1
|
Sun JY, Su Z, Yang J, Sun W, Kong X. The potential mechanisms underlying the modulating effect of perirenal adipose tissue on hypertension: Physical compression, paracrine, and neurogenic regulation. Life Sci 2024; 342:122511. [PMID: 38387699 DOI: 10.1016/j.lfs.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Hypertension, a prevalent global cardiovascular disease, affects approximately 45.4 % of adults worldwide. Despite advances in therapy, hypertension continues to pose a significant health risk due to inadequate management. It has been established that excessive adiposity contributes majorly to hypertension, accounting for 65 to 75 % of primary cases. Fat depots can be categorised into subcutaneous and visceral adipose tissue based on anatomical and physiological characteristics. The metabolic impact and the risk of hypertension are determined more significantly by visceral fat. Perirenal adipose tissue (PRAT), a viscera enveloping the kidney, is known for its superior vascularisation and abundant innervation. Although traditionally deemed as a mechanical support tissue, recent studies have indicated its contributing potential to hypertension. Hypertensive patients tend to have increased PRAT thickness compared to those without, and there is a positive correlation between PRAT thickness and elevated systolic blood pressure. This review encapsulates the anatomical characteristics and biogenesis of PRAT. We provide an overview of the potential mechanisms where PRAT may modulate blood pressure, including physical compression, paracrine effects, and neurogenic regulation. PRAT has become a promising target for hypertension management, and continuous effort is required to further explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhenyang Su
- Medical School of Southeast University, Nanjing 21000, China
| | - Jiaming Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xiangqing Kong
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
2
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Spotlight on CYP4B1. Int J Mol Sci 2023; 24:ijms24032038. [PMID: 36768362 PMCID: PMC9916508 DOI: 10.3390/ijms24032038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The mammalian cytochrome P450 monooxygenase CYP4B1 can bioactivate a wide range of xenobiotics, such as its defining/hallmark substrate 4-ipomeanol leading to tissue-specific toxicities. Similar to other members of the CYP4 family, CYP4B1 has the ability to hydroxylate fatty acids and fatty alcohols. Structural insights into the enigmatic role of CYP4B1 with functions in both, xenobiotic and endobiotic metabolism, as well as its unusual heme-binding characteristics are now possible by the recently solved crystal structures of native rabbit CYP4B1 and the p.E310A variant. Importantly, CYP4B1 does not play a major role in hepatic P450-catalyzed phase I drug metabolism due to its predominant extra-hepatic expression, mainly in the lung. In addition, no catalytic activity of human CYP4B1 has been observed owing to a unique substitution of an evolutionary strongly conserved proline 427 to serine. Nevertheless, association of CYP4B1 expression patterns with various cancers and potential roles in cancer development have been reported for the human enzyme. This review will summarize the current status of CYP4B1 research with a spotlight on its roles in the metabolism of endogenous and exogenous compounds, structural properties, and cancer association, as well as its potential application in suicide gene approaches for targeted cancer therapy.
Collapse
|
4
|
Kawamura M, Kobashi Y, Tanaka H, Bohno-Mikami A, Hamada M, Ito Y, Hirata T, Ohara H, Kojima N, Koretsune H, Gunji E, Fukunaga T, Inatani S, Hasegawa Y, Suzuki A, Takahashi T, Kakinuma H. Discovery of Novel Pyrazolylpyridine Derivatives for 20-Hydroxyeicosatetraenoic Acid Synthase Inhibitors with Selective CYP4A11/4F2 Inhibition. J Med Chem 2022; 65:14599-14613. [DOI: 10.1021/acs.jmedchem.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madoka Kawamura
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yohei Kobashi
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroaki Tanaka
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Ayako Bohno-Mikami
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Makoto Hamada
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yuji Ito
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Takashi Hirata
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroki Ohara
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Naoki Kojima
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroko Koretsune
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Emi Gunji
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Takuya Fukunaga
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Shoko Inatani
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Yoshitaka Hasegawa
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Akinori Suzuki
- Pharmaceutical Sciences Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Teisuke Takahashi
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| | - Hiroyuki Kakinuma
- Discovery Research Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403, Yoshino-Cho, Kita-Ku, Saitama, Saitama331-9530, Japan
| |
Collapse
|
5
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Angiotensin II upregulates CYP4A isoform expression in the rat kidney through angiotensin II type 1 receptor. Prostaglandins Other Lipid Mediat 2018; 139:80-86. [DOI: 10.1016/j.prostaglandins.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/02/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
|
7
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
8
|
Affiliation(s)
- Richard J Roman
- From the Department of Pharmacology, University of Mississippi Medical Center, Jackson.
| | - Fan Fan
- From the Department of Pharmacology, University of Mississippi Medical Center, Jackson
| |
Collapse
|
9
|
Liu X, Davis CM, Alkayed NJ. P450 Eicosanoids and Reactive Oxygen Species Interplay in Brain Injury and Neuroprotection. Antioxid Redox Signal 2018; 28:987-1007. [PMID: 28298143 PMCID: PMC5849284 DOI: 10.1089/ars.2017.7056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Eicosanoids are endogenous lipid mediators that play important roles in brain function and disease. Acute brain injury such as that which occurs in stroke and traumatic brain injury increases the formation of eicosanoids, which, in turn, exacerbate or diminish injury. In chronic neurodegenerative diseases such as Alzheimer's disease and vascular dementia (VD), eicosanoid synthetic and metabolizing enzymes are altered, disrupting the balance between neuroprotective and neurotoxic eicosanoids. Recent Advances: Human and experimental studies have established the opposing roles of hydroxy- and epoxyeicosanoids and their potential utility as diagnostic biomarkers and therapeutic targets in neural injury. Critical Issues: A gap in knowledge remains in understanding the cellular and molecular mechanisms underlying the neurovascular actions of specific eicosanoids, such as specific isomers of epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic acids (HETEs). Future Directions: EETs and HETEs exert their actions on brain cells by targeting multiple mechanisms, which include surface G-protein coupled receptors. The identification of high-affinity receptors for EETs and HETEs and their cellular localization in the brain will be a breakthrough in our understanding of these eicosanoids as mediators of cell-cell communications and contributors to brain development, function, and disease. Antioxid. Redox Signal. 28, 987-1007.
