1
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024:10.1038/s44319-024-00296-2. [PMID: 39482490 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Iwasaki N, Poposki JA, Oka A, Kidoguchi M, Klingler AI, Suh LA, Bai J, Stevens WW, Peters AT, Grammer LC, Welch KC, Smith SS, Conley DB, Schleimer RP, Kern RC, Bochner BS, Tan BK, Kato A. Single cell RNA sequencing of human eosinophils from nasal polyps reveals eosinophil heterogeneity in chronic rhinosinusitis tissue. J Allergy Clin Immunol 2024; 154:952-964. [PMID: 38797240 PMCID: PMC11456383 DOI: 10.1016/j.jaci.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by type 2 inflammation in the United States, but the actual roles that eosinophils play in CRSwNP remain largely unclear. OBJECTIVE To reveal the roles and heterogeneity of eosinophils in nasal polyp (NP) tissue, we performed single cell RNA sequencing (scRNA-Seq) analysis of NP tissue. METHODS Sinonasal tissues (NP and control sinus tissue) and patient matched peripheral blood (PB) samples were obtained from 5 control patients and 5 patients with CRSwNP. Eosinophils were enriched before processing for scRNA-Seq. The gene expression profiles in eosinophils were determined by microwell-based scRNA-Seq technology (BD Rhapsody platform). We predicted the overall function of NP eosinophils by Gene Ontology (geneontology.org) enrichment and pathway analyses and confirmed expression of selected genes by flow cytometry. RESULTS After filtering out contaminating cells, we detected 5,542 eosinophils from control PB, 3,883 eosinophils from CRSwNP PB, 101 eosinophils from control sinus tissues (not included in further analyses), and 9,727 eosinophils from NPs by scRNA-Seq. We found that 204 genes were downregulated and 354 genes upregulated in NP eosinophils compared to all PB eosinophils (>1.5-fold, Padj < .05). Upregulated genes in NP eosinophils were associated with activation, cytokine-mediated signaling, growth factor activity, NF-κB signaling, and antiapoptotic molecules. NP eosinophils displayed 4 clusters revealing potential heterogeneity of eosinophils in NP tissue. CONCLUSIONS Elevated eosinophils in NP tissue appear to exist in several subtypes that may play important pathogenic roles in CRSwNP, in part by controlling inflammation and hyperproliferation of other cells.
Collapse
Affiliation(s)
- Naruhito Iwasaki
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Julie A Poposki
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Aiko Oka
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Masanori Kidoguchi
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Aiko I Klingler
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Lydia A Suh
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Junqin Bai
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Anju T Peters
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Leslie C Grammer
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie S Smith
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Atsushi Kato
- Department of Medicine, Division of Allergy and Immunology, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
3
|
Jia X, Bai X, Yin Z, Zheng Q, Zhao Y, Lu Y, Shu Y, Wang Y, Zhang Y, Jin S. Siglec-5 as a novel receptor mediates endothelial cells oxLDL transcytosis to promote atherosclerosis. Transl Res 2024; 274:49-66. [PMID: 39341359 DOI: 10.1016/j.trsl.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Excessive subendothelial retention of oxidized low-density lipoprotein (oxLDL) and subsequent oxLDL engulfment by macrophages leads to the formation of foam cells and the development of atherosclerosis. Our previous study showed that the plasma level of sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5) was a novel biomarker for the prognosis of atherosclerosis in diabetic patients. However, the role and underlying mechanisms of Siglec-5 in atherosclerosis have not been elucidated. METHODS The interaction between oxLDL and Siglec-5 was detected by fluorescence colocalization and coimmunoprecipitation. The effect of oxLDL on Siglec-5 expression was detected in endothelial cells and macrophages, and the effect of Siglec-5 on oxLDL transcytosis and uptake was investigated. Siglec-5 was overexpressed in mice using recombinant adeno-associated virus vector serotype 9 (rAAV9-Siglec-5) to evaluate the effect of Siglec-5 on oxLDL uptake and atherogenesis in vivo. In addition, the effects of Siglec-5 antibodies and soluble Siglec-5 proteins on oxLDL transcytosis and uptake and their role in atherogenesis were investigated in vivo and in vitro. RESULTS We found that oxLDL interacted with Siglec-5 and that oxLDL stimulated the expression of Siglec-5. Siglec-5 promotes the transcytosis and uptake of oxLDL, while both anti-Siglec-5 antibodies and soluble Siglec-5 protein attenuated oxLDL transcytosis and uptake. Interestingly, overexpression of Siglec-5 by recombinant adeno-associated viral vector serotype 9 (rAAV9-Siglec-5) promoted the retention of oxLDL in the aorta of C57BL/6 mice. Moreover, overexpression of Siglec-5 significantly accelerated the formation of atherosclerotic lesions in Apoe-/- mice. Moreover, both anti-Siglec-5 antibodies and soluble Siglec-5 protein significantly alleviated the retention of oxLDL in the aorta of rAAV9-Siglec-5-transfected C57BL/6 mice and the formation of atherosclerotic plaques in rAAV9-Siglec-5-transfected Apoe-/- mice. CONCLUSION Our results suggested that Siglec-5 was a novel receptor that mediated oxLDL transcytosis and promoted the formation of foam cells. Interventions that inhibit the interaction between oxLDL and Siglec-5, including anti-Siglec-5 antibody or soluble Siglec-5 protein treatment, may provide novel therapeutic strategies in treating atherosclerosis.
