1
|
Salica A, Cammisotto V, Scaffa R, Folino G, De Paulis R, Carnevale R, Benedetto U, Saade W, Marullo A, Sciarretta S, Sarto G, Palmerio S, Valenti V, Peruzzi M, Miraldi F, Irace FG, Frati G. Different Oxidative Stress and Inflammation Patterns of Diseased Left Anterior Descending Coronary Artery versus Internal Thoracic Artery. Antioxidants (Basel) 2024; 13:1180. [PMID: 39456434 PMCID: PMC11505158 DOI: 10.3390/antiox13101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Oxidative stress and inflammation are typically implied in atherosclerosis pathogenesis and progression, especially in coronary artery disease (CAD). Our objective was to investigate the oxidative stress and inflammation burden directly associated with atherosclerotic plaque in patients with stable coronary disease undergoing coronary artery bypass graft (CABG) surgery. Specifically, markers of oxidative stress and inflammation were compared in blood samples obtained from the atherosclerotic left anterior descending artery (LAD) and blood samples obtained from the healthy left internal thoracic artery (LITA), used as a bypass graft, within the same patient. METHODS Twenty patients scheduled for off-pump CABG were enrolled. Blood samples were collected from the LITA below anastomosis and the LAD below the stenosis. Samples were analysed for oxidative stress (sNOXdp, H2O2, NO) and inflammation markers (TNFα, IL-6, IL-1β, IL-10). RESULTS The analysis showed a significant increase in oxidative stress burden in the LAD as compared to LITA, as indicated by higher sNOX2-dp and H2O2 levels and lower NO levels (p < 0.01). Also, pro-inflammatory cytokines were increased in the LAD as compared to the LITA, as indicated by higher TNFα and IL-6 amounts (p < 0.01). On the other hand, no significant differences could be seen regarding IL-1β and IL-10 levels between the two groups. CONCLUSIONS The oxidative stress and inflammatory burden are specifically enhanced in the LAD artery of stable coronary patients compared to systemic blood from the LITA of stable coronary patients.
Collapse
Affiliation(s)
- Andrea Salica
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Vittoria Cammisotto
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Raffaele Scaffa
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Giulio Folino
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
| | - Ruggero De Paulis
- Department of Cardiac Surgery, European Hospital, 00149 Rome, Italy
- UniCamillus, International University of Health Sciences, Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Umberto Benedetto
- Department of Cardiac Surgery, University “G. d’Annunzio”, 66013 Pescara, Italy
| | - Wael Saade
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Antonino Marullo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| | - Gianmarco Sarto
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | | - Valentina Valenti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Mariangela Peruzzi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
- Maria Cecilia Hospital, GVM Care & Research, 48010 Cotignola, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Francesco Giosuè Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, Circ.ne Gianicolense 87, 00152 Rome, Italy
| | - Giacomo Frati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
- IRCCS NeuroMed, 86077 Pozzilli, Italy
| |
Collapse
|
2
|
Xia B, Lu Y, Liang J, Li F, Peng J, Wang J, Wan C, Ding J, Le C, Dai J, Guo B, Shen Z. Association of GAL-8 promoter methylation levels with coronary plaque inflammation. Int J Cardiol 2024; 401:131782. [PMID: 38246423 DOI: 10.1016/j.ijcard.2024.131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND AIMS Coronary heart disease (CHD) is a condition that carries a high risk of mortality and is associated with aging. CHD is characterized by the chronic inflammatory response of the coronary intima. Recent studies have shown that the methylation level of blood mononuclear cell DNA is closely associated with adverse events in CHD, but the roles and mechanisms of DNA methylation in CHD remain elusive. METHODS AND RESULTS In this study, the DNA methylation status within the epigenome of human coronary tissue in the sudden coronary death (SCD) group and control (CON) group of coronary heart disease was analyzed using the Illumina® Infinium Methylation EPIC BeadChip (850 K chip), resulting in the identification of a total of 2553 differentially methylated genes (DMGs). The differentially methylated genes were then subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and significant differential DNA methylation was found. Among the differentially hypomethylated genes were GAL-8, LTF, and RFPL3, while the highly methylated genes were TMEM9B, ANK3, and C6orF48. These genes were mainly enriched in 10 significantly enriched pathways, such as cell adhesion junctions, among which the differentially methylated gene GAL-8 was involved in inflammatory pathway signaling. For functional analysis of GAL-8, we first examined the differences in GAL-8 promoter methylation levels among different subgroups of human coronary tissue in the CON, CHD, and SCD groups using pyrophosphate sequencing. The results revealed reduced GAL-8 promoter methylation levels in the SCD group, while the difference between the CHD and CON groups was not statistically significant (P > 0.05). The reduced GAL-8 promoter methylation level was associated with upregulated GAL-8 expression, which led to increased expression of the inflammatory markers TNF-α, IL-1β, MCP-1, MIP-2, MMP-2, and MMP-9. This enhanced inflammatory response contributed to the accumulation of foam cells, thickening of the intima of human coronary arteries, and increased luminal stenosis, which promoted the occurrence of sudden coronary death. Next, we found that GAL-8 promoter methylation levels in PBMC were consistent with human coronary tissue. The unstable angina group (UAP) had significantly lower GAL-8 promoter methylation levels than stable angina (SAP) and healthy controls (CON) (P < 0.05), and there was a significant correlation between reduced GAL-8 promoter methylation levels and risk factors for coronary heart disease. These findings highlight the association between decreased GAL-8 promoter methylation and the presence of coronary heart disease risk factors. ROC curve analysis suggests that methylation of the GAL 8 promoter region is an independent risk factor for CHD. In conclusion, our study confirmed differential expression of GAL-8, LTF, MUC4D, TMEM9B, MYOM2, and ANK3 genes due to DNA methylation in the SCD group. We also established the consistency of GAL-8 promoter methylation alterations between human coronary tissue and patient peripheral blood monocytes. The decreased methylation level of the GAL-8 promoter may be related to the increased expression of GAL-8 and the coronary risk factors. CONCLUSIONS Accordingly, we hypothesized that reduced levels of GAL-8 promoter methylation may be an independent risk factor for adverse events in coronary heart disease.
Collapse
Affiliation(s)
- Bing Xia
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Yanlin Lu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; School of Medicine and Science and Technology, Zunyi Medical University, Zunyi 563000, China
| | - Jingwei Liang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Fangqin Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jin Peng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Changwu Wan
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jiuyang Ding
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Jialin Dai
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China
| | - Bing Guo
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| | - Zheng Shen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550000, China; Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China.
| |
Collapse
|
3
|
de Vries PS, Conomos MP, Singh K, Nicholson CJ, Jain D, Hasbani NR, Jiang W, Lee S, Lino Cardenas CL, Lutz SM, Wong D, Guo X, Yao J, Young EP, Tcheandjieu C, Hilliard AT, Bis JC, Bielak LF, Brown MR, Musharoff S, Clarke SL, Terry JG, Palmer ND, Yanek LR, Xu H, Heard-Costa N, Wessel J, Selvaraj MS, Li RH, Sun X, Turner AW, Stilp AM, Khan A, Newman AB, Rasheed A, Freedman BI, Kral BG, McHugh CP, Hodonsky C, Saleheen D, Herrington DM, Jacobs DR, Nickerson DA, Boerwinkle E, Wang FF, Heiss G, Jun G, Kinney GL, Sigurslid HH, Doddapaneni H, Hall IM, Bensenor IM, Broome J, Crapo JD, Wilson JG, Smith JA, Blangero J, Vargas JD, Mosquera JV, Smith JD, Viaud-Martinez KA, Ryan KA, Young KA, Taylor KD, Lange LA, Emery LS, Bittencourt MS, Budoff MJ, Montasser ME, Yu M, Mahaney MC, Mahamdeh MS, Fornage M, Franceschini N, Lotufo PA, Natarajan P, Wong Q, Mathias RA, Gibbs RA, Do R, Mehran R, Tracy RP, Kim RW, Nelson SC, Damrauer SM, Kardia SL, Rich SS, Fuster V, Napolioni V, Zhao W, Tian W, Yin X, Min YI, Manning AK, Peloso G, Kelly TN, O’Donnell CJ, Morrison AC, Curran JE, Zapol WM, Bowden DW, Becker LC, Correa A, Mitchell BD, Psaty BM, Carr JJ, Pereira AC, Assimes TL, Stitziel NO, Hokanson JE, Laurie CA, Rotter JI, Vasan RS, Post WS, Peyser PA, Miller CL, Malhotra R. Whole-genome sequencing uncovers two loci for coronary artery calcification and identifies ARSE as a regulator of vascular calcification. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1159-1172. [PMID: 38817323 PMCID: PMC11138106 DOI: 10.1038/s44161-023-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/25/2023] [Indexed: 06/01/2024]
Abstract
Coronary artery calcification (CAC) is a measure of atherosclerosis and a well-established predictor of coronary artery disease (CAD) events. Here we describe a genome-wide association study (GWAS) of CAC in 22,400 participants from multiple ancestral groups. We confirmed associations with four known loci and identified two additional loci associated with CAC (ARSE and MMP16), with evidence of significant associations in replication analyses for both novel loci. Functional assays of ARSE and MMP16 in human vascular smooth muscle cells (VSMCs) demonstrate that ARSE is a promoter of VSMC calcification and VSMC phenotype switching from a contractile to a calcifying or osteogenic phenotype. Furthermore, we show that the association of variants near ARSE with reduced CAC is likely explained by reduced ARSE expression with the G allele of enhancer variant rs5982944. Our study highlights ARSE as an important contributor to atherosclerotic vascular calcification, and a potential drug target for vascular calcific disease.
