1
|
Nechyporenko K, Voliotis M, Li XF, Hollings O, Ivanova D, Walker JJ, O'Byrne KT, Tsaneva-Atanasova K. Neuronal network dynamics in the posterodorsal amygdala: shaping reproductive hormone pulsatility. J R Soc Interface 2024; 21:20240143. [PMID: 39193642 DOI: 10.1098/rsif.2024.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Normal reproductive function and fertility rely on the rhythmic secretion of gonadotropin-releasing hormone (GnRH), which is driven by the hypothalamic GnRH pulse generator. A key regulator of the GnRH pulse generator is the posterodorsal subnucleus of the medial amygdala (MePD), a brain region that is involved in processing external environmental cues, including the effect of stress. However, the neuronal pathways enabling the dynamic, stress-triggered modulation of GnRH secretion remain largely unknown. Here, we employ in silico modelling in order to explore the impact of dynamic inputs on GnRH pulse generator activity. We introduce and analyse a mathematical model representing MePD neuronal circuits composed of GABAergic and glutamatergic neuronal populations, integrating it with our GnRH pulse generator model. Our analysis dissects the influence of excitatory and inhibitory MePD projections' outputs on the GnRH pulse generator's activity and reveals a functionally relevant MePD glutamatergic projection to the GnRH pulse generator, which we probe with in vivo optogenetics. Our study sheds light on how MePD neuronal dynamics affect the GnRH pulse generator activity and offers insights into stress-related dysregulation.
Collapse
Affiliation(s)
- Kateryna Nechyporenko
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Margaritis Voliotis
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Xiao Feng Li
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Owen Hollings
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Deyana Ivanova
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie J Walker
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| | - Kevin T O'Byrne
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Statistics, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| |
Collapse
|
2
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
3
|
Lischinsky JE, Yin L, Shi C, Prakash N, Burke J, Shekaran G, Grba M, Corbin JG, Lin D. Transcriptionally defined amygdala subpopulations play distinct roles in innate social behaviors. Nat Neurosci 2023; 26:2131-2146. [PMID: 37946049 PMCID: PMC10689240 DOI: 10.1038/s41593-023-01475-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.
Collapse
Affiliation(s)
- Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Luping Yin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Chenxi Shi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Hunter College, New York, NY, USA
| | - Nandkishore Prakash
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Jared Burke
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Govind Shekaran
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Maria Grba
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Pfau DR, Baribeau S, Brown F, Khetarpal N, Marc Breedlove S, Jordan CL. Loss of TRPC2 function in mice alters sex differences in brain regions regulating social behaviors. J Comp Neurol 2023; 531:1550-1561. [PMID: 37496437 PMCID: PMC10642801 DOI: 10.1002/cne.25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential cation channel 2 (TRPC2) conveys pheromonal information from the vomeronasal organ (VNO) to the brain. Both male and female mice lacking this gene show altered sex-typical behavior as adults. We asked whether TRPC2, highly expressed in the VNO, normally participates in the development of VNO-recipient brain regions controlling mounting and aggression, two behaviors affected by TRPC2 loss. We now report significant effects of TRPC2 loss in both the posterodorsal aspect of the medial amygdala (MePD) and ventromedial nucleus of the hypothalamus (VMH) of male and female mice. In the MePD, a sex difference in neuron number was eliminated by the TRPC2 knockout (KO), but the effect was complex, with fewer neurons in the right MePD of females, and fewer neurons in the left MePD of males. In contrast, MePD astrocytes were unaffected by the KO. In the ventrolateral (vl) aspect of the VMH, KO females were like wildtype (WT) females, but TRPC2 loss had a dramatic effect in males, with fewer neurons than WT males and a smaller VMHvl overall. We also discovered a glial sex difference in VMHvl of WTs, with females having more astrocytes than males. Interestingly, TRPC2 loss increased astrocyte number in males in this region. We conclude that TRPC2 normally participates in the sexual differentiation of the mouse MePD and VMHvl. These changes in two key VNO-recipient regions may underlie the effects of the TRPC2 KO on behavior.