Collapse
Affiliation(s)
- Xuehong Liu
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Catherine M Davis
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| | - Nabil J Alkayed
- The Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon.,Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
10
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Özen N, Nasırcılar Ülker S, Ülker P, Özcan F, Aslan M, Şentürk ÜK, Basralı F. Effect of 20-HETE inhibition on L-NAME-induced hypertension in rats. Clin Exp Hypertens 2017; 40:292-302. [DOI: 10.1080/10641963.2017.1368540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nur Özen
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | | | - Pınar Ülker
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Filiz Özcan
- Medical Faculty, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Medical Faculty, Department of Biochemistry, Akdeniz University, Antalya, Turkey
| | - Ümit Kemal Şentürk
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| | - Filiz Basralı
- Medical Faculty, Department of Physiology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
12
|
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 2017; 313:H903-H918. [PMID: 28801523 DOI: 10.1152/ajpheart.00201.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 01/21/2023]
Abstract
Oxylipins are a group of fatty acid metabolites generated via oxygenation of polyunsaturated fatty acids and are involved in processes such as inflammation, immunity, pain, vascular tone, and coagulation. As a result, oxylipins have been implicated in many conditions characterized by these processes, including cardiovascular disease and aging. The best characterized oxylipins in relation to cardiovascular disease are derived from the ω-6 fatty acid arachidonic acid. These oxylipins generally increase inflammation, hypertension, and platelet aggregation, although not universally. Similarly, oxylipins derived from the ω-6 fatty acid linoleic acid generally have more adverse than beneficial cardiovascular effects. Alternatively, most oxylipins derived from 20- and 22-carbon ω-3 fatty acids have anti-inflammatory, antiaggregatory, and vasodilatory effects that help explain the cardioprotective effects of these fatty acids. Much less is known regarding the oxylipins derived from the 18-carbon ω-3 fatty acid α-linolenic acid, but clinical trials with flaxseed supplementation have indicated that these oxylipins can have positive effects on blood pressure. Normal aging also is associated with changes in oxylipin levels in the brain, vasculature, and other tissues, indicating that oxylipin changes with aging may be involved in age-related changes in these tissues. A small number of trials in humans and animals with interventions that contain either 18-carbon or 20- and 22-carbon ω-3 fatty acids have indicated that dietary-induced changes in oxylipins may be beneficial in slowing the changes associated with normal aging. In summary, oxylipins are an important group of molecules amenable to dietary manipulation to target cardiovascular disease and age-related degeneration.NEW & NOTEWORTHY Oxylipins are an important group of fatty acid metabolites amenable to dietary manipulation. Because of the role they play in cardiovascular disease and in age-related degeneration, oxylipins are gaining recognition as viable targets for specific dietary interventions focused on manipulating oxylipin composition to control these biological processes.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and .,Canadian Centre for Agri-food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Elshenawy OH, Shoieb SM, Mohamed A, El-Kadi AOS. Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target. Pharmaceutics 2017; 9:pharmaceutics9010009. [PMID: 28230738 PMCID: PMC5374375 DOI: 10.3390/pharmaceutics9010009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%-75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future.
Collapse
Affiliation(s)
- Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Sherif M Shoieb
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Anwar Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
14
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
15
|
The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat 2016; 125:108-17. [PMID: 27287720 DOI: 10.1016/j.prostaglandins.2016.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) is metabolized in mammals by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE) which plays an important role in the regulation of renal function, vascular tone and arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, the up-regulation of which contributes to inflammation, oxidative stress, endothelial dysfunction and an increase in peripheral vascular resistance in models of obesity, diabetes, ischemia/reperfusion, and vascular oxidative stress. Recent studies have established a role for 20-HETE in normal and pathological angiogenic conditions. We discuss in this review the synthesis of 20-HETE and how it and various autacoids, especially the renin-angiotensin system, interact to promote hypertension, vasoconstriction, and vascular dysfunction. In addition, we examine the molecular mechanisms through which 20-HETE induces these actions and the clinical implication of inhibiting 20-HETE production and activity.
Collapse
|
16
|
Gebremedhin D, Zhang DX, Carver KA, Rau N, Rarick KR, Roman RJ, Harder DR. Expression of CYP 4A ω-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat 2016; 124:16-26. [PMID: 27174801 DOI: 10.1016/j.prostaglandins.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
Abstract
Astrocytes secrete vasodilator and vasoconstrictor factors via end feet processes, altering blood flow to meet neuronal metabolic demand. Compared to what is known about the ability of astrocytes to release factors that dilate local cerebral vasculature, very little is known regarding the source and identity of astrocyte derived constricting factors. The present study investigated if astrocytes express CYP 4A ω-hydroxylase and metabolize arachidonic acid (AA) to 20-hydroxyeicotetraenoic acid (20-HETE) that regulates KCa channel activity in astrocytes and cerebral arterial myocyte contractility. Here we report that cultured astrocytes express CYP 4A2/3 ω-hydroxylase mRNA and CYP 4A protein and produce 20-HETE and the CYP epoxygenase metabolites epoxyeicosatrienoic acids (EETs) when incubated with AA. The production of 20-HETE and EETs was enhanced following stimulation of metabotropic glutamate receptors (mGluR) on the astrocytes. Exogenous application of 20-HETE attenuated, whereas inhibition of 20-HETE production with HET-0016 increased the open state probabilities (NPo) of 71pS and 161pS KCa single-channel currents recorded from astrocytes. Exposure of isolated cerebral arterial myocytes to conditioned media from cultured astrocytes caused shortening of the length of freshly isolated cerebral arterial myocytes that was not evident following inhibition of astrocyte 20-HETE synthesis and action. These findings suggest that astrocytes not only release vasodilator EETs in response to mGluR stimulation but also synthetize and release the cerebral arterial myocyte constrictor 20-HETE that also functions as an endogenous inhibitor of the activity of two types of KCa channel currents found in astrocytes.
Collapse
Affiliation(s)
- Debebe Gebremedhin
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - David X Zhang
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Koryn A Carver
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Nicole Rau
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kevin R Rarick
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David R Harder
- Department of Physiology, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Clement Zablocki VA Medical Center, Milwaukee, WI 53226, United States.
| |
Collapse
|
17
|
Imig JD. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:105-41. [PMID: 27451096 DOI: 10.1016/bs.apha.2016.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.