Collapse
Affiliation(s)
- Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthew P. Conomos
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Kuldeep Singh
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Christopher J. Nicholson
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Deepti Jain
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Natalie R. Hasbani
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
| | - Wanlin Jiang
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Sujin Lee
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Sharon M. Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR)
Center, Department of Population Medicine, Harvard Medical School and Harvard
Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of
Public Health, Boston, MA, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population
Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical
Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population
Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical
Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Erica P. Young
- Cardiovascular Division, Department of Internal Medicine,
Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, USA
| | - Austin T. Hilliard
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA,
USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle, WA, USA
| | - Lawrence F. Bielak
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
| | - Michael R. Brown
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
| | - Shaila Musharoff
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Genetics, Stanford University School of
Medicine, Stanford, CA, USA
| | - Shoa L. Clarke
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, USA
| | - James G. Terry
- Department of Radiology, Vanderbilt Translational and
Clinical Cardiovascular Research Center, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of
Medicine, Winston-Salem, NC, USA
| | - Lisa R. Yanek
- Division of General Internal Medicine, Department of
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition,
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD,
USA
| | - Nancy Heard-Costa
- Boston University School of Medicine, Boston, MA,
USA
- Boston University and National Heart, Lung, and Blood
Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Jennifer Wessel
- Department of Epidemiology, Fairbanks School of Public
Health, Indiana University, Indianapolis, IN, USA
- Diabetes Translational Research Center, Indiana
University, Indianapolis, IN, USA
| | - Margaret Sunitha Selvaraj
- Cardiovascular Research Center and Center for Genomic
Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad
Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston,
MA, USA
| | - Rebecca H. Li
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Xiao Sun
- School of Public Health and Tropical Medicine, Department
of Epidemiology, Tulane University, New Orleans, LA, USA
- College of Medicine, Department of Medicine, Division of
Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Adrienne M. Stilp
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Alyna Khan
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Anne B. Newman
- Department of Epidemiology, Graduate School of Public
Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asif Rasheed
- Center For Non-Communicable Diseases, Karachi,
Pakistan
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Brian G. Kral
- Division of Cardiology, Department of Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin P. McHugh
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Chani Hodonsky
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Danish Saleheen
- Center For Non-Communicable Diseases, Karachi,
Pakistan
- Department of Medicine, Columbia University Irving
Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving
Medical Center, New York, NY, USA
| | - David M. Herrington
- Department of Internal Medicine, Section of
Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC,
USA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, University
of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington,
Seattle, WA, USA
- Northwest Genomics Center, University of Washington,
Seattle, WA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of
Medicine, Houston, TX, USA
| | - Fei Fei Wang
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global
Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
| | - Greg L. Kinney
- Department of Epidemiology, Colorado School of Public
Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Haakon H. Sigurslid
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | | | - Ira M. Hall
- Yale Center for Genomic Health, Yale School of Medicine,
New Haven, CT, USA
| | - Isabela M. Bensenor
- Center for Clinical and Epidemiological Research,
University Hospital, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Jai Broome
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - James D. Crapo
- Department of Medicine, National Jewish Health, Denver,
CO, USA
| | - James G. Wilson
- Division of Cardiology, Beth Israel Deaconess Medical
Center, Boston, MA, USA
| | - Jennifer A. Smith
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio
Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of
Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Jose D. Vargas
- Medstar Heart and Vascular Institute, Medstar Georgetown
University Hospital, Washington, DC, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Joshua D. Smith
- Department of Genome Sciences, University of Washington,
Seattle, WA, USA
- Northwest Genomics Center, University of Washington,
Seattle, WA, USA
| | | | - Kathleen A. Ryan
- Division of Endocrinology, Diabetes and Nutrition,
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD,
USA
| | - Kendra A. Young
- Department of Epidemiology, Colorado School of Public
Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population
Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical
Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Leslie A. Lange
- Department of Medicine, University of Colorado Denver,
Anschutz Medical Campus, Aurora, CO, USA
| | - Leslie S. Emery
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Marcio S. Bittencourt
- Center for Clinical and Epidemiological Research,
University Hospital, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Matthew J. Budoff
- Department of Medicine, The Lundquist Institute for
Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - May E. Montasser
- Division of Endocrinology, Diabetes and Nutrition,
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD,
USA
| | - Miao Yu
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
| | - Michael C. Mahaney
- Department of Human Genetics, University of Texas Rio
Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of
Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mohammed S Mahamdeh
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
- Institute of Molecular Medicine, McGovern Medical School,
The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global
Public health, University of North Carolina, Chapel Hill, NC, USA
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiological Research,
University Hospital, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Pradeep Natarajan
- Cardiovascular Research Center and Center for Genomic
Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad
Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston,
MA, USA
| | - Quenna Wong
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Rasika A. Mathias
- Division of General Internal Medicine, Department of
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Allergy and Clinical Immunology, Department
of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of
Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor
College of Medicine, Houston, TX, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine,
Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai, New York, NY, USA
| | - Roxana Mehran
- Icahn School of Medicine at Mount Sinai, New York, NY,
USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, Robert
Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Sarah C. Nelson
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Scott M. Damrauer
- Corporal Michael J. Crescenz VA Medical Center,
Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon L.R. Kardia
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares
Carlos III, Madrid, Spain
- Mount Sinai Heart Center, New York, NY, USA
| | - Valerio Napolioni
- Genomic And Molecular Epidemiology (GAME) Lab, School of
Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Wei Zhao
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
| | - Wenjie Tian
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical
Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yuan-I Min
- Jackson Heart Study, Department of Medicine, University
of Mississippi Medical Center, Jackson, MS, USA
| | - Alisa K. Manning
- Clinical and Translation Epidemiology Unit, Department of
Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population
Genetics, Broad Institute, Cambridge, MA, USA
| | - Gina Peloso
- Department of Biostatistics, Boston University School of
Public Health, Boston, MA, USA
| | - Tanika N. Kelly
- College of Medicine, Department of Medicine, Division of
Nephrology, University of Illinois Chicago, Chicago, IL, USA
| | - Christopher J. O’Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital,
Boston, MA, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human
Genetics, and Environmental Sciences, School of Public Health, The University of
Texas Health Science Center at Houston, Houston, TX, USA
| | - Joanne E. Curran
- Department of Human Genetics, University of Texas Rio
Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of
Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Warren M. Zapol
- Department of Anesthesia, Critical Care and Pain Medicine
at Massachusetts General Hospital, Boston, MA, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of
Medicine, Winston-Salem, NC, USA
| | - Lewis C. Becker
- Division of Cardiology, Department of Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University
of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of
Mississippi Medical Center, Jackson, MS, USA
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition,
Department of Medicine, University of Maryland School of Medicine, Baltimore, MD,
USA
- Geriatrics Research and Education Clinical Center,
Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington,
Seattle, WA, USA
- Department of Health Services, University of Washington,
Seattle, WA, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt Translational and
Clinical Cardiovascular Research Center, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston,
MA, USA
- Laboratory of Genetics and Molecular Cardiology, Heart
Institute, University of São Paulo, São Paulo, Brazil
| | - Themistocles L. Assimes
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of
Medicine, Stanford, CA, USA
| | - Nathan O. Stitziel
- Cardiovascular Division, Department of Internal Medicine,
Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of
Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School
of Medicine, St. Louis, MO, USA
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public
Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cecelia A. Laurie
- Genetic Analysis Center, Department of Biostatistics,
School of Public Health, University of Washington, Seattle, WA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population
Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical
Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ramachandran S. Vasan
- Boston University and National Heart, Lung, and Blood
Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of
Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of
Public Health, Boston, MA, USA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia A. Peyser
- School of Public Health, Department of Epidemiology,
University of Michigan, Ann Arbor, MI, USA
| | - Clint L. Miller
- Center for Public Health Genomics, University of Virginia
School of Medicine, Charlottesville, VA, USA
| | - Rajeev Malhotra
- Cardiovascular Research Center, Division of Cardiology,
Department of Medicine, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA
| |
Collapse
|
4
|
Neutrophil-to-Lymphocyte Ratio Is Not Associated with Severity of Coronary Artery Disease and Is Not Correlated with Vitamin D Level in Patients with a History of an Acute Coronary Syndrome. BIOLOGY 2022; 11:biology11071001. [PMID: 36101382 PMCID: PMC9311593 DOI: 10.3390/biology11071001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD), the leading cause of death worldwide, has an underlying cause in atherosclerosis. The activity of this inflammatory process can be measured with neutrophil-to-lymphocyte ratio (NLR). The anti-inflammatory and anti-atherogenic properties of vitamin D affect many mechanisms involved in CAD. In this study, we investigated the association between NLR, vitamin D concentration, and severity of CAD in a group of patients with a history of myocardial infarction (MI). NLR was higher in patients with acute coronary syndrome (ACS) in comparison to those with stable CAD (median: 2.8, range: 0.96−24.3 vs. median: 2.3, range: 0.03−31.6; p < 0.05). No associations between NLR and severity of CAD (p = 0.14) in the cohort and in the subgroups with stable CAD (p = 0.40) and ACS (p = 0.34) were observed. We found no correlation between vitamin D level and NLR neither in the whole study group (p = 0.29) nor in subgroups of patients with stable CAD (p = 0.84) and ACS (p = 0.30). NLR could be used as prognostic biomarker of consecutive MI in patients with CAD and a history of MI.
Collapse
|
5
|
Association of Matrix Metalloproteinases with Coronary Artery Calcification in Patients with CHD. J Pers Med 2021; 11:jpm11060506. [PMID: 34205079 PMCID: PMC8228219 DOI: 10.3390/jpm11060506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 02/01/2023] Open
Abstract
This work is aimed at studying the relationship of matrix metalloproteinases with calcification of the coronary arteries. The study included 78 people with coronary heart disease (CHD) and 36 without CHD. Blood and samples of coronary arteries obtained as a result of endarterectomy were examined. Serum levels of metalloproteinases (MMP) MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13 were determined by multiplex analysis. In blood vessel samples, MMP-1, MMP-3, MMP-7, and MMP-9 were determined by enzyme immunoassay; MMP-9 expression was evaluated by immunohistochemistry. Patients with CHD had higher serum levels of MMP-1, MMP-7, and MMP-12. Blood levels of MMP-1 and MMP-3 were associated with calcium levels, MMP-9 with osteoprotegerin and osteonectin, MMP-7 and MMP-10 with osteoprotegerin, MMP-12 with osteocalcin, and MMP-13 with osteopontin. Calcified plaques had higher levels of MMP-1 and MMP-9 compared to plaques without calcification. The relative risk of coronary arteries calcification was associated with MMP-9, which is confirmed by the results of immunohistochemistry. The results obtained indicate the participation of some MMPs, and especially MMP-9, in the calcification processes. The study can serve as a basis for the further study of the possibility of using MMP-1, MMP-7 and MMP-12 as potential biomarkers of CHD.
