD gradually decreasing with increasing niacin intake until reaching a threshold of 23.6 mg, beyond which the odds of MASLD began to increase. CONCLUSION This study confirms a U-shaped nonlinear relationship between niacin intake and MASLD prevalence within the diverse American population.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China
| | - Jun Han
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, Wuxi, 214065, China.
| |
Collapse
|
17
|
Ye Y, Huang S, Wang R, Jiang J, Luo B, Ren W, Chen Y, Zhou X, Shi X, Zhang W, Shi L, Lü M, Tang X. Global trends and emerging topics related to triglyceride-glucose index: A bibliometric analysis and visualization from 2000 to 2024. Medicine (Baltimore) 2024; 103:e39916. [PMID: 39465764 PMCID: PMC11460874 DOI: 10.1097/md.0000000000039916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 10/29/2024] Open
Abstract
The triglyceride-glucose (TyG) index is a crucial marker of insulin resistance, as evidenced by numerous studies related to metabolic diseases. This bibliometric analysis investigates research trends associated with the TyG index over the past 24 years. We collected data on TyG index publications from January 1, 2000, to January 7, 2024, using the Web of Science database. Analysis was conducted utilizing VOSviewer, Scimago Graphica, and CiteSpace to evaluate publication metrics, citations, countries, institutions, authors, journals, and keywords. A total of 1163 publications from 354 journals authored by 6149 researchers across 60 countries were analyzed. China emerged as the leading contributor, with 654 publications (56.23%). Capital Medical University was the most productive institution, and Wu Shouling was the top author. Cardiovascular Diabetology was identified as the most influential journal. Key emerging research directions include the role of the TyG index as a representative marker for insulin resistance, particularly concerning insulin sensitivity; its association with body mass index and hyperuricemia; and its diagnostic and prognostic value in nonalcoholic fatty liver disease and cardiovascular conditions such as acute coronary syndrome, carotid plaque, and hypertension. Current trends favor cohort studies predominantly involving adult populations. Overall, China leads TyG index research, focusing on its connections to insulin sensitivity, body mass index, and hyperuricemia, while the index's diagnostic and prognostic significance for nonalcoholic fatty liver disease and cardiovascular diseases represents an expanding research frontier.
Collapse
Affiliation(s)
- Yusong Ye
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui County People’ Hospital, Huaian, China
- Department of Gastroenterology, Lianshui People’ Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
| | - Ruiyu Wang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Jiao Jiang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Bei Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Wensen Ren
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yuan Chen
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xueqin Zhou
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
18
|
Huang J, Lin H, Liu AN, Wu W, Alisi A, Loomba R, Xu C, Xiang W, Shao J, Dong G, Zheng MH, Fu J, Ni Y. Dynamic pattern of postprandial bile acids in paediatric non-alcoholic fatty liver disease. Liver Int 2024; 44:2793-2806. [PMID: 39082260 DOI: 10.1111/liv.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Dysregulation of bile acids (BAs), as important signalling molecules in regulating lipid and glucose metabolism, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, static BA profiles during fasting may obscure certain pathogenetic aspects. In this study, we investigate the dynamic alterations of BAs in response to an oral glucose tolerance test (OGTT) among children with NAFLD. METHODS We recruited 230 subjects, including children with overweight/obesity, or complicated with NAFLD, and healthy controls. Serum BAs, 7-hydroxy-4-cholesten-3-one (C4) and fibroblast growth factor 19 (FGF19) were quantified during OGTT. Clinical markers related to liver function, lipid metabolism and glucose metabolism were assessed at baseline or during OGTT. FINDINGS Conjugated BAs increased while unconjugated ones decreased after glucose uptake. Most BAs were blunted in response to glucose in NAFLD (p > .05); only glycine and taurine-conjugated chenodeoxycholic acid (CDCA) and cholic acid (CA) were responsive (p < .05). Primary BAs were significantly increased while secondary BAs were decreased in NAFLD. C4 and FGF19 were significantly increased while their ratio FGF19/C4 ratio was decreased in NAFLD. The dynamic pattern of CDCA and taurine-conjugated hyocholic acid (THCA) species was closely correlated with glucose (correlation coefficient r = .175 and -.233, p < .05), insulin (r = .327 and -.236, p < .05) and c-peptide (r = .318 and -.238, p < .05). Among which, CDCA was positively associated with liver fat content in NAFLD (r = .438, p < .05). Additionally, glycochenodeoxycholic acid (GCDCA), CDCA and THCA were potential biomarkers to discriminate paediatric NAFLD from healthy controls and children with obesity. INTERPRETATION This study provides novel insights into the dynamics of BAs during OGTT in paediatric NAFLD. The observed variations in CDCA and HCA species were associated with liver dysfunction, dyslipidaemia and dysglycaemia, highlighting their potential roles as promising diagnostic and therapeutic targets in NAFLD.
Collapse
Affiliation(s)
- Jiating Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hu Lin
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - A-Na Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Anna Alisi
- Research Unit of Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California, San Diego, La Jolla, California, USA
| | - Cuifang Xu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Wenqin Xiang
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Shao
- Department of Child Healthcare, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
19
|
Musazadeh V, Abolghasemian M, Kavyani Z, Moridpour AH, Nazari A, Faghfouri AH. The effects of flaxseed (Linum usitatissimum) supplementation on anthropometric indices: An updated systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2024; 84:103066. [PMID: 38992480 DOI: 10.1016/j.ctim.2024.103066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
OBJECTIVE Flaxseed (Linum usitatissimum) supplementation has shown promise as an anti-obesity agent in various clinical trials, although results have been inconsistent. To provide a more accurate assessment of the impact of flaxseed supplementation on anthropometric indices, a systematic review and meta-analysis was performed. METHODS We searched several international databases until August 2023, including Scopus, PubMed, Web of Science, Embase, and Cochrane Library. Weighted mean differences (WMDs) were analyzed using a random-effects model. RESULTS Sixty-four trials comprising 72 treatment arms were included. All studies reported the intervention types (Lignans, Whole flaxseed, and Flaxseed oil) and dosage. However, three studies did testing for purity, and 40 studies reported potency. Also, the risk of contamination with heavy metals was not mentioned in studies. Another limitation was the lack of blind evaluation in the studies. According to three trials included in the systematic review, flaxseed did not affect anthropometric indices. Our meta-analysis revealed significant reductions in body weight (WMD = -0.63 kg; 95 % CI: -1.00, -0.27, P < 0.001; I2 = 76.7 %, P < 0.001), body mass index (BMI) (WMD: -0.24 kg/m2, 95 % CI: -0.36, -0.11, P < 0.001; I2 = 78.5 %, P < 0.001) and waist circumference (WC) (WMD: -1.43 cm, 95 % CI: -2.06, -0.80, P < 0.001; I2 = 81.1 %, P < 0.001) following flaxseed supplementation. Subgroup analyses indicated that interventions lasting 10-20 weeks, and studies involving subjects with higher BMI (>30 kg/m2) showed more significant anti-obesity effects. Based on the GRADE evaluation, body weight, BMI, and WC results were considered as moderate-certainty evidence. CONCLUSION Our systematic review and meta-analysis suggests that supplementation with flaxseed (Linum usitatissimum) leads to meaningful improvements in body weight, BMI, and WC. Therefore, flaxseed can be considered as an adjunctive therapeutic approach in improving obesity.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student research committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - MohammadReza Abolghasemian
- Department of Hygiene and Food Safety, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Zeynab Kavyani
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Moridpour
- Student Research Committee,Department of Nutritional Sciences,School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
20
|
