1
|
Hwej A, Al-Ferjani A, Alshuweishi Y, Naji A, Kennedy S, Salt IP. Lack of AMP-activated protein kinase-α1 reduces nitric oxide synthesis in thoracic aorta perivascular adipose tissue. Vascul Pharmacol 2024; 157:107437. [PMID: 39433170 DOI: 10.1016/j.vph.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) releases anti-contractile bioactive molecules including NO. PVAT anti-contractile activity is attenuated in mice lacking AMPKα1 (AMP-activated protein kinase-α1). As AMPK regulates endothelial NO synthase (eNOS) activity in cultured cells, NO synthesis was examined in PVAT from AMPKα1 knockout (KO) mice. METHODS AND RESULTS Endothelium-denuded thoracic or abdominal aortic rings were isolated from wild type (WT) and KO mice. NOS inhibition enhanced vasoconstriction in PVAT-intact thoracic aortic rings from mice of either genotype yet had no effect on abdominal rings as assessed by wire myography. Thoracic aorta PVAT exhibited increased NO production, NOS activity and levels of the brown adipose tissue marker uncoupling protein-1 (UCP1) compared to abdominal PVAT. In KO mice, NO production was significantly reduced in thoracic but not abdominal PVAT. Reduced NO production in KO thoracic PVAT was not due to altered levels or phosphorylation of eNOS but was associated with increased caveolin-1:eNOS association and caveolin-1 Tyr14 phosphorylation. A peptide that disrupts eNOS:caveolin-1 association increased NO synthesis and reduced vasoconstriction of PVAT-intact thoracic but not abdominal aortic rings. KO thoracic PVAT also exhibited reduced UCP1 levels. CONCLUSIONS Murine thoracic aorta PVAT exhibits higher NO synthesis and UCP1 levels than abdominal aortic PVAT. Downregulation of AMPK suppresses NO synthesis which may contribute to the reduced anticontractile activity and reduced brown adipose tissue phenotype of KO thoracic PVAT. The mechanism underlying the effect of AMPK downregulation likely results from increased caveolin-1:eNOS association associated with caveolin-1 Tyr14 phosphorylation.
Collapse
Affiliation(s)
- Abdmajid Hwej
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Pharmacy, University of El-Mergib, Al-Khoms, Libya
| | - Ali Al-Ferjani
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Yazeed Alshuweishi
- School of Molecular Biosciences, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Clinical Laboratory Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Abdullah Naji
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom; School of Pharmacy, Department of Pharmacology, Najran University, Najran, Saudi Arabia
| | - Simon Kennedy
- School of Cardiovascular and Metabolic Health, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ian P Salt
- School of Molecular Biosciences, College of Veterinary, Medical and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Kaddour N, Benyettou F, Moulai K, Mebarki A, Allal-Taouli K, Ghemrawi R, Whelan J, Merzouk H, Trabolsi A, Mokhtari-Soulimane NA. Effects of subcutaneous vs. oral nanoparticle-mediated insulin delivery on hemostasis disorders in type 1 diabetes: A rat model study. Heliyon 2024; 10:e30450. [PMID: 38711655 PMCID: PMC11070859 DOI: 10.1016/j.heliyon.2024.e30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
Complications associated with Type 1 diabetes (T1D) have complex origins that revolve around chronic hyperglycemia; these complications involve hemostasis disorders, coagulopathies, and vascular damage. Our study aims to develop innovative approaches to minimize these complications and to compare the outcomes of the new approach with those of traditional methods. To achieve our objective, we designed novel nanoparticles comprising covalent organic frameworks (nCOF) loaded with insulin, termed nCOF/Insulin, and compared it to subcutaneous insulin to elucidate the influence of insulin delivery methods on various parameters, including bleeding time, coagulation factors, platelet counts, cortisol plasma levels, lipid profiles, and oxidative stress parameters. Traditional subcutaneous insulin injections exacerbated hemostasis disorder and vascular injuries in streptozotocin (STZ)-induced diabetic rats through increasing plasma triglycerides and lipid peroxidation. Conversely, oral delivery of nCOF/Insulin ameliorated hemostatic disorders and restored the endothelial oxidant/antioxidant balance by reducing lipid peroxidation and enhancing the lipid profile. Our study pioneers the understanding of how STZ-induced diabetes disrupts bleeding time, induces a hypercoagulable state, and causes vascular damage through lipid peroxidation. Additionally, it provides the first evidence for the involvement of subcutaneous insulin treatment in exacerbating vascular and hemostasis disorders in type 1 diabetes (T1D). Introducing an innovative oral insulin delivery via the nCOF approach represents a potential paradigm shift in diabetes management and patient care and promises to improve treatment strategies for type 1 Diabetes.
Collapse
Affiliation(s)
- Nawel Kaddour
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe (SNVSTU) University of Tlemcen BP 119, Rocade 2 Mansourah, Tlemcen, 13000, Algeria
| | - Farah Benyettou
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Kawtar Moulai
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe (SNVSTU) University of Tlemcen BP 119, Rocade 2 Mansourah, Tlemcen, 13000, Algeria
| | - Abdelouahab Mebarki
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe (SNVSTU) University of Tlemcen BP 119, Rocade 2 Mansourah, Tlemcen, 13000, Algeria
| | | | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe (SNVSTU) University of Tlemcen BP 119, Rocade 2 Mansourah, Tlemcen, 13000, Algeria
| | - Ali Trabolsi
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nassima Amel Mokhtari-Soulimane
- Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe (SNVSTU) University of Tlemcen BP 119, Rocade 2 Mansourah, Tlemcen, 13000, Algeria
| |
Collapse
|
3
|
Kumar D, Panda SK, Jena GR, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Behera R. Alternations of Fertility Parameters by Graded Dose of Inorganic Arsenic in Adult Male White Pekin Ducks. Biol Trace Elem Res 2023; 201:5358-5367. [PMID: 36800154 DOI: 10.1007/s12011-023-03580-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023]
Abstract
A significant health issue, reproductive toxicity is mostly linked to exposure to various environmental heavy metals. A pervasive toxin that occurs naturally in the environment is arsenic (As). This research was done to determine the effects of various doses of inorganic As supplements on the reproductive organs of adult male white Pekin ducks. A total of 240 numbers of 14-days-old male white Pekin ducks were weighed and randomly assigned into 4 experimental groups with six replicates (10 ducklings in each replicate). The experimental groups were as follows: (T-1) basal diet along with normal drinking water (control group); (T-2 to T-4) basal diet along with As in the form of sodium-meta-arsenite at 7, 14, and 28 ppm of drinking water respectively. The results showed reduction in body weight and testicular weight, disruption of spermatogenesis, reduction in follicular-stimulating hormone (FSH), leutinizing hormone (LH), and testosterone levels and histopathological alterations as compared to control. Additionally, there was not only a significant decrease in various antioxidant parameters in testis tissue, like catalase (CAT), reduced glutathione (GSH), super oxide dismutase (SOD), and ferric-reducing antioxidant power (FRAP), but also a significant increase in oxidative parameters of testis like lipid peroxidation (LPO), myloperoxidase (MPO), nitric oxide (NO), and super oxide anion radical (O2-) in As-treated groups, in comparison with T-1. A significantly higher level of As content in testis was observed in all the 3 As-treated groups, with highest level recorded in T-4 birds. Besides that, there was upregulation of nuclear factor kappa B (NF-κB), heat shock proteins (Hsps) and pro-inflammatory cytokines like interlukin (IL) series, i.e., IL-2, IL-6, IL-18, IL-1β and tumor necrosis factor- α (TNF-α) levels, whereas anti-inflammatory parameters like IL-4 and IL-10 levels showed downregulation in testis of As-treated groups. Together, these findings provide deeper understandings of the roles played by oxidative stress, NF-κB and Hsps in the progression of testicular injury, which may help to explain how the As induced male sterility, in ducks, due to exposure.
Collapse
Affiliation(s)
- Dhirendra Kumar
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India.
| | - Santosh Kumar Panda
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Geeta Rani Jena
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Kamdev Sethy
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India
| | - Surya Kanta Mishra
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India
| | - Bijaya Kumar Swain
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India
| | - Prafulla Kumar Naik
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India
| | - Chandra Kant Beura
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India
| | - Rajalaxmi Behera
- ICAR-Directorate of Poultry Research Regional Station Jokalundi, Bhubaneswar, Odisha, 751003, India
| |
Collapse
|
4
|
Da Silva EG, Finamor IA, Bressan CA, Schoenau W, Vencato MDS, Pavanato MA, Cargnelutti JF, Da Costa ST, Antoniazzi AQ, Baldisserotto B. Dietary Supplementation with R-(+)-Limonene Improves Growth, Metabolism, Stress, and Antioxidant Responses of Silver Catfish Uninfected and Infected with Aeromonas hydrophila. Animals (Basel) 2023; 13:3307. [PMID: 37958062 PMCID: PMC10650795 DOI: 10.3390/ani13213307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
R-(+)-limonene is a monoterpene from plants of the genus Citrus with diverse biological properties. This research evaluated the effects of dietary supplementation with R-(+)-limonene on growth, metabolic parameters in plasma and liver, and the antioxidant and stress responses in silver catfish, Rhamdia quelen, challenged or not with Aeromonas hydrophila. Fish were fed for 67 days with different doses of R-(+)-limonene in the diet (control 0.0, L0.5, L1.0, and L2.0 mL/kg of diet). On the 60th day, a challenge with A. hydrophila was performed. R-(+)-limonene in the diet potentiated the productive performance of the fish. The metabolic and antioxidant responses indicate that R-(+)-limonene did not harm the health of the animals and made them more resistant to the bacterial challenge. Histological findings showed the hepatoprotective effect of dietary R-(+)-limonene against A. hydrophila. Igf1 mRNA levels were upregulated in the liver of fish fed with an L2.0 diet but downregulated with bacterial challenge. The expression levels of crh mRNA were higher in the brains of fish fed with the L2.0 diet. However, the L2.0 diet downregulated crh and hspa12a mRNA expression in the brains of infected fish. In conclusion, the results indicated that R-(+)-limonene can be considered a good dietary supplement for silver catfish.