Collapse
|
6
|
Xue Y, Chen H, Zhang S, Bao L, Chen B, Gong H, Zhao Y, Qi R. Resveratrol Confers Vascular Protection by Suppressing TLR4/Syk/NLRP3 Signaling in Oxidized Low-Density Lipoprotein-Activated Platelets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8819231. [PMID: 33728029 PMCID: PMC7935581 DOI: 10.1155/2021/8819231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
This study investigated the effect of resveratrol on Toll-like receptor 4- (TLR4-) mediated matrix metalloproteinase 3 (MMP3) and MMP9 expression in oxidized low-density lipoprotein- (ox-LDL-) activated platelets and the potential molecule mechanism. Human platelets were used in the present study. The results showed that resveratrol suppressed TLR4, MMP3, and MMP9 expression in ox-LDL-activated platelets. The TLR4 inhibitor CLI-095 also inhibited MMP3 and MMP9 expression and secretion in ox-LDL- and lipopolysaccharide- (LPS-) activated platelets. The combination of resveratrol and CLI-095 synergistically suppressed MMP3 and MMP9 expression in ox-LDL- and LPS-activated platelets. These findings suggest that the resveratrol-induced inhibition of MMP3 and MMP9 expression is linked to the suppression of TLR4 activation. Resveratrol also suppressed spleen tyrosine kinase (Syk) phosphorylation and nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) expression and IL-1β secretion in ox-LDL- and LPS-treated platelets. The coimmunoprecipitation results showed that resveratrol inhibited the binding of Syk and NLRP3. Finally, resveratrol reduced vascular senescence cells and the expression of TLR4, MMP3, and MMP9 and prevented alterations of vascular structure in 52-week-old mice. Our findings demonstrated that resveratrol decreased inflammatory protein expression and improved vascular structure in aged mice. Resveratrol inhibited the expression of TLR4 and secretion of MMP3, MMP9, and IL-1β. The mechanism of action of resveratrol appears to be associated with the inhibition of TLR4/Syk/NLRP3 activation in ox-LDL-activated platelets.
Collapse
Affiliation(s)
- Yun Xue
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Huilian Chen
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Shenghao Zhang
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Li Bao
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Beidong Chen
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Huan Gong
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yanyang Zhao
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ruomei Qi
- MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Zhang X, Qin Y, Wan X, Liu H, Lv C, Ruan W, He L, Lu L, Guo X. Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities. J Transl Med 2021; 19:62. [PMID: 33568202 PMCID: PMC7877030 DOI: 10.1186/s12967-021-02727-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic vascular disease posing a great threat to public health. We investigated whether rosuvastatin (RVS) enhanced autophagic activities to inhibit lipid accumulation and polarization conversion of macrophages and then attenuate atherosclerotic lesions. METHODS All male Apolipoprotein E-deficient (ApoE-/-) mice were fed high-fat diet supplemented with RVS (10 mg/kg/day) or the same volume of normal saline gavage for 20 weeks. The burden of plaques in mice were determined by histopathological staining. Biochemical kits were used to examine the levels of lipid profiles and inflammatory cytokines. The potential mechanisms by which RVS mediated atherosclerosis were explored by western blot, real-time PCR assay, and immunofluorescence staining in mice and RAW264.7 macrophages. RESULTS Our data showed that RVS treatment reduced plaque areas in the aorta inner surface and the aortic sinus of ApoE-/- mice with high-fat diet. RVS markedly improved lipid profiles and reduced contents of inflammatory cytokines in the circulation. Then, results of Western blot showed that RVS increased the ratio LC3II/I and level of Beclin 1 and decreased the expression of p62 in aortic tissues, which might be attributed to suppression of PI3K/Akt/mTOR pathway, hinting that autophagy cascades were activated by RVS. Moreover, RVS raised the contents of ABCA1, ABCG1, Arg-1, CD206 and reduced iNOS expression of arterial wall, indicating that RVS promoted cholesterol efflux and M2 macrophage polarization. Similarly, we observed that RVS decreased lipids contents and inflammatory factors expressions in RAW264.7 cells stimulated by ox-LDL, accompanied by levels elevation of ABCA1, ABCG1, Arg-1, CD206 and content reduction of iNOS. These anti-atherosclerotic effects of RVS were abolished by 3-methyladenine intervention. Moreover, RVS could reverse the impaired autophagy flux in macrophages insulted by chloroquine. We further found that PI3K inhibitor LY294002 enhanced and agonist 740 Y-P weakened the autophagy-promoting roles of RVS, respectively. CONCLUSIONS Our study indicated that RVS exhibits atheroprotective effects involving regulation lipid accumulation and polarization conversion by improving autophagy initiation and development via suppressing PI3K/Akt/mTOR axis and enhancing autophagic flux in macrophages.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Liu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Ruan
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin He
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, Shanghai, China.
| | - Li Lu
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Ruggiero AD, Davis A, Sherrill C, Westwood B, Hawkins GA, Palmer ND, Chou JW, Reeves T, Cox LA, Kavanagh K. Skeletal muscle extracellular matrix remodeling with worsening glycemic control in nonhuman primates. Am J Physiol Regul Integr Comp Physiol 2020; 320:R226-R235. [PMID: 33206559 DOI: 10.1152/ajpregu.00240.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys (Cholorcebus aethiops sabaeus) to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys (n = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys (n = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.
Collapse
Affiliation(s)
- Alistaire D Ruggiero
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ashley Davis
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Brian Westwood
- Department of Hypertension, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Nicholette D Palmer
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Tony Reeves
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Laura A Cox
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Fong F, Xian J, Demer LL, Tintut Y. Serotonin receptor type 2B activation augments TNF-α-induced matrix mineralization in murine valvular interstitial cells. J Cell Biochem 2020; 122:249-258. [PMID: 32901992 DOI: 10.1002/jcb.29847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/01/2023]
Abstract
Calcification, fibrosis, and chronic inflammation are the predominant features of calcific aortic valve disease, a life-threatening condition. Drugs that induce serotonin (5-hydroxytryptamine [5-HT]) are known to damage valves, and activated platelets, which carry peripheral serotonin, are known to promote calcific aortic valve stenosis. However, the role of 5-HT in valve leaflet pathology is not known. We tested whether serotonin mediates inflammation-induced matrix mineralization in valve cells. Real-time reverse transcription-polymerase chain reaction analysis showed that murine aortic valve interstitial cells (VICs) expressed both serotonin receptor types 2A and 2B (Htr2a and Htr2b). Although Htr2a expression was greater at baseline, Htr2b expression was induced several-fold more than Htr2a in response to the pro-calcific tumor necrosis factor-α (TNF-α) treatment. 5-HT also augmented TNF-α-induced osteoblastic differentiation and matrix mineralization of VIC, but 5-HT alone had no effects. Inhibition of serotonin receptor type 2B, using specific inhibitors or lentiviral knockdown in VIC, attenuated 5-HT effects on TNF-α-induced osteoblastic differentiation and mineralization. 5-HT treatment also augmented TNF-α-induced matrix metalloproteinase-3 expression, which was also attenuated by Htr2b knockdown. Htr2b expression in aortic roots and serum levels of peripheral 5-HT were also greater in the hyperlipidemic Apoe-/- mice than in control normolipemic mice. These findings suggest a new role for serotonin signaling in inflammation-induced calcific valvulopathy.
Collapse
Affiliation(s)
- Felicia Fong
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Joshua Xian
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Physiology, University of California, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Orthopedic Surgery, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
11
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
12
|
Holm Nielsen S, Jonasson L, Kalogeropoulos K, Karsdal MA, Reese-Petersen AL, Auf dem Keller U, Genovese F, Nilsson J, Goncalves I. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J Intern Med 2020; 287:493-513. [PMID: 32012358 DOI: 10.1111/joim.13034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the most common cause of death in industrialized countries. One underlying cause is atherosclerosis, which is a systemic disease characterized by plaques of retained lipids, inflammatory cells, apoptotic cells, calcium and extracellular matrix (ECM) proteins in the arterial wall. The biologic composition of an atherosclerotic plaque determines whether the plaque is more or less vulnerable, that is prone to rupture or erosion. Here, the ECM and tissue repair play an important role in plaque stability, vulnerability and progression. This review will focus on ECM remodelling in atherosclerotic plaques, with focus on how ECM biomarkers might predict plaque vulnerability and outcome.
Collapse
Affiliation(s)
- S Holm Nielsen
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - L Jonasson
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - K Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M A Karsdal
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | | | - U Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - F Genovese
- From the, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| | - J Nilsson
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - I Goncalves
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
13
|
Deng X, Yang Q, Wang Y, Yang Y, Pei G, Zhu H, Wu J, Wang M, Zhao Z, Xu H, Zhou C, Guo Y, Yao Y, Zhang Z, Liao W, Zeng R. Association of plasma macrophage colony-stimulating factor with cardiovascular morbidity and all-cause mortality in chronic hemodialysis patients. BMC Nephrol 2019; 20:321. [PMID: 31419967 PMCID: PMC6697977 DOI: 10.1186/s12882-019-1510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/31/2019] [Indexed: 11/23/2022] Open
Abstract
Background Cardiovascular disease (CVD) events are the main cause of death in long-term hemodialysis (HD) patients. Macrophage colony- stimulating factor (M-CSF) is actively involved in the formation of atherosclerosis and causes plaque instability, thrombosis and the development of acute coronary syndromes. However, little information is available on the role of M-CSF in HD patients. We aimed to investigate the association between plasma M-CSF levels and CVD events as well as all-cause mortality in patients undergoing long-term HD. Methods Fifty two HD patients and 8 healthy controls were recruited in this study. HD patients were followed up from September 2014 to May 2017. The primary end point was CVD event, the secondary outcome was death from any cause. Patients were divided into two groups with low and high M-CSF levels based on the optimal cut-off value determined by the ROC curve. Cox regression analyses were used to assess the predictive value of plasma M-CSF for CVD events and all-cause mortality in HD patients. We tested the levels of plasma M-CSF and other inflammatory cytokines in surviving HD patients using ELISA or CBA kit. Results The average plasma level of M-CSF in 52 patients was approximately twice that of healthy controls (992.4 vs. 427.2 pg/mL; p < 0.05). During 32 months of follow-up, 26 patients (50.0%) had at least one CVD event and 8 patients (15.4%) died. The mean plasma M-CSF concentration increased in survivors after follow-up compared to that detected at baseline (1277.8 ± 693.3 vs. 997.2 ± 417.4 pg/mL; p < 0.05). Multivariate Cox regression analysis showed that plasma M-CSF is an independent risk factor for CVD events in HD patients (p < 0.05). In the Cox regression model after adjusting for gender and age, high M-CSF levels were related to an increased risk of all-cause death (p < 0.05). We also found that M-CSF levels were positively correlated with IL-6 and IL-18 levels (both p < 0.05), which are the major pathogentic cytokines that contribute to HD-related CVD events. Conclusion M-CSF is a prognostic factor for CVD events and all-cause mortality in HD patients.