Liu Y, Wang Y, Xing Y, Wolters M, Shi D, Zhang P, Dang J, Chen Z, Cai S, Wang Y, Liu J, Wang X, Zhou H, Xu M, Guo L, Li Y, Song J, Li J, Dong Y, Cui Y, Hu P, Hebestreit A, Wang HJ, Li L, Ma J, Yeo YH, Wang H, Song Y. Establish a noninvasive model to screen metabolic dysfunction-associated steatotic liver disease in children aged 6-14 years in China and its applications in high-obesity-risk countries and regions. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 49:101150. [PMID: 39171077 PMCID: PMC11338159 DOI: 10.1016/j.lanwpc.2024.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Background The prevalence of metabolic-associated steatotic liver disease (MASLD) is rising precipitously among children, particularly in regions or countries burdened with high prevalence of obesity. However, identifying those at high risk remains a significant challenge, as the majority do not exhibit distinct symptoms of MASLD. There is an urgent need for a widely accepted non-invasive predictor to facilitate early disease diagnosis and management of the disease. Our study aims to 1) evaluate and compare existing predictors of MASLD, and 2) develop a practical screening strategy for children, tailored to local prevalence of obesity. Methods We utilized a school-based cross-sectional survey in Beijing as the training dataset to establish predictive models for screening MASLD in children. An independent school-based study in Ningbo was used to validate the models. We selected the optimal non-invasive MASLD predictor by comparing logistic regression model, random forest model, decision tree model, and support vector machine model using both the Beijing and Ningbo datasets. This was followed by serial testing using the best performance index we identified and indices from previous studies. Finally, we calculated the potential MASLD screening recommendation categories and corresponding profits based on national and subnational obesity prevalence, and applied those three categories to 200 countries according to their obesity prevalence from 1990 to 2022. Findings A total of 1018 children were included (NBeijing = 596, NNingbo = 422). The logistic regression model demonstrated the best performance, identifying the waist-to-height ratio (WHtR, cutoff value ≥0.48) as the optimal noninvasive index for predicting MASLD, with strong performance in both training and validation set. Additionally, the combination of WHtR and lipid accumulation product (LAP) was selected as an optimal serial test to improve the positive predictive value, with a LAP cutoff value of ≥668.22 cm × mg/dL. Based on the obesity prevalence among 30 provinces, three MASLD screening recommendations were proposed: 1) "Population-screening-recommended": For regions with an obesity prevalence ≥12.0%, where MASLD prevalence ranged from 5.0% to 21.5%; 2) "Resources-permitted": For regions with an obesity prevalence between 8.4% and 12.0%, where MASLD prevalence ranged from 2.3% to 4.4%; 3) "Population-screening-not-recommended": For regions with an obesity prevalence <8.4%, where MASLD prevalence is difficult to detect using our tool. Using our proposed cutoff for screening MASLD, the number of countries classified into the "Population-screening-recommended" and "Resources-permitted" categories increased from one and 11 in 1990 to 95 and 28 in 2022, respectively. Interpretation WHtR might serve as a practical and accessible index for predicting pediatric MASLD. A WHtR value ≥0.48 could facilitate early identification and management of MASLD in areas with obesity prevalence ≥12.0%. Furthermore, combining WHtR ≥0.48 with LAP ≥668.22 cm × mg/dL is recommended for individual MASLD screening. Moreover, linking these measures with population obesity prevalence not only helps estimate MASLD prevalence but also indicates potential screening profits in regions at varying levels of obesity risk. Funding This study was supported by grants from Capital's Funds for Health Improvement and Research (Grant No. 2022-1G-4251), National Natural Science Foundation of China (Grant No. 82273654), Major Science and Technology Projects for Health of Zhejiang Province (Grant No. WKJ-ZJ-2216), Cyrus Tang Foundation for Young Scholar 2022 (2022-B126) and Sino-German Mobility Programme (M-0015).
Collapse
Affiliation(s)
- Yunfei Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Youxin Wang
- Department of Maternal and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yunfei Xing
- Department of Maternal and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Maike Wolters
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Di Shi
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Pingping Zhang
- Ningbo Center for Healthy Lifestyle Research, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jiajia Dang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Ziyue Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Shan Cai
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- Linyi University, Linyi, Shandong Province, China
| | - Haoyu Zhou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Lipo Guo
- Changping Health Education Center for Primary and Secondary Schools, Beijing, China
| | - Yuanyuan Li
- Changping Health Education Center for Primary and Secondary Schools, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanchun Cui
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Peijin Hu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Antje Hebestreit
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yee Hui Yeo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
21
|
Yan K. Recent advances in the effect of adipose tissue inflammation on insulin resistance. Cell Signal 2024; 120:111229. [PMID: 38763181 DOI: 10.1016/j.cellsig.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Obesity is one of the major risk factors for diabetes. Excessive accumulation of fat leads to inflammation of adipose tissue, which can increase the risk of developing diabetes. Obesity-related chronic inflammation can result in anomalies in glucose-lipid metabolism and insulin resistance, and it is a major cause of β-cell dysfunction in diabetes mellitus. Thus, a long-term tissue inflammatory response is crucial for metabolic diseases, particularly type 2 diabetes. Chronic inflammation associated with obesity increases oxidative stress, secretes inflammatory factors, modifies endocrine variables, and interferes with insulin signalling pathways, all of which contribute to insulin resistance and glucose tolerance. Insulin resistance and diabetes are ultimately caused by chronic inflammation in the stomach, pancreas, liver, muscle, and fat tissues. In this article, we systematically summarize the latest research progress on the mechanisms of adipose tissue inflammation and insulin resistance, as well as the mechanisms of cross-talk between adipose tissue inflammation and insulin resistance, with a view to providing some meaningful therapeutic strategies for the treatment of insulin resistance by controlling adipose tissue inflammation.
Collapse
Affiliation(s)
- Kaiyi Yan
- The Second Clinical College of China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
22
|
Rustamov N, Ma Y, Park JS, Wang F, Ma H, Sui G, Moon G, Yoo HS, Roh YS. Korean Red Ginseng Improves Oxidative Stress-Induced Hepatic Insulin Resistance via Enhancing Mitophagy. Foods 2024; 13:2137. [PMID: 38998642 PMCID: PMC11241528 DOI: 10.3390/foods13132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
This study explored the potential of saponins from Korean Red Ginseng to target the PINK1/Parkin mitophagy pathway, aiming to enhance insulin sensitivity in hepatocytes-a key factor in metabolic disorders like metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes. Results from both in vitro and in vivo experiments showed increased expression of PINK1 and Parkin, activating mitophagy and reducing oxidative stress through reduction in mitochondrial and total reactive oxygen species. Additionally, improvements in insulin signaling were observed, including the upregulation of phosphorylated IRS and AKT, and downregulation of gluconeogenic enzymes, underscoring the saponins' efficacy in boosting insulin sensitivity. The findings highlighted Korean Red Ginseng-derived saponins as potential treatments for insulin resistance and related metabolic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (N.R.); (Y.M.)
| |
Collapse
|
23
|
Li J, Xiang Y, Han J, Gao Y, Wang R, Dong Z, Chen H, Gao R, Liu C, Teng GJ, Qi X. Retinopathy as a predictive indicator for significant hepatic fibrosis according to T2DM status: A cross-sectional study based on the national health and nutrition examination survey data. Ann Hepatol 2024; 29:101478. [PMID: 38354949 DOI: 10.1016/j.aohep.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Type 2 Diabetes Mellitus (T2DM), a prevalent metabolic disorder, often coexists with a range of complications, with retinopathy being particularly common. Recent studies have shed light on a potential connection between diabetic retinopathy (DR) and hepatic fibrosis, indicating a possible shared pathophysiological foundation in T2DM. This study investigates the correlation between retinopathy and hepatic fibrosis among individuals with T2DM, as well as evaluates the diagnostic value of DR for significant hepatic fibrosis. MATERIALS AND METHODS Our cross-sectional analysis incorporated 5413 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2008. The Fibrosis-4 score (FIB-4) classified hepatic fibrosis into different grades (F0-F4), with significant hepatic fibrosis marked as F2 or higher. Retinopathy severity was determined using retinal imaging and categorized into four levels. The analysis of variance or Chi-square tests facilitated group comparisons. Additionally, the receiver operating characteristic (ROC) analysis appraised the predictive accuracy of retinopathy for significant hepatic fibrosis in the T2DM population. RESULTS Among 5413 participants, the mean age was 59.56 ± 12.41, with 50.2% male. And 20.6% were diagnosed with T2DM. Hepatic fibrosis grading was positively associated with retinopathy severity (OR [odds ratio]: 1.521, 95%CI [confidence interval]: 1.152-2.008, P = 0.003) across the entire population. The association was amplified in the T2DM population according to Pearson's analysis results. The ROC curve demonstrated retinopathy's diagnostic capacity for significant hepatic fibrosis in the T2DM population (AUC [area under curve] = 0.72, 95%CI: 0.651-0.793, P < 0.001). CONCLUSIONS Retinopathy could serve as an independent predictor of significant hepatic fibrosis in T2DM population. Ophthalmologists are advised to closely monitor T2DM patients with retinopathy.