Collapse
Affiliation(s)
- Elisia Gomes Da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Isabela Andres Finamor
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Caroline Azzolin Bressan
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - William Schoenau
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Marina De Souza Vencato
- Department of Morphology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.D.S.V.); (S.T.D.C.)
| | - Maria Amália Pavanato
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Juliana Felipetto Cargnelutti
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Sílvio Teixeira Da Costa
- Department of Morphology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.D.S.V.); (S.T.D.C.)
| | - Alfredo Quites Antoniazzi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil; (E.G.D.S.); (I.A.F.); (C.A.B.); (W.S.); (M.A.P.); (A.Q.A.)
| |
Collapse
|
5
|
Panda SK, Kumar D, Jena GR, Patra RC, Panda SK, Sethy K, Mishra SK, Swain BK, Naik PK, Beura CK, Panda B. Hepatorenal Toxicity of Inorganic Arsenic in White Pekin Ducks and Its Amelioration by Using Ginger. Biol Trace Elem Res 2023; 201:2471-2490. [PMID: 35723853 DOI: 10.1007/s12011-022-03317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
The toxic metalloid arsenic is known to cause liver and kidney injury in many humans and animals. The goal of this paper was to exemplify the antagonism of ginger against arsenic (As)-induced hepato-renal toxicity. In addition, the pathways Nrf2/Keap1 and NF/κB were studied to reveal the molecular mechanism of the stress. One hundred twenty 7-day-old White Pekin ducks were randomly allocated into five groups, having 24 birds in each. Each group contained three replicates having 8 birds in each replicate and maintained for 90 days. The groups were as follows: T-1 [control-basal diet with normal water], T-2 [T1 + As at 28 ppm/L of water], T-3 [T2 + ginger powder at 100 mg/kg feed], T-4 [T2 + ginger powder at 300 mg/kg feed], and T-5 [T2 + ginger powder at 1 g/kg feed]. It was observed that there was a significant increase in oxidative parameters whereas a significant decrease in antioxidant parameters in hepato-renal tissues in T-2. The exposure to As not only decreased the mRNA expression of antioxidant parameters like Nrf2, SOD-1, CAT, GPX, and HO-1and anti-inflammatory markers like IL-4 and IL-10 but also increased the m-RNA expression of NF-κB, Keap-1 and pro-inflammatory markers like IL-2, Il-6, IL-18, IL-1β, and TNF-α. There was also an accumulation of As in hepatic and renal tissue, confirmed by residual analysis of these tissues. By correlating the above parameters, As at 28 ppm showed significant toxic effects, and ginger powder at 1 g/kg feed effectively counteracted the toxic effects of As in ducks.
Collapse
Affiliation(s)
- Santosh Kumar Panda
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Dhirendra Kumar
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Geeta Rani Jena
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Ramesh Chandra Patra
- Department of Veterinary Clinical Medicine, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Susen Kumar Panda
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Kamdev Sethy
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - Surya Kant Mishra
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bijaya Kumar Swain
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Prafulla Kumar Naik
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Chandra Kant Beura
- Regional centre ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, India
| | - Bhagyalaxmi Panda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, India
| |
Collapse
|
6
|
Miao SH, Gao SQ, Li HX, Zhuang YS, Wang X, Li T, Gao CC, Han YL, Qiu JY, Zhou ML. Increased NOX2 expression in astrocytes leads to eNOS uncoupling through dihydrofolate reductase in endothelial cells after subarachnoid hemorrhage. Front Mol Neurosci 2023; 16:1121944. [PMID: 37063365 PMCID: PMC10097896 DOI: 10.3389/fnmol.2023.1121944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionEndothelial nitric oxide synthase (eNOS) uncoupling plays a significant role in acute vasoconstriction during early brain injury (EBI) after subarachnoid hemorrhage (SAH). Astrocytes in the neurovascular unit extend their foot processes around endothelia. In our study, we tested the hypothesis that increased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression in astrocytes after SAH leads to eNOS uncoupling.MethodsWe utilized laser speckle contrast imaging for monitoring cortical blood flow changes in mice, nitric oxide (NO) kits to measure the level of NO, and a co-culture system to study the effect of astrocytes on endothelial cells. Moreover, the protein levels were assessed by Western blot and immunofluorescence staining. We used CCK-8 to measure the viability of astrocytes and endothelial cells, and we used the H2O2 kit to measure the H2O2 released from astrocytes. We used GSK2795039 as an inhibitor of NOX2, whereas lentivirus and adeno-associated virus were used for dihydrofolate reductase (DHFR) knockdown in vivo and in vitro.ResultsThe expression of NOX2 and the release of H2O2 in astrocytes are increased, which was accompanied by a decrease in endothelial DHFR 12 h after SAH. Moreover, the eNOS monomer/dimer ratio increased, leading to a decrease in NO and acute cerebral ischemia. All of the above were significantly alleviated after the administration of GSK2795039. However, after knocking down DHFR both in vivo and in vitro, the protective effect of GSK2795039 was greatly reversed.DiscussionThe increased level of NOX2 in astrocytes contributes to decreased DHFR in endothelial cells, thus aggravating eNOS uncoupling, which is an essential mechanism underlying acute vasoconstriction after SAH.
Collapse
Affiliation(s)
- Shu-Hao Miao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Sheng-Qing Gao
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hui-Xin Li
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Song Zhuang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xue Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Li
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yan-Ling Han
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jia-Yin Qiu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng-Liang Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Meng-Liang Zhou,
| |
Collapse
|
7
|
Jo C, Kim B, Lee K, Choi HY. Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010074. [PMID: 36671646 PMCID: PMC9854816 DOI: 10.3390/bioengineering10010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Prunus mume Siebold et Zuccarini is mainly consumed as processed fruits in beverages, vinegar, alcohol, or fruit syrup; studies have reported various functional effects. Many pharmacological and functional studies exist on fruit extracts or processed foods using fruits, however, efficacy studies on various parts of P. mume, including the bark, branches, flowers, and leaves, have not been sufficiently conducted. A previous study revealed that a 70% ethanol extract of P. mume branches induced vascular endothelium-dependent vasorelaxant effects in rat thoracic aortic rings. Therefore, we hypothesized that various parts (the fruits, flowers, leaves, and bark) might have vasorelaxant effects. We evaluated the effects of P. mume extracts on the vascular relaxation of isolated rat thoracic aorta and hypotensive effects in spontaneous hypertensive rats (SHR). A 70% ethanol extract of P. mume bark (PBaE) was the most effective, thus, we investigated its vasorelaxant mechanisms and hypotensive effects. PBaE lowered the blood pressure in SHR and induced the vascular endothelium-dependent relaxation of isolated rat aortic rings via the NO/sGC/cGMP and the PGI2 pathways in the vascular smooth muscle. Potassium channels, such as KCa, KATP, KV, and Kir, were partially associated with a PBaE-induced vasorelaxation. Therefore, PBaE might help prevent and treat hypertension.
Collapse
Affiliation(s)
- Cheolmin Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bumjung Kim
- Department of Oriental Health Management, Kyung Hee Cyber University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: ; Tel.: +82-2-961-9372
| |
Collapse
|
8
|
Nithyashree N, Prakash N, Waghe P, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Sunilchandra U, Anjan Kumar KR, Manjunatha SS, Muralidhar Y, Shivaprasad GR. Nanocurcumin Restores Arsenic-Induced Disturbances in Neuropharmacological Activities in Wistar Rats. Toxicol Int 2022. [DOI: 10.18311/ti/2022/v29i3/30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study was carried out to examine the ameliorative potential of nanocurcumin against arsenic induced (sub-chronic) alterations in central nervous system in male Wistar rats. Nanocurcumin was synthesised and the hydrodynamic diameter, zeta potential and particle size were~76.60 nm, (-) 30 mV and 95nm, respectively. Experimental rats sub-chronically exposed to sodium (meta) arsenite (As; 10 mg.kg-1; 70 days; p.o) induced significant (p<0.05) reduction in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and favoured free radical generation and induced lipid peroxidation in brain tissue. The exposure resulted in significant (p<0.05) decrease in voluntary- and involuntary motor activities and enhanced anxiety levels. However, experimental rats receiving nanocurcumin (15 mg.kg-1; p.o) showed significant (p<0.05) recovery in enzymatic - and non-enzymatic antioxidant defence system and restoration of redox balance and overcome arsenic induced depression in motor activities and elevated anxiety levels. Further, Arsenic induced elevation in pro-inflammatory cytokines, cyclooxygenase-2 activity and prostaglandin-E2 in brain and angiotensin-II levels (plasma) was significantly (p<0.05) ameliorated by nanocurcumin. Additionally, quantitative real -time polymerase chain reaction revealed a fivefold decrease in Nox2 expression in brain following nanocurcumin administration. Thus, the study concludes that nanocurcumin can serve as a potential therapeutic candidate to counter arsenic induced redox imbalance and neuropharmacological disturbances and there exists a vast scope to exploit its utility after appropriate clinical modelling.
Collapse
|
9
|
Amer A, Fabio F, Valoti M. Perivascular Adipose Tissue Modulates the Effects of Flavonoids on Rat Aorta Rings: Role of Superoxide Anion and β3 Receptors. Pharmacol Res 2022; 180:106231. [DOI: 10.1016/j.phrs.2022.106231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 12/23/2022]
|
10
|
Gowda BR, Prakash N, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Rao S, Waghe P, Kumar KRA, Shivaprasad GR, Muralidhar Y. Effect of Telmisartan on Arsenic-Induced (Sub-chronic) Perturbations in Redox Homeostasis, Pro-inflammatory Cascade and Aortic Dysfunction in Wistar Rats. Biol Trace Elem Res 2022; 200:1776-1790. [PMID: 34339004 DOI: 10.1007/s12011-021-02804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
An experimental study was conducted in male Wistar rats to explore the antioxidant potential of telmisartan (an AT1 receptor blocker) to overcome arsenic ('As')-induced perturbations in redox homeostasis pro-inflammatory cytokines, prostaglandin-E2 levels and aortic dysfunction in Wistar rats. Wistar rats were randomly divided into four groups of six each. Group-I served as untreated control, while group-II received sodium (meta) arsenite (NaAsO2) (10 mg/kg b.wt. p.o) for a period of 60 days. Experimental rats in group-III received treatment similar to group-II, but in addition received telmisartan (with 1% aqueous solution of Tween 80) @ 10 mg/kg b.wt. (p.o) for a similar duration, while rats in group-IV received telmisartan alone. Arsenic exposure resulted in significant (p < 0.05) elevation in the levels of superoxide anion ([Formula: see text]) radicals (control: 768.20 ± 126.77 vs group-II: 1232.75 ± 97.85 pmol of NBT reduced/min/mg protein). Telmisartan administration showed significant (p < 0.05) reduction in [Formula: see text] generation (815.34 ± 43.41 pmol of NBT reduced/min/mg protein). Sub-chronic exposure to 'As' significantly (p < 0.05) decreased the activities of SOD, CAT, GPx and GR activity and GSH levels in the aorta, thus induced lipid peroxidation (LPO) measured as measured in terms of thiobarbituric acid reactive substances (TBARS) called as malondialdehyde (MDA). However, the administration of telmisartan effectively countered the LPO (24.03 ± 1.18 nmol of MDA/g) on account of restoring the levels of aforesaid antioxidant defense system. Telmisartan administration effectively attenuated the 'As'-induced surge in pro-inflammatory cytokines (viz., IL-1β, IL-6 and TNF-α) levels, as well as countered the activity of cyclooxygenase (COX2) as indicated by a significant (p < 0.05) decrease in PGE2 level in the aorta. In addition to it, there was a significant (p < 0.05) decrease in plasma angiotensin II (Ang-II) levels in experimental rats receiving telmisartan. Quantitative RT-PCR studies revealed that sub-chronic exposure to 'As' upregulated the Nox2 mRNA expression, but there was a 1.2-fold reduction in expression level upon co-administration of telmisartan. Histopathological examination revealed marked recovery from 'As'-induced disruption of tunica adventitia and loss of connective tissue in experimental rats receiving telmisartan. The study concludes that telmisartan can overcome aortic dysfunction induced by sub-chronic exposure to arsenic through drinking water in experimental rats through restoration of redox balance, attenuation of pro-inflammatory cytokines and mediators and downregulation of Nox2 mRNA expression.