Collapse
Affiliation(s)
- Xuan Deng
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Qian Yang
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yuxi Wang
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Guangchang Pei
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Han Zhu
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jianliang Wu
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Meng Wang
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhi Zhao
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Huzi Xu
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Cheng Zhou
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yi Guo
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Zhiguo Zhang
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
14
|
Metalloproteinases in atherosclerosis. Eur J Pharmacol 2017; 816:93-106. [DOI: 10.1016/j.ejphar.2017.09.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
|
15
|
Pawlik A, Plucinska M, Kopec M, Głabowski D, Czerewaty M, Safranow K. MMP1 and MMP3 gene polymorphisms in patients with acute coronary syndromes. IUBMB Life 2017; 69:850-855. [PMID: 29044936 DOI: 10.1002/iub.1684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022]
Abstract
Matrix metalloproteinases (MMPs) are the group of proteolytic enzymes that break down the components of the connective tissue matrix leading to unstable atherosclerotic plaques. The aim of this study was to examine the association between MMP1-1607dupG (rs1799750) and MMP3-1171dupA (rs3025058) gene polymorphisms and acute coronary syndromes (ACS) in the form of unstable angina. This study included 197 patients with ACS in the form of unstable angina confirmed by coronary angiography (defined by >70% stenosis in at least one major coronary artery) and 144 healthy controls. There was no statistically significant difference in the distribution of the MMP1-1607dupG (rs1799750) polymorphism between patients with unstable angina and the control group. With regard to the MMP3-1171dupA (rs3025058) polymorphism, a significant increase in the frequency of the 6A/6A genotype among patients with unstable angina was detected. This association was confirmed in multivariate logistic regression analysis, where male sex and rs3025058 6A/6A genotype were significantly associated with an increased risk of ACS. © 2017 IUBMB Life, 69(11):850-855, 2017.
Collapse
Affiliation(s)
- Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Mikołaj Kopec
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Daniel Głabowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
16
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Krayem I, Bazzi S, Karam M. The combination of CRP isoforms with oxLDL decreases TNF-α and IL-6 release by U937-derived macrophages. Biomed Rep 2017; 7:272-276. [PMID: 28808571 DOI: 10.3892/br.2017.949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
C-reactive protein (CRP) and oxidized low density lipoprotein (oxLDL) serve major roles at both early and advanced stages of atherosclerosis. CRP exists in two isoforms, monomeric (m) and pentameric (p), that bring about pro- or anti-inflammatory effects in macrophages. In addition, CRP may form a complex with oxidized low-density lipoprotein (oxLDL) via phosphatidylcholine, thus decreasing its pro-inflammatory effects within macrophages. The aim of the present study was to investigate the single and the combined effects of mCRP, pCRP and oxLDL on U937-derived macrophages. In the current study, U937-derived macrophages were treated in vitro with different combinations of CRP isoforms with or without oxLDL. The levels of major inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF)-α] along with the production of reactive oxygen species (ROS) were determined. TNF-α and IL-6 levels were significantly decreased (P<0.05) by the effect of mCRP and pCRP combined with oxLDL. No significant changes were observed in IL-1β, IL-8 or ROS levels.
Collapse
Affiliation(s)
- Imtissal Krayem
- Department of Biology, Faculty of Sciences, University of Balamand, Deir El Balamand, El-Koura, 100-Tripoli, Lebanon
| | - Samer Bazzi
- Department of Biology, Faculty of Sciences, University of Balamand, Deir El Balamand, El-Koura, 100-Tripoli, Lebanon
| | - Marc Karam
- Department of Biology, Faculty of Sciences, University of Balamand, Deir El Balamand, El-Koura, 100-Tripoli, Lebanon
| |
Collapse
|
18
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
19
|
Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Cardiovasc Eng Technol 2017; 9:141-150. [PMID: 28236165 DOI: 10.1007/s13239-017-0296-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD) is a major cause of morbidity in the aging population, but the underlying mechanisms of its progression remain poorly understood. Aortic valve calcification preferentially occurs on the fibrosa, which is subjected to disturbed flow. The side-specific progression of the disease is characterized by inflammation, calcific lesions, and extracellular matrix (ECM) degradation. Here, we explored the role of mechanosensitive microRNA-181b and its downstream targets in human aortic valve endothelial cells (HAVECs). Mechanistically, miR-181b is upregulated in OS and fibrosa, and it targets TIMP3, SIRT1, and GATA6, correlated with increased gelatinase/MMP activity. Overexpression of miR-181b led to decreased TIMP3 and exacerbated MMP activity as shown by gelatinase assay, and miR-181b inhibition decreased gelatinase activity through the repression of TIMP3 levels. Luciferase assay showed specific binding of miR-181b to the TIMP3 gene. Overexpression of miR-181b in HAVECs subjected to either LS or OS increased MMP activity, and miR-181b inhibition abrogated shear-sensitive MMP activity. These studies suggest that targeting this shear-dependent miRNA may provide a novel noninvasive treatment for CAVD.
Collapse
|
20
|
Shon SM, Jang HJ, Schellingerhout D, Kim JY, Ryu WS, Lee SK, Kim J, Park JY, Oh JH, Kang JW, Je KH, Park JE, Kim K, Kwon IC, Lee J, Nahrendorf M, Park JH, Kim DE. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice. Circ J 2017; 81:1528-1536. [DOI: 10.1253/circj.cj-16-1196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soo-Min Shon
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Hee Jeong Jang
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
- Department of Medical Biotechnology, Dongguk University
| | - Dawid Schellingerhout
- Departments of Diagnostic Radiology and Cancer Systems, University of Texas M.D. Anderson Cancer Center
| | - Jeong-Yeon Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Wi-Sun Ryu
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Su-Kyoung Lee
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Jiwon Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Jin-Yong Park
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Ji Hye Oh
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Jeong Wook Kang
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Kang-Hoon Je
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Jung E Park
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| | - Kwangmeyung Kim
- Biomedical Research Center, Korea Institute of Science and Technology
| | - Ick Chan Kwon
- Biomedical Research Center, Korea Institute of Science and Technology
| | - Juneyoung Lee
- Department of Biostatistics, College of Medicine, Korea University
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School
| | | | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital
| |
Collapse
|
21
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
22
|
Zamora-González N, Crespo-Sanjuán J, Calvo-Nieves MD, Sánchez D, Ganfornina MD, Martínez G, Aguirre-Gervás B, González-Fajardo JA. Lower Expression of Genes Involved in Protection against Oxidative Stress in Symptomatic Carotid Atherosclerosis. Ann Vasc Surg 2016; 41:271-278. [PMID: 27913124 DOI: 10.1016/j.avsg.2016.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Oxidative stress is increased in atherosclerosis, manifested both in blood and tissue (atherosclerotic plaque). We aim at describing the expression of a number of genes related to oxidative stress response in carotid atherosclerotic plaques and their relation to symptomatic state. METHODS We have studied the messenger RNA expression levels for genes related to oxidative stress in a population of 44 patients undergoing carotid endarterectomy, according to the presence (24 patients) or absence (20 patients) of symptoms. Samples were homogenized, RNA was extracted, and gene expression was measured by quantitative reverse transcription polymerase chain reaction arrays. RESULTS Data showed a decrease in expression of oxidative stress protective genes in symptomatic patients and increased expression of pro-oxidant genes. Asymptomatic patients maintain higher levels of expression of protective genes in the tissue. CONCLUSIONS This study establishes a close relationship between symptoms and levels of expression of genes that protect against oxidative stress. We propose the existence of a mechanism that silences these genes, causing a more severe atherosclerotic disease state.
Collapse
Affiliation(s)
| | | | | | - Diego Sánchez
- Departamento de Bioquimica y Biologia Molecular y Fisiologia, Instituto de Biologia y Genetica Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - María Dolores Ganfornina
- Departamento de Bioquimica y Biologia Molecular y Fisiologia, Instituto de Biologia y Genetica Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | |
Collapse
|
23
|
Davis LA, Stewart SE, Carsten CG, Snyder BA, Sutton MA, Lessner SM. Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test. Acta Biomater 2016; 43:101-111. [PMID: 27431877 DOI: 10.1016/j.actbio.2016.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED One well-established cause of ischemic stroke is atherosclerotic plaque rupture in the carotid artery. Rupture occurs when a tear in the fibrous cap exposes highly thrombogenic material in the lipid core. Though some fibrous cap material properties have been measured, such as ultimate tensile strength and stress-strain responses, there has been very little, if any, data published regarding the fracture behavior of atherosclerotic fibrous caps. This study aims to characterize the qualitative and quantitative fracture behavior of human atherosclerotic plaque tissue obtained from carotid endarterectomy samples using two different metrics. Uniaxial tensile experiments along with miniature single edge notched tensile (MSENT) experiments were performed on strips of isolated fibrous cap. Crack tip opening displacement (CTOD) and stress in the un-cracked segment (UCS) were measured at failure in fibrous cap MSENT specimens subjected to uniaxial tensile loading. Both CTOD and the degree of crack blunting, measured as the radius of curvature of the crack tip, increased as tearing propagated through the tissue. Higher initial stress in the UCS is significantly correlated with higher collagen content and lower macrophage content in the fibrous cap (ρ=0.77, P=0.009; ρ=-0.64, P=0.047; respectively). Trends in the data show that higher CTOD is inversely related to collagen content, though the sample size in this study is insufficient to statistically substantiate this relationship. To the authors' knowledge, this is the pioneering study examining the fracture behavior of fibrous caps and the first use of the CTOD metric in vascular tissue. STATEMENT OF SIGNIFICANCE A tear in the fibrous cap of atherosclerotic plaque can lead to ischemic stroke or myocardial infarction. While there is some information in the literature regarding quantitative measures of fibrous cap failure, there is little information regarding the behavior of the tissue during failure. This study examines the failure behavior of fibrous caps both qualitatively, by examining how and where the tissue fails, and quantitatively, by measuring (a) crack tip opening displacement (CTOD) in vascular tissue for the first time and (b) uniaxial stress in the un-cracked segment (UCS). This study shows that both metrics should be evaluated when assessing plaque vulnerability.