Collapse
Affiliation(s)
- Jinze Li
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Jiahao Han
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Youfang Gao
- Department of Infectious Disease, The People's Hospital of Bozhou, Bozhou 236800, Anhui Province, China
| | - Ruiying Wang
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zihe Dong
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Huihui Chen
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China; Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ruixia Gao
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China; Medical School, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Chuan Liu
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China.
| |
Collapse
|
24
|
Ma PC, Li QM, Li RN, Hong C, Cui H, Zhang ZY, Li Y, Xiao LS, Zhu H, Zeng L, Xu J, Lai WN, Liu L. A high reticulocyte count is a risk factor for the onset of metabolic dysfunction-associated steatotic liver disease: Cross-sectional and prospective studies of data of 310,091 individuals from the UK Biobank. Front Pharmacol 2024; 15:1281095. [PMID: 39011501 PMCID: PMC11247344 DOI: 10.3389/fphar.2024.1281095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 07/17/2024] Open
Abstract
Background and Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a considerable health risk. Nevertheless, its risk factors are not thoroughly comprehended, and the association between the reticulocyte count and MASLD remains uncertain. This study aimed to explore the relationship between reticulocyte count and MASLD. Methods: A total of 310,091 individuals from the UK Biobank were included in this cross-sectional study, and 7,316 individuals were included in this prospective study. The cross-sectional analysis categorized reticulocyte count into quartiles, considering the sample distribution. Logistic regression models examined the connection between reticulocyte count and MASLD. In the prospective analysis, Cox analysis was utilized to investigate the association. Results: Our study findings indicate a significant association between higher reticulocyte count and an elevated risk of MASLD in both the cross-sectional and prospective analyses. In the cross-sectional analysis, the adjusted odds ratios (ORs) of MASLD increased stepwise over reticulocyte count quartiles (quartile 2: OR 1.22, 95% CI 1.17-1.28, p < 0.001; quartile 3: OR 1.44; 95% CI 1.38-1.51, p < 0.001; quartile 4: OR 1.66, 95% CI 1.59-1.74, p < 0.001). The results of prospective analyses were similar. Conclusion: Increased reticulocyte count was independently associated with a higher risk of MASLD. This discovery offers new insights into the potential of reticulocytes as biomarkers for MASLD.
Collapse
Affiliation(s)
- Peng-Cheng Ma
- School of Public Health, Southern Medical University, Guangzhou, China
- School of Health Management, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Mei Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui-Ning Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Hong
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Cui
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Yong Zhang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu-Shan Xiao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zeng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- School of Public Health, Southern Medical University, Guangzhou, China
- School of Health Management, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Nan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Wang H, Ma Q, Chen Y, Luo L, Ye J, Zhong B. Optimized strategy among diet, exercise, and pharmacological interventions for nonalcoholic fatty liver disease: A network meta-analysis of randomized controlled trials. Obes Rev 2024; 25:e13727. [PMID: 38509775 DOI: 10.1111/obr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emerging treatment methods, including exercise, diet, and drugs, for nonalcoholic fatty liver disease have been proposed. However, the differences in their efficacy have not been determined. We aimed to compare the effects of these treatments excluding surgery via a systematic review and network meta-analysis of randomized controlled trials. DATA SOURCE The data sources included PubMed, Embase, Web of Science and Cochrane up to February 1st, 2023. The endpoints consisted of body mass index (BMI), serum markers of metabolism and liver injury markers, liver fat content, and stiffness. RESULTS A total of 174 studies with 10,183 patients were included in this meta-analysis. In terms of improving BMI, Pan-agonist of peroxisome proliferator-activated receptors (PPAR) is the best treatment with the highest SUCRA (surface under the cumulative ranking) of 84.8% (mean = -3.40, 95% CI -5.55, -1.24) by the comparative effectiveness ranking. GLP-1 (glucagon-like peptide-1) has the best effect in improving the liver fat content based on the MRI-PDFF, steatosis score (SUCRA 99.7%, mean = -2.19, 95% CI -2.90, -1.48) and ballooning score (SUCRA 61.2%, mean = -0.82, 95% CI -4.46, 2.83). CONCLUSIONS Pan-agonist of PPAR was the most efficacious regimen in lowering BMIs, whereas GLP-1R agonists achieved the highest efficacy of steatosis improvement in this network meta-analysis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qianqian Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Shamim T, Asif HM, Abida Ejaz S, Hussain Z, Wani TA, Sumreen L, Abdullah M, Ahmed Z, Iqbal J, Kim SJ, Shah MK. Investigations of Limeum Indicum Plant for Diabetes Mellitus and Alzheimer's Disease Dual Therapy: Phytochemical, GC-MS Chemical Profiling, Enzyme Inhibition, Molecular Docking and In-Vivo Studies. Chem Biodivers 2024; 21:e202301858. [PMID: 38608202 DOI: 10.1002/cbdv.202301858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Limeum indicum has been widely utilized in traditional medicine but no experimental work has been done on this herb. The primary objective of this study was to conduct a phytochemical analysis and assess the multifunctional capabilities of aforementioned plant in dual therapy for Alzheimer's disease (AD) and Type 2 diabetes (T2D). The phytochemical screening of ethanol, methanol extract, and their derived fractions of Limeum indicum was conducted using GC-MS, HPLC, UV-analysis and FTIR. The antioxidant capacity was evaluated by DPPH method. The inhibitory potential of the extracts/fractions against α-, β-glucosidase acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoaminine oxidases (MAO-A & B) was evaluated. Results revealed that acetonitrile fraction has highest inhibitory potential against α-glucosidase (IC50=68.47±0.05 μg/mL), methanol extract against β-glucosidase (IC50=91.12±0.07 μg/mL), ethyl acetate fraction against AChE (IC50=59.0±0.02 μg/mL), ethanol extract against BChE (28.41±0.01 μg/mL), n-hexane fraction against MAO-A (IC50=150.5±0.31 μg/mL) and methanol extract for MAO-B (IC50=75.95±0.13 μg/mL). The docking analysis of extracts\fractions suggested the best binding scores within the active pocket of the respective enzymes. During the in-vivo investigation, ethanol extract produced hypoglycemic effect (134.52±2.79 and 119.38±1.40 mg/dl) after 21 days treatment at dose level of 250 and 500 mg/Kg. Histopathological findings further supported the in-vivo studies.
Collapse
Affiliation(s)
- Tahira Shamim
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O.Box 2452, 11451, Riyadh, Saudi Arabia
| | - Laila Sumreen
- University College of Conventional Medicine, Faculty of Medicine & Allied Health Sciences, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Abdullah
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Zubair Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
- Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Song Ja Kim
- College of Natural Sciences, Department of Biological Sciences, Kongju National University, 32588, Gongju, South Korea
| | - Muhammad Kamal Shah
- Faculty of Veterinary and Animal Sciences, Gomal University, 29220, Dera Ismail Khan, Pakistan
| |
Collapse
|
27
|
Li Y, Qi P, Song SY, Wang Y, Wang H, Cao P, Liu Y, Wang Y. Elucidating cuproptosis in metabolic dysfunction-associated steatotic liver disease. Biomed Pharmacother 2024; 174:116585. [PMID: 38615611 DOI: 10.1016/j.biopha.2024.116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.