Collapse
Affiliation(s)
- B Rudresh Gowda
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - N Prakash
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Vinobanagar, Shivamogga, Karnataka, 577 204, India.
| | - C R Santhosh
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - M L Sathyanarayana
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Suguna Rao
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Nandinagar, Bidar, Karnataka, 585 226, India
| | - K R Anjan Kumar
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G R Shivaprasad
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Y Muralidhar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| |
Collapse
|
11
|
Kant V, Sharma M, Jangir BL, Kumar V. Acceleration of wound healing by quercetin in diabetic rats requires mitigation of oxidative stress and stimulation of the proliferative phase. Biotech Histochem 2022; 97:461-472. [PMID: 35105256 DOI: 10.1080/10520295.2022.2032829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increased oxidative stress in diabetic wound areas impairs wound healing. Quercetin exhibits significant antioxidant properties. We investigated the effects of topical quercetin on antioxidant status in diabetic wound areas and its effect on wound healing in rats. A 2 cm2 cutaneous wound was produced on the back of streptozotocin induced diabetic and normal rats. Rats were divided into three groups of 20: normal healthy control group, diabetic group and quercetin treated diabetic group. The control and diabetic groups were treated topically with ointment base once daily for 21 days. The quercetin treated diabetic rats were treated similarly with ointment containing quercetin. The quercetin treated diabetic group exhibited increased levels of catalase, glutathione peroxidase, superoxide dismutase and total thiols compared to the diabetic group. Nitrite levels in the diabetic group were decreased significantly on day 3 compared to the healthy control group. Malondialdehyde levels were decreased in the quercetin treated diabetic group compared to the diabetic group. The expression of proliferating cell nuclear antigen) (PCNA) was greater in the quercetin treated diabetic group on day 7 compared to healthy control and diabetic groups. Formation of granulation tissue and the quality of healed tissue was improved in the quercetin treated diabetic group compared to the diabetic group. Quercetin improves antioxidant status in wounds of diabetic rats and stimulates the proliferation phase, which accelerates wound healing.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Maneesh Sharma
- Department of Veterinary Clinical Complex, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science, Hisar, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
12
|
Suresh S, Sankar P, Kalaivanan R, Telang AG. Ameliorative effect of nanocurcumin on Staphylococcus aureus-induced mouse mastitis by oxidative stress suppression. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2026384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subramaniyam Suresh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Palanisamy Sankar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Ramya Kalaivanan
- Department of Veterinary Microbiology, Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
| | - Avinash Gopal Telang
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
13
|
Kaur T, Singh D, Pathak D, Singh AP, Singh B. Umbelliferone attenuates glycerol-induced myoglobinuric acute kidney injury through peroxisome proliferator-activated receptor-γ agonism in rats. J Biochem Mol Toxicol 2021; 35:e22892. [PMID: 34409680 DOI: 10.1002/jbt.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 11/07/2022]
Abstract
Rhabdomyolysis is a clinical syndrome caused by damage to skeletal muscle, which consequently releases breakdown products into circulation and causes acute kidney injury (AKI) in humans. Intramuscular injection of glycerol mimics rhabdomyolysis and associated AKI. In this study, we explored the role of umbelliferone against glycerol-induced AKI in rats. Kidney function was assessed by measuring serum creatinine, urea, electrolytes, and microproteinuria. Renal oxidative stress was quantified using thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione assay. Renal histological changes were determined using periodic acid Schiff and hematoxylin-eosin staining, and immunohistology of apoptotic markers (Bax, Bcl-2) was done. Serum creatine kinase was quantified to assess glycerol-induced muscle damage. Umbelliferone attenuated glycerol-induced change in biochemical parameters, oxidative stress, histological alterations, and renal apoptosis. Pretreatment with bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, attenuated umbelliferone-mediated protection. It is concluded that umbelliferone attenuates glycerol-induced AKI possibly through PPAR-γ agonism in rats.
Collapse
Affiliation(s)
- Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Amrit P Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
14
|
Santos M, da Silva T, da Silva F, Siebert C, Kroth A, Silveira E, Wyse A, Partata W. Effects of vitamin D administration on nociception and spinal cord pro-oxidant and antioxidant markers in a rat model of neuropathic pain. Braz J Med Biol Res 2021; 54:e11207. [PMID: 34378677 PMCID: PMC8365876 DOI: 10.1590/1414-431x2021e11207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) are involved in neuropathic pain, a complicated condition after nerve tissue lesion. Vitamin D appears to improve symptoms of pain and exhibits antioxidant properties. We investigated the effects of oral administration of vitamin D3, the active form of vitamin D, on nociception, the sciatic functional index (SFI), and spinal cord pro-oxidant and antioxidant markers in rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. Vitamin D3 (500 IU/kg per day) attenuated the CCI-induced decrease in mechanical withdrawal threshold and thermal withdrawal latency (indicators of antinociception) and SFI. The vitamin prevented increased lipid hydroperoxide levels in injured sciatic nerve without change to total antioxidant capacity (TAC). Vitamin D3 prevented increased lipid hydroperoxide, superoxide anion generation (SAG), and hydrogen peroxide (H2O2) levels in the spinal cord, which were found in rats without treatment at 7 and 28 days post-CCI. A significant negative correlation was found between mechanical threshold and SAG and between mechanical threshold and H2O2 at day 7. Vitamin D3 also prevented decreased spinal cord total thiols content. There was an increase in TAC in the spinal cord of vitamin-treated CCI rats, compared to CCI rats without treatment only at 28 days. No significant changes were found in body weight and blood parameters of hepatic and renal function. These findings demonstrated, for first time, that vitamin D modulated pro-oxidant and antioxidant markers in the spinal cord. Since antinociception occurred in parallel with oxidative changes in the spinal cord, the oxidative changes may have contributed to vitamin D-induced antinociception.
Collapse
Affiliation(s)
- M.C.Q. Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T.C.B. da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - F.B.O. da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C. Siebert
- Departamento de Bioquimica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A. Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brasil
| | - E.M.S. Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.T.S. Wyse
- Departamento de Bioquimica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W.A. Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
15
|
Sharma N, Khurana N, Muthuraman A, Utreja P. Pharmacological evaluation of vanillic acid in rotenone-induced Parkinson's disease rat model. Eur J Pharmacol 2021; 903:174112. [PMID: 33901458 DOI: 10.1016/j.ejphar.2021.174112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the anti-Parkinson's effect of vanillic acid (VA) (12 mg/kg, 25 mg/kg, 50 mg/kg p.o.) against rotenone (2 mg/kg s.c.) induced Parkinson's disease (PD) in rats. The continuous administration of rotenone for 35 days resulted in rigidity in muscles, catalepsy, and decrease in locomotor activity, body weight, and rearing behaviour along with the generation of oxidative stress in the brain (rise in the TBARS, and SAG level and reduced CAT, and GSH levels). Co-treatment of VA and levodopa-carbidopa (100 mg/kg + 25 mg/kg p.o.) lead to a significant (P < 0.001) reduction in the muscle rigidity and catalepsy along with a significant (P < 0.001) increase in body weight, rearing behaviour, locomotion and muscle activity as compared to the rotenone-treated group in the dose dependent manner, showing maximum effect at the 50 mg/kg. It also showed reversal of levels of oxidative stress parameters thus, reducing the neuronal oxidative stress. The level of DA was also estimated which showed an increase in the level of DA in the VA plus standard drug treated animals as compared to rotenone treated group. Histopathological evaluation showed a high number of eosinophilic lesions in the rotenone group which were found to be very less in the VA co-treated group. The study thus proved that co-treatment of VA and levodopa-carbidopa, significantly protected the brain from neuronal damage due to oxidative stress and attenuated the motor defects indicating the possible therapeutic potential of VA as a neuroprotective in PD.
Collapse
Affiliation(s)
- Neha Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144 411, India; Akal College of Pharmacy and Technical Education, Gursagar Mastuana Sahib, Sangrur, Punjab, 148 001, India; Research Scholar, I.K. Gujral Punjab Technical University, Kapurthala, Punjab, 144 603, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144 411, India
| | - Arunachalam Muthuraman
- Akal College of Pharmacy and Technical Education, Gursagar Mastuana Sahib, Sangrur, Punjab, 148 001, India; Asian Institute of Medicine, Science and Technology, Malaysia
| | - Puneet Utreja
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Ludhiana, Punjab, 142 021, India.
| |
Collapse
|
16
|
da Silva FBO, Santos MDCQ, Borella da Silva TC, Facchini D, Kolberg A, Barros RR, Silveira EMS, Kroth A, Duarte FCK, Vassoler JM, Kolberg C, Partata WA. Spine adjusting instrument (Impulse®) attenuates nociception and modulates oxidative stress markers in the spinal cord and sciatic nerve of a rat model of neuropathic pain. PAIN MEDICINE 2021; 23:761-773. [PMID: 33993301 DOI: 10.1093/pm/pnab167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Oxidative stress plays an important role in neuropathic pain. Spinal manipulative therapy (SMT) can exert beneficial effects in pain outcomes in humans and animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cord and sciatic nerve of rats with neuropathic pain (NP). METHODS NP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures) and CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, 3 times/week, for 2 weeks. Mechanical threshold, latency to paw withdrawal to thermal stimulus and oxidative stress biomarkers in spinal cord and sciatic nerve were the main outcomes evaluated. RESULTS ISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cord and sciatic nerve of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord. CONCLUSIONS Our findings suggest reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP non-pharmacologically.
Collapse
Affiliation(s)
- Francielle B O da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Maria do Carmo Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Thaisla Cristiane Borella da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | | | - Angela Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Rodrigo R Barros
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Elza M S Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Adarly Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, Santa Catarina
| | - Felipe C K Duarte
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Ontario, Canada
| | - Jakson M Vassoler
- Departamento de Engenharia Mecânica, Faculdade de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Carolina Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| | - Wania A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande, do Sul
| |
Collapse
|
17
|
Sharma A, Kaur R, Kaur J, Garg S, Bhatti R, Kaur A. An endophytic Schizophyllum commune Fr. exhibits in-vitro and in-vivo antidiabetic activity in streptozotocin induced diabetic rats. AMB Express 2021; 11:58. [PMID: 33881650 PMCID: PMC8060376 DOI: 10.1186/s13568-021-01219-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/09/2021] [Indexed: 03/06/2023] Open
Abstract
The present study aimed at isolation of endophytic basidiomycetous fungi and evaluation of their in-vitro and in-vivo antidiabetic potential. Preliminary screening for in-vitro activity was carried out using α-glucosidase inhibition assay. An endophytic isolate Sch1 (isolated from Aloe vera), identified to be Schizophyllum commune Fr. on molecular basis, exhibiting more than 90% α-glucosidase inhibitiory activity was selected for further studies. Detailed in-vivo investigations for antidiabetic potential of ethyl acetate extract of S. commune (Sch1), at two different doses, were carried out in streptozotocin induced diabetic Wistar rats. Treatment of diabetic rats with S. commune extract caused significant decrease in blood glucose level and increase in body weight after 14 days experimental period. It significantly restored renal parameters including creatinine, blood urea nitrogen, fractional excretion of sodium, and potassium level in diabetic rats. Improvement in lipid profile and level of antioxidant parameters viz. reduced glutathione, thiobarbituric acid reactive species, and superoxide anion generation was also observed after treatment. Liver enzymes (serum glutamic pyruvic transaminase, serum glutamic-oxaloacetic transaminases, and alkaline phosphatase) homeostasis was found to be markedly improved in diabetic rats administered with S. commune extract. The effects were more pronounced at higher concentration and comparable to acarbose which was used as positive control. Phytochemical analysis revealed the presence of phenolics and terpenoids in the ethyl acetate extract. This is the first report highlighting the therapeutic potential of an endophytic S. commune in the management of diabetes.