Collapse
Affiliation(s)
- Lindsey A Davis
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA; Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209 USA
| | - Samantha E Stewart
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA; Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209 USA
| | - Christopher G Carsten
- Division of Vascular Surgery, Greenville Health System, 701 Grove Road, Greenville, SC 29605 USA
| | - Bruce A Snyder
- Division of Vascular Surgery, Greenville Health System, 701 Grove Road, Greenville, SC 29605 USA
| | - Michael A Sutton
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA; Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 USA
| | - Susan M Lessner
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208 USA; Department of Cell Biology and Anatomy, University of South Carolina, School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209 USA.
| |
Collapse
|
24
|
Senaphan K, Sangartit W, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Thawornchinsombut S, Greenwald SE, Kukongviriyapan U. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet. Eur J Nutr 2016; 57:219-230. [PMID: 27660232 DOI: 10.1007/s00394-016-1311-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/02/2016] [Indexed: 02/01/2023]
Abstract
PURPOSE Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. METHODS Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. RESULTS Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P < 0.05). Moreover, RBPH reduced the levels of angiotensin-converting enzyme (ACE) and tumor necrosis factor-alpha in plasma. Oxidative stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. CONCLUSION RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.
Collapse
Affiliation(s)
- Ketmanee Senaphan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Supawan Thawornchinsombut
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Stephen E Greenwald
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2ES, UK
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
25
|
Rather RA, Dhawan V. Genetic markers: Potential candidates for cardiovascular disease. Int J Cardiol 2016; 220:914-23. [PMID: 27416153 DOI: 10.1016/j.ijcard.2016.06.251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/22/2016] [Accepted: 06/26/2016] [Indexed: 02/07/2023]
Abstract
The effective prevention of cardiovascular disease depends upon the ability to recognize the high-risk individuals at an early stage of the disease or long before the development of adverse events. Evolving technologies in the fields of proteomics, metabolomics, and genomics have played a significant role in the discovery of cardiovascular biomarkers, but so far these methods have achieved the modest success. Hence, there is a crucial need for more reliable, suitable, and lasting diagnostic and therapeutic markers to screen the disease well in time to start the clinical aid to the patients. Gene polymorphisms associated with the cardiovascular disease play a decisive role in the disease onset. Therefore, the genetic marker evaluation to classify high-risk patients from low-risk patients trends an effective approach to patient management and care. Currently, there are no genetic markers available for extensive adoption as risk factors for coronary vascular disease, yet, there are numerous promising, biologically acceptable candidates. Many of these gene biomarkers, alone or in combination, can play an essential role in the prediction of cardiovascular risk. The present review highlights some putative emerging genetic biomarkers that could facilitate more authentic and fast diagnosis of CVD. This review also briefly describes few technological approaches employed in the biomarker search.
Collapse
Affiliation(s)
- Riyaz Ahmad Rather
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
26
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
27
|
Dong M, Mu N, Ren F, Li F, Zhang C, Yang J. Matrix Metalloproteinase-9 in the Culprit Coronary Artery and Myocardial No-Reflow. Am J Med Sci 2016; 350:352-6. [PMID: 26359995 DOI: 10.1097/maj.0000000000000559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Matrix Metalloproteinases (MMPs) have been implicated in the pathogenesis of acute myocardial infarction (AMI). However, little is known about the association between MMP-9 and myocardial no-reflow. The aim of this study was to evaluate the role of MMP-9 in the culprit coronary artery as a predictor of no-reflow in patients with ST-elevation AMI. METHODS Ninety patients with ST-elevation AMI who underwent emergency percutaneous coronary intervention were consecutively recruited in this study. Blood samples were obtained from the extraction catheter placed distal to the culprit lesion at the beginning of percutaneous coronary intervention. No-reflow was defined as a coronary thrombolysis in myocardial infarction flow grade ≤2 after vessel reopening or thrombolysis in myocardial infarction flow 3 with a final myocardial blush grade ≤2. RESULTS No-reflow was observed in 25 patients (27.8%). Using multiple logistic regression analysis, local MMP-9 levels (odds ratio [OR] = 3.356; confidence interval [CI]: 1.441-5.881; P = 0.007) were found to be a significant risk factor of no-reflow together with lesion length (OR = 6.985; CI: 2.574-11.533; P = 0.009) and time to balloon (OR = 2.143; CI: 1.216-5.901; P = 0.042). CONCLUSIONS Elevation of MMP-9 level in the culprit coronary artery may predict no-reflow in patients with ST-elevation AMI.
Collapse
Affiliation(s)
- Mei Dong
- Departments of Cardiology (MD, FR, FL, CZ, JY), and Gynecology (NM), Yantai Yuhuangding Hospital, Yantai City, China
| | | | | | | | | | | |
Collapse
|
28
|
Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, Li J, Li L, Li C, Peng W, Xu C, Wang Z, Hui T, Ren G, Tao Q, Xiang T. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med 2016; 20:842-54. [PMID: 26843424 PMCID: PMC4831360 DOI: 10.1111/jcmm.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022] Open
Abstract
Recent studies suggest that paired box 5 (PAX5) is down‐regulated in multiple tumours through its promoter methylation. However, the role of PAX5 in non‐small cell lung cancer (NSCLC) pathogenesis remains unclear. The aim of this study is to examine PAX5 expression, its methylation status, biological functions and related molecular mechanism in NSCLC. We found that PAX5 was widely expressed in normal adult tissues but silenced or down‐regulated in 88% (7/8) of NSCLC cell lines. PAX5 expression level was significantly lower in NSCLC than that in adjacent non‐cancerous tissues (P = 0.0201). PAX5 down‐regulation was closely associated with its promoter hypermethylation status and PAX5 expression could be restored by demethylation treatment. Frequent PAX5 promoter methylation in primary tumours (70%) was correlated with lung tumour histological types (P = 0.006). Ectopic expression of PAX5 in silenced lung cancer cell lines (A549 and H1975) inhibited their colony formation and cell viability, arrested cell cycle at G2 phase and suppressed cell migration/invasion as well as tumorigenicity in nude mice. Restoration of PAX5 expression resulted in the down‐regulation of β‐catenin and up‐regulation of tissue inhibitors of metalloproteinase 2, GADD45G in lung tumour cells. In summary, PAX5 was found to be an epigenetically inactivated tumour suppressor that inhibits NSCLC cell proliferation and metastasis, through down‐regulating the β‐catenin pathway and up‐regulating GADD45G expression.
Collapse
Affiliation(s)
- Lijuan Zhao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuman Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Gan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Li
- Department of Chemotherapy, Cancer Center, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Can Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Szostak J, Miguet-Alfonsi C, Berthelot A, Laurant P. Training-induced anti-atherosclerotic effects are associated with increased vascular PPARgamma expression in apolipoprotein E-deficient mice. Acta Physiol (Oxf) 2016; 216:221-30. [PMID: 26467845 DOI: 10.1111/apha.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/21/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
Abstract
AIM Physical exercise prevents cardiovascular risk and atherosclerosis lesions. However, the molecular aspects are still unknown. Vascular peroxisome proliferator-activated receptors (PPARs) exert anti-atherogenic effects. The aim of this study was to determine whether exercise-induced anti-atherosclerotic effect is associated with change in PPARs vascular expression in apolipoprotein E-deficient (ApoE(-/-) ) mice. METHODS Male ApoE(-/-) mice were fed with a high-fat diet and randomized into two groups: one trained group undergoing swimming training for 3 months and one sedentary group. Sedentary and trained C57BL/6J mice were used as control. mRNA of PPAR-α, PPAR-β/δ and PPAR-γ was measured in aorta by quantitative PCR. mRNA of pro- (TNF-α, IL-1β) and anti-inflammatory (IL-10, IL-1Ra) cytokines was also measured. RESULTS Atherosclerotic lesion size was significantly reduced in trained ApoE(-/-) mice compared to sedentary ones. In contrast, reduction of atherosclerotic lesion size was not observed in trained ApoE(-/-) mice supplied with BADGE, an antagonist of PPAR-γ. Exercise training significantly increased PPAR-γ expression in aorta. PPAR-γ expression was inversely correlated with the atherosclerotic plaque area. Aortic PPAR-α and PPAR-β/δ mRNA expressions were not changed in response to exercise training. Atherosclerosis increased the aortic mRNA expression of TNF-α, IL-1β, IL-10 and IL-1Ra. Exercise training decreased aortic IL-1β mRNA expression in ApoE(-/-) mice, but did not change expression of TNF-α, IL-10 and IL-1Ra. IL-1β mRNA expression was also significantly lower in atherosclerosis lesions from trained ApoE(-/-) compared with those from sedentary ones. CONCLUSIONS Exercise training increases vascular PPAR-γ expression in ApoE(-/-) mice that could potentially underlie training-related beneficial effects on atherosclerosis.