Collapse
Affiliation(s)
- Yamei Li
- Department of Rehabilitation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Qi
- Department of Pediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Yiping Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
| | - Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.
| |
Collapse
|
28
|
Gu C, Bernstein N, Mittal N, Kurnool S, Schwartz H, Loomba R, Malhotra A. Potential Therapeutic Targets in Obesity, Sleep Apnea, Diabetes, and Fatty Liver Disease. J Clin Med 2024; 13:2231. [PMID: 38673503 PMCID: PMC11050527 DOI: 10.3390/jcm13082231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity and metabolic syndrome affect the majority of the US population. Patients with obesity are at increased risk of developing type 2 diabetes (T2DM), obstructive sleep apnea (OSA), and metabolic dysfunction-associated steatotic liver disease (MASLD), each of which carry the risk of further complications if left untreated and lead to adverse outcomes. The rising prevalence of obesity and its comorbidities has led to increased mortality, decreased quality of life, and rising healthcare expenditures. This phenomenon has resulted in the intensive investigation of exciting therapies for obesity over the past decade, including more treatments that are still in the pipeline. In our present report, we aim to solidify the relationships among obesity, T2DM, OSA, and MASLD through a comprehensive review of current research. We also provide an overview of the surgical and pharmacologic treatment classes that target these relationships, namely bariatric surgery, the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon receptor agonists.
Collapse
Affiliation(s)
- Christina Gu
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| | - Nicole Bernstein
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| | - Nikita Mittal
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| | - Soumya Kurnool
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| | - Hannah Schwartz
- Weill Cornell Medicine, 1300 York Ave, New York, NY 10065, USA;
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| | - Atul Malhotra
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA; (N.B.); (N.M.); (S.K.); (R.L.)
| |
Collapse
|
29
|
Mei S, He G, Zhang T, Chen Z, Zhang R, Liao Y, Zhu M, Xu D, Shen Y, Zhou B, Wang K, Wang C, Chen C, Zhu E, Cheng Z. Effect of feeding fermented distiller's grains diets on immune status and metabolomics of spleen and mesenteric lymph nodes in finishing cattle. J Proteomics 2024; 296:105107. [PMID: 38325729 DOI: 10.1016/j.jprot.2024.105107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.
Collapse
Affiliation(s)
- Shihui Mei
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yixiao Liao
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yanjuan Shen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Chunmei Wang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China.
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China.
| |
Collapse
|
30
|
Tian N, Chen S, Han H, Jin J, Li Z. Association between triglyceride glucose index and total bone mineral density: a cross-sectional study from NHANES 2011-2018. Sci Rep 2024; 14:4208. [PMID: 38378872 PMCID: PMC10879154 DOI: 10.1038/s41598-024-54192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
The Homeostatic Model Assessment for Triglyceride Glucose Index (TyG) and its related indices, including triglyceride glucose-waist circumference (TyG-WC), triglyceride glucose-waist-to-height ratio (TyG-WHtR) and triglyceride glucose-body mass index (TyG-BMI), has emerged as a practical tool for assessing insulin resistance in metabolic disorders. However, limited studies have explored the connection between TyG, TyG-related indices and osteoporosis. This population-based study, utilizing data from the National Health and Nutrition Examination Survey 2011-2018, involved 5456 participants. Through weighted multivariate linear regression and smoothed curve fitting, a significant positive correlation was found between TyG, TyG-related indices and total bone mineral density (BMD) after adjusting for covariates [β = 0.0124, 95% CI (0.0006, 0.0242), P = 0.0390; β = 0.0004, 95% CI (0.0003, 0.0004), P < 0.0001; β = 0.0116, 95% CI (0.0076, 0.0156), P < 0.0001; β = 0.0001, 95% CI (0.0001, 0.0001), P < 0.0001]. In subgroup analysis, race stratification significantly affected the relationship between TyG and total BMD. Additionally, gender and race were both significant for TyG-related indices. Non-linear relationships and threshold effects with inflection points at 9.106, 193.9265, 4.065, and 667.5304 (TyG, TyG-BMI, TyG-WHtR, TyG-WC) were identified. Saturation phenomena were observed between TyG-BMI, TyG-WC and total BMD with saturation thresholds at 314.177 and 1022.0428. These findings contributed to understanding the association between TyG, TyG-related indices and total BMD, offering insights for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Ningsheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Huawei Han
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China.
| |
Collapse
|
31
|
Pashayee-Khamene F, Heidari Z, Fotros D, Hekmatdoost A, Karimi S, Ahmadzadeh S, Saberifiroozi M, Hatami B, Yari Z. Dietary acid load and cirrhosis-related mortality: a prospective cohort study. Sci Rep 2024; 14:3675. [PMID: 38355888 PMCID: PMC10867032 DOI: 10.1038/s41598-024-53882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
As a global health concern, cirrhosis contributes significantly to morbidity and mortality. This prospective cohort study aimed to investigate the association between dietary acid load (DAL) and cirrhosis-related mortality. Present study was conducted on 121 patients with newly diagnosed cirrhosis who were followed up for 48 months. Anthropometric measures, nutritional status and dietary intakes were assessed and DAL was estimated based on potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores. Crude and multivariable-adjusted hazard ratios (HR) with 95% confidence intervals (CI) were estimated using Cox proportional hazard analyses. Participants in the high PRAL and NEAP scores had significantly higher intakes of grains and lower intakes of fruits and vegetables. Also, the intake of dairy products and legumes, nuts and seeds decreased significantly with increasing NEAP score. After adjustment of all the confounders, the risk of mortality in the second and third tertiles of PRAL was 5.9 times and 10.97 higher than those in the first tertile, respectively (P trend: 0.006). Similarly, comparing the risk of mortality in the second and third tertiles with the first tertile of NEAP showed a 4.46-fold and 12.3-fold increased risk, respectively (P trend: 0.010). Our findings suggested that DAL was significantly associated with cirrhosis-related mortality and highlight the need for further research to understand the underlying mechanisms and establish optimal DAL levels in cirrhotic patients.
Collapse
Affiliation(s)
- Fereshteh Pashayee-Khamene
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danial Fotros
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saleheh Ahmadzadeh
- Clinical Nutrition and Dietetics Department, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberifiroozi
- Liver and Pancreato-Biliary Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, West Arghavan St. Farahzadi Blvd., Sharake Qods, Tehran, Iran.
| |
Collapse
|
32
|
Xiang M, Yuan X, Zhang N, Zhang L, Liu Y, Liu J, Gao Y, Xu Y, Sun W, Tang Q, Zhang Y, Lu J. Effects of exercise, metformin, and combination treatments on type 2 diabetic mellitus-induced muscle atrophy in db/db mice: Crosstalk between autophagy and the proteasome. J Physiol Biochem 2024; 80:235-247. [PMID: 38112970 DOI: 10.1007/s13105-023-01001-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Both exercise and metformin are common effective clinical treatments of type 2 diabetic mellitus. This study investigated the functional role of exercise, metformin, and combination treatment on type 2 diabetic mellitus-induced muscle atrophy. In this experiment, a total of 10 BKS mice were set as the control group. A total of 40 BKS-db/db mice were randomly divided into the control group (db/db); the exercise intervention group (db/db + Ex), which ran on a treadmill at 7-12 m/min, 30-40 min/day, 5 days/week; the metformin administration group (db/db + Met), which was administered 300 mg/kg of metformin solution by gavage daily; and the exercise combined with metformin administration group (db/db + Ex + Met). After 8 weeks of intervention, their tibialis anterior muscles were removed. The levels of insulin signaling pathway proteins, ubiquitin proteasome, and autophagic lysosome-associated proteins were detected using western blot, the expression of MuRF1 and Atrogin-1 was detected using immunohistochemical staining, and the degradation of autophagosomes was detected using double-labeled immunofluorescence. The db/db mice exhibited reduced insulin sensitivity and inhibition of the autophagic-lysosome system, the ubiquitin-proteasome system was activated, and protein degradation was exacerbated, leading to skeletal muscle atrophy. Exercise and metformin and their combined interventions can increase insulin sensitivity, whereas exercise alone showed more effective in inhibiting the ubiquitin-proteasome system, improving autophagy levels, and alleviating skeletal muscle atrophy. Compared with metformin, exercise demonstrated superior improvement of muscle atrophy by promoting the synthesis and degradation of autophagy through the AMPK/ULK1 pathway. However, the combination treatment exhibits no synergistic effect on muscle atrophy.