Collapse
Affiliation(s)
- Daniel R Pfau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Sarah Baribeau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Felix Brown
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Niki Khetarpal
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Velasco I, Franssen D, Daza-Dueñas S, Skrapits K, Takács S, Torres E, Rodríguez-Vazquez E, Ruiz-Cruz M, León S, Kukoricza K, Zhang FP, Ruohonen S, Luque-Cordoba D, Priego-Capote F, Gaytan F, Ruiz-Pino F, Hrabovszky E, Poutanen M, Vázquez MJ, Tena-Sempere M. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism 2023; 144:155556. [PMID: 37121307 DOI: 10.1016/j.metabol.2023.155556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.
Collapse
Affiliation(s)
- Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; GIGA-Neurosciences Unit, University of Liège, Liège, Belgium
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Elvira Rodríguez-Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Silvia León
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Suvi Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Diego Luque-Cordoba
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - María J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
6
|
Hatcher KM, Costanza L, Kauffman AS, Stephens SBZ. The molecular phenotype of kisspeptin neurons in the medial amygdala of female mice. Front Endocrinol (Lausanne) 2023; 14:1093592. [PMID: 36843592 PMCID: PMC9951589 DOI: 10.3389/fendo.2023.1093592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023] Open
Abstract
Reproduction is regulated through the hypothalamic-pituitary-gonadal (HPG) axis, largely via the action of kisspeptin neurons in the hypothalamus. Importantly, Kiss1 neurons have been identified in other brain regions, including the medial amygdala (MeA). Though the MeA is implicated in regulating aspects of both reproductive physiology and behavior, as well as non-reproductive processes, the functional roles of MeA Kiss1 neurons are largely unknown. Additionally, besides their stimulation by estrogen, little is known about how MeA Kiss1 neurons are regulated. Using a RiboTag mouse model in conjunction with RNA-seq, we examined the molecular profile of MeA Kiss1 neurons to identify transcripts that are co-expressed in MeA Kiss1 neurons of female mice and whether these transcripts are modulated by estradiol (E2) treatment. RNA-seq identified >13,800 gene transcripts co-expressed in female MeA Kiss1 neurons, including genes for neuropeptides and receptors implicated in reproduction, metabolism, and other neuroendocrine functions. Of the >13,800 genes co-expressed in MeA Kiss1 neurons, only 45 genes demonstrated significantly different expression levels due to E2 treatment. Gene transcripts such as Kiss1, Gal, and Oxtr increased in response to E2 treatment, while fewer transcripts, such as Esr1 and Cyp26b1, were downregulated by E2. Dual RNAscope and immunohistochemistry was performed to validate co-expression of MeA Kiss1 with Cck and Cartpt. These results are the first to establish a profile of genes actively expressed by MeA Kiss1 neurons, including a subset of genes regulated by E2, which provides a useful foundation for future investigations into the regulation and function of MeA Kiss1 neurons.
Collapse
Affiliation(s)
- Katherine M. Hatcher
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Leah Costanza
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander S. Kauffman
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Shannon B. Z. Stephens
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- Department of OBGYN and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Lass G, Li XF, Voliotis M, Wall E, de Burgh RA, Ivanova D, McIntyre C, Lin X, Colledge WH, Lightman SL, Tsaneva‐Atanasova K, O'Byrne KT. GnRH pulse generator frequency is modulated by kisspeptin and GABA-glutamate interactions in the posterodorsal medial amygdala in female mice. J Neuroendocrinol 2022; 34:e13207. [PMID: 36305576 PMCID: PMC10078155 DOI: 10.1111/jne.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
Kisspeptin neurons in the arcuate nucleus of the hypothalamus generate gonadotrophin-releasing hormone (GnRH) pulses, and act as critical initiators of functional gonadotrophin secretion and reproductive competency. However, kisspeptin in other brain regions, most notably the posterodorsal subnucleus of the medial amygdala (MePD), plays a significant modulatory role over the hypothalamic kisspeptin population; our recent studies using optogenetics have shown that low-frequency light stimulation of MePD kisspeptin results in increased luteinsing hormone pulse frequency. Nonetheless, the neurochemical pathways that underpin this regulatory function remain unknown. To study this, we have utilised an optofluid technology, precisely combining optogenetic stimulation with intra-nuclear pharmacological receptor antagonism, to investigate the neurotransmission involved in this circuitry. We have shown experimentally and verified using a mathematical model that functional neurotransmission of both GABA and glutamate is a requirement for effective modulation of the GnRH pulse generator by amygdala kisspeptin neurons.