Collapse
Affiliation(s)
- J D Imig
- Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
18
|
Abstract
Arachidonic acid metabolites have a myriad of biological actions including effects on the kidney to alter renal hemodynamics and tubular transport processes. Cyclooxygenase metabolites are products of an arachidonic acid enzymatic pathway that has been extensively studied in regards to renal function. Two lesser-known enzymatic pathways of arachidonic acid metabolism are the lipoxygenase (LO) and cytochrome P450 (CYP) pathways. The importance of LO and CYP metabolites to renal hemodynamics and tubular transport processes is now being recognized. LO and CYP metabolites have actions to alter renal blood flow and glomerular filtration rate. Proximal and distal tubular sodium transport and fluid and electrolyte homeostasis are also significantly influenced by renal CYP and LO levels. Metabolites of the LO and CYP pathways also have renal actions that influence renal inflammation, proliferation, and apoptotic processes at vascular and epithelial cells. These renal LO and CYP pathway actions occur through generation of specific metabolites and cell-signaling mechanisms. Even though the renal physiological importance and actions for LO and CYP metabolites are readily apparent, major gaps remain in our understanding of these lipid mediators to renal function. Future studies will be needed to fill these major gaps regarding LO and CYP metabolites on renal function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Md Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv Nutr 2015; 6:513-40. [PMID: 26374175 PMCID: PMC4561827 DOI: 10.3945/an.114.007732] [Citation(s) in RCA: 537] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxylipins formed from polyunsaturated fatty acids (PUFAs) are the main mediators of PUFA effects in the body. They are formed via cyclooxygenase, lipoxygenase, and cytochrome P450 pathways, resulting in the formation of prostaglandins, thromboxanes, mono-, di-, and tri-hydroxy fatty acids (FAs), epoxy FAs, lipoxins, eoxins, hepoxilins, resolvins, protectins (also called neuroprotectins in the brain), and maresins. In addition to the well-known eicosanoids derived from arachidonic acid, recent developments in lipidomic methodologies have raised awareness of and interest in the large number of oxylipins formed from other PUFAs, including those from the essential FAs and the longer-chain n-3 (ω-3) PUFAs. Oxylipins have essential roles in normal physiology and function, but can also have detrimental effects. Compared with the oxylipins derived from n-3 PUFAs, oxylipins from n-6 PUFAs generally have greater activity and more inflammatory, vasoconstrictory, and proliferative effects, although there are notable exceptions. Because PUFA composition does not necessarily reflect oxylipin composition, comprehensive analysis of the oxylipin profile is necessary to understand the overall physiologic effects of PUFAs mediated through their oxylipins. These analyses should include oxylipins derived from linoleic and α-linolenic acids, because these largely unexplored bioactive oxylipins constitute more than one-half of oxylipins present in tissues. Because collated information on oxylipins formed from different PUFAs is currently unavailable, this review provides a detailed compilation of the main oxylipins formed from PUFAs and describes their functions. Much remains to be elucidated in this emerging field, including the discovery of more oxylipins, and the understanding of the differing biological potencies, kinetics, and isomer-specific activities of these novel PUFA metabolites.
Collapse
Affiliation(s)
| | | | | | | | - Harold M Aukema
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; and Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
20
|
Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 2015; 12:845-58. [PMID: 24066938 PMCID: PMC4416696 DOI: 10.2174/15701611113116660149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/18/2011] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
Abstract
Diabetes and hypertension are the leading causes of chronic kidney disease and their incidence is increasing at
an alarming rate. Both are associated with impairments in the autoregulation of renal blood flow (RBF) and greater transmission
of fluctuations in arterial pressure to the glomerular capillaries. The ability of the kidney to maintain relatively
constant blood flow, glomerular filtration rate (GFR) and glomerular capillary pressure is mediated by the myogenic response
of afferent arterioles working in concert with tubuloglomerular feedback that adjusts the tone of the afferent arteriole
in response to changes in the delivery of sodium chloride to the macula densa. Despite intensive investigation, the factors
initiating the myogenic response and the signaling pathways involved in the myogenic response and tubuloglomerular
feedback remain uncertain. This review focuses on current thought regarding the molecular mechanisms underlying myogenic
control of renal vascular tone, the interrelationships between the myogenic response and tubuloglomerular feedback,
the evidence that alterations in autoregulation of RBF contributes to hypertension and diabetes-induced nephropathy and
the identification of vascular therapeutic targets for improved renoprotection in hypertensive and diabetic patients.
Collapse
Affiliation(s)
| | | | | | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
21
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Zhang B, Yi X, Wang C, Liao D, Lin J, Chi L. Cytochrome 4A11 Genetic Polymorphisms Increase Susceptibility to Ischemic Stroke and Associate with Atherothrombotic Events After Stroke in Chinese. Genet Test Mol Biomarkers 2015; 19:235-41. [PMID: 25734770 DOI: 10.1089/gtmb.2014.0305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To evaluate the associations between four single-nucleotide polymorphisms (SNPs) in CYP4A11 and CYP4F2 and ischemic stroke (IS), and between these variants and atherothrombotic events after stroke. IS patients (n=396) and controls (n=378) were genotyped for two CYP4A11 SNPs (rs2269231 and rs9333025) and two CYP4F2 SNPs (rs2108622 and rs3093135). Patients were followed up for 12 months after the stroke for the atherothrombotic events. The frequency of the rs9333025 GG genotype was significantly higher in IS patients than in controls. Logistic regression analysis showed that the presence of rs9333025 GG in patients was associated with significantly higher risk of IS. Cox regression analysis revealed that the rs9333025 GG genotype was an independent risk factor for atherothrombotic events after stroke. The rs9333025 GG genotype increases patients' susceptibility to IS and is associated with high frequencies of atherothrombotic events in stroke patients.