Collapse
Affiliation(s)
- Mengqi Xiang
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Xinmeng Yuan
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Nianyun Zhang
- Centre for Integration of Learning and Training, Nanjing Sport Institute, Nanjing, 210014, China
| | - Liumei Zhang
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Yuting Liu
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Jingjing Liu
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Yaran Gao
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Ye Xu
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Wen Sun
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
| | - Qiang Tang
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, 210014, China
| | - Yuan Zhang
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China.
| | - Jiao Lu
- School of Sports and Health, Nanjing Sport Institute, Jiangsu, Nanjing, 210014, China.
- Jiangsu Collaborative Innovation Center for Sport and Health Project, Nanjing, 210014, China.
| |
Collapse
|
33
|
Han XZ, Sun CZ. The influence of resistance exercise and aerobic exercise on type 2 diabetes: a meta-analysis. J Sports Med Phys Fitness 2024; 64:183-191. [PMID: 38059652 DOI: 10.23736/s0022-4707.23.15263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Diabetes is a worldwide chronic disease. The incidence rate of this disease is high, and it is a common disease in clinics. At present, the incidence rate of diabetes patients is increasing year by year due to the increasing work pressure, the accelerated pace of life, the change of diet, the reduction of labor, and the acceleration of aging. EVIDENCE ACQUISITION The computer retrieves four databases to obtain random controlled trials on the influence of resistance exercise and aerobic exercise on type 2 diabetes. After a rigorous literature quality evaluation, data analysis was performed using RevMan 5.3 software. EVIDENCE SYNTHESIS Ten studies were ultimately included in this meta-analysis. 10 studies reported the HbA1c of the test group and the control group, which was no significant statistical significance (SMD: -0.01; 95% CI: -0.20,0.19; P=0.959) than the control group, HOMA-IR (SMD: 0.02; 95% CI: -0.65,0.69; P=0.954), SBP (SMD: 3.92; 95% CI: -0.92,8.75; P=0.112), DBP (SMD: 0.67; 95% CI: -3.66,5.01; P=0.761), HDL (SMD: -0.08; 95% CI: -2.79,2.64; P=0.955), TG (SMD: -7.51; 95% CI: -21.25,6.22; P=0.284) and TC (SMD: 9.10; 95% CI: -13.43,31.62; P=0.428). CONCLUSIONS The results of this study suggest that both resistance exercise and aerobic exercise may be effective on patients with type 2 diabetes, as evidenced by HbA1c, HOMA-IR, SBP, DBP, HDL, TG and TC. There is no significant difference in their impact on type 2 diabetes patients, and the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Xiong-Zhe Han
- College of Physical Education, Yanbian University, Yanji, Jilin, China -
| | - Cheng-Zhe Sun
- College of Physical Education, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
34
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
35
|
Grinshpan LS, Eilat-Adar S, Ivancovsky-Wajcman D, Kariv R, Gillon-Keren M, Zelber-Sagi S. Ultra-processed food consumption and non-alcoholic fatty liver disease, metabolic syndrome and insulin resistance: A systematic review. JHEP Rep 2024; 6:100964. [PMID: 38234408 PMCID: PMC10792654 DOI: 10.1016/j.jhepr.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 01/19/2024] Open
Abstract
Background High ultra-processed food (UPF) consumption is associated with the development of various diet-related non-communicable diseases, especially obesity and type 2 diabetes. The present study aimed to systematically review the association between UPF consumption and non-alcoholic fatty liver disease (NAFLD) and its leading risk factors; metabolic syndrome (MetS) and insulin resistance (IR). Methods A comprehensive search was conducted in PubMed, Scopus, Embase, Web of Science, CINAHL, and Cochrane (March 2023), and references of the identified articles were checked. The search keywords were defined through an exploratory investigation in addition to MeSH and similarly controlled vocabulary thesauruses. Observational and interventional studies were included. Studies that focused only on specific groups of processed foods or overlapping dietary patterns were excluded. The quality assessment was conducted using the Joanna Briggs Institute's critical appraisal tools for observational studies and Cochrane's risk of bias 2 tool for randomized-control trials. A narrative synthesis was employed to report the results. Results Fifteen studies were included, with a total of 52,885 participants, one randomized-controlled trial, and fourteen observational studies (nine cross-sectional and five prospective). The review has shown a significant association between UPF consumption and NAFLD in three studies out of six, MetS in five out of eight, and IR in one out of three. All large-scale prospective cohorts that studied NAFLD or MetS outcomes demonstrated a positive association. In contrast, studies that did not demonstrate significant associations were mostly cross-sectional and small. The evidence for an association with IR was insufficient and conflicting. Conclusion The included studies are few, observational, and based upon self-reported dietary assessment tools. However, current evidence indicates that UPF is not only associated with obesity and type 2 diabetes but may also be a risk factor for NAFLD and MetS. UPF is a worldwide concern deserving further longitudinal research. Impact and implications Overconsumption of ultra-processed food (UPF) may lead to the development of obesity and type 2 diabetes, but the association with non-alcoholic fatty liver disease (NAFLD) is not well established. The present systematic review shows that UPF may be associated with NAFLD, although more large prospective studies are needed. These findings emphasize the importance of minimizing the consumption of UPF to prevent NAFLD and other metabolic diseases among the general adult population. This systematic review and further prospective studies, epidemiological or interventional, can help physicians provide patients with evidence-based nutritional recommendations and will support policymakers in restricting the marketing of UPF as well as promoting affordable, healthy, and minimally processed foods.
Collapse
Affiliation(s)
- Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Gillon-Keren
- Institute of Endocrinology and Diabetes, Schneider Children’s Medical Center, Petah Tikva, Israel
- Faculty of Sciences, Kibbutzim College of Education Technology and the Arts, Tel-Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
36
|
Srivastava SP, Upadhyay P, Das S, Tiwari N, Mishra S, Tripathi SM. Managing Diabetic Complications with Alternative Therapeutic Strategies. Curr Diabetes Rev 2024; 20:e070923220791. [PMID: 37691189 DOI: 10.2174/1573399820666230907112430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/02/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Diabetes is a chronic metabolic disease affecting millions worldwide. It is characterized by a lack of insulin production or impaired insulin function, leading to elevated blood glucose levels. Conventional treatment methods for diabetes management typically include lifestyle changes and medications. However, alternative therapies have gained attention in recent years, including traditional medicine containing bioactive compounds, supplements like vitamin D and Omega-3 fatty acids, aromatherapy, and homeopathy. Diabetic complications are common in patients with uncontrolled diabetes and can lead to serious health problems, including diabetic retinopathy, impaired wound healing, kidney disease, nerve damage, and cardiovascular disease. Alternative remedies, such as traditional medicine containing bioactive compounds, supplements, and aromatherapy, have been studied for their potential benefits in managing these complications. Traditional medicines like bitter melon, cinnamon, and fenugreek have been shown to have anti-diabetic effects due to their bioactive compounds. Similarly, supplements like vitamin D and Omega-3 fatty acids have been found to improve glycemic control in patients with diabetes. Aromatherapy, which involves the use of essential oils, has also been explored for its potential benefits in diabetes management. Homeopathy, which uses highly diluted substances to stimulate the body's natural healing abilities, has been used to treat diabetes-related symptoms like neuropathy and wounds. Personalized care is essential in natural diabetes management because each person's body and health needs are unique. A holistic approach that addresses the individual's physical, emotional, and spiritual well-being is essential. As research in this field continues to expand, a more comprehensive understanding of diabetes management will lead to improved outcomes for those living with this condition.