Collapse
Affiliation(s)
- Geffen Lass
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Xiao Feng Li
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Ellen Wall
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Reproductive Physiology Group, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Ross A. de Burgh
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Deyana Ivanova
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Caitlin McIntyre
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Xian‐Hua Lin
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - William H. Colledge
- Reproductive Physiology Group, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, The Dorothy Hodgkin BuildingUniversity of BristolBristolUK
| | - Krasimira Tsaneva‐Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Kevin T. O'Byrne
- Department of Women and Children's Health, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
8
|
Kauffman AS. Neuroendocrine mechanisms underlying estrogen positive feedback and the LH surge. Front Neurosci 2022; 16:953252. [PMID: 35968365 PMCID: PMC9364933 DOI: 10.3389/fnins.2022.953252] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023] Open
Abstract
A fundamental principle in reproductive neuroendocrinology is sex steroid feedback: steroid hormones secreted by the gonads circulate back to the brain to regulate the neural circuits governing the reproductive neuroendocrine axis. These regulatory feedback loops ultimately act to modulate gonadotropin-releasing hormone (GnRH) secretion, thereby affecting gonadotropin secretion from the anterior pituitary. In females, rising estradiol (E2) during the middle of the menstrual (or estrous) cycle paradoxically "switch" from being inhibitory on GnRH secretion ("negative feedback") to stimulating GnRH release ("positive feedback"), resulting in a surge in GnRH secretion and a downstream LH surge that triggers ovulation. While upstream neural afferents of GnRH neurons, including kisspeptin neurons in the rostral hypothalamus, are proposed as critical loci of E2 feedback action, the underlying mechanisms governing the shift between E2 negative and positive feedback are still poorly understood. Indeed, the precise cell targets, neural signaling factors and receptors, hormonal pathways, and molecular mechanisms by which ovarian-derived E2 indirectly stimulates GnRH surge secretion remain incompletely known. In many species, there is also a circadian component to the LH surge, restricting its occurrence to specific times of day, but how the circadian clock interacts with endocrine signals to ultimately time LH surge generation also remains a major gap in knowledge. Here, we focus on classic and recent data from rodent models and discuss the consensus knowledge of the neural players, including kisspeptin, the suprachiasmatic nucleus, and glia, as well as endocrine players, including estradiol and progesterone, in the complex regulation and generation of E2-induced LH surges in females.
Collapse
|
9
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
10
|
Ågmo A, Laan E. Sexual incentive motivation, sexual behavior, and general arousal: Do rats and humans tell the same story? Neurosci Biobehav Rev 2022; 135:104595. [PMID: 35231490 DOI: 10.1016/j.neubiorev.2022.104595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Sexual incentive stimuli activate sexual motivation and heighten the level of general arousal. The sexual motive may induce the individual to approach the incentive, and eventually to initiate sexual acts. Both approach and the ensuing copulatory interaction further enhance general arousal. We present data from rodents and humans in support of these assertions. We then suggest that orgasm is experienced when the combined level of excitation surpasses a threshold. In order to analyze the neurobiological bases of sexual motivation, we employ the concept of a central motive state. We then discuss the mechanisms involved in the long- and short-term control of that state as well as those mediating the momentaneous actions of sexual incentive stimuli. This leads to an analysis of the neurobiology behind the interindividual differences in responsivity of the sexual central motive state. Knowledge is still fragmentary, and many contradictory observations have been made. Nevertheless, we conclude that the basic mechanisms of sexual motivation and the role of general arousal are similar in rodents and humans.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| | - Ellen Laan
- Department of Sexology and Psychosomatic Gynaecology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
11
|
Abstract
Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
12
|
Nakamura S, Watanabe Y, Goto T, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Kisspeptin neurons as a key player bridging the endocrine system and sexual behavior in mammals. Front Neuroendocrinol 2022; 64:100952. [PMID: 34755641 DOI: 10.1016/j.yfrne.2021.100952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Reproductive behaviors are sexually differentiated: for example, male rodents show mounting behavior, while females in estrus show lordosis behavior as sex-specific sexual behaviors. Kisspeptin neurons govern reproductive function via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release for gonadal steroidogenesis in mammals. First, we discuss the role of hypothalamic kisspeptin neurons as an indispensable regulator of sexual behavior by stimulating the synthesis of gonadal steroids, which exert "activational effects" on the behavior in adulthood. Second, we discuss the central role of kisspeptin neurons that are directly involved in neural circuits controlling sexual behavior in adulthood. We then focused on the role of perinatal hypothalamic kisspeptin neurons in the induction of perinatal testosterone secretion for its "organizational effects" on masculinization/defeminization of the male brain in rodents during a critical period. We subsequently concluded that kisspeptin neurons are key players in bridging the endocrine system and sexual behavior in mammals.