Collapse
Affiliation(s)
- J. Szostak
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - C. Miguet-Alfonsi
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - A. Berthelot
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - P. Laurant
- Laboratoire Pharm-Ecologie Cardiovasculaire EA4278; UFRip Sciences Technologie et Santé; UAPV; Avignon France
| |
Collapse
|
30
|
Di Gregoli K, George SJ, Jackson CL, Newby AC, Johnson JL. Differential effects of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 on atherosclerosis and monocyte/macrophage invasion. Cardiovasc Res 2016; 109:318-30. [PMID: 26645981 PMCID: PMC4724937 DOI: 10.1093/cvr/cvv268] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/29/2015] [Indexed: 12/30/2022] Open
Abstract
AIMS MMPs contribute to atherosclerotic plaque progression and instability, but the relative potency of their endogenous tissue inhibitors of metalloproteinases (TIMPs) as protective factors has not been defined. We therefore investigated the impact of TIMP-1 and TIMP-2 knockout on atherosclerotic plaque burden and composition in apolipoprotein E-knockout (Apoe(-/-)) mice and studied the underlying effects on monocyte/macrophage behaviour. METHODS AND RESULTS Analysis of brachiocephalic artery plaques revealed comparable atherosclerotic lesion areas between TIMP-1(-/-) Apoe(-/-) or TIMP-2(-/-) Apoe(-/-) double deficient mice and relevant age-matched, strain-matched Apoe(-/-) controls after 8 weeks of high-fat feeding. However, lesions from TIMP-2(-/-) Apoe(-/-) mice had higher levels of markers associated with plaque vulnerability, including increased macrophage: vascular smooth muscle cell ratios, larger necrotic core areas, reduced collagen contents, increased macrophage proliferation, and apoptosis frequencies, compared with TIMP-1(-/-)Apoe(-/-) and controls. In contrast, TIMP-1(-/-) Apoe(-/-) animals only had a significant reduction in vascular smooth muscle cell content compared with Apoe(-/-) controls. In vitro and in vivo findings implicated heightened monocyte/macrophage invasion in the detrimental effects observed on atherosclerotic plaque composition in TIMP-2(-/-) Apoe(-/-) mice. Moreover, TIMP-2 specifically decreased MMP-14-dependent monocyte/macrophage infiltration into sites of experimentally induced inflammation and established atherosclerotic lesions. CONCLUSION Our data demonstrate that TIMP-2 plays a greater protective role than TIMP-1 during the pathogenesis of atherosclerosis, in part by suppressing MMP-14-dependent monocyte/macrophage accumulation into plaques.
Collapse
|
31
|
Ikeda H, Uzui H, Morishita T, Fukuoka Y, Sato T, Ishida K, Kaseno K, Arakawa K, Amaya N, Tama N, Shiomi Y, Lee JD, Tada H. Effect of postprandial hyperglycaemia on coronary flow reserve in patients with impaired glucose tolerance and type 2 diabetes mellitus. Diab Vasc Dis Res 2015; 12:405-10. [PMID: 26297527 DOI: 10.1177/1479164115597866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND This study investigated whether postprandial hyperglycaemia has an adverse effect on coronary microvascular function and left ventricular diastolic function. METHODS In all, 28 patients with type 2 diabetes mellitus with no significant stenosis in left anterior descending artery were enrolled. In all subjects, plasma 1,5-anhydroglucitol was measured, and coronary flow reserve in the left anterior descending artery was evaluated using a Doppler wire. Membrane type-1 matrix metalloproteinase expression on circulating peripheral blood mononuclear cells was measured by flow cytometry. Correlation analyses were performed for coronary flow reserve and 1,5-anhydroglucitol, other coronary risk factors, membrane type-1 matrix metalloproteinase and E/e'. RESULTS Strong correlations were found only between 1,5-anhydroglucitol and coronary flow reserve and membrane type-1 matrix metalloproteinase. On multiple regression analysis, 1,5-anhydroglucitol remained an independent predictor of coronary flow reserve (β = 0.38, p = 0.048). CONCLUSION Postprandial hyperglycaemia appears to have an adverse effect on coronary microvascular function, suggesting that improvement of postprandial hyperglycaemia may contribute to the improvement of coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Hiroyuki Ikeda
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Tetsuji Morishita
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Yoshitomo Fukuoka
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Takehiko Sato
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Kenichi Kaseno
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Kenichiro Arakawa
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Naoki Amaya
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Naoto Tama
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Yuichiro Shiomi
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Jong-Dae Lee
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, University of Fukui, Eiheiji-cho, Japan
| |
Collapse
|
32
|
Collazos J, Asensi V, Martin G, Montes AH, Suárez-Zarracina T, Valle-Garay E. The effect of gender and genetic polymorphisms on matrix metalloprotease (MMP) and tissue inhibitor (TIMP) plasma levels in different infectious and non-infectious conditions. Clin Exp Immunol 2015. [PMID: 26206176 DOI: 10.1111/cei.12686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteases (MMPs) are increased in different infections due to their role in controlling immune responses and are regulated by tissue inhibitors (TIMPs). Different MMP promoter single nucleotide polymorphisms (SNPs) induce changes in MMP genes, mRNA and protein expression. Gender might also modify MMP plasma levels. In order to determine the weight of these variables on MMP secretion we studied MMP-1, -2, -3, -8, -9, -10, -13 and TIMP-1, -2, -4 plasma levels in 90 patients with severe bacterial sepsis, 102 with anti-retroviral (ARV)-treated HIV monoinfection, 111 with ARV-treated HIV-hepatitis C virus (HCV) co-infection and 86 non-infected controls (45 stroke and 41 trauma patients). MMP-1(-1607 1G/2G), MMP-3(-1612 5A/6A), MMP-8(-799C/T), MMP-9(-1562 C/T) and MMP-13(-77A/G) SNPs were genotyped. MMP-3 plasma levels were significantly higher in men than in women in each diagnostic group, and MMP-3 SNP allele 6A carriers also had higher levels than allele 5A carriers, an effect that was magnified by sepsis. Independent predictors of higher MMP-3 levels were male gender (P = 0.0001), MMP-3(-1612 5A/6A) SNP (P = 0.001), higher levels of TIMP-4 (P = 0.004) and MMP-8 (P = 0.006) and lower levels of MMP-1 (P = 0.03) by multivariate analysis. No strong associations with gender or SNPs were observed for other MMPs or TIMPs. In conclusion, male gender and MMP-3(-1612 5A/6A) 6A allele carriage increased MMP-3 plasma levels significantly, especially in patients with severe bacterial sepsis. This confounding gender effect needs to be addressed when evaluating MMP-3 plasma levels in any infectious or non-infectious condition.
Collapse
Affiliation(s)
- J Collazos
- Infectious Diseases, Hospital De Galdacano, Vizcaya
| | - V Asensi
- Infectious Diseases, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Oviedo, Spain
| | - G Martin
- Critical Care, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Oviedo, Spain
| | - A H Montes
- Biochemistry and Molecular Biology, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Oviedo, Spain
| | - T Suárez-Zarracina
- Infectious Diseases, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Oviedo, Spain
| | - E Valle-Garay
- Biochemistry and Molecular Biology, Hospital Universitario Central de Asturias (HUCA), Oviedo University School of Medicine, Oviedo, Spain
| |
Collapse
|
33
|
Abstract
Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype.
Collapse
Affiliation(s)
- Sophie Colin
- Université Lille 2, Lille, France; Inserm, U1011, Lille, France; Institut Pasteur de Lille, Lille, France; European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
| | | | | |
Collapse
|
34
|
Itoh Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol 2015; 44-46:207-23. [PMID: 25794647 DOI: 10.1016/j.matbio.2015.03.004] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/22/2022]
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FY, UK.
| |
Collapse
|
35
|
Gaffney J, Solomonov I, Zehorai E, Sagi I. Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol 2015; 44-46:191-9. [PMID: 25622911 DOI: 10.1016/j.matbio.2015.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/18/2015] [Accepted: 01/18/2015] [Indexed: 11/16/2022]
Abstract
The matrix metalloproteinases (MMPs) play a crucial role in irreversible remodeling of the extracellular matrix (ECM) in normal homeostasis and pathological states. Accumulating data from various studies strongly suggest that MMPs are tightly regulated, starting from the level of gene expression all the way to zymogen activation and endogenous inhibition, with each level controlled by multiple factors. Recent in vivo findings indicate that cell-ECM and cell-cell interactions, as well as ECM bio-active products, contribute an additional layer of regulation at all levels, indicating that individual MMP expression and activity in vivo are highly coordinated and tissue specific processes.