Collapse
Affiliation(s)
- Biao Zhang
- 1 Department of Neurology, People's Hospital of Deyang City , Deyang, Sichuan, China
| | | | | | | | | | | |
Collapse
|
23
|
Functional characterization of 10 CYP4A11 allelic variants to evaluate the effect of genotype on arachidonic acid ω-hydroxylation. Drug Metab Pharmacokinet 2015; 30:119-22. [DOI: 10.1016/j.dmpk.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/16/2022]
|
24
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
25
|
Abstract
20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE) is a cytochrome P450 (CYP)-derived omega-hydroxylation metabolite of arachidonic acid. 20-HETE has been shown to play a complex role in blood pressure regulation. In the kidney tubules, 20-HETE inhibits sodium reabsorption and promotes natriuresis, thus, contributing to antihypertensive mechanisms. In contrast, in the microvasculature, 20-HETE has been shown to play a pressor role by sensitizing smooth muscle cells to constrictor stimuli and increasing myogenic tone, and by acting on the endothelium to further promote endothelial dysfunction and endothelial activation. In addition, 20-HETE induces endothelial angiotensin-converting enzyme, thus, setting forth a potential feed forward prohypertensive mechanism by stimulating the renin-angiotensin-aldosterone system. With the advancement of gene sequencing technology, numerous polymorphisms in the regulatory coding and noncoding regions of 20-HETE-producing enzymes, CYP4A11 and CYP4F2, have been associated with hypertension. This in-depth review article discusses the biosynthesis and function of 20-HETE in the cardiovascular system, the pharmacological agents that affect 20-HETE action, and polymorphisms of CYP enzymes that produce 20-HETE and are associated with systemic hypertension in humans.
Collapse
|
26
|
Gangadhariah MH, Luther JM, Garcia V, Paueksakon P, Zhang MZ, Hayward SW, Love HD, Falck JR, Manthati VL, Imig JD, Schwartzman ML, Zent R, Capdevila JH, Pozzi A. Hypertension is a major contributor to 20-hydroxyeicosatetraenoic acid-mediated kidney injury in diabetic nephropathy. J Am Soc Nephrol 2014; 26:597-610. [PMID: 25071086 DOI: 10.1681/asn.2013090980] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
In the kidney, 20-hydroxyeicosatetraenoic acid (20-HETE) is a primary cytochrome P450 4 (Cyp4)-derived eicosanoid that enhances vasoconstriction of renal vessels and induces hypertension, renal tubular cell hypertrophy, and podocyte apoptosis. Hypertension and podocyte injury contribute to diabetic nephropathy and are strong predictors of disease progression. In this study, we defined the mechanisms whereby 20-HETE affects the progression of diabetic nephropathy. We used Cyp4a14KO male mice that exhibit androgen-sensitive hypertension due to increased Cyp4a12-mediated 20-HETE production. We show that, upon induction of diabetes type 1 via streptozotocin injection, Cyp4a14KO male mice developed worse renal disease than streptozotocin-treated wild-type mice, characterized by increased albuminuria, mesangial expansion, glomerular matrix deposition, and thickness of the glomerular basement membranes. Castration blunted androgen-mediated Cyp4a12 synthesis and 20-HETE production, normalized BP, and ameliorated renal damage in diabetic Cyp4a14KO mice. Notably, treatment with a 20-HETE antagonist or agents that normalized BP without affecting Cyp4a12 expression and 20-HETE biosynthesis also ameliorated diabetes-mediated renal damage and albuminuria in Cyp4a14KO male mice. Taken together, these results suggest that hypertension is the major contributor to 20-HETE-driven diabetes-mediated kidney injury.
Collapse
Affiliation(s)
| | - James M Luther
- Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | | | - Simon W Hayward
- Urologic Surgery; Vanderbilt University, Nashville, Tennessee
| | - Harold D Love
- Urologic Surgery; Vanderbilt University, Nashville, Tennessee
| | - John R Falck
- Division of Chemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vijaya L Manthati
- Division of Chemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | | | - Roy Zent
- Divisions of Nephrology and Department of Medicine, Veterans Affairs Hospitals, Nashville, Tennessee
| | | | - Ambra Pozzi
- Divisions of Nephrology and Department of Medicine, Veterans Affairs Hospitals, Nashville, Tennessee
| |
Collapse
|
27
|
Ge Y, Murphy SR, Fan F, Williams JM, Falck JR, Liu R, Roman RJ. Role of 20-HETE in the impaired myogenic and TGF responses of the Af-Art of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2014; 307:F509-15. [PMID: 25007877 DOI: 10.1152/ajprenal.00273.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined whether 20-HETE production is reduced in the renal vasculature and whether this impairs myogenic or tubuloglomerular feedback (TGF) responses of the afferent arteriole (Af-Art). The production of 20-HETE was 73% lower in renal microvessels of Dahl salt-sensitive rats (SS) rats than in SS.5(BN) rats, in which chromosome 5 from the Brown Norway (BN) rat containing the CYP4A genes was transferred into the SS genetic background. The luminal diameter of the Af-Art decreased by 14.7 ± 1.5% in SS.5(BN) rats when the perfusion pressure was increased from 60 to 120 mmHg, but it remained unaltered in SS rats. Administration of an adenosine type 1 receptor agonist (CCPA, 1 μM) reduced the diameter of the Af-Art in the SS.5(BN) rats by 44 ± 2%, whereas the diameter of the Af-Art of SS rats was unaltered. Autoregulation of renal blood flow (RBF) and glomerular capillary pressure (PGC) was significantly impaired in SS rats but was intact in SS.5(BN) rats. Administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM), completely blocked the myogenic and adenosine responses in the Af-Art and autoregulation of RBF and PGC in SS.5(BN) rats, but it had no effect in SS rats. These data indicate that a deficiency in the formation of 20-HETE in renal microvessels impairs the reactivity of the Af-Art of SS rats and likely contributes to the development of hypertension induced renal injury.
Collapse
Affiliation(s)
- Ying Ge
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Sydney R Murphy
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Fan Fan
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jan Michael Williams
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ruisheng Liu
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Richard J Roman
- Departments of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
28
|
Elbarbry F, Vermehren-Schmaedick A, Balkowiec A. Modulation of arachidonic Acid metabolism in the rat kidney by sulforaphane: implications for regulation of blood pressure. ISRN PHARMACOLOGY 2014; 2014:683508. [PMID: 24734194 PMCID: PMC3964756 DOI: 10.1155/2014/683508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure.