Collapse
Affiliation(s)
- Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Youki Watanabe
- Graduate School of Applied Life Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Teppei Goto
- RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kana Ikegami
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
13
|
Mills EG, Yang L, Abbara A, Dhillo WS, Comninos AN. Current Perspectives on Kisspeptins Role in Behaviour. Front Endocrinol (Lausanne) 2022; 13:928143. [PMID: 35757400 PMCID: PMC9225141 DOI: 10.3389/fendo.2022.928143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide kisspeptin is now well-established as the master regulator of the mammalian reproductive axis. Beyond the hypothalamus, kisspeptin and its cognate receptor are also extensively distributed in extra-hypothalamic brain regions. An expanding pool of animal and human data demonstrates that kisspeptin sits within an extensive neuroanatomical and functional framework through which it can integrate a range of internal and external cues with appropriate neuroendocrine and behavioural responses. In keeping with this, recent studies reveal wide-reaching effects of kisspeptin on key behaviours such as olfactory-mediated partner preference, sexual motivation, copulatory behaviour, bonding, mood, and emotions. In this review, we provide a comprehensive update on the current animal and human literature highlighting the far-reaching behaviour and mood-altering roles of kisspeptin. A comprehensive understanding of this important area in kisspeptin biology is key to the escalating development of kisspeptin-based therapies for common reproductive and related psychological and psychosexual disorders.
Collapse
Affiliation(s)
- Edouard G. Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Lisa Yang
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Waljit S. Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| | - Alexander N. Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- *Correspondence: Waljit S. Dhillo, ; Alexander N. Comninos,
| |
Collapse
|
14
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
15
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
16
|
Duittoz A, Cayla X, Fleurot R, Lehnert J, Khadra A. Gonadotrophin-releasing hormone and kisspeptin: It takes two to tango. J Neuroendocrinol 2021; 33:e13037. [PMID: 34533248 DOI: 10.1111/jne.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Kisspeptin (Kp), a family of peptides comprising products of the Kiss1 gene, was discovered 20 years ago; it is recognised as the major factor controlling the activity of the gonadotrophin-releasing hormone (GnRH) neurones and thus the activation of the reproductive axis in mammals. It has been widely documented that the effects of Kp on reproduction through its action on GnRH neurones are mediated by the GPR54 receptor. Kp controls the activation of the reproductive axis at puberty, maintains reproductive axis activity in adults and is involved in triggering ovulation in some species. Although there is ample evidence coming from both conditional knockout models and conditional-induced Kp neurone death implicating the Kp/GPR54 pathway in the control of reproduction, the mechanism(s) underlying this process may be more complex than a sole direct control of GnRH neuronal activity by Kp. In this review, we provide an overview of the recent advances made in elucidating the interplay between Kp- and GnRH- neuronal networks with respect to regulating the reproductive axis. We highlight the existence of a possible mutual regulation between GnRH and Kp neurones, as well as the implication of Kp-dependent volume transmission in this process. We also discuss the capacity of heterodimerisation between GPR54 and GnRH receptor (GnRH-R) and its consequences on signalling. Finally, we illustrate the role of mathematical modelling that accounts for the synergy between GnRH-R and GPR54 in explaining the role of these two receptors when defining GnRH neuronal activity and GnRH pulsatile release.