Collapse
|
18
|
Kroth A, Santos MDCQ, Borella da Silva TC, Santos Silveira EM, Partata WA. Aqueous leaf extract from Luehea divaricata Mart. Modulates oxidative stress markers in the spinal cord of rats with neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113674. [PMID: 33301911 DOI: 10.1016/j.jep.2020.113674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reactive oxygen species (ROS) play an important role in neuropathic pain (i.e., pain caused by lesion or disease of the somatosensory system). We showed previously that the aqueous extract prepared from Luehea divaricata leaves, a plant explored by native ethnic groups of Brazil to treat different pathologic conditions, exhibits good antioxidant activity and induces analgesia in rats with neuropathic pain (J Ethnopharmacol, 2020; 256:112761. doi: 10.1016/j.jep.2020.112761). The effect was comparable to that of gabapentin, a drug recommended as first-line treatment for neuropathic pain. However, increasing evidence has indicated the need to accurately determine the oxidative stress level of an individual before prescribing supplemental antioxidants. AIM OF THE STUDY This study assessed the effects of the oral administration of aqueous extract from leaves of L. divaricata on the sciatic functional index (SFI) and spinal-cord pro-oxidant and antioxidant markers of rats with neuropathic pain. MATERIALS AND METHODS Placement of four loose chromic thread ligatures around the sciatic nerve produced chronic constriction injury (CCI) of the sciatic nerve, a commonly employed animal model to study neuropathic pain. Aqueous extract from leaves of L. divaricata (100, 300, 500 and 1000 mg/kg), gabapentin (50 mg/kg) and aqueous extract (500 mg/kg) + gabapentin (30 mg/kg) were administrated per gavage daily for 10 or 35 days post-CCI. Antinociception was assessed using the von Frey test while SFI showed functional recovery post-nerve lesion throughout the experimental period. At days 10 and 35 post-surgery, the lumbosacral spinal cord and a segment of the injured sciatic nerve were dissected out and used to determine lipid hydroperoxide levels and total antioxidant capacity (TAC). The spinal cord was also used to determine superoxide anion generation (SAG), hydrogen peroxide (H2O2) levels and total thiol content. RESULTS As expected, the extract, gabapentin and extract + gabapentin induced antinociception in CCI rats. While no significant functional recovery was found at 10 days post-CCI, a significant recovery was found in SFI of extract-treated CCI rats at 21 and 35 days post-CCI. A significant functional recovery was found already at day 10 post-CCI in gabapentin and gabapentin + extract-treated CCI rats. The extract treatment prevented increases in lipid hydroperoxides levels and TAC in injured sciatic nerve, which were found in this tissue of vehicle-treated rats at 10 days post-CCI. Extract also prevented an increase in SAG, H2O2 and lipid hydroperoxides levels in the spinal cord, which were elevated in this tissue of vehicle-treated rats at 10 and 35 days post-CCI. Extract also prevented a decrease in total thiol content and an increase in TAC in the spinal cord of CCI rats in these same time periods. CONCLUSIONS Aqueous extract from L. divaricata leaves was demonstrated, for the first time, to improve SFI and modulate oxidative stress markers in injured sciatic nerve and spinal cord of CCI rats. Thus, the antinociceptive effect of the extract involves modulation of oxidative stress markers in injured sciatic nerve and spinal cord.
Collapse
Affiliation(s)
- Adarly Kroth
- Área Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina, Rua Getúlio Vargas, 2125, Bairro Flor da Serra, CEP 89600-000, Joaçaba, SC, Brazil
| | - Maria do Carmo Quevedo Santos
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Thaisla Cristiane Borella da Silva
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Elza Maria Santos Silveira
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Wania Aparecida Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Bairro Farroupilha, CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Jain V, Khusnud A, Tiwari J, Mishra M, Mishra PK. Biogenic proceedings and characterization of copper-gold nanoalloy: Evaluation of their innate antimicrobial and catalytic activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1783313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vijaylakshmi Jain
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Azima Khusnud
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Jaya Tiwari
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - Meenakshi Mishra
- School of Life and Allied Sciences, ITM University Atal Nagar, Raipur, India
| | - Pankaj Kishor Mishra
- Medical Biotechnology, Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| |
Collapse
|
20
|
Londero ÉP, Bressan CA, Pês TS, Saccol EMH, Baldisserotto B, Finamor IA, Pavanato MA. Rutin-added diet protects silver catfish liver against oxytetracycline-induced oxidative stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108848. [PMID: 32777463 DOI: 10.1016/j.cbpc.2020.108848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
It is unknown whether the flavonoid rutin can protect the silver catfish liver in response to exposure to a known stressor, such as the prophylactic usage of the antimicrobial agent oxytetracycline. Thus, the current study aimed to assess the effect of rutin incorporation into the silver catfish diet formulation on oxytetracycline-induced liver oxidative stress and apoptosis. Fish were split into four groups as follows: control, rutin (1.5 g kg diet-1), oxytetracycline (0.1 g kg diet-1) and rutin+oxytetracycline (1.5 g kg diet-1 and 0.1 g kg diet-1, respectively). After two weeks of feeding with the different diets (standard, rutin-, oxytetracycline and rutin+oxytetracycline-added diets), fish were euthanized to collect the liver. Although the rutin-added diet was unable to recover glutathione peroxidase activity, ascorbic acid and reduced glutathione (GSH) levels, which were depleted due to oxytetracycline consumption, it markedly diminished the oxidized glutathione (GSSG) content, thus decreasing the GSSG to GSH ratio, an important index of oxidative stress. It also increased glutathione reductase and markedly augmented glucose-6-phosphate dehydrogenase activities, which were declined after oxytetracycline ingestion. Furthermore, the rutin-added diet reestablished superoxide dismutase and catalase activities and reduced lipid peroxidation, nitric oxide and superoxide anion levels as well, all changes resulting from oxytetracycline consumption. Finally, it also prevented oxytetracycline-induced apoptosis through increasing heat shock protein 70 and markedly decreasing high mobility group box 1 and, consequently, reducing cleaved caspase-3 protein levels. Therefore, in conclusion, the incorporation of this flavonoid to the silver catfish diet protected the liver against oxytetracycline-induced liver oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Érika P Londero
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil
| | - Caroline A Bressan
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil
| | - Tanise S Pês
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil
| | - Etiane M H Saccol
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil
| | | | - Isabela A Finamor
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil.
| | - Maria A Pavanato
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Brazil.
| |
Collapse
|
21
|
Kant V, Kumar M, Jangir BL, Kumar V. Temporal Effects of Different Vehicles on Wound Healing Potentials of Quercetin: Biochemical, Molecular, and Histopathological Approaches. INT J LOW EXTR WOUND 2020; 21:588-600. [PMID: 33305630 DOI: 10.1177/1534734620977582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of novel drugs or formulations to accelerate the wound healing process is the need of current era. Quercetin (Q), a bioflavonoid, at 0.3% concentration has showed some wound healing potential in our preliminary studies. The present study was aimed to explore the wound healing potential of 0.3% quercetin formulated in 3 different vehicles, that is, dimethyl sulfoxide (DMSO; 10%), ointment base, and corn oil. Ninety experimentally wounded rats were grouped in 6 groups. The 0.3% quercetin mixed with DMSO, ointment base, and corn oil was topically applied once daily for 21 days on the wounds of groups 2, 4, and 6, respectively. DMSO, ointment base, and corn oil alone was applied similarly in groups 1, 3, and 5, respectively. Gross evaluation and wound contraction results revealed accelerated wound closure in all quercetin-treated groups. The mRNA expressions of vascular endothelial growth factor, transforming growth factor-β1, and interluekin-10 were markedly upregulated in healing tissues of quercetin-treated groups. Tumor necrosis factor-α mRNA expression and protein levels were lowered by quercetin treatment. Quercetin-treated groups also showed increased activities of SOD (superoxide dismutase) and catalase, and levels of total thiols in wound tissues on day 7. Levels of superoxide anion radicals and malondialdehyde were markedly lower in quercetin-treated groups. Histologically, wound sections of quercetin-treated groups showed early dominance of fibroblasts, increased blood vessels, marked collagen deposition, and regenerated epithelial layer. The significant effects were more pronounced in ointment + Q group among all the quercetin-treated groups. In conclusion, 0.3% quercetin mixed in ointment base produced the fastest and better wound healing in rats.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Manish Kumar
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| |
Collapse
|
22
|
Kaur J, Kaur T, Sharma AK, Kaur J, Yadav HN, Pathak D, Singh AP. Fenofibrate attenuates ischemia reperfusion-induced acute kidney injury and associated liver dysfunction in rats. Drug Dev Res 2020; 82:412-421. [PMID: 33226649 DOI: 10.1002/ddr.21764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
Ischemia/reperfusion (I/R) is one of the common reasons for acute kidney injury (AKI) and we need to develop effective therapies for treating AKI. We investigated the role of fenofibrate against I/R-induced AKI and associated hepatic dysfunction in rats. In male wistar albino rats, renal pedicle occlusion for 40 min and 24 h reperfusion resulted in AKI. I/R-induced AKI was demonstrated by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, fractional excretion of sodium and urinary microproteins. Oxidative stress in rat kidneys was quantified by assaying superoxide anion generation, thiobarbituric acid reactive substances, and reduced glutathione levels. AKI-induced hepatic damage was quantified by assaying serum aminotransferases, alkaline phosphatase and bilirubin levels. Moreover, serum cholesterol, high density lipoprotein and triglycerides were quantified. Hematoxylin-eosin staining of renal and hepatic tissues was done and the kidney and liver injury scores were determined. Immunohistology of endothelial nitric oxide synthase (eNOS) was done in rat kidneys. Fenofibrate was administered for 1 week before subjecting rats to AKI. In separate group, the nitric oxide synthase inhibitor, L-nitroarginine methyl ester (L-NAME) was administered prior to fenofibrate treatment. In I/R group, significant alteration in the serum/urine parameters indicated AKI and hepatic dysfunction along with marked increase in kidney and liver injury scores. Treatment with fenofibrate attenuated AKI and associated hepatic dysfunction. Moreover, I/R-induced decrease in renal eNOS expression was abrogated by fenofibrate. Pre-treatment with L-NAME abolished fenofibrate mediated reno- and hepato-protective effects. In conclusion, fenofibrate attenuates I/R-induced AKI and associated hepatic dysfunction putatively through modulation of eNOS expression.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar (INDIA), India
| | - Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.,Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
23
|
Singh H, Singh R, Kaur S, Arora R, Mannan R, Buttar HS, Arora S, Singh B. Protective role of Phyllanthusfraternus in alloxan-induced diabetes in rats. J Ayurveda Integr Med 2020; 11:391-398. [PMID: 32088092 PMCID: PMC7772496 DOI: 10.1016/j.jaim.2019.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phyllanthusfraternus is a pantropical weed of family phyllanthaceae, mainly found in northeast India. It has been used in the folklore medicine of Manipur tribe for treating type 2 diabetes. OBJECTIVE The present study was commenced to evaluate the anti-diabetic and renoprotective potential of P.fraternus (aerial parts) in alloxan-induced diabetes in rats. MATERIALS AND METHODS Alloxan (130 mg/kg, ip) was used for the induction of diabetes in adult male wistar rats. Animals with blood glucose level greater than 280 mg/dL were treated once daily for 14 days with various test extracts. The biochemical parameters were measured from serum on the 15th day post-treatment. Necropsy samples harvested from pancreas and kidneys were examined for histopathological changes in these organs. RESULTS Alloxan-induced diabetes not only caused significant increases in blood glucose, triglycerides, total cholesterol, creatinine and urea levels, but also provoked high oxidative stress in pancreas and kidneys. Profound morphological injuries were observed in islets of Langerhans and kidneys of diabetic animals. Administration of methanol extract (200 and 400 mg/kg) and mother liquor (200 and 400 mg/kg) ameliorate the elevated levels of blood glucose, triglycerides, total cholesterol as well as other biochemical parameters, but highest reduction in blood glucose concentration was observed with the largest dose of ethyl acetate fraction (400 mg/kg) of P.fraternus. Histopathological examination of pancreas and kidneys also exhibited greater protection by treatment with acetate fraction (400 mg/kg). The HPLC analysis showed the presence of four polyphenols such as catechin, gallic acid, caffeic acid and ellagic acid in ethyl acetate fraction of P. fraternus during HPLC analysis. CONCLUSION The results suggest that polyphenols present in P.fraternus may be responsible for the anti-diabetic and renoprotective activity in rats. Such protective effects of could be mediated through flavonol-induced anti-oxidant and anti-inflammatory activities in the pancreas and kidneys.