Collapse
Affiliation(s)
- Fawzy Elbarbry
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Avenue, Hillsboro, OR 97123, USA
| | - Anke Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Fan F, Sun CW, Maier KG, Williams JM, Pabbidi MR, Didion SP, Falck JR, Zhuo J, Roman RJ. 20-Hydroxyeicosatetraenoic acid contributes to the inhibition of K+ channel activity and vasoconstrictor response to angiotensin II in rat renal microvessels. PLoS One 2013; 8:e82482. [PMID: 24324797 PMCID: PMC3853207 DOI: 10.1371/journal.pone.0082482] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/02/2013] [Indexed: 11/24/2022] Open
Abstract
The present study examined whether 20-hydroxyeicosatetraenoic acid (HETE) contributes to the vasoconstrictor effect of angiotensin II (ANG II) in renal microvessels by preventing activation of the large conductance Ca2+-activated K+ channel (KCa) in vascular smooth muscle (VSM) cells. ANG II increased the production of 20-HETE in rat renal microvessels. This response was attenuated by the 20-HETE synthesis inhibitors, 17-ODYA and HET0016, a phospholipase A2 inhibitor AACOF3, and the AT1 receptor blocker, Losartan, but not by the AT2 receptor blocker, PD123319. ANG II (10-11 to 10-6 M) dose-dependently decreased the diameter of renal microvessels by 41 ± 5%. This effect was blocked by 17-ODYA. ANG II (10-7 M) did not alter KCa channel activity recorded from cell-attached patches on renal VSM cells under control conditions. However, it did reduce the NPo of the KCa channel by 93.4 ± 3.1% after the channels were activated by increasing intracellular calcium levels with ionomycin. The inhibitory effect of ANG II on KCa channel activity in the presence of ionomycin was attenuated by 17-ODYA, AACOF3, and the phospholipase C (PLC) inhibitor U-73122. ANG II induced a peak followed by a steady-state increase in intracellular calcium concentration in renal VSM cells. 17-ODYA (10-5 M) had no effect on the peak response, but it blocked the steady-state increase. These results indicate that ANG II stimulates the formation of 20-HETE in rat renal microvessels via the AT1 receptor activation and that 20-HETE contributes to the vasoconstrictor response to ANG II by blocking activation of KCa channel and facilitating calcium entry.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Calcium/metabolism
- Gene Expression
- Hydroxyeicosatetraenoic Acids/metabolism
- Ionomycin/pharmacology
- Male
- Microvessels/drug effects
- Microvessels/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phospholipases A2/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels/metabolism
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/metabolism
- Rats
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Renal Circulation/drug effects
- Renal Circulation/physiology
- Type C Phospholipases/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Cheng-Wen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Kristopher G. Maier
- Division of Vascular Surgery and Endovascular Services, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Jan M. Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Malikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - John R. Falck
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jialong Zhuo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
30
|
Rowland A, Mangoni AA. Cytochrome P450 and ischemic heart disease: current concepts and future directions. Expert Opin Drug Metab Toxicol 2013; 10:191-213. [PMID: 24274646 DOI: 10.1517/17425255.2014.859675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The P450 enzymes (P450s) mediate the biotransformation of several drugs, steroid hormones, eicosanoids, cholesterol, vitamins, fatty acids and bile acids, many of which affect cardiovascular homeostasis. Experimental studies have demonstrated that several P450s modulate important steps in the pathogenesis of ischemic heart disease (IHD). AREAS COVERED This article discusses the current knowledge on i) the expression of P450s in cardiovascular and renal tissues; ii) the role of P450s in the pathophysiology of IHD, in particular the modulation of blood pressure and cardiac hypertrophy, coronary arterial tone, ischemia-reperfusion injury and the metabolism of cardiovascular drugs; iii) the available evidence from observational studies on the association between P450 gene polymorphisms and risk of myocardial infarction (MI); and iv) suggestions for further research in this area. EXPERT OPINION P450s exert important modulatory effects in experimental models of IHD and MI. However, observational studies have provided conflicting results on the association between P450 genetic polymorphisms and MI. Further, adequately powered studies are required to ascertain the biological and clinical impact of P450s on clinical IHD end-points, that is, fatal and nonfatal MI, revascularization and long-term outcomes post MI. Pharmacogenetic substudies of recently completed cardiovascular clinical trials might represent an alternative strategy in this context.
Collapse
Affiliation(s)
- Andrew Rowland
- Flinders University, School of Medicine, Department of Clinical Pharmacology , Bedford Park, SA 5042 , Australia
| | | |
Collapse
|
31
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
32
|
Toth P, Csiszar A, Tucsek Z, Sosnowska D, Gautam T, Koller A, Schwartzman ML, Sonntag WE, Ungvari Z. Role of 20-HETE, TRPC channels, and BKCa in dysregulation of pressure-induced Ca2+ signaling and myogenic constriction of cerebral arteries in aged hypertensive mice. Am J Physiol Heart Circ Physiol 2013; 305:H1698-708. [PMID: 24097425 DOI: 10.1152/ajpheart.00377.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypertension in the elderly substantially increases the risk of stroke and vascular cognitive impairment in part due to an impaired functional adaptation of aged cerebral arteries to high blood pressure. To elucidate the mechanisms underlying impaired autoregulatory protection in aging, hypertension was induced in young (3 mo) and aged (24 mo) C57BL/6 mice by chronic infusion of angiotensin II and pressure-induced changes in smooth muscle cell (SMC) intracellular Ca(2+) concentration ([Ca(2+)]i) and myogenic constriction of middle cerebral arteries (MCA) were assessed. In MCAs from young hypertensive mice, pressure-induced increases in vascular SMC [Ca(2+)]i and myogenic tone were increased, and these adaptive responses were inhibited by the cytochrome P-450 ω-hydroxylase inhibitor HET0016 and the transient receptor potential (TRP) channel blocker SKF96365. Administration of 20- hydroxyeicosatetraenoic acid (HETE) increased SMC [Ca(2+)]i and constricted MCAs, and these responses were inhibited by SKF96365. MCAs from aged hypertensive mice did not show adaptive increases in pressure-induced calcium signal and myogenic tone and responses to HET0016 and SKF96365 were blunted. Inhibition of large-conductance Ca(2+)-activated K(+) (BK) channels by iberiotoxin enhanced SMC [Ca(2+)]i and myogenic constriction in MCAs of young normotensive animals, whereas it was without effect in MCAs of young hypertensive mice. Iberiotoxin did not restore myogenic adaptation in MCAs of aged hypertensive mice. Thus functional maladaptation of aged cerebral arteries to hypertension is due to the dysregulation of pressure-induced 20-HETE and TRP channel-mediated SMC calcium signaling, whereas overactivation of BK channels is unlikely to play a role in this phenomenon.