Collapse
Affiliation(s)
- Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAe Val de Loire, Université de Tours, IFCE, Nouzilly, France
| | - Jonas Lehnert
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Quantitative Life Sciences, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
17
|
Kanasaki H, Tumurbaatar T, Tumurgan Z, Oride A, Okada H, Kyo S. Mutual Interactions Between GnRH and Kisspeptin in GnRH- and Kiss-1-Expressing Immortalized Hypothalamic Cell Models. Reprod Sci 2021; 28:3380-3389. [PMID: 34268716 DOI: 10.1007/s43032-021-00695-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Kisspeptin and gonadotropin-releasing hormone (GnRH) are central regulators of the hypothalamic-pituitary-gonadal axis and control female reproductive functions. Recently established mHypoA-50 and mHypoA-55 cells are immortalized hypothalamic neuronal cell models that originated from the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) regions of the mouse hypothalamus, respectively. mHypoA-50 or mHypoA-55 cells were stimulated with kisspeptin-10 (KP10) and GnRH, after which the expression of kisspeptin and GnRH was determined. Primary cultures of fetal rat brain cells were also examined. mHypoA-50 and mHypoA-55 cells expressed mRNA for Kiss-1 (which encodes kisspeptin) and GnRH as well as receptors for kisspeptin and GnRH. We found that Kiss-1 mRNA expression was significantly increased in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. Kisspeptin protein expression was also increased by KP10 and GnRH stimulation in these cells. In contrast, GnRH expression was unchanged in mHypoA-50 AVPV cells by KP10 and GnRH stimulation. In mHypoA-55 ARC cells, kisspeptin expression was also significantly increased at the mRNA and protein levels by KP10 and GnRH stimulation; however, GnRH expression was also upregulated by KP10 and GnRH stimulation in these cells. KP10 and estradiol (E2) both increased Kiss-1 gene expression in mHypoA-50 AVPV cells, but combined stimulation with KP10 and E2 did not potentiate their individual effects on Kiss-1 gene expression. On the other hand, E2 did not increase Kiss-1 gene expression in mHypoA-55 ARC cells, and the KP10-induced increase of Kiss-1 gene expression was inhibited in the presence of E2 in these cells. KP10 and GnRH significantly increased c-Fos protein expression in the mHypoA-50 AVPV and mHypoA-55 ARC cell lines. In primary cultures of fetal rat neuronal cells, KP10 significantly increased Kiss-1 gene expression, whereas GnRH significantly increased GnRH gene expression. We found that kisspeptin and GnRH affected Kiss-1- and GnRH-expressing hypothalamic cells and modulated Kiss-1 and/or GnRH gene expression with a concomitant increase in c-Fos protein expression. A mutual- or self-regulatory system might be present in Kiss-1 and/or GnRH neurons in the hypothalamus.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
18
|
Mills EG, Izzi-Engbeaya C, Abbara A, Comninos AN, Dhillo WS. Functions of galanin, spexin and kisspeptin in metabolism, mood and behaviour. Nat Rev Endocrinol 2021; 17:97-113. [PMID: 33273729 DOI: 10.1038/s41574-020-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The bioactive peptides galanin, spexin and kisspeptin have a common ancestral origin and their pathophysiological roles are increasingly the subject of investigation. Evidence suggests that these bioactive peptides play a role in the regulation of metabolism, pancreatic β-cell function, energy homeostasis, mood and behaviour in several species, including zebrafish, rodents and humans. Galanin signalling suppresses insulin secretion in animal models (but not in humans), is potently obesogenic and plays putative roles governing certain evolutionary behaviours and mood modulation. Spexin decreases insulin secretion and has potent anorectic, analgesic, anxiolytic and antidepressive-like effects in animal models. Kisspeptin modulates glucose-stimulated insulin secretion, food intake and/or energy expenditure in animal models and humans. Furthermore, kisspeptin is implicated in the control of reproductive behaviour in animals, modulation of human sexual and emotional brain processing, and has antidepressive and fear-suppressing effects. In addition, galanin-like peptide is a further member of the galaninergic family that plays emerging key roles in metabolism and behaviour. Therapeutic interventions targeting galanin, spexin and/or kisspeptin signalling pathways could therefore contribute to the treatment of conditions ranging from obesity to mood disorders. However, many gaps and controversies exist, which must be addressed before the therapeutic potential of these bioactive peptides can be established.