Collapse
Affiliation(s)
| | - Pawan Upadhyay
- Department of Pharmacy, Maharishi University of Information Technology, Lucknow, India
| | - Shibu Das
- Department of Pharmacy, Maharishi University of Information Technology, Lucknow, India
| | - Neha Tiwari
- Khyati College of Pharmacy, Palodia, Ahmedabad, India
| | - Sudhanshu Mishra
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Shivendra Mani Tripathi
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| |
Collapse
|
37
|
Jiang H, Zang L. GLP-1/GLP-1RAs: New Options for the Drug Treatment of NAFLD. Curr Pharm Des 2024; 30:100-114. [PMID: 38532322 DOI: 10.2174/0113816128283153231226103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently emerged as a global public health concern. Currently, the cornerstone of NAFLD treatment is lifestyle modification and, if necessary, weight loss. However, compliance is a challenge, and this approach alone may not be sufficient to halt and treat the more serious disease development, so medication is urgently needed. Nevertheless, no medicines are approved to treat NAFLD. Glucagon-like peptide-1 (GLP-1) is an enteropeptide hormone that inhibits glucagon synthesis, promotes insulin secretion, and delays gastric emptying. GLP-1 has been found in recent studies to be beneficial for the management of NAFLD, and the marketed GLP-1 agonist drugs have different degrees of effectiveness for NAFLD while lowering blood glucose. In this article, we review GLP-1 and its physiological roles, the pathogenesis of NAFLD, the correlation between NAFLD and GLP-1 signaling, and potential strategies for GLP-1 treatment of NAFLD.
Collapse
Affiliation(s)
- Haoran Jiang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linquan Zang
- Laboratory of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
Cheng J, Wang W. Association of Dietary Acid Load with Nonalcoholic Fatty Liver Disease and Advanced Liver Fibrosis in US Adults: Evidence from NHANES 1999-2018. Risk Manag Healthc Policy 2023; 16:2819-2832. [PMID: 38145208 PMCID: PMC10749110 DOI: 10.2147/rmhp.s437425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Background Evidence for an association between dietary acid load (DAL) and non-alcoholic fatty liver disease (NAFLD) is scarce and controversial. We aimed to address whether an association exists between DAL and NAFLD/advanced liver fibrosis (AHF) among US adults in a nationally representative study. Methods This was a cross-sectional study. We included adult participants from the National Health and Nutrition Examination Survey 1999-2018. Potential renal acid load (PRAL) and estimated net endogenous acid production (NEAP) was calculated from the literature and NAFLD/AHF was diagnosed by noninvasive markers. We comprehensively explored these relationships using multivariate adjusted regression models, restricted cubic spline, stratification analysis, and sensitivity analysis. Results We enrolled a total of 18,855 participants. All DAL metrics were positively and nonlinearly associated with NAFLD (all p-values < 0.0001), whereas NEAPF and NEAPR may be associated with AHF. In the stratified analysis, we found that the correlation between DAL and NAFLD exists in all ages and genders, but the effect of DAL seems to be more obvious in middle-aged, elderly and women. Similarly, we found that the effect of DAL on AHF was more significant in 45-60-year-olds and women. Sensitivity analyses revealed stability of all results. Conclusion DAL including PRAL and NEAP were positively associated with NAFLD in a large nationally representative cross-sectional study. NEAPF and NEAPR may be associated with increased odds of AHF. Adjustment for diet-dependent DAL requires age- and sex-specific strategies. Future prospective studies are needed to validate our findings.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Medicine, Wuhan University of Science and Technology, Wuhan, 430000, People’s Republic of China
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| | - Wei Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, People’s Republic of China
| |
Collapse
|
39
|
Cai J, Zhu Y, Li X, Deng G, Han Y, Yuan F, Yi G, Xia X. Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-β1/Smad Signaling. TOHOKU J EXP MED 2023; 261:257-265. [PMID: 37344419 DOI: 10.1620/tjem.2023.j050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Improving hepatic glucose and lipid metabolisms is an important strategy to treat type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (T2DM-NAFLD). Silybin (SLB) has the potential hepatoprotection, while its oral bioavailability is poor. This study aims to investigate the functional role and mechanism of liposomal SLB in modulating glucose/lipid metabolism in T2DM-NAFLD. SLB was prepared by thin film dispersion method and characterized using dynamic light scattering, scanning electron microscope, high performance liquid chromatography and zeta potential analyzer. A rat model of T2DM-NAFLD was used to determine the role of liposomal SLB in regulating glycolipid metabolism and hepatic damage. Rat primary hepatocytes were used to demonstrate the hepatoprotection mechanism of liposomal SLB. The encapsulation efficiency was more than 80%, which showed the average particle size of 119.76 nm. Also, the average Zeta potential was -4.76 mV. These liposomes were spherical. In rats with T2DM-NAFLD, liposomal SLB alleviated insulin resistance and lipid metabolism, thereby improving hepatic lipid accumulation, inflammation and fibrosis. Besides, liposomal SLB elevated AMPK phosphorylation, and decreased collagen I/III, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and the phosphorylation of Smad2/3. In hepatocyte model, compound C partially reversed the effects of liposomal SLB on cell viability, glycolipid metabolism and AMPK/TGF-β1/Smad pathway activation. Liposomal SLB ameliorates hepatic glucose and lipid metabolisms in T2DM-NAFLD via activating AMPK/TGF-β1/Smad pathway, providing an efficient strategy for treating T2DM-NAFLD.
Collapse
Affiliation(s)
- Jialuo Cai
- School of Pharmacy, Hunan University of Chinese Medicine
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Yilin Zhu
- Graduate School, Hunan University of Chinese Medicine
| | - Xiaoping Li
- Preventive Treatment of Disease Center, The First Hospital of Hunan University of Chinese Medicine
| | - Guiming Deng
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Yuanshan Han
- Scientific Research Section, The First Hospital of Hunan University of Chinese Medicine
| | - Feiyun Yuan
- Library, Hunan University of Chinese Medicine
| | - Gangqiang Yi
- Party Committee, Hunan University of Chinese Medicine
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine
| |
Collapse
|
40
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
41
|
En Li Cho E, Ang CZ, Quek J, Fu CE, Lim LKE, Heng ZEQ, Tan DJH, Lim WH, Yong JN, Zeng R, Chee D, Nah B, Lesmana CRA, Bwa AH, Win KM, Faulkner C, Aboona MB, Lim MC, Syn N, Kulkarni AV, Suzuki H, Takahashi H, Tamaki N, Wijarnpreecha K, Huang DQ, Muthiah M, Ng CH, Loomba R. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Gut 2023; 72:2138-2148. [PMID: 37491159 DOI: 10.1136/gutjnl-2023-330110] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with type 2 diabetes mellitus (T2DM) as a major predictor. Insulin resistance and chronic inflammation are key pathways in the pathogenesis of T2DM leading to NAFLD and vice versa, with the synergistic effect of NAFLD and T2DM increasing morbidity and mortality risks. This meta-analysis aims to quantify the prevalence of NAFLD and the prevalence of clinically significant and advanced fibrosis in people with T2DM. METHODS MEDLINE and Embase databases were searched from inception until 13 February 2023. The primary outcomes were the prevalence of NAFLD, non-alcoholic steatohepatitis (NASH) and fibrosis in people with T2DM. A generalised linear mixed model with Clopper-Pearson intervals was used for the analysis of proportions with sensitivity analysis conducted to explore heterogeneity between studies. RESULTS 156 studies met the inclusion criteria, and a pooled analysis of 1 832 125 patients determined that the prevalence rates of NAFLD and NASH in T2DM were 65.04% (95% CI 61.79% to 68.15%, I2=99.90%) and 31.55% (95% CI 17.12% to 50.70%, I2=97.70%), respectively. 35.54% (95% CI 19.56% to 55.56%, I2=100.00%) of individuals with T2DM with NAFLD had clinically significant fibrosis (F2-F4), while 14.95% (95% CI 11.03% to 19.95%, I2=99.00%) had advanced fibrosis (F3-F4). CONCLUSION This study determined a high prevalence of NAFLD, NASH and fibrosis in people with T2DM. Increased efforts are required to prevent T2DM to combat the rising burden of NAFLD. PROSPERO REGISTRATION NUMBER CRD42022360251.