Collapse
Affiliation(s)
- Peter Toth
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Roman RJ, Renic M, Dunn KMJ, Takeuchi K, Hacein-Bey L. Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm. Neurol Res 2013; 28:738-49. [PMID: 17164037 DOI: 10.1179/016164106x152016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Recent studies have indicated that arachidonic acid (AA) is metabolized by the cytochrome P450 4A (CYP4A) enzymes in cerebral arteries to produce 20-hydroxyeicosatetraenoic acid (20-HETE) and that this compound has effects on cerebral vascular tone that mimic those seen following subarachnoid hemorrhage (SAH). In this regard, 20-HETE is a potent constrictor of cerebral arteries that decreases the open state probability of Ca(2+)-activated K(+) channels through activation of protein kinase C (PKC). It increases the sensitivity of the contractile apparatus to Ca(2+) by activating PKC and rho kinase. The formation of 20-HETE is stimulated by angiotensin II (AII), endothelin, adenosine triphosphate (ATP) and serotonin, and inhibited by NO, CO and superoxide radicals. Inhibitors of the formation of 20-HETE block the myogenic response of cerebral arterioles to elevations in transmural pressure in vitro and autoregulation of cerebral blood flow (CBF) in vivo. 20-HETE also plays an important role in modulating the cerebral vascular responses to vasodilators (NO and CO) and vasoconstrictors (AII, endothelin, serotonin). Recent studies have indicated that the levels of 20-HETE in cerebrospinal fluid (CSF) increase in rats, dogs and human patients following SAH and that inhibitors of the synthesis of 20-HETE prevent the acute fall in CBF in rats and reverse delayed vasospasm in both dogs and rats. This review examines the evidence that an elevation in the production of 20-HETE contributes to the initial fall in CBF following SAH and the later development of delayed vasospasm.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
34
|
Wu CC, Mei S, Cheng J, Ding Y, Weidenhammer A, Garcia V, Zhang F, Gotlinger K, Manthati VL, Falck JR, Capdevila JH, Schwartzman ML. Androgen-sensitive hypertension associates with upregulated vascular CYP4A12-20-HETE synthase. J Am Soc Nephrol 2013; 24:1288-96. [PMID: 23641057 DOI: 10.1681/asn.2012070714] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although the mechanism underlying the effect of androgen on BP and cardiovascular disease is not well understood, recent studies suggest that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a primary cytochrome P450 4 (Cyp4)-derived eicosanoid, may mediate androgen-induced hypertension. Here, treatment of normotensive mice with 5α-dihydrotestosterone increased BP and induced both Cyp4a12 expression and 20-HETE levels in preglomerular microvessels. Administration of a 20-HETE antagonist prevented and reversed the effects of dihydrotestosterone on BP. Cyp4a14(-/-) mice, which exhibit androgen-sensitive hypertension in the male mice, produced increased levels of vascular 20-HETE; furthermore, administration of a 20-HETE antagonist normalized BP. To examine whether androgen-independent increases in 20-HETE are sufficient to cause hypertension, we studied Cyp4a12-transgenic mice, which express the CYP4A12-20-HETE synthase under the control of a doxycycline-sensitive promoter. Administration of doxycycline increased BP by 40%, and administration of a 20-HETE antagonist prevented this increase. Levels of CYP4A12 and 20-HETE in preglomerular microvessels of doxycycline-treated transgenic mice approximately doubled, correlating with increased 20-HETE-dependent sensitivity to phenylephrine-mediated vasoconstriction and with decreased acetylcholine-mediated vasodilation in the renal microvasculature. We observed a similar contribution of 20-HETE to myogenic tone in the mesenteric microvasculature. Taken together, these results suggest that 20-HETE both mediates androgen-induced hypertension and can cause hypertension independent of androgen.
Collapse
Affiliation(s)
- Cheng-Chia Wu
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ge Y, Murphy SR, Lu Y, Falck J, Liu R, Roman RJ. Endogenously produced 20-HETE modulates myogenic and TGF response in microperfused afferent arterioles. Prostaglandins Other Lipid Mediat 2013; 102-103:42-8. [PMID: 23500064 DOI: 10.1016/j.prostaglandins.2013.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 01/13/2023]
Abstract
Previous studies have indicated that 20-hydroxyeicosatetraeonic acid (20-HETE) modulates vascular tone in large cerebral and renal arteries through inhibition of the large conductance, calcium sensitive potassium (BK) channel activity. However, the role of 20-HETE in modulating tubuloglomerular feedback (TGF) and the myogenic response in the afferent arteriole (Af-Art) is unknown. The present study examined the effects of inhibitors of the synthesis and action of 20-HETE on the myogenic and TGF responses of isolated rabbit and mouse Af-Arts. Luminal diameter decreased by 9.2±0.5% in mice and 8.9±1.3% in rabbit Af-Art when the perfusion pressure was increased from 60 to 120 mmHg. Administration of a 20-HETE synthesis inhibitor, HET0016 (1 μM), or a selective 20-HETE antagonist, 6, 15-20-hydroxyeicosadienoic acid (6, 15-20-HEDE, 10 μM) completely blocked the myogenic response of both rabbit and mouse Af-Art, while addition of 5, 14-20-HEDE (10 μM), a 20-HETE agonist, restored the myogenic response in vessels treated with HET0016. Increases in NaCl concentration from 10 to 80 mM of the solution perfusing the macula densa constricted the Af-Art of rabbits by 6.0±1.4 μm (n=5). Addition of a 20-HETE agonist to the tubular perfusate potentiated the TGF-mediated vasoconstrictor response. This response was blocked by addition of a 20-HETE antagonist (6, 15-20-HEDE, 10 μM) to the vascular perfusate. These studies indicate that locally produced 20-HETE plays an important role in modulating the myogenic and TGF responsiveness of the Af-Art and may help explain how deficiencies in the renal formation of 20-HETE could promote the development of hypertension induced glomerular injury.