Collapse
Affiliation(s)
- Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
19
|
Hrabovszky E, Takács S, Rumpler É, Skrapits K. The human hypothalamic kisspeptin system: Functional neuroanatomy and clinical perspectives. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:275-296. [PMID: 34225935 DOI: 10.1016/b978-0-12-820107-7.00017-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, kisspeptin neurons are the key components of the hypothalamic neuronal networks that regulate the onset of puberty, account for the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and mediate negative and positive estrogen feedback signals to GnRH neurons. Being directly connected anatomically and functionally to the hypophysiotropic GnRH system, the major kisspeptin cell groups of the preoptic area/rostral hypothalamus and the arcuate (or infundibular) nucleus, respectively, are ideally positioned to serve as key nodes which integrate various types of environmental, endocrine, and metabolic signals that can influence fertility. This chapter provides an overview of the current state of knowledge on the anatomy, functions, and plasticity of brain kisspeptin systems based on the wide literature available from different laboratory and domestic species. Then, the species-specific features of human hypothalamic kisspeptin neurons are described, covering their topography, morphology, unique neuropeptide content, plasticity, and connectivity to hypophysiotropic GnRH neurons. Some newly emerging roles of central kisspeptin signaling in behavior and finally, clinical perspectives, are discussed.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
20
|
Watanabe Y, Ikegami K, Nakamura S, Uenoyama Y, Ozawa H, Maeda KI, Tsukamura H, Inoue N. Mating-induced increase in Kiss1 mRNA expression in the anteroventral periventricular nucleus prior to an increase in LH and testosterone release in male rats. J Reprod Dev 2020; 66:579-586. [PMID: 32968033 PMCID: PMC7768167 DOI: 10.1262/jrd.2020-067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin has an indispensable role in gonadotropin-releasing hormone/gonadotropin secretion in mammals. In rodents, kisspeptin neurons are located in distinct brain regions, namely the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), arcuate nucleus (ARC), and medial amygdala (MeA). Among them, the physiological role of AVPV/PeN kisspeptin neurons in males has not been clarified yet. The present study aims to investigate the acute effects of the olfactory and/or mating stimulus with a female rat on hypothalamic and MeA Kiss1 mRNA expression, plasma luteinizing hormone (LH) and testosterone levels in male rats. Intact male rats were exposed to the following stimuli: exposure to clean bedding; exposure to female-soiled bedding as a female-olfactory stimulus; exposure to female-soiled bedding and mating stimulus with a female rat. The mating stimulus significantly increased the number of the AVPV/PeN Kiss1 mRNA-expressing cells in males within 5 minutes after the exposure, and significantly increased LH and testosterone levels, followed by an increase in male sexual behavior. Whereas, the males exposed to female-soiled bedding showed a moderate increase in LH levels and no significant change in testosterone levels and the number of the AVPV/PeN Kiss1 mRNA-expressing cells. Importantly, none of the stimuli affected the number of Kiss1 mRNA-expressing cells in the ARC and MeA. These results suggest that the mating-induced increase in AVPV/PeN Kiss1 mRNA expression may be, at least partly, involved in stimulating LH and testosterone release, and might consequently ensure male mating behavior. This study would be the first report suggesting that the AVPV/PeN kisspeptin neurons in males may play a physiological role in ensuring male reproductive performance.
Collapse
Affiliation(s)
- Youki Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo113-0031, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
21
|
Biggs LM, Meredith M. ActivatIon of Calcium binding protein-ir neurons IN MEDIAL AMYGDALA during chemosignal processing. Chem Senses 2020; 45:bjaa030. [PMID: 32386197 DOI: 10.1093/chemse/bjaa030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 11/12/2022] Open
Abstract
The medial amygdala receives sensory input from chemical signals important in mammalian social communication. As measured by immediate early gene expression, its responses to different chemosignals differ in the spatial patterns of neuronal activation and in the types of cells activated. Medial amygdala projections to basal forebrain contibute to generation of appropriate behavioral responses and GABA neurons are important for these functions, both as interneurons and projection neurons. Here we investigate reponses of male golden-hamster medial amygdala neurons expressing immunoreactivity (-ir) for calbindin (CB), calretinin (CR) and parvalbumin (PV), calcium binding proteins (CBPs) which can distinguish different GABA-ergic neuron types. CB-ir and CR-ir cells both had significant responses to female hamster chemosignals and showed different spatial patterns across medial amygdala. Responses to chemosignals (from unfamiliar females) were significantly reduced in males with sexual experience, compared to naïve males. Medial amygdala did not express PV-ir cells and the adjacent intercalated nucleus, which has been implicated in medial amygdala chemosensory responses did not express any of the CBPs investigated here. This additional evidence for chemosensory specificity in the response of medial amygdala to social chemical signals, in cells characterized by CBP expression, suggests multiple GABA circuit elements may be involved in information processing for behavioral response.