Collapse
Affiliation(s)
- Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ripdaman Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rohit Arora
- Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, 143005, India
| | - Rahul Mannan
- Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar, 143005, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
24
|
Kumar B, Singh SK, Prakash T, Bhatia A, Gulati M, Garg V, Pandey NK, Singh S, Melkani I. Pharmacokinetic and pharmacodynamic evaluation of Solid self-nanoemulsifying delivery system (SSNEDDS) loaded with curcumin and duloxetine in attenuation of neuropathic pain in rats. Neurol Sci 2020; 42:1785-1797. [PMID: 32885394 DOI: 10.1007/s10072-020-04628-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
The present investigation is focused on improving oral bioavailability of poorly soluble and lipophilic drugs, curcumin (CRM) and duloxetine (DXH), through the solid self-nanoemulsifying drug delivery system (S-SNEDDS) and identifying their potential against attenuation of NP in chronic constriction injury (CCI)-induced rats through the solid self-nanoemulsifying drug delivery system (S-SNEDDS). The optimized batch of S-SNEDDS reported was containing CRM and DXH (30 mg each), castor oil (20% w/w), tween-80 (40% w/w), transcutol-P (40% w/w), and syloid 244 FP (1 g). The high dose of each of naïve CRM (NCH), naïve DXH (NDH), physical mixture of DXH and CRM (C-NCM-DXH), S-SNEDDS-CRM (SCH), S-SNEDDS-DXH (SDH), and S-SNEDDS-CRM-DXH (C-SCH-SDH) was subjected for MTT assay. The developed formulations were subjected to pharmacokinetic studies and results showed about 8 to 11.06 and 2-fold improvement in oral bioavailability of CRM and DXH through S-SNEDDS. Furthermore, CCI-induced male Wistar rats were treated with SSNEDDS containing CRM and DXH, S-SNEDDS containing individual drug, individual naïve forms, and their combination from the day of surgery for 14 days and evaluated for behavioral at pre-determined time intervals. On the terminal day, animals were sacrificed to assess tissue myeloperoxidase, superoxide anion, protein, tumor necrosis factor-α, total calcium levels, and histopathological changes. Pronounced effect was observed in rats treated with S-SNEDDS containing both drugs with respect to rats receiving any of other treatments owing to enhanced oral bioavailability through S-SNEDDS. Therefore, it can be concluded that S-SNEDDS of both drugs and their coadministration can accelerate the prevention of NP.
Collapse
Affiliation(s)
- Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - T Prakash
- Department of Physiology and Pharmacology, Acharya and B.M. Reddy College of Pharmacy, Soladeuanahalli Hesargatta Road, Chikkabanawara Post, Bangalore, Karnataka, 560 090, India.
| | - Amit Bhatia
- Department of Pharm. Sci. & Tech, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Varun Garg
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Indu Melkani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
25
|
Singh HP, Singh TG, Singh R. Sinapic acid attenuates cisplatin-induced nephrotoxicity through peroxisome proliferator-activated receptor gamma agonism in rats. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:146-154. [PMID: 32742113 PMCID: PMC7373114 DOI: 10.4103/jpbs.jpbs_220_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this study was to investigate the involvement of peroxisome proliferator-activated receptor gamma (PPAR-γ) in renal protection offered by sinapic acid in cisplatin-induced nephrotoxicity in male rats. MATERIALS AND METHODS Nephrotoxicity was induced by single dose of cisplatin (5 mg/kg, intraperitoneal [i.p.]) in rats. Cisplatin-induced nephrotoxicity was assessed by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, magnesium levels, fractional excretion of sodium, and microproteinuria in rats. Superoxide anion generation, thiobarbituric acid reactive substances, myeloperoxidase activity, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. Hematoxylin and eosin stain showed renal histological changes. RESULTS The significant changes in serum and urinary parameters, elevated oxidative stress, and renal histological changes established the induction of nephrotoxicity. Sinapic acid treatment (20 and 40 mg/kg, orally [p.o.]) provides dose-dependent and significant (P < 0.05) nephroprotection against cisplatin-mediated nephrotoxicity in rats. Nephroprotective effect of sinapic acid was abolished by PPAR-γ inhibitor, bisphenol A diglycidyl ether (30 mg/kg, i.p.) in rats. CONCLUSION It is concluded that PPAR-γ agonism serves as one of the mechanisms in sinapic acid-mediated renoprotection.
Collapse
Affiliation(s)
- Hardevinder Pal Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Department of Pharmacy, Government Medical College, Patiala, Punjab, India
| | | | - Randhir Singh
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar University, Ambala, Haryana, India
| |
Collapse
|
26
|
Kant V, Jangir BL, Kumar V, Nigam A, Sharma V. Quercetin accelerated cutaneous wound healing in rats by modulation of different cytokines and growth factors. Growth Factors 2020; 38:105-119. [PMID: 32957814 DOI: 10.1080/08977194.2020.1822830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quercetin on wounds could be favorable for healing based on its variety of biological effects. Eighty wounded rats were divided into four groups i.e. dimethyl sulfoxide, 0.03% quercetin, 0.1% quercetin, and 0.3% quercetin-treated. Different treatments were topically applied for 20 days. Quercetin (0.3%) caused the fastest wound closure and markedly improved the oxidative stress. Quercetin treatment increased the expressions of IL-10, VEGF, TGF-β1, CD31, α-SMA, PCNA, and GAP-43, and decreased the expressions of TNF-α. Early infiltration of inflammatory cells and formation of good quality granulation tissue dominated by fibroblast proliferation, angiogenesis, and collagen deposition in quercetin treated groups was also evident. All these effects were more pronounced at 0.3% quercetin concentration. The earliest regeneration of epithelial layer was also observed in 0.3% quercetin-treated wounds. In conclusion, 0.3% quercetin accelerates wound healing efficiently by modulating antioxidant system of wound, cytokines, growth factors, other proteins and cells involved in healing.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, India
| | - Ankit Nigam
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, India
| | - Vikash Sharma
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, India
| |
Collapse
|
27
|
Llévenes P, Rodrigues-Díez R, Cros-Brunsó L, Prieto MI, Casaní L, Balfagón G, Blanco-Rivero J. Beneficial Effect of a Multistrain Synbiotic Prodefen® Plus on the Systemic and Vascular Alterations Associated with Metabolic Syndrome in Rats: The Role of the Neuronal Nitric Oxide Synthase and Protein Kinase A. Nutrients 2020; 12:E117. [PMID: 31906276 PMCID: PMC7019517 DOI: 10.3390/nu12010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
A high fat diet (HFD) intake is crucial for the development and progression of metabolic syndrome (MtS). Increasing evidence links gut dysbiosis with the metabolic and vascular alterations associated with MtS. Here we studied the use of a combination of various probiotic strains together with a prebiotic (synbiotic) in a commercially available Prodefen® Plus. MtS was induced by HFD (45%) in male Wistar rats. Half of the MtS animals received Prodefen® Plus for 4 weeks. At 12 weeks, we observed an increase in body weight, together with the presence of insulin resistance, liver steatosis, hypertriglyceridemia and hypertension in MtS rats. Prodefen® Plus supplementation did not affect the body weight gain but ameliorated all the MtS-related symptoms. Moreover, the hypertension induced by HFD is caused by a diminished both nitric oxide (NO) functional role and release probably due to a diminished neuronal nitric oxide synthase (nNOS) activation by protein kinase A (PKA) pathway. Prodefen® Plus supplementation for 4 weeks recovered the NO function and release and the systolic blood pressure was returned to normotensive values as a result. Overall, supplementation with Prodefen® Plus could be considered an interesting non-pharmacological approach in MtS.
Collapse
Affiliation(s)
- Pablo Llévenes
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (P.L.); (L.C.-B.); (G.B.)
| | - Raquel Rodrigues-Díez
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain;
| | - Laia Cros-Brunsó
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (P.L.); (L.C.-B.); (G.B.)
| | - Mᵃ Isabel Prieto
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain;
- Department of General and Digestive Surgery, Hospital Universitario la Paz, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Laura Casaní
- Research Institute of Santa Creu i Sant Pau Hospital, Carrer de Sant Quintí 77–79, 08041 Barcelona, Spain;
| | - Gloria Balfagón
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (P.L.); (L.C.-B.); (G.B.)
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain;
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Universidad Autónoma de Madrid, Calle de Arzobispo Morcillo 4, 28029 Madrid, Spain; (P.L.); (L.C.-B.); (G.B.)