Collapse
Affiliation(s)
- Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
36
|
Imig JD. Epoxyeicosatrienoic acids, 20-hydroxyeicosatetraenoic acid, and renal microvascular function. Prostaglandins Other Lipid Mediat 2013; 104-105:2-7. [PMID: 23333581 DOI: 10.1016/j.prostaglandins.2013.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 12/05/2012] [Accepted: 01/09/2013] [Indexed: 01/16/2023]
Abstract
The development of pharmacological, genetic, and biochemical tools have allowed for detailed studies to determine the contribution of cytochrome P450 (CYP) metabolites of arachidonic acid to renal microvascular function. Renal microvessels can generate CYP hydroxylase metabolites including 20-hydroxyeicosatetraenoic acid (20-HETE) and CYP epoxygenase metabolites, epoxyeicosatrienoic acids (EETs). 20-HETE constricts afferent arterioles and contributes to renal blood flow autoregulation. EETs act as endothelium-dependent hyperpolarizing factors (EDHFs) on the renal microcirculation. 20-HETE inhibits whereas EETs activate renal microvascular smooth muscle cell large-conductance calcium-activated K(+) channels (KCa). Likewise, 20-HETE renal microvascular actions are pro-hypertensive and EET actions are anti-hypertensive. These findings in the renal microvasculature and those of others have provided impetus for the development of enzymatic inhibitors, agonists, and antagonists for 20-HETE and EETs to determine their potential therapeutic value. Initial genetic studies and experimental studies with soluble epoxide hydrolase inhibitors to increase EETs, EET analogs, and 20-HETE inhibitors have demonstrated improved renal microvascular function in hypertension. These findings have demonstrated the important contributions that 20-HETE and EETs play in the regulation of renal microvascular function.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology & Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
37
|
Harder DR, Narayanan J, Gebremedhin D, Roman RJ. Transduction of physical force by the vascular wall Role of phospholipase C and cytochrome P450 metabolites of arachidonic acid. Trends Cardiovasc Med 2012; 5:7-14. [PMID: 21232232 DOI: 10.1016/1050-1738(94)00026-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The blood vessel wall responds actively to an elevation in transmural pressure. This pressure-induced myogenic response is thought to set the basal level of vascular tone upon which metabolic and neural influences operate in concert to regulate organ blood flow. The cellular mechanisms that mediate the vascular muscle response to mechanical deformation via a changing transmural pressure include membrane depolarization, activation of phospholipase C, and a rise in intracellular [Ca(2+)](i), which appear to be nonadapting-remaining active as long as the pressure stimulus is applied. This brief review addresses some of the cellular events mediating transduction of transmural pressure by the vessel wall. Two possible mechanisms that are responsible for the nonadapting nature of pressure-induced myogenic tone are also explored, namely, formation of a P450 metabolite of arachidonic acid, which acts to buffer activation of K(+) channels as intracellular Ca(2+) rises, and direct activation of Ca(2+) channels by diacylglycerol. Evidence is provided suggesting that activation of phospholipase C is responsible for both the release of the arachidonic acid substrate for P450 enzymes and for the formation of diacylglycerol via its action on membrane-bound phospholipids.
Collapse
Affiliation(s)
- D R Harder
- David R. Harder, Jayashree Narayanan, Debebe Gebremedhin, and Richard J. Roman are at the Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA; the Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
38
|
Kauffenstein G, Laher I, Matrougui K, Guérineau NC, Henrion D. Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 2012; 95:223-32. [PMID: 22637750 DOI: 10.1093/cvr/cvs152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blood flow autoregulation results from the ability of resistance arteries to reduce or increase their diameters in response to changes in intravascular pressure. The mechanism by which arteries maintain a constant blood flow to organs over a range of pressures relies on this myogenic response, which defines the intrinsic property of the smooth muscle to contract in response to stretch. The resistance to flow created by myogenic tone (MT) prevents tissue damage and allows the maintenance of a constant perfusion, despite fluctuations in arterial pressure. Interventions targeting MT may provide a more rational therapeutic approach in vascular disorders, such as hypertension, vasospasm, chronic heart failure, or diabetes. Despite its early description by Bayliss in 1902, the cellular and molecular mechanisms underlying MT remain poorly understood. We now appreciate that MT requires a complex mechanotransduction converting a physical stimulus (pressure) into a biological response (change in vessel diameter). Although smooth muscle cell depolarization and a rise in intracellular calcium concentration are recognized as cornerstones of the myogenic response, the role of wall strain-induced formation of vasoactive mediators is less well established. The vascular system expresses a large variety of Class 1 G protein-coupled receptors (GPCR) activated by an eclectic range of chemical entities, including peptides, lipids, nucleotides, and amines. These messengers can function in blood vessels as vasoconstrictors. This review focuses on locally generated GPCR agonists and their proposed contributions to MT. Their interplay with pivotal G(q-11) and G(12-13) protein signalling is also discussed.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM 1083, Université d'Angers, France
| | | | | | | | | |
Collapse
|
39
|
Tian T, Li J, Wang MY, Xie XF, Li QX. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2). Eur J Pharmacol 2012; 683:246-51. [PMID: 22421401 DOI: 10.1016/j.ejphar.2012.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression.
Collapse
Affiliation(s)
- Ting Tian
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | | | | | | | | |
Collapse
|
40
|
Ponnoth DS, Nayeem MA, Kunduri SS, Tilley SL, Zeldin DC, Ledent C, Mustafa SJ. Role of ω-hydroxylase in adenosine-mediated aortic response through MAP kinase using A2A-receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2012; 302:R400-8. [PMID: 22160543 PMCID: PMC3293507 DOI: 10.1152/ajpregu.00481.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/29/2011] [Indexed: 01/23/2023]
Abstract
Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was significantly higher in WT. CCPA (10(-6) M) increased the protein expression of PKC-α and phosphorylated-ERK1/2, while HET0016 significantly reduced the CCPA-induced increase in expression of these proteins. These data suggest that, in the absence of A(2A)AR, Cyp4a induces vasoconstriction through MAPK via upregulation of A(1)AR and PKC-α.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Dept. of Physiology and Pharmacology, School of Medicine, West Virginia Univ., Morgantown, WV 26506, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
|
44
|
Harder DR, Narayanan J, Gebremedhin D. Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol 2011; 300:H1557-65. [PMID: 21257913 PMCID: PMC3283039 DOI: 10.1152/ajpheart.01097.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/20/2011] [Indexed: 11/22/2022]
Abstract
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(²+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(²+) channel to increase intracellular Ca(²+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.