Collapse
Affiliation(s)
- Jean Gaffney
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Natural Sciences, Baruch College, New York, NY, USA
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldar Zehorai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Uzui H, Hayashi H, Nakae I, Matsumoto T, Uenishi H, Hayasaki H, Asaji T, Matsui S, Miwa K, Lee JD, Tada H, Sawamura T, Fujita M. Pitavastatin decreases serum LOX-1 ligand levels and MT1-MMP expression in CD14-positive mononuclear cells in hypercholesterolemic patients. Int J Cardiol 2014; 176:1230-2. [DOI: 10.1016/j.ijcard.2014.07.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/27/2014] [Indexed: 11/25/2022]
|
37
|
Li NG, Tang YP, Duan JA, Shi ZH. Matrix metalloproteinase inhibitors: a patent review (2011 – 2013). Expert Opin Ther Pat 2014; 24:1039-52. [DOI: 10.1517/13543776.2014.937424] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Wang YZ, Wu KP, Wu AB, Yang ZC, Li JM, Mo YL, Xu M, Wu B, Yang ZX. MMP-14 overexpression correlates with poor prognosis in non-small cell lung cancer. Tumour Biol 2014; 35:9815-21. [PMID: 24986569 DOI: 10.1007/s13277-014-2237-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) has been demonstrated to play an important role in tumor progression. The aim of this study was to analyze the correlation between MMP-14 expression and clinicopathologic features and its prognostic significance in non-small cell lung cancer (NSCLC). Immunohistochemical staining for MMP-14 protein was performed in 104 patients with NSCLC. High levels of MMP-14 protein were positively correlated with the status of clinical stage (I-II vs. III-IV; P < 0.001), N classification (N0-N1 vs. N2-N3; P < 0.001), distant metastasis (no vs. yes; P = 0.014), and differentiated degree (high vs. low or undifferentiated; P = 0.001). The patients with higher MMP-14 expression of protein had shorter survival time than patients with low MMP-14 expression. Multivariate analysis indicated that the level of MMP-14 expression was an independent prognostic indicator (P < 0.001) for the survival of patients with NSCLC. In conclusion, MMP-14 is a potential unfavorable prognostic factor for patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Zhou Wang
- Cancer Center, Affiliated Hospital of Guangdong Medical College, No. 57 People's Avenue South, Zhanjiang, 524002, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Uzui H, Nakano A, Mitsuke Y, Geshi T, Sakata J, Sarazawa K, Morishita T, Satou T, Ishida K, Lee JD. Acarbose treatments improve arterial stiffness in patients with type 2 diabetes mellitus. J Diabetes Investig 2014; 2:148-53. [PMID: 24843474 PMCID: PMC4015543 DOI: 10.1111/j.2040-1124.2010.00079.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aims/Introduction: Although the improvement of postprandial hyperglycemia by an alpha‐glucosidase inhibitor (α‐GI) has been associated with a risk reduction of cardiovascular events, the relationship between postprandial hyperglycemia and arterial stiffness has not been well understood. We therefore examined whether ameliorating the postprandial state by α‐GI leads to an improvement in arterial stiffness. Materials and Methods: A total of 22 patients with type 2 diabetes mellitus were treated with acarbose. Cardio‐ankle vascular index (CAVI) as the arterial stiffness was measured by using a VaSera CAVI instrument before and 12 months after acarbose treatment. Serum high‐sensitivity C‐reactive protein (hs‐CRP), pentraxin‐3 (PTX3) and matrix metalloproteinase (MMP) ‐2, ‐9 were measured at the same time points. Furthermore, circulating peripheral blood mononuclear cells were examined for the frequencies of CD14 positive cells expressing membrane type‐1 MMP (MT1‐MMP) at the single cell level using flow cytometry. Results: After acarbose treatment, postprandial glucose and glycosylated hemoglobin (HbA1c) were significantly decreased. Serum levels of hs‐CRP, PTX3, MMP‐2 and MMP‐9 were significantly decreased. CAVI showed a significant reduction, although the changes were not significant in blood pressure and heart rate. MT1‐MMP expression was significantly decreased by acarbose treatment. In multivariate analysis, improvement of blood glucose, decrease of PTX3 levels and MT1‐MMP expression were independent predictors of beneficial change in CAVI. Conclusions: The present study showed that the beneficial effects of acarbose on arterial stiffness are mediated by an improvement of postprandial hyperglycemia and vascular remodeling markers. In conclusion, acarbose treatment might reduce the risk of cardiovascular diseases by altering the arterial stiffness in postprandial hyperglycemic status. (J Diabetes Invest, doi:10.1111/j.2040‐1124.2010.00079.x, 2010)
Collapse
Affiliation(s)
- Hiroyasu Uzui
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Nakano
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasuhiko Mitsuke
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Toru Geshi
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junji Sakata
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Katsuhiko Sarazawa
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Morishita
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takehiko Satou
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kentarou Ishida
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Jong-Dae Lee
- Division of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
40
|
Abstract
The extracellular matrix (ECM) is an essential component of the human body that is responsible for the proper function of various organs. Changes in the ECM have been implicated in the pathogenesis of several cardiovascular conditions including atherosclerosis, restenosis, and heart failure. Matrix components, such as collagens and noncollagenous proteins, influence the function and activity of vascular cells, particularly vascular smooth muscle cells and macrophages. Matrix proteins have been shown to be implicated in the development of atherosclerotic complications, such as plaque rupture, aneurysm formation, and calcification. ECM proteins control ECM remodeling through feedback signaling to matrix metalloproteinases (MMPs), which are the key players of ECM remodeling in both normal and pathological conditions. The production of MMPs is closely related to the development of an inflammatory response and is subjected to significant changes at different stages of atherosclerosis. Indeed, blood levels of circulating MMPs may be useful for the assessment of the inflammatory activity in atherosclerosis and the prediction of cardiovascular risk. The availability of a wide variety of low-molecular MMP inhibitors that can be conjugated with various labels provides a good perspective for specific targeting of MMPs and implementation of imaging techniques to visualize MMP activity in atherosclerotic plaques and, most interestingly, to monitor responses to antiatheroslerosis therapies. Finally, because of the crucial role of ECM in cardiovascular repair, the regenerative potential of ECM could be successfully used in constructing engineered scaffolds and vessels that mimic properties of the natural ECM and consist of the native ECM components or composite biomaterials. These scaffolds possess a great promise in vascular tissue engineering.
Collapse
|
41
|
Miksztowicz V, Morales C, Zago V, Friedman S, Schreier L, Berg G. Effect of insulin-resistance on circulating and adipose tissue MMP-2 and MMP-9 activity in rats fed a sucrose-rich diet. Nutr Metab Cardiovasc Dis 2014; 24:294-300. [PMID: 24418386 DOI: 10.1016/j.numecd.2013.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/05/2013] [Accepted: 08/03/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Adipose tissue produces different metalloproteinases (MMPs), involved in adipogenesis and angiogenesis. Different studies have shown that in obesity the behavior of different MMPs may be altered. However there are scarce data about the effect of insulin-resistance (IR) on MMP-2 and MMP-9 activity in adipose tissue. Our aim was to determine whether sucrose induced IR modifies MMP-2 and MMP-9 behavior in expanded visceral adipose tissue and the contribution of this tissue to circulating activity of these gelatinases. METHODS AND RESULTS Male Wistar rats were fed with standard diet (Control) or standard diet plus 30% sucrose in the drinking water throughout 12 weeks (SRD). In epididymal adipose tissue vascular density, size and adipocyte density, PPARγ expression and MMP-2 and -9 were measured. Adipose tissue from SRD presented higher adipocyte size (6.32 ± 8.71 vs 4.33 ± 2.17 × 10(3) μm(2), p = 0.001) lower adipocyte density (164 (130-173) vs 190 (170-225) number/mm(2), p = 0.046) and lower vascular density (16.2 (12.8-23.5) vs 28.1 (22.3-46.5) blood vessels/mm(2), p = 0.002) than Control. MMP-2 and MMP-9 activity was decreased in SRD (1.93 ± 0.7 vs 3.92 ± 0.9 relative units, p = 0.048 and 1.80 ± 0.8 vs 5.13 ± 1.7 relative units, p = 0.004 respectively) in accordance with lower protein expression (0.35 ± 0.20 vs 2.71 ± 0.48 relative units, p = 0.004 and 1.12 ± 0.21 vs 1.52 ± 0.05 relative units, p = 0.036 respectively). There were no differences in PPARγ expression between groups. CONCLUSION Insulin resistance induced by SRD decreases MMP-2 and MMP-9 activity in adipose tissue which would not represent an important source for circulating MMP-2 and -9. In this state of IR, PPARγ would not be involved in the negative regulation of adipose tissue gelatinases.
Collapse
Affiliation(s)
- V Miksztowicz
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - C Morales
- Institute of Cardiovascular Physiopathology and Department of Pathology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - V Zago
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - S Friedman
- Oral and General Biochemistry Department, Faculty of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - L Schreier
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina
| | - G Berg
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, INFIBIOC, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Abstract
The metabolic syndrome is a cluster of metabolic and vascular abnormalities that include central obesity, insulin resistance, hyperinsulinemia, glucose intolerance, hypertension, dyslipidemia, hypercoagulability and an increased risk of coronary and cerebral vascular disease. These metabolic and vascular abnormalities are the main cause of cardiovascular mortality in western societies. Endothelial dysfunction, an early step in the development of atherosclerosis, has been reported in obese nondiabetic individuals and in patients with Type 2 diabetes. It has also been observed in individuals at high risk for Type 2 diabetes, including those with impaired glucose tolerance and the normoglycemic first-degree relatives of Type 2 diabetic patients. Recent evidence points to adipocytes as a complex and active endocrine tissue whose secretory products, including free fatty acids and several cytokines (i.e., leptin, adiponectin, tissue necrosis factor-alpha, interleukin-6, and resistin) play a major role in the regulation of human metabolic and vascular biology. These adipocytokines have been claimed to be the missing link between insulin resistance and cardiovascular disease. Interventions designed to improve endothelial and/or adipose-tissue functions may reduce cardiovascular events in obese individuals with either the metabolic syndrome or Type 2 diabetes. Lifestyle modification in the form of caloric restriction and increased physical activity are the most common modalities used for treating those individuals at risk and is unanimously agreed to be the initial step in managing Type 2 diabetes. Several recent studies have demonstrated favorable impacts of lifestyle modifications in improving endothelial function and insulin sensitivity, in addition to altering serum levels of adipocytokines and possibly reducing cardiovascular events. This review discusses current knowledge of the role of lifestyle modifications in ameliorating cardiovascular risk in obese subjects with either the metabolic syndrome or Type 2 diabetes.
Collapse
Affiliation(s)
- Osama Hamdy
- Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
43
|
Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem 2014; 64:1-72. [PMID: 24938016 DOI: 10.1016/b978-0-12-800263-6.00001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Matrix metalloproteinases (MMP) are a family of zinc-containing endoproteinases that degrade extracellular matrix (ECM) components. MMP have important roles in the development, physiology and pathology of cardiovascular system. Metalloproteases also play key roles in adverse cardiovascular remodeling, atherosclerotic plaque formation and plaque instability, vascular smooth muscle cell (SMC) migration and restenosis that lead to coronary artery disease (CAD), and progressive heart failure. The study of MMP in developing animal model cardiovascular systems has been helpful in deciphering numerous pathologic conditions in humans. Increased peripheral blood MMP-2 and MMP-9 in acute coronary syndrome (ACS) may be useful as noninvasive tests for detection of plaque vulnerability. MMP function can be modulated by certain pharmacological drugs that can be exploited for treatment of ACS. CAD is a polygenic disease and hundreds of genes contribute toward its predisposition. A large number of sequence variations in MMP genes have been identified. Case-control association studies have highlighted their potential association with CAD and its clinical manifestations. Although results thus far are inconsistent, meta-analysis has demonstrated that MMP-3 Glu45Lys and MMP-9 1562C/T gene polymorphisms were associated with CAD risk.