- Center for Biomedical Research Network (CIBER) in Cardiovascular Diseases, Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Research Institute University Hospital la Paz (IdIPaz), Calle de Pedro Rico 6, 28029 Madrid, Spain;
| |
Collapse
|
28
|
da Rosa VM, Ariotti K, Bressan CA, da Silva EG, Dallaporta M, Júnior GB, da Costa ST, de Vargas AC, Baldisserotto B, Finamor IA, Pavanato MA. Dietary addition of rutin impairs inflammatory response and protects muscle of silver catfish (Rhamdia quelen) from apoptosis and oxidative stress in Aeromonas hydrophila-induced infection. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108611. [PMID: 31454703 DOI: 10.1016/j.cbpc.2019.108611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
This research aimed to assess the influence of dietary addition of rutin on inflammation, apoptosis and antioxidative responses in muscle of silver catfish (Rhamdia quelen) challenged with Aeromonas hydrophila (A. hydrophila). Fish were split into four groups as follows: control, 0.15% rutin, A. hydrophila, 0.15% rutin + A. hydrophila. After 2 weeks of feeding with standard or rutin diets, fish were challenged or not with A. hydrophila for 1 week. Rutin-added diet abrogates A. hydrophila induced-hemorrhage and inflammatory infiltration. It decreases A. hydrophila induced-apoptosis through decreasing the ratio of Bax to Bcl-2 and increasing phospho-Akt to Akt ratio. It diminishes the A. hydrophila induced-rise in nitric oxide and superoxide anion levels and reestablishes superoxide dismutase activity as well. Although such diet is unable to recover the levels of reduced glutathione (GSH), cysteine and glutamate cysteine ligase, which are depleted as a result of A. hydrophila infection, it diminishes the oxidized glutathione (GSSG) content, thus decreasing GSSG to GSH ratio. It increases the levels of cysteine residues of proteins and diminishes those of thiol-protein mixed disulfides, which were changed after A. hydrophila challenge. Finally, it reduces A. hydrophila induced-lipid peroxidation, markedly elevates ascorbic acid and thus reestablishes total antioxidant capacity, whose levels were decreased after A. hydrophila challenge. In conclusion, the dietary addition of rutin at 0.15% impairs A. hydrophila-induced inflammatory response, inhibits A. hydrophila-induced apoptosis and promotes cell survival. It also reduces the A. hydrophila-induced oxidative stress and stimulates the antioxidative responses in muscle of A. hydrophila-infected silver catfish.
Collapse
Affiliation(s)
- Vanessa M da Rosa
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Karine Ariotti
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Caroline A Bressan
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Elisia G da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Magale Dallaporta
- Department of Morphology, Universidade Federal de Santa Maria, RS, Brazil
| | - Guerino B Júnior
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Silvio T da Costa
- Department of Morphology, Universidade Federal de Santa Maria, RS, Brazil
| | - Agueda C de Vargas
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil
| | - Isabela A Finamor
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil.
| | - Maria A Pavanato
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
29
|
Silveira EMS, Kroth A, Santos MCQ, Silva TCB, Silveira D, Riffel APK, Scheid T, Trapp M, Partata WA. Age-related changes and effects of regular low-intensity exercise on gait, balance, and oxidative biomarkers in the spinal cord of Wistar rats. ACTA ACUST UNITED AC 2019; 52:e8429. [PMID: 31314852 PMCID: PMC6644524 DOI: 10.1590/1414-431x20198429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
The present study aimed to analyze age-related changes to motor coordination, balance, spinal cord oxidative biomarkers in 3-, 6-, 18-, 24-, and 30-month-old rats. The effects of low-intensity exercise on these parameters were also analyzed in 6-, 18-, and 24-month-old rats. Body weight, blood glucose, total cholesterol, and high-density lipoprotein (HDL) cholesterol were assessed for all rats. The soleus muscle weight/body weight ratio was used to estimate skeletal muscle mass loss. Body weight increased until 24 months; only 30-month-old rats exhibited decreased blood glucose and increased total cholesterol and HDL cholesterol. The soleus muscle weight/body weight ratio increased until 18 months, followed by a small decrease in old rats. Exercise did not change any of these parameters. Stride length and step length increased from adult to middle age, but decreased at old age. Stride width increased while the sciatic functional index decreased in old rats. Performance in the balance beam test declined with age. While gait did not change, balance improved after exercise. Aging increased superoxide anion generation, hydrogen peroxide levels, total antioxidant capacity, and superoxide dismutase activity while total thiol decreased and lipid hydroperoxides did not change. Exercise did not significantly change this scenario. Thus, aging increased oxidative stress in the spinal cord, which may be associated with age-induced changes in gait and balance. Regular low-intensity exercise is a good alternative for improving age-induced changes in balance, while beneficial effects on gait and spinal cord oxidative biomarkers cannot be ruled out because of the small number of rats investigated (n=5 or 6/group).
Collapse
Affiliation(s)
- E M S Silveira
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A Kroth
- Área de Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brasil
| | - M C Q Santos
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T C B Silva
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - D Silveira
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A P K Riffel
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Scheid
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M Trapp
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W A Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
30
|
Kumar D, Jena GR, Ram M, Lingaraju MC, Singh V, Prasad R, Kumawat S, Kant V, Gupta P, Tandan SK, Kumar D. Hemin attenuated oxidative stress and inflammation to improve wound healing in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1435-1445. [PMID: 31273394 DOI: 10.1007/s00210-019-01682-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress and persistent inflammation play crucial role in the progression of diabetic wound complications. Hemeoxgenase-1 (HO-1) by degrading hemin has been shown to display anti-oxidant and anti-inflammatory effects. Further, hemin is a potent HO-1 inducer. Thus, the current study was aimed to evaluate the effect of topical application of hemin on diabetic wound in rats. Four hundred square millimeter open excision wound were created 2 weeks after induction of diabetes with single intraperitoneal injection of streptozotocin (60 mg/kg), and the diabetic rats were divided into three groups namely diabetic control, hemin, and tin protoporphyrin (SnPPIX). Ointment base, hemin (0.5% in ointment base), and SnPPIX (0.5% in ointment base) were applied topically to wounded area in diabetic control, hemin, and SnPPIX group rats, respectively, twice daily for 19 days. Hemin significantly increased the wound contraction in comparison to control and SnPPIX-treated rats. Time-dependent analysis revealed significant increase in anti-oxidants with concomitant decrease in oxidants in hemin-treated rats as compared to diabetic control rats. Further, mRNA expression decreased for inflammatory cytokine and increased for anti-inflammatory cytokine in hemin group as compared to diabetic control rats. Expression of HO-1 also increased in hemin group as compared to diabetic control rats. However, SnPPIX group results were in disagreement with results of hemin which is clearly reflected in histopathology. Results indicate the ability of hemin to accelerate wound healing in diabetic rats by combating inflammation and oxidative stress probably via HO-1.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India.
| | - Geeta Rani Jena
- Department of Clinical Medicine, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar, 751003, India
| | - Mahendra Ram
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Raju Prasad
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Sanjay Kumawat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Vinay Kant
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Priyanka Gupta
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| |
Collapse
|
31
|
Durappanavar PN, Nadoor P, Waghe P, Pavithra BH, Jayaramu GM. Melatonin Ameliorates Neuropharmacological and Neurobiochemical Alterations Induced by Subchronic Exposure to Arsenic in Wistar Rats. Biol Trace Elem Res 2019; 190:124-139. [PMID: 30306420 DOI: 10.1007/s12011-018-1537-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
An experimental study was conducted in Wistar rats to characterize the arsenic ("As")-induced alterations in neurobiochemistry in brain and its impact on neuropharmacological activities with or without the melatonin (MLT) as an antioxidant given exogenously. Male Wistar rats were randomly divided in to four groups of six each. Group I served as untreated control, while group II received As [sodium (meta) arsenite; NaAsO2] at 10 mg/kg bw (p.o.) for a period of 56 days. Experimental rats in group III received treatment similar to group II but in addition received MLT at 10 mg/kg bw (p.o.) from day 32 onwards. Rats in group IV received MLT alone from day 32 onwards similar to group III. Sub-chronic exposure to As (group II) significantly reduced both voluntary locomotor and forced motor activities and melatonin supplementation (group III) showed a significant improvement in motor activities, when subjected to test on day 42 or 56. Rats exposed to As showed a significant increase in anxiety level and a marginal nonsignificant reduction in pain latency. Sub-chronic administration of As induced (group II) significant increase in the levels of thiobarbituric acid reactive substance (TBARS) called malondialdehyde (MDA) in the brain tissue (5.55 ± 0.57 nmol g-1), and their levels were significantly reduced by MLT supplementation (group III 3.96 ± 0.15 nmol g-1). The increase in 3-nitrotyrosine (3-NT) levels in As-exposed rats indicated nitrosative stress due to the formation of peroxynitrite (ONOO-). However, exogenously given MLT significantly reduced the 3-NT formation as well as prostaglandin (PGE2) levels in the brain. Similarly, MLT administration have suppressed the release of pro-inflammatory cytokines (viz., IL-1β, IL-6, and TNF-α) and amyloid-β1-40 (Aβ) deposition in the brain tissues of experimental rats. To conclude, exogenous administration of melatonin can overcome the sub-chronic As-induced oxidative and nitrosative stress in the CNS, suppressed pro-inflammatory cytokines, and restored certain disturbed neuropharmacological activities in Wistar rats.
Collapse
Affiliation(s)
- Prasada Ningappa Durappanavar
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University; Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| | - Prakash Nadoor
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India.
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology Veterinary College, Nandinagar, Bidar, Karnataka, 585401, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology; Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Veterinary College, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G M Jayaramu
- Department of Veterinary Pathology, Karnataka Veterinary, Animal and Fisheries Sciences University, Veterinary College, Vinobanagar, Shivamogga, Karnataka, 577 204, India
| |
Collapse
|
32
|
Nava E, Llorens S. The Local Regulation of Vascular Function: From an Inside-Outside to an Outside-Inside Model. Front Physiol 2019; 10:729. [PMID: 31244683 PMCID: PMC6581701 DOI: 10.3389/fphys.2019.00729] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/27/2019] [Indexed: 01/22/2023] Open
Abstract
Our understanding of the regulation of vascular function, specifically that of vasomotion, has evolved dramatically over the past few decades. The classic conception of a vascular system solely regulated by circulating hormones and sympathetic innervation gave way to a vision of a local regulation. Initially by the so-called, autacoids like prostacyclin, which represented the first endothelium-derived paracrine regulator of smooth muscle. This was the prelude of the EDRF-nitric oxide age that has occupied vascular scientists for nearly 30 years. Endothelial cells revealed to have the ability to generate numerous mediators besides prostacyclin and nitric oxide (NO). The need to classify these substances led to the coining of the terms: endothelium-derived relaxing, hyperpolarizing and contracting factors, which included various prostaglandins, thromboxane A2, endothelin, as well numerous candidates for the hyperpolarizing factor. The opposite layer of the vascular wall, the adventitia, eventually and for a quite short period of time, enjoyed the attention of some vascular physiologists. Adventitial fibroblasts were recognized as paracrine cells to the smooth muscle because of their ability to produce some substances such as superoxide. Remarkably, this took place before our awareness of the functional potential of another adventitial cell, the adipocyte. Possibly, because the perivascular adipose tissue (PVAT) was systematically removed during the experiments as considered a non-vascular artifact tissue, it took quite long to be considered a major source of paracrine substances. These are now being integrated in the vast pool of mediators synthesized by adipocytes, known as adipokines. They include hormones involved in metabolic regulation, like leptin or adiponectin; classic vascular mediators like NO, angiotensin II or catecholamines; and inflammatory mediators or adipocytokines. The first substance studied was an anti-contractile factor named adipose-derived relaxing factor of uncertain chemical nature but possibly, some of the relaxing mediators mentioned above are behind this factor. This manuscript intends to review the vascular regulation from the point of view of the paracrine control exerted by the cells present in the vascular environment, namely, endothelial, adventitial, adipocyte and vascular stromal cells.