Collapse
Affiliation(s)
- Lindsey M Biggs
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee FL
| | - Michael Meredith
- Program in Neuroscience and Dept. Biological Science, Florida State University, Tallahassee FL
| |
Collapse
|
22
|
Talbi R, Navarro VM. Novel insights into the metabolic action of Kiss1 neurons. Endocr Connect 2020; 9:R124-R133. [PMID: 32348961 PMCID: PMC7274555 DOI: 10.1530/ec-20-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023]
Abstract
Kiss1 neurons are essential regulators of the hypothalamic-pituitary-gonadal (HPG) axis by regulating gonadotropin-releasing hormone (GnRH) release. Compelling evidence suggests that Kiss1 neurons of the arcuate nucleus (Kiss1ARC), recently identified as the hypothalamic GnRH pulse generator driving fertility, also participate in the regulation of metabolism through kisspeptinergic and glutamatergic interactions with, at least, proopiomelanocortin (POMC) and agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons, located in close apposition with Kiss1ARC. This review offers a comprehensive overview of the recent developments, mainly derived from animal models, on the role of Kiss1 neurons in the regulation of energy balance, including food intake, energy expenditure and the influence of circadian rhythms on this role. Furthermore, the possible neuroendocrine pathways underlying this effect, and the existing controversies related to the anorexigenic action of kisspeptin in the different experimental models, are also discussed.
Collapse
Affiliation(s)
- Rajae Talbi
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Victor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Correspondence should be addressed to V M Navarro:
| |
Collapse
|
23
|
Lass G, Li XF, de Burgh RA, He W, Kang Y, Hwa-Yeo S, Sinnett-Smith LC, Manchishi SM, Colledge WH, Lightman SL, O'Byrne KT. Optogenetic stimulation of kisspeptin neurones within the posterodorsal medial amygdala increases luteinising hormone pulse frequency in female mice. J Neuroendocrinol 2020; 32:e12823. [PMID: 31872920 PMCID: PMC7116078 DOI: 10.1111/jne.12823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Kisspeptin within the arcuate nucleus of the hypothalamus is a critical neuropeptide in the regulation of reproduction. Together with neurokinin B and dynorphin A, arcuate kisspeptin provides the oscillatory activity that drives the pulsatile secretion of gonadotrophin-releasing hormone (GnRH), and therefore luteinising hormone (LH) pulses, and is considered to be a central component of the GnRH pulse generator. It is well established that the amygdala also exerts an influence over gonadotrophic hormone secretion and reproductive physiology. The discovery of kisspeptin and its receptor within the posterodorsal medial amygdala (MePD) and our recent finding showing that intra-MePD administration of kisspeptin or a kisspeptin receptor antagonist results in increased LH secretion and decreased LH pulse frequency, respectively, suggests an important role for amygdala kisspeptin signalling in the regulation of the GnRH pulse generator. To further investigate the function of amygdala kisspeptin, the present study used an optogenetic approach to selectively stimulate MePD kisspeptin neurones and examine the effect on pulsatile LH secretion. MePD kisspeptin neurones in conscious Kiss1-Cre mice were virally infected to express the channelrhodopsin 2 protein and selectively stimulated by light via a chronically implanted fibre optic cannula. Continuous stimulation using 5 Hz resulted in an increased LH pulse frequency, which was not observed at the lower stimulation frequencies of 0.5 and 2 Hz. In wild-type animals, continuous stimulation at 5 Hz did not affect LH pulse frequency. These results demonstrate that selective activation of MePD Kiss1 neurones can modulate hypothalamic GnRH pulse generator frequency.
Collapse
Affiliation(s)
- Geffen Lass
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London Guy's Campus, London, UK
| | - Xiao Feng Li
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London Guy's Campus, London, UK
| | - Ross A de Burgh
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London Guy's Campus, London, UK
| | - Wen He
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanping Kang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shel Hwa-Yeo
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Lydia C Sinnett-Smith
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stephen M Manchishi
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stafford Louis Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, The Dorothy Hodgkin Building, University of Bristol, Bristol, UK
| | - Kevin T O'Byrne
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London Guy's Campus, London, UK
| |
Collapse
|