Collapse
Affiliation(s)
- Elina En Li Cho
- Department of Medicine, National University Hospital, Singapore
| | - Chong Zhe Ang
- Department of Medicine, National University Hospital, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Clarissa Elysia Fu
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lincoln Kai En Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zane En Qi Heng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rebecca Zeng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Douglas Chee
- Department of Medicine, National University Hospital, Singapore
| | - Benjamin Nah
- Department of Medicine, National University Hospital, Singapore
| | | | - Aung Hlaing Bwa
- Department of Medical Research, Union of Myanmar, Naypyidaw, Myanmar
| | - Khin Maung Win
- Department of Medical Research, Union of Myanmar, Naypyidaw, Myanmar
| | - Claire Faulkner
- Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Majd B Aboona
- Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Mei Chin Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Diagnostic Imaging, National University Health System, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anand V Kulkarni
- Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Hiroyuki Suzuki
- Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | | | - Nobuharu Tamaki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, Musashino Red Cross Hospital, Musashino, Japan
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, University of Michigan, Michigan, Michigan, USA
| | - Daniel Q Huang
- Department of Medicine, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Mark Muthiah
- Department of Medicine, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rohit Loomba
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
42
|
Ramírez-Mejía MM, Méndez-Sánchez N. What Is in a Name: from NAFLD to MAFLD and MASLD—Unraveling the Complexities and Implications. CURRENT HEPATOLOGY REPORTS 2023; 22:221-227. [DOI: 10.1007/s11901-023-00620-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 01/03/2025]
|
43
|
Somsura R, Kamkajon K, Chaimongkolnukul K, Chantip S, Teerapornpuntakit J, Wongdee K, Kamonsutthipaijit N, Tangtrongsup S, Panupinthu N, Tiyasatkulkovit W, Charoenphandhu N. Tissue-specific expression of senescence biomarkers in spontaneously hypertensive rats: evidence of premature aging in hypertension. PeerJ 2023; 11:e16300. [PMID: 37872946 PMCID: PMC10590574 DOI: 10.7717/peerj.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
Background Cellular senescence is an age-related physiological process that contributes to tissue dysfunction and accelerated onset of chronic metabolic diseases including hypertension. Indeed, elevation of blood pressure in hypertension coincides with premature vascular aging and dysfunction. In addition, onsets of metabolic disturbance and osteopenia in patients with hypertension have also been reported. It is possible that hypertension enhances premature aging and causes progressive loss of function in multiple organs. However, the landscape of cellular senescence in critical tissues affected by hypertension remains elusive. Materials and Methods Heart, liver, bone, hypothalamus, and kidney were collected from spontaneously hypertensive rats (SHR) and age- and sex-matched normotensive Wistar rats (WT) at 6, 12, 24 and 36 weeks of age (n = 10 animals/group). Changes in mRNA levels of senescence biomarkers namely cyclin-dependent kinase (CDK) inhibitors (CDKIs), i.e., Cdkn2a (encoding p16Ink4a) and Cdkn1a (encoding p21cip1) as well as senescence-associated secretory phenotypes (SASPs), i.e., Timp1, Mmp12, Il6 and Cxcl1, were determined. Additionally, bone collagen alignment and hydroxy apatite crystal dimensions were determined by synchrotron radiation small- and wide-angle X-ray scattering (SAXS/WAXS) techniques. Results Real-time PCR revealed that transcript levels of genes encoding CDKIs and SASPs in the heart and liver were upregulated in SHR from 6 to 36 weeks of age. Expression of Timp1 and Cxcl1 was increased in bone tissues isolated from 36-week-old SHR. In contrast, we found that expression levels of Timp1 and Il6 mRNA were decreased in hypothalamus and kidney of SHR in all age groups. Simultaneous SAXS/WAXS analysis also revealed misalignment of bone collagen fibers in SHR as compared to WT. Conclusion Premature aging was identified in an organ directly affected by high blood pressure (i.e., heart) and those with known functional defects in SHR (i.e., liver and bone). Cellular senescence was not evident in organs with autoregulation of blood pressure (i.e., brain and kidney). Our study suggested that cellular senescence is induced by persistently elevated blood pressure and in part, leading to organ dysfunction. Therefore, interventions that can both lower blood pressure and prevent cellular senescence should provide therapeutic benefits for treatment of cardiovascular and metabolic consequences.
Collapse
Affiliation(s)
- Ratthapon Somsura
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Master of Science Program in Zoology, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kanokwan Kamkajon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Surachai Chantip
- National Laboratory Animal Center, Mahidol University, Nakhon Pathom, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | | | - Suwimol Tangtrongsup
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattapon Panupinthu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
44
|
Sharma N, Chakole S, Wandile B. Uncovering the Cardiovascular Threat: A Comprehensive Examination of Liver Fibrosis and Subclinical Atherosclerosis in Non-alcoholic Fatty Liver Disease. Cureus 2023; 15:e46946. [PMID: 38021670 PMCID: PMC10640697 DOI: 10.7759/cureus.46946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a global epidemic intricately linked to the rising tide of obesity and metabolic syndrome. This comprehensive review delves into the complex web of relationships between NAFLD, liver fibrosis, and subclinical atherosclerosis, shedding light on their interplay, shared risk factors, and clinical implications. NAFLD encompasses a spectrum of liver conditions, from the benign non-alcoholic fatty liver (NAFL) to the more severe non-alcoholic steatohepatitis (NASH), characterized by inflammation and hepatocellular injury. Central to the discussion is the insidious development of liver fibrosis, the ominous harbinger of progressive liver damage, cirrhosis, and hepatocellular carcinoma. The increasing prevalence of NAFLD, now affecting a quarter of the global population, poses a significant public health challenge. Its association with obesity, insulin resistance, and metabolic syndrome highlights the multifactorial nature of this disease. However, NAFLD's repercussions extend beyond the liver. This review unveils a potent connection between NAFLD and subclinical atherosclerosis, the early precursor to cardiovascular disease. Individuals with NAFLD face an elevated risk of atherosclerosis, even without traditional cardiovascular risk factors. The intricate link between these two conditions is illuminated through shared pathophysiological pathways, including systemic inflammation, insulin resistance, and dyslipidemia. Understanding the interplay between liver fibrosis and subclinical atherosclerosis has profound clinical implications. Patients with advanced fibrosis or cirrhosis are not only at risk of liver-related complications but also of cardiovascular events. This necessitates a holistic approach to patient care, with lifestyle modifications and pharmacological interventions simultaneously managing both conditions. Physicians must prioritize early detection and collaborate across disciplines to provide comprehensive care. Looking ahead, the future holds promising avenues of research. Emerging areas include genetics and precision medicine, microbiome research, and epigenetics, which may unveil new therapeutic targets. Innovations in diagnostics and therapeutics, such as non-invasive biomarkers and combination therapies, offer hope for more effective management. Long-term outcomes and survivorship research will provide insights into the lasting impact of interventions. In conclusion, this review underscores the imperative of addressing liver fibrosis and atherosclerosis in the context of NAFLD. It is a call to action for healthcare professionals, researchers, and policymakers to work collaboratively, promote early detection, and advance our understanding of these interconnected conditions. By doing so, we can enhance patient outcomes and chart a course toward a healthier future for those grappling with NAFLD and its intricate web of consequences.