Collapse
Affiliation(s)
- Eduardo Nava
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| | - Silvia Llorens
- Department of Medical Sciences, Faculty of Medicine of Albacete, Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
33
|
Wang YL, Zhou XQ, Jiang WD, Wu P, Liu Y, Jiang J, Wang SW, Kuang SY, Tang L, Feng L. Effects of Dietary Zearalenone on Oxidative Stress, Cell Apoptosis, and Tight Junction in the Intestine of Juvenile Grass Carp ( Ctenopharyngodon idella). Toxins (Basel) 2019; 11:toxins11060333. [PMID: 31212760 PMCID: PMC6628422 DOI: 10.3390/toxins11060333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin with high toxicity in animals. In order to study its effect on juvenile grass carp (Ctenopharyngodon idella), six diets supplemented with different levels of ZEA (0, 535, 1041, 1548, 2002, and 2507 μg/kg diet) for 10 weeks were studied to assess its toxicity on intestinal structural integrity and potential mechanisms of action. Our report firstly proved that ZEA led to growth retardation and body deformity, and impaired the intestinal structural integrity of juvenile grass carp, as revealed by the following findings: (1) ZEA accumulated in the intestine and caused histopathological lesions; (2) ZEA resulted in oxidative injury, apoptosis, and breached tight junctions in the fish intestine, which were probably associated with Nuclear factor-erythroid 2-related factor 2 (Nrf2), p38 mitogen activated protein kinases (p38MAPK), and myosin light chain kinase (MLCK) signaling pathways, respectively. ZEA had no influence on the antioxidant gene levels of Kelch-like ECH associating protein 1 (Keap1)b (rather than Keap1a), glutathione-S-transferase (GST)P1, GSTP2 (not in the distal intestine (DI)), tight junctions occludin, claudin-c (not in the proximal intestine (PI)), or claudin-3c (not in the mid intestine (MI) or DI).
Collapse
Affiliation(s)
- Ya-Li Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China.
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China.
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shang-Wen Wang
- Tongwei Research Institute, Tongwei Co., Ltd., Chengdu 600438, China.
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China.
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed. Co., Ltd., Chengdu 610066, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China.
- Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
34
|
Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol Rep 2019; 6:505-513. [PMID: 31211096 PMCID: PMC6562321 DOI: 10.1016/j.toxrep.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Gallic acid (GA) is a natural phenolic type of neuroprotective compound. GA possesses anti-nociceptive action against paclitaxel-induced neurotoxicity. GA inhibits THF-α mediated neuropathic pain sensation.
The present study has been investigated the role of gallic acid (GA) in paclitaxel-induced neuropathic pain. The neuropathic pain was developed with paclitaxel (PT: 2 mg/kg, i.p.) administration in mice. GA (20 and 40 mg/kg) and pregabalin (PreG: 5 mg/kg) were administered intravenously for 10 consecutive days. The neuralgic sensations were investigated by assessing various pain tests like acetone drop, pinprick, plantar, tail flick, and tail pinch test. Mice pain behaviors were evaluated on 0, 4th, 8th, 12th and 16th days. The levels of sciatic nerve thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide anion, calcium, myeloperoxidase (MPO), and TNF-α were estimated. Treatment of GA and PreG attenuate PT induced thermal &mechanical hyperalgesia and allodynia symptoms along with the reduction of TBARS, total calcium, TNF-α, superoxide anion, and MPO activity levels; and decreased GSH level. Therefore, it has been concluded that GA has potential neuroprotective actions against PT induced neuropathic pain due to it's anti-oxidant, anti-inflammation and regulation of intracellular calcium ion concentration.
Collapse
|
35
|
Jaimes L, Vinet R, Knox M, Morales B, Benites J, Laurido C, Martínez JL. A Review of the Actions of Endogenous and Exogenous Vasoactive Substances during the Estrous Cycle and Pregnancy in Rats. Animals (Basel) 2019; 9:E288. [PMID: 31146394 PMCID: PMC6617363 DOI: 10.3390/ani9060288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelium plays a key role in regulating cardiovascular homeostasis by controlling the vascular tone. Variations in sex hormones during the reproductive cycle of females affect the homeostasis of the cardiovascular system. Also, the evidence shows that estrogens show a cardioprotective effect. On this basis, this study describes some vascular responses induced by vasoactive substances during the estrous cycle in rats. We obtained the information available on this topic from the online databases that included scientific articles published in the Web of Science, PubMed, and Scielo. Many investigations have evaluated the vasoactive response of substances such as acetylcholine and norepinephrine during the estrous cycle. In this review, we specifically described the vascular response to vasoactive substances in rats during the estrous cycle, pregnancy, and in ovariectomized rats. In addition, we discussed the existence of different signaling pathways that modulate vascular function. The knowledge of these effects is relevant for the optimization and development of new treatments for some vascular pathologies.
Collapse
Affiliation(s)
- Luisauris Jaimes
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - Raúl Vinet
- CMBi, Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso 2360102, Chile; (R.V.); (M.K.)
- Regional Centre for Studies in Food and Health (CREAS, Grant R17A10001), Valparaíso 2362696, Chile
| | - Marcela Knox
- CMBi, Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso 2360102, Chile; (R.V.); (M.K.)
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - Julio Benites
- Faculty of Health Science, Universidad Arturo Prat, Iquique 1100000, Chile;
| | - Claudio Laurido
- Faculty of Chemistry and Biology, University de Santiago de Chile, Estación Central 9160020, Chile; (L.J.); (B.M.)
| | - José L. Martínez
- Vice Chancellor of Investigation, Development and Innovation, Universidad de Santiago de Chile, Estación Central 9160020, Chile
| |
Collapse
|
36
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
37
|
Sharma LP, Kadve MP, Lingaraju MC, Telang AG. Studies on oral subacute toxicity of cartap in male mice. Drug Chem Toxicol 2019; 44:198-206. [PMID: 30614290 DOI: 10.1080/01480545.2018.1551900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-[3-carbamoylsulfanyl-2-(dimethylamino)propyl] carbamothioate (Cartap) (CAS number: 15263-52-2) is a synthetic insecticide of thiocarbamates group that is extensively used in field of agriculture for controlling of several pests like rice stem borer, leaf folder pests in paddy field and diamond back moth, aphids in cabbage and cauliflower crops. Cartap, as a pesticide has not been investigated yet for its effect on vital organs and biochemical stress in vivo and the present study was undertaken to evaluate the same in Swiss albino mice. For this purpose male mice were given three different dose levels of cartap, i.e. 5 mg/kg, 7.5 mg/kg and 15 mg/kg body weight respectively, for 28 days orally. Water was used as vehicle to dissolve cartap. Oral administration of cartap caused significant increase in serum biomarkers, tissue oxidants and decrease in antioxidants along with histopathological findings in liver, kidney and brain tissues. Thus, present study showed that in vivo exposure to cartap induces tissue damage probably via oxidative stress in important vital organs of mice.
Collapse
Affiliation(s)
- Laxman P Sharma
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Mayur P Kadve
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Avinash G Telang
- Toxicology Laboratory, Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
38
|
Riffel APK, Santos MCQ, de Souza JA, Scheid T, Horst A, Kolberg C, Belló-Klein A, Partata WA. Treatment with ascorbic acid and α-tocopherol modulates oxidative-stress markers in the spinal cord of rats with neuropathic pain. ACTA ACUST UNITED AC 2018. [PMID: 29513797 PMCID: PMC5856434 DOI: 10.1590/1414-431x20177097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin E (vit. E) and vitamin C (vit. C) are antioxidants that inhibit nociception. The effect of these vitamins on oxidative-stress markers in the spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve is unknown. This study investigated the effect of intraperitoneal administration of vit. E (15 mg·kg-1·day-1) and vit. C (30 mg·kg-1·day-1), given alone or in combination, on spinal cord oxidative-stress markers in CCI rats. Adult male Wistar rats weighing 200-250 g were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received injections of vitamins or vehicle (saline containing 1% Tween 80) for 3 or 10 days (n=6/each group). The vitamins prevented the reduction in total thiol content and the increase in superoxide-anion generation that were found in vehicle-treated CCI rats. While nitric-oxide metabolites increased in vehicle-treated CCI rats 3 days after surgery, these metabolites did not show significant changes in vitamin-treated CCI rats. In all rats, total antioxidant capacity and hydrogen-peroxide levels did not change significantly. Lipid hydroperoxides increased 25% only in vehicle-treated CCI rats. These changes may contribute to vit. C- and vit. E-induced antinociception, because scavenging reactive oxygen species seems to help normalize the spinal cord oxidative status altered by pain.