Collapse
Affiliation(s)
- David R Harder
- Medical College of Wisconsin, Clinical and Translational Science Inst., Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
45
|
Abstract
Arachidonic acid is metabolized by enzymes of the CYP4A and 4F families to 20-hydroxyeicosatetraeonic acid (20-HETE), which plays an important role in the regulation of renal function, vascular tone, and the long-term control of arterial pressure. In the vasculature, 20-HETE is a potent vasoconstrictor, and upregulation of the production of this compound contributes to the elevation in oxidative stress and endothelial dysfunction and the increase in peripheral vascular resistance associated with some forms of hypertension. In kidney, 20-HETE inhibits Na transport in the proximal tubule and thick ascending loop of Henle, and deficiencies in the renal formation of 20-HETE contributes to sodium retention and development of some salt-sensitive forms of hypertension. 20-HETE also has renoprotective actions and opposes the effects of transforming growth factor β to promote proteinuria and renal end organ damage in hypertension. Several new inhibitors of the synthesis of 20-HETE and 20-HETE agonists and antagonists have recently been developed. These compounds along with peroxisome proliferator-activated receptor-α agonists that induce the renal formation of 20-HETE seem to have promise as antihypertensive agents. This review summarizes the rationale for the development of drugs that target the 20-HETE pathway for the treatment of hypertension and associated cardiovascular complications.
Collapse
|
46
|
|
47
|
Konno Y, Kamino H, Moore R, Lih F, Tomer KB, Zeldin DC, Goldstein JA, Negishi M. The nuclear receptors constitutive active/androstane receptor and pregnane x receptor activate the Cyp2c55 gene in mouse liver. Drug Metab Dispos 2010; 38:1177-82. [PMID: 20371638 PMCID: PMC2908984 DOI: 10.1124/dmd.110.032334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/06/2010] [Indexed: 12/15/2022] Open
Abstract
Mouse CYP2C55 has been characterized as an enzyme that catalyzes synthesis of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid metabolite known to have important physiological functions such as regulation of renal vascular tone and ion transport. We have now found that CYP2C55 is induced by phenobarbital (PB) and pregnenolone 16alpha-carbonitrile (PCN) in both mouse kidney and liver. The nuclear xenobiotic receptors constitutive active/androstane receptor (CAR) and pregnane X receptor (PXR) regulate these drug inductions: CYP2C55 mRNA was increased 25-fold in PB-treated Car(+/+) but not in Car(-/-) mice and was induced in Pxr(+/+) but not Pxr(-/-) mice after PCN treatment. Cell-based promoter analysis and gel shift assays identified the DNA sequence (-1679)TGAACCCAGTTGAACT(-1664) as a DR4 motif that regulates CAR- and PXR-mediated transcription of the Cyp2c55 gene. Chronic PB treatment increased hepatic microsomal CYP2C55 protein and serum 19-HETE levels. These findings indicate that CAR and PXR may play a role in regulation of drug-induced synthesis of 19-HETE in the mouse.
Collapse
MESH Headings
- Animals
- Base Sequence
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P450 Family 2
- Gene Expression Regulation, Enzymologic/drug effects
- Hydroxyeicosatetraenoic Acids/blood
- Kidney/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Microsomes, Liver/metabolism
- Phenobarbital/pharmacology
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Random Allocation
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sequence Analysis, DNA
- Transcription Factors/genetics
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Yoshihiro Konno
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Association of common variants of CYP4A11 and CYP4F2 with stroke in the Han Chinese population. Pharmacogenet Genomics 2010; 20:187-94. [PMID: 20130494 DOI: 10.1097/fpc.0b013e328336eefe] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE 20-Hydroxyeicosatetraenoic acid has been shown to play an important role in cerebral vascular function. We hypothesized that polymorphisms in genes encoding 20-Hydroxyeicosatetraenoic acid synthesizing enzymes might confer susceptibility to stroke. METHODS AND RESULTS To test the hypothesis, haplotype tagging single nucleotide polymorphisms and potential functional polymorphisms of CYP4A11 and CYP4F2 genes were genotyped in 558 ischemic stroke patients, 221 hemorrhagic stroke patients and 557 controls. The association analyses were performed at both single nucleotide polymorphism and haplotype levels. We further verified our findings in an independent cohort of 551 ischemic stroke cases and 48 hemorrhagic stroke cases and 694 unaffected controls. We identified CYP4A11 C-296T and CYP4F2 V433M were associated with significantly increased risk of ischemic stroke (CT+TT vs. CC, adjusted odds ratio: 1.50, 95% confidence interval: 1.17-1.93, Pcombined=0.001, Pcorr=0.008; V/M+M/M vs. V/V, odds ratio: 1.38, 95% confidence interval: 1.15-1.65, Pcombined=5.6x10, Pcorr=0.005, respectively). Interestingly, the effects of CYP4F2 V433M on ischemic stroke in our study was only evident in male individuals. CONCLUSION Our results suggest that genetic variation in CYP4A11 and CYP4F2 alters susceptibility to stroke in the Han Chinese population.
Collapse
|
49
|
CYP4A11 polymorphism correlates with coronary endothelial dysfunction in patients with coronary artery disease—The ENCORE Trials. Atherosclerosis 2009; 207:476-9. [DOI: 10.1016/j.atherosclerosis.2009.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
|
50
|
Abraham NG, Cao J, Sacerdoti D, Li X, Drummond G. Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 2009; 297:F1137-52. [PMID: 19570878 PMCID: PMC2781329 DOI: 10.1152/ajprenal.90449.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 06/09/2009] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase (HO) plays a critical role in attenuating the production of reactive oxygen species through its ability to degrade heme in an enzymatic process that leads to the production of equimolar amounts of carbon monoxide and biliverdin/bilirubin and the release of free iron. The present review examines the beneficial role of HO-1 (inducible form of HO) that is achieved by increased expression of this enzyme in renal tissue. The influence of the HO system on renal physiology, obesity, vascular dysfunction, and blood pressure regulation is reviewed, and the clinical potential of increased levels of HO-1 protein, HO activity, and HO-derived end products of heme degradation is discussed relative to renal disease. The use of pharmacological and genetic approaches to investigate the role of the HO system in the kidney is key to the development of therapeutic approaches to prevent the adverse effects that accrue due to an impairment in renal function.
Collapse
Affiliation(s)
- Nader G Abraham
- New York Medical College, Department of Pharmacology, Valhalla, NY 10595, USA.
| | | | | | | | | |
Collapse
|