Collapse
Affiliation(s)
- Niketa Sharma
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan Wandile
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
45
|
Moghtadaie A, Mahboobi H, Fatemizadeh S, Kamal MA. Emerging role of nanotechnology in treatment of non-alcoholic fatty liver disease (NAFLD). EXCLI JOURNAL 2023; 22:946-974. [PMID: 38023570 PMCID: PMC10630531 DOI: 10.17179/excli2023-6420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 12/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevailing health challenge that requires urgent innovative interventions. This review explores the role of nanotechnology as a promising potential in the treatment of NAFLD. It delineates the limitations of the current management strategies for NAFLD and highlights the new nanotechnology-based treatments including nanoemulsions, liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanoparticles, and zinc oxide nanoparticles. Despite the optimism surrounding the nanotechnological approach, the review underscores the need to address the limitations such as technical challenges, potential toxicity, and ethical considerations that impede the practical application of nanotechnology in NAFLD management. It advocates for collaborative efforts from researchers, clinicians, ethicists, and policymakers to achieve safe, effective, and equitable nanotechnology-based treatments for NAFLD. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Atie Moghtadaie
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahboobi
- Clinical Fellow in Gastroenterology and Hepatology, Digestive Disease Research Institute, Department of Gastroenterology and Hepatology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Fatemizadeh
- Department of Gastroenterology and Hepatology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
46
|
Liu L, Li Y, Zhang X. LncRNA LINC01018 Screens Type 2 Diabetes Mellitus and Regulates β Cell Function Through Modulating miR-499a-5p. Horm Metab Res 2023; 55:642-648. [PMID: 37187181 DOI: 10.1055/a-2077-5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, which seriously endangers human health. The dysregulation of lncRNA LINC01018 in T2DM has been noticed in previous studies, but whether it served as a biomarker lacks validation. This study aimed to confirm the abnormal expression of LINC01018 in T2DM and reveals its specific function in regulating pancreatic β cell function. This study enrolled 77 T2DM patients and 41 healthy individuals and compared the plasma LINC01018 levels between two groups using PCR. The pancreatic β cell was induced with 25 mM glucose to mimic cell injury during T2DM. The effects of LINC01018 on β cell proliferation, dedifferentiation, and insulin production were evaluated by CCK8, western blotting, and ELISA. Moreover, the involvement of miR-499a-5p was also evaluated with luciferase reporter assay. Increased plasma LINC01018 was observed in T2DM patients compared with healthy individuals, which discriminates patients with high sensitivity and specificity. Upregulated LINC01018 was associated with patients' fasting blood glucose and weight loss. High glucose induced the increasing LINC01018 in pancreatic islet β cells and suppressed cell proliferation, insulin secretion, and promoted cell dedifferentiation. Silencing LINC01018 could alleviate the impaired function of β cells by high glucose, which was reversed by the knockdown by miR-499a-5p. Upregulated LINC01018 served as a potential diagnostic biomarker for T2DM and alleviated high glucose-induced β cell dysfunction via negatively modulating miR-499a-5p.
Collapse
Affiliation(s)
- Li Liu
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuan Li
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xiaoqian Zhang
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| |
Collapse
|
47
|
Li L, Qin Y, Xin X, Wang S, Liu Z, Feng X. The great potential of flavonoids as candidate drugs for NAFLD. Biomed Pharmacother 2023; 164:114991. [PMID: 37302319 DOI: 10.1016/j.biopha.2023.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of approximately 25 % and is associated with high morbidity and high mortality. NAFLD is a leading cause of cirrhosis and hepatocellular carcinoma. Its pathophysiology is complex and still poorly understood, and there are no drugs used in the clinic to specifically treat NAFLD. Its pathogenesis involves the accumulation of excess lipids in the liver, leading to lipid metabolism disorders and inflammation. Phytochemicals with the potential to prevent or treat excess lipid accumulation have recently received increasing attention, as they are potentially more suitable for long-term use than are traditional therapeutic compounds. In this review, we summarize the classification, biochemical properties, and biological functions of flavonoids and how they are used in the treatment of NAFLD. Highlighting the roles and pharmacological uses of these compounds will be of importance for enhancing the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Liangge Li
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xijian Xin
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shendong Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
48
|
Badali T, Arefhosseini S, Rooholahzadegan F, Tutunchi H, Ebrahimi-Mameghani M. The effect of DASH diet on atherogenic indices, pro-oxidant-antioxidant balance, and liver steatosis in obese adults with non-alcoholic fatty liver disease: A double-blind controlled randomized clinical trial. Health Promot Perspect 2023; 13:77-87. [PMID: 37309438 PMCID: PMC10257571 DOI: 10.34172/hpp.2023.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 06/14/2023] Open
Abstract
Background: The present clinical trial aimed to examine whether adherence to Dietary Approaches to Stop Hypertension (DASH) diet could improve lipid profile, the Pro-oxidant-antioxidant balance (PAB) as well as liver function in obese adults with non-alcoholic fatty liver disease (NAFLD). Methods: Sixty two patients with NAFLD were equally allocated into either DASH or low-calorie diet (LCD) group for 8 weeks. The primary and secondary outcomes were determined before and after the trial. Results: Forty patients completed the trial. Significant within group differences were found in dietary saturated fat, selenium, vitamins A and E as well as body weight and body mass index (BMI) and waist circumference (WC) after the intervention (P<0.05). DASH diet showed greater significant change in systolic and diastolic blood pressure without significant differences between the groups after 8 weeks. Apart from serum high-density lipoprotein cholesterol (HDL-C) and triglyceride/HDL-C, greater reductions were found not only in serum lipids and atherogenic indices (P<0.05) but also in serum aspartate aminotransferase (AST), AST to platelet ratio index (APRI) and lipid accumulation product (LAP) in DASH group in comparison to control group (P=0.008, P=0.019 and P=0.003, respectively). Nevertheless, there was not any difference in PAB level between the groups. Furthermore, adherence to DASH diet was more effective in alleviating liver steatosis compared with usual LCD (P=0.012). Conclusion: Adherence to DASH diet appears to be more effective in improving obesity, atherogenic and liver steatosis biomarkers but not oxidative stress (OS) than usual LCD.
Collapse
Affiliation(s)
- Taghi Badali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Arefhosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Ren Q, Chen Y, Zhou Z, Cai Z, Jiao S, Huang W, Wang B, Chen S, Wang W, Cao Z, Yang Z, Deng L, Hu L, Zhang L, Li Z. Discovery of the First-in-Class Intestinal Restricted FXR and FABP1 Dual Modulator ZLY28 for the Treatment of Nonalcoholic Fatty Liver Disease. J Med Chem 2023; 66:6082-6104. [PMID: 37079895 DOI: 10.1021/acs.jmedchem.2c01918] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) is increasing rapidly worldwide, and NASH has become a serious problem for human health. Recently, the selective activation of the intestinal farnesoid X receptor (FXR) was considered as a more promising strategy for the treatment of NASH with lesser side effects due to reduced systemic exposure. Moreover, the inhibition of intestinal fatty acid binding protein 1 (FABP1) alleviated obesity and NASH by reducing dietary fatty acid uptake. In this study, the first-in-class intestinal restricted FXR and FABP1 dual-target modulator ZLY28 was discovered by comprehensive multiparameter optimization studies. The reduced systemic exposure of ZLY28 might provide better safety by decreasing the on- and off-target side effects in vivo. In NASH mice, ZLY28 exerted robust anti-NASH effects by inhibiting FABP1 and activating the FXR-FGF15 signaling pathway in the ileum. With the above attractive efficacy and preliminary safety profiles, ZLY28 is worthy of further evaluation as a novel anti-NASH agent.
Collapse
Affiliation(s)
- Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Liming Deng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijun Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
50
|
Nemati A, Nikniaz Z, Mota A. Effects of Resveratrol Supplementation on Nonalcoholic Fatty Liver Disease Management. TOP CLIN NUTR 2023. [DOI: 10.1097/tin.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|