Collapse
|
44
|
Zhu K, Li G, Sun P, Wang R, Qian Y, Zhao X. In vitro and in vivo anti-cancer activities of Kuding tea ( Ilex kudingcha C.J. Tseng) against oral cancer. Exp Ther Med 2013; 7:709-715. [PMID: 24520272 PMCID: PMC3919927 DOI: 10.3892/etm.2013.1450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 12/05/2013] [Indexed: 12/23/2022] Open
Abstract
Kuding tea (Ilex kudingcha C.J. Tseng) is drunk widely in China. The in vitro anticancer effects of Kuding tea were evaluated in TCA8113 human tongue carcinoma cells using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. At a concentration of 200 μg/ml, Kuding tea exhibited an inhibitory effect of 75% in TCA8113 cells, which was higher than that observed at concentrations of 100 and 50 μg/ml (41 and 10% inhibition, respectively). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses of the apoptosis, inflammation and metastasis genes and proteins in Kuding tea-treated cancer cells were performed. Kuding tea significantly induced apoptosis in TCA8113 cancer cells (P<0.05) by upregulating Bax, caspase-3 and caspase-9 expression, and downregulating Bcl-2 expression. Expression of the NF-κB, iNOS and COX-2 genes that are associated with inflammation was significantly downregulated by Kuding tea, which demonstrated its anti-inflammatory properties. Kuding tea also exerted an anti-metastatic effect on cancer cells. This was demonstrated by the decreased expression of matrix metalloproteases (MMPs) and the increased expression of tissue inhibitors of metalloproteinases (TIMPs), and confirmed by the inhibition of the metastasis of U14 squamous cell carcinoma cells in imprinting control region (ICR) mice. The ICR mouse buccal mucosa cancer model was established by injecting the mice with U14 cells. Following injection, the wound at the injection site was topically treated with Kuding tea. It was observed that the tumor volumes for the group treated with Kuding tea were smaller than those from the control mice. Analysis of the sections of buccal mucosa cancer tissue demonstrated that the buccal mucosa cancer degrees of the Kuding tea-treated mice were weaker than that in the control mice. Similar results were observed in the lesion sections of the cervical lymph nodes. Based on these results, Kuding tea exhibited successful in vitro anticancer effects in TCA8113 cells and in vivo buccal mucosa cancer preventive activity.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Guijie Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Peng Sun
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Rui Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|
45
|
Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013; 13:649-65. [PMID: 23969736 DOI: 10.1038/nri3499] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They carry out ectodomain shedding of cytokines and their cognate receptors. Together with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases), these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.
Collapse
|
46
|
Pathophysiology of vascular remodeling in hypertension. Int J Hypertens 2013; 2013:808353. [PMID: 23970958 PMCID: PMC3736482 DOI: 10.1155/2013/808353] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 11/20/2022] Open
Abstract
Vascular remodeling refers to alterations in the structure of resistance vessels contributing to elevated systemic vascular resistance in hypertension. We start with some historical aspects, underscoring the importance of Glagov's contribution. We then move to some basic concepts on the biomechanics of blood vessels and explain the definitions proposed by Mulvany for specific forms of remodeling, especially inward eutrophic and inward hypertrophic. The available evidence for the existence of remodeled resistance vessels in hypertension comes next, with relatively more weight given to human, in comparison with animal data. Mechanisms are discussed. The impact of antihypertensive drug treatment on remodeling is described, again with emphasis on human data. Some details are given on the three mechanisms to date which point to remodeling resistance arteries as an independent predictor of cardiovascular risk in hypertensive patients. We terminate by considering the potential role of remodeling in the pathogenesis of endorgan damage and in the perpetuation of hypertension.
Collapse
|
47
|
Marco M, Fortin C, Fulop T. Membrane-type matrix metalloproteinases: key mediators of leukocyte function. J Leukoc Biol 2013; 94:237-46. [PMID: 23695309 DOI: 10.1189/jlb.0612267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Leukocytes are major cellular effectors of the immune response. To accomplish this task, these cells display a vast arsenal of proteinases, among which, members of the MMP family are especially important. Leukocytes express several members of the MMP family, including secreted- and membrane-anchored MT- MMPs, which synergistically orchestrate an appropriate proteolytic reaction that ultimately modulates immunological responses. The MT-MMP subfamily comprises TM- and GPI-anchored proteinases, which are targeted to well-defined membrane microdomains and exhibit different substrate specificities. Whereas much information exists on the biological roles of secreted MMPs in leukocytes, the roles of MT-MMPs remain relatively obscure. This review summarizes the current knowledge on the expression of MT-MMPs in leukocyte and their contribution to the immune responses and to pathological conditions.
Collapse
Affiliation(s)
- Marta Marco
- Departamento de Bioquímica Clínica Facultad de Química, Gral. Flores 2124, Universidad de la República, Montevideo, Uruguay CP 11800.
| | | | | |
Collapse
|
48
|
Murray MY, Birkland TP, Howe JD, Rowan AD, Fidock M, Parks WC, Gavrilovic J. Macrophage migration and invasion is regulated by MMP10 expression. PLoS One 2013; 8:e63555. [PMID: 23691065 PMCID: PMC3653827 DOI: 10.1371/journal.pone.0063555] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
This study was designed to identify metalloproteinase determinants of macrophage migration and led to the specific hypothesis that matrix metalloproteinase 10 (MMP10/stromelysin-2) facilitates macrophage migration. We first profiled expression of all MMPs in LPS-stimulated primary murine bone marrow-derived macrophages and Raw264.7 cells and found that MMP10 was stimulated early (3 h) and down-regulated later (24 h). Based on this pattern of expression, we speculated that MMP10 plays a role in macrophage responses, such as migration. Indeed, using time lapse microscopy, we found that RNAi silencing of MMP10 in primary macrophages resulted in markedly reduced migration, which was reversed with exogenous active MMP10 protein. Mmp10 (-/-) bone marrow-derived macrophages displayed significantly reduced migration over a two-dimensional fibronectin matrix. Invasion of primary wild-type macrophages into Matrigel supplemented with fibronectin was also markedly impaired in Mmp10 (-/-) cells. MMP10 expression in macrophages thus emerges as an important moderator of cell migration and invasion. These findings support the hypothesis that MMP10 promotes macrophage movement and may have implications in understanding the control of macrophages in several pathologies, including the abnormal wound healing response associated with pro-inflammatory conditions.
Collapse
Affiliation(s)
- Megan Y. Murray
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Timothy P. Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jonathan D. Howe
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Andrew D. Rowan
- Musculoskeletal Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, United Kingdom
| | - Mark Fidock
- Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
| | - William C. Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Guzel S, Serin O, Guzel EC, Buyuk B, Yılmaz G, Güvenen G. Interleukin-33, matrix metalloproteinase-9, and tissue inhibitor [corrected] of matrix metalloproteinase-1 in myocardial infarction. Korean J Intern Med 2013; 28:165-73. [PMID: 23525523 PMCID: PMC3604606 DOI: 10.3904/kjim.2013.28.2.165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/25/2012] [Accepted: 07/02/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND/AIMS Acute coronary syndrome (ACS) is characterized by increased inflammatory processes and endothelial activation. We investigated the association between ACS and inflammatory mediators and matrix-degrading enzymes. METHODS We prospectively enrolled 55 consecutive patients with ACS: 25 with unstable angina (UA) and 30 with non-ST elevated myocardial infarction (NSTEMI). For comparison, 25 age- and sex-matched subjects with no significant coronary artery stenosis were included as the control group. Peripheral serum levels of interleukin (IL)-33, matrix metalloproteinase (MMP)-9, tissue inhibitor of MMP-1, and C-reactive protein (CRP) were measured on admission, and at 12, 24, 48, and 72 hours after the initial evaluation. RESULTS Compared to serum levels in the control group, serum levels of IL-33 decreased in the NSTEMI group (p < 0.05), and levels of MMP-9 and tissue inhibitor of matrix metalloproteinase (TIMP)-1 increased in the UA group (p < 0.01, p < 0.05, respectively) and NSTEMI group (p < 0.05, p < 0.05, respectively). IL-33 levels were significantly lower on admission than at 12 hours after the initial evaluation (p < 0.05). IL-33 levels were negatively correlated with MMP-9 levels (r = -0.461, p < 0.05) and CRP levels (r = -0.441, p < 0.05). CONCLUSIONS Elevated levels of MMP-9, TIMP-1, and decreased levels of IL-33 play a role in the development and progression of ACS.
Collapse
Affiliation(s)
- Savas Guzel
- Department of Biochemistry, Namik Kemal University Faculty of Medicine, Tekirdag, Turkey.
| | | | | | | | | | | |
Collapse
|
50
|
Role of Cox-2 in vascular inflammation: an experimental model of metabolic syndrome. Mediators Inflamm 2013; 2013:513251. [PMID: 23476105 PMCID: PMC3586490 DOI: 10.1155/2013/513251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/19/2012] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to demonstrate the role of COX-2 enzyme at the vascular in experimental model of metabolic syndrome. SHR male WKY rats were employed; they were distributed in 8 groups (n = 8 each): control (W); W + L: WKY rats receiving 20 mg/kg of lumiracoxib by intraesophageal administration; SHR; SHR + L: SHR + 20 mg/kg of lumiracoxib by intraesophageal administration; Fructose-Fed Rats (FFR): WKY rats receiving 10% (w/v) fructose solution in drinking water during all 12 weeks; FFR + L: FFR + 20 mg/kg of lumiracoxib by intraesophageal administration; Fructose-Fed Hypertensive Rats (FFHR): SHR receiving 10% (w/v) fructose solution in drinking water during all 12 weeks; and FFHR + L: FFHR + 20 mg/kg of lumiracoxib by intraesophageal administration. Metabolic variables, blood pressure, morphometric variables, and oxidative stress variables were evaluated; also MMP-2 and MMP-9 (collagenases), VCAM-1, and NF-κB by Westernblot or IFI were evaluated. FFHR presented all variables of metabolic syndrome; there was also an increase in oxidative stress variables; vascular remodeling and left ventricular hypertrophy were evidenced along with a significant increase in the expression of the mentioned proinflammatory molecules and increased activity and expression of collagenase. Lumiracoxib was able to reverse vascular remodeling changes and inflammation, demonstrating the involvement of COX-2 in the pathophysiology of vascular remodeling in this experimental model.
Collapse
|