Collapse
Affiliation(s)
- A P K Riffel
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - J A de Souza
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Scheid
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A Horst
- UNIVATES, Lajeado, RS, Brasil
| | - C Kolberg
- Centro Universitário da Serra Gaúcha, Caxias do Sul, RS, Brasil
| | - A Belló-Klein
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
39
|
Kant V, Jangir BL, Nigam A, Kumar V, Sharma S. Dose regulated cutaneous wound healing potential of quercetin in male rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Affiliation(s)
- Joseph C Galley
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA
| | - Adam C Straub
- From the Heart, Lung, Blood and Vascular Medicine Institute (J.C.G., A.C.S.) and Department of Pharmacology and Chemical Biology (J.C.G., A.C.S.), University of Pittsburgh, PA.
| |
Collapse
|
41
|
Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 2017; 26:993-1003. [PMID: 29159712 DOI: 10.1007/s10787-017-0416-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
Generation of excessive reactive oxygen species (ROS) and advanced glycation end products (AGEs), and cellular apoptosis are implicated in the pathogenesis of diabetic neuropathy. Present study was aimed to explore the effect of Eruca sativa and Kaempferol (KP) on hyperalgesia (thermal and mechanical); tactile allodynia, motor nerve conduction velocity (MNCV) and oxidative-nitrosative stress in streptozotocin (STZ) induced experimental diabetes. Neuropathy developed in diabetic rats was evident from a marked hyperalgesia and allodynia; reduced MNCV associated with excess formation of AGEs and ROS. Chronic treatment with E. sativa hydroalcoholic extract (EHA; 100, 200 and 400 mg/kg) and KP (5 and 10 mg/kg) for 30 days starting from the 60th day of STZ administration significantly ameliorated behavioral and biochemical changes linked to diabetic neuropathy. Present study suggested that EHA and KP corrected hyperglycemia and reversed the pain response partially in diabetic rats along via modulating oxidative and nitrosative stress along with reduction of AGEs formation in diabetic rats. Thus E. sativa might be beneficial in chronic diabetes, ameliorate the progression of diabetic neuropathy and may also find application in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Lalit Kishore
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana, 133207, India
| | - Navpreet Kaur
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana, 133207, India
| | - Randhir Singh
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
42
|
Kaur N, Kishore L, Singh R. Chromane isolated from leaves of Dillenia indica improves the neuronal dysfunction in STZ-induced diabetic neuropathy. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:19-30. [PMID: 28506898 DOI: 10.1016/j.jep.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Indian traditional medicine, Dillenia indica L. has shown therapeutic efficacy in various diseases. Fruits and leaves of the plant possess anti-oxidant and anti-inflammatory properties. Reactive oxygen species, formation of advanced glycation end products (AGEs) and apoptosis are implicated in the pathogenesis of diabetic neuropathy. AIM OF THE STUDY The aim of the present study was to explore the effect of D. indica and its isolate, chromane (CR), on thermal and mechanical hyperalgesia, allodynia, MNCV and oxidative-nitrosative stress in streptozotocin-induced experimental diabetes. MATERIAL AND METHODS Diabetes was induced by intraperitoneal administration of Streptozotocin (STZ; 65mg/kg) for the development of diabetic neuropathy. Chronic treatment with DAE (100, 200 and 400mg/kg, p.o.) and CR (5 and 10mg/kg, p.o.) for 30 days was started from the 60th day of STZ administration. Development of neuropathy was evident from a marked hyperalgesia and allodynia; reduced MNCV associated with increased formation of AGEs and reactive oxygen species. RESULTS significantly attenuated behavioral and biochemical changes associated with diabetic neuropathy. Present study suggested that DAE and CR ameliorated hyperglycemia and diabetic neuropathic pain via modulation of oxidative-nitrosative stress and reduction in AGEs formation in the diabetic rats. CONCLUSION Thus D. indica might be beneficial in chronic diabetics, ameliorate the progression of diabetic neuropathy and may also find application in diabetic neuropathic pain.
Collapse
Affiliation(s)
- Navpreet Kaur
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India
| | - Lalit Kishore
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India
| | - Randhir Singh
- M.M. College of Pharmacy, M.M. University, Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
43
|
Kishore L, Kaur N, Singh R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
44
|
Li YW, Li YM, Hon Y, Wan QL, He RL, Wang ZZ, Zhao CH. AT1 Receptor Modulator Attenuates the Hypercholesterolemia-Induced Impairment of the Myocardial Ischemic Post-Conditioning Benefits. Korean Circ J 2017; 47:182-192. [PMID: 28382073 PMCID: PMC5378024 DOI: 10.4070/kcj.2015.0295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/22/2016] [Accepted: 04/14/2016] [Indexed: 12/01/2022] Open
Abstract
Background and Objectives Ischemic post-conditioning (PostC) has been demonstrated as a novel strategy to harness nature's protection against myocardial ischemia-reperfusion (I/R). Hypercholesterolemia (HC) has been reported to block the effect of PostC on the heart. Angiotensin II type-1 (AT1) modulators have shown benefits in myocardial ischemia. The present study investigates the effect of a novel inhibitor of AT1, azilsartan in PostC of the heart of normocholesterolemic (NC) and HC rats. Materials and Methods HC was induced by the administration of high-fat diet to the animals for eight weeks. Isolated Langendorff's perfused NC and HC rat hearts were exposed to global ischemia for 30 min and reperfusion for 120 min. I/R-injury had been assessed by cardiac hemodynamic parameters, myocardial infarct size, release of tumor necrosis factor-alpha troponin I, lactate dehydrogenase, creatine kinase, nitrite in coronary effluent, thiobarbituric acid reactive species, a reduced form of glutathione, superoxide anion, and left ventricle collagen content in normal and HC rat hearts. Results Azilsartan post-treatment and six episodes of PostC (10 sec each) afforded cardioprotection against I/R-injury in normal rat hearts. PostC protection against I/R-injury was abolished in HC rat hearts. Azilsartan prevented the HC-mediated impairment of the beneficial effects of PostC in I/R-induced myocardial injury, which was inhibited by L-N5-(1-Iminoethyl)ornithinehydrochloride, a potent inhibitor of endothelial nitric oxide synthase (eNOS). Conclusion Azilsartan treatment has attenuated the HC-induced impairment of beneficial effects of PostC in I/R-injury of rat hearts, by specifically modulating eNOS. Azilsartan may be explored further in I/R-myocardial injury, both in NC and HC conditions, with or without PostC.
Collapse
Affiliation(s)
- Yun-Wei Li
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Yan-Ming Li
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Yan Hon
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Qi-Lin Wan
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Rui-Li He
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Zhi-Zhong Wang
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| | - Cui-Hua Zhao
- Department of Cardiology, Henan University Huaihe Hospital, Henan, China
| |
Collapse
|
45
|
Horst A, de Souza J, Santos M, Riffel A, Kolberg C, Ribeiro M, de Fraga L, Partata W. N-acetylcysteine downregulates phosphorylated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain. Braz J Med Biol Res 2017; 50:e5801. [PMID: 28225868 PMCID: PMC5343557 DOI: 10.1590/1414-431x20165801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
We determined the effect of N-acetylcysteine (NAC) on the expression of the phosphorylated p38 (p-p38) protein and superoxide anion generation (SAG), two important players in the processing of neuropathic pain, in the lumbosacral spinal cord of rats with chronic constriction injury (CCI)-induced neuropathic pain. The sciatic functional index (SFI) was also measured to assess the functional recovery post-nerve lesion. Thirty-six male Wistar rats were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received 2, 4, or 8 intraperitoneal injections of NAC (150 mg·kg-1·day-1) or saline beginning 4 h after CCI. Rats were sacrificed 1, 3, and 7 days after CCI. The SFI was measured on these days and the lumbosacral spinal cord was used for analysis of p-p38 expression and SAG. CCI induced a decrease in SFI as well as an increase in p-p38 expression and SAG in the spinal cord. The SFI showed a partial recovery at day 7 in saline-treated CCI rats, but recovery was improved in NAC-treated CCI rats. NAC induced a downregulation in p-p38 expression at all time-points evaluated, but did not reverse the increased SAG induced by CCI. Since p-p38 is a mediator in neuropathic pain and/or nerve regeneration, modulation of this protein may play a role in NAC-induced effects in CCI rats.
Collapse
Affiliation(s)
- A. Horst
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- UNIVATES, Lajeado, RS, Brasil
| | - J.A. de Souza
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M.C.Q. Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A.P.K. Riffel
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C. Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M.F.M. Ribeiro
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L.S. de Fraga
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - W.A. Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
46
|
Abstract
The NADPH oxidase (Nox) family of enzymes is expressed in many tissues that are involved in hypertension, including blood vessels, kidney, and brain. In these tissues, the products of NADPH oxidase activity, superoxide and ultimately hydrogen peroxide, act as intracellular and extracellular messengers during compartmentalized cellular signaling. The correct measurement of Nox activity and its products is crucial to enable studies of how these signaling pathways affect the molecular mechanisms underlying hypertension. Here, we describe methods for detection and measurement of hydrogen peroxide and superoxide derived from NADPH oxidases in biological samples such as cells and tissues.
Collapse
|
47
|
Abstract
Cognitive impairment, an underappreciated consequence of hypertension, is linked to cerebral arteriolar disease through poorly defined mechanisms. A study by Faraco et al. in this issue of the JCI points to perturbations of neurovascular unit coupling caused by perivascular macrophages (PVMs) as a cause of hypertension-related cognitive impairment. Angiotensin II (Ang II) was shown to activate PVMs, causing them to produce superoxide and thereby alter the proper functioning of the adjacent arterioles. Faraco and colleagues also show that disruption of the blood-brain barrier occurs in hypertension, allowing circulating Ang II to access PVMs. This study provides important new insight into the role of inflammatory cells in the genesis of vascular dementia.
Collapse
Affiliation(s)
- D.G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomasz J. Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medicine, Jagiellonian University College of Medicine, Krakow, Poland
| |
Collapse
|
48
|
Kishore L, Kaur N, Singh R. Renoprotective effect ofBacopa monnieri viainhibition of advanced glycation end products and oxidative stress in STZ-nicotinamide-induced diabetic nephropathy. Ren Fail 2016; 38:1528-1544. [DOI: 10.1080/0886022x.2016.1227920] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
49
|
Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:167-75. [PMID: 26497187 DOI: 10.1007/s00210-015-1184-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/09/2015] [Indexed: 01/09/2023]
Abstract
Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.
Collapse
|
50
|
Ghaderi F, Eshraghi A, Shamloo AS, Mousavi S. Assosiation of Epicardial and Pericardial Fat Thickness with Coronary Artery Disease. Electron Physician 2016; 8:2982-2989. [PMID: 27790354 PMCID: PMC5074760 DOI: 10.19082/2982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/01/2016] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Visceral adipose tissue is a known important risk factor for coronary artery disease (CAD). While some studies have suggested relationship between epicardial fat thickness (EFT) and CAD, there are no adequate studies for pericardial fat thickness (PFT). The aim of this study was to determine the association of EFT and PFT with CAD. METHODS This cross-sectional study was conducted on patients who were candidates for elective coronary artery angiography, referred to Emam Reza Hospital, Mashhad, Iran during Jan 2014-2016. Demographic and laboratory data were collected. Transthoracic echocardiography was performed to determine average EFT and PFT at the standard parasternal long-axis view at end-systole for 3 cardiac cycles. SCA was performed on the same day. The patients were divided into two groups: CAD (n=59) and non-CAD (n=41) based on presence or absence of epicardial coronary artery stenosis of > 50%. Chi-square, independent T-test, and receiver operating characteristic (ROC) curve were used by SPSS Version 16 for data analysis. RESULTS One hundred patients (44 women and 56 men) with an average age of 56.4 ± 9.9 years were studied. The two groups were not significantly different in demographic profile and cronary risk factors. While PFT was not significantly different between the two groups, EFT was significantly higher in CAD group (3.0 ± 3.69 vs. 1.2 ± 3.6, p <0.0001). Moreover, with the increase of the affected coronary arteries, EFT increased (p <0.0001). Gensini score had a strong correlation with amount of EFT (r = 0.765, p <0.0001). EFT with a cutoff value of 4.25 mm (sensitivity=79%, specificity=68%) was specified in predicting CAD. CONCLUSION EFT measured by echocardiography can be used as an independent marker to predict CAD. More studies are needed to determine the predictive role of PFT for CAD.
Collapse
Affiliation(s)
- Fereshteh Ghaderi
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Eshraghi
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Sepehri Shamloo
- M.D., Research Administrator, Department of Cardiac Surgery, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Mousavi
- M.D., Cardiologist, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|