Collapse
Affiliation(s)
- Xiong Jia
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China
| | - Zhiqiang Yin
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Yin Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China
| | - Yajing Lu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China
| | - Yayu Wang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Yifei Zhang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan 430077, China.
| |
Collapse
|
4
|
Cruz Neto JPR, de Luna Freire MO, de Albuquerque Lemos DE, Ribeiro Alves RMF, de Farias Cardoso EF, de Moura Balarini C, Duman H, Karav S, de Souza EL, de Brito Alves JL. Targeting Gut Microbiota with Probiotics and Phenolic Compounds in the Treatment of Atherosclerosis: A Comprehensive Review. Foods 2024; 13:2886. [PMID: 39335815 PMCID: PMC11431284 DOI: 10.3390/foods13182886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Dysregulated lipid metabolism, oxidative stress, and inflammation are the major mechanisms implicated in the development of AS. In addition, evidence suggests that gut dysbiosis plays an important role in atherogenesis, and modulation of the gut microbiota with probiotics and phenolic compounds has emerged as a promising strategy for preventing and treating AS. It has been shown that probiotics and phenolic compounds can improve atherosclerosis-related parameters by improving lipid profile, oxidative stress, and inflammation. In addition, these compounds may modulate the diversity and composition of the gut microbiota and improve atherosclerosis. The studies evaluated in the present review showed that probiotics and phenolic compounds, when consumed individually, improved atherosclerosis by modulating the gut microbiota in various ways, such as decreasing gut permeability, decreasing TMAO and LPS levels, altering alpha and beta diversity, and increasing fecal bile acid loss. However, no study was found that evaluated the combined use of probiotics and phenolic compounds to improve atherosclerosis. The available literature highlights the synergistic potential between phenolic compounds and probiotics to improve their health-promoting properties and functionalities. This review aims to summarize the available evidence on the individual effects of probiotics and phenolic compounds on AS, while providing insights into the potential benefits of nutraceutical approaches using probiotic strains, quercetin, and resveratrol as potential adjuvant therapies for AS treatment through modulation of the gut microbiota.
Collapse
Affiliation(s)
- José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - Rayanne Maira Felix Ribeiro Alves
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Emmily Ferreira de Farias Cardoso
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Camille de Moura Balarini
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba, João Pessoa 58037-760, PB, Brazil; (R.M.F.R.A.); (E.F.d.F.C.); (C.d.M.B.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (H.D.); (S.K.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Campus I—Jd. Cidade Universitária, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (J.P.R.C.N.); (M.O.d.L.F.); (D.E.d.A.L.); (E.L.d.S.)
| |
Collapse
|
5
|
Lubrano V, Balzan S, Papa A. LOX-1 variants modulate the severity of cardiovascular disease: state of the art and future directions. Mol Cell Biochem 2024; 479:2245-2254. [PMID: 37789136 DOI: 10.1007/s11010-023-04859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Atherosclerosis is one of the major causes of cerebral infarction and many other ischemic cardio-cerebrovascular diseases. Although large randomized clinical trials have highlighted the impressive benefits of lipid-lowering therapies, the 50-70% of patients who have achieved their lipid-lowering goal remain at high cardiovascular disease risk. For this reason, there is a need to investigate other markers of atherosclerosis progression. LOX-1 is a scavenger receptor that accepts oxidized low-density lipoproteins as major ligand and internalizes it by endocytosis favoring its retention in subendothelial layer and triggering a wide variety of proatherogenic events. However, other factors such as cytokines, shear stress, and advanced glycation end-products can upregulate LOX-1. LOX-1 is encoded by the OLR1 gene, located in the p12.3-p13 region of chromosome 12. OLR1 gene has different isoforms induced by splicing, or single-nucleotide polymorphisms (SNPs). According to some authors, the expression of these isoforms induces a different effect on atherosclerosis and cardiovascular disease. In particular, LOXIN, an isoform lacking part of the functional domain, exerts an important role in atherosclerosis protection. In other cases, studies on SNPs showed an association with more severe forms, like in the case of 3'UTR polymorphisms. The knowledge of these variants can give rise to the development of new preventive therapies and can lead to the identification of subjects at greater risk of cardiovascular event. In this review, we reported the state of the art regarding SNPs with known effects on OLR1 splicing and how LOX-1 variants modulate the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124, Pisa, Italy.
| | - Silvana Balzan
- Institute of Clinical Physiology, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Angela Papa
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
6
|
Akkuş M, Solak H. Elevated levels of oxLDL and LOX-1: Implications for schizophrenia pathophysiology. J Psychiatr Res 2024; 177:140-146. [PMID: 39013288 DOI: 10.1016/j.jpsychires.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Inflammation and oxidative stress are both considered to be factors in the etiopathogenesis of schizophrenia. LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) and ox-LDL (oxidized low-density lipoprotein) have been reported to be active in neuroinflammation pathways in which they are involved in oxidative stress and inflammation. However, its relationship with schizophrenia is unclear. This study aimed to assess the potential connection between serum ox-LDL and LOX-1 levels in schizophrenia patients, their unaffected first-degree relatives, and healthy controls. The study comprised 63 schizophrenia patients, 57 first-degree relatives, and 63 healthy controls who were age, gender, and BMI-matched. Serum ox-LDL and LOX-1 levels were measured. PANSS was used to assess the severity of the disease. Levels of both ox-LDL and LOX-1 were markedly elevated in individuals diagnosed with schizophrenia when compared to both their relatives and a control group. While ox-LDL levels were significantly higher in relatives of patients compared to controls, there was no significant difference between relatives of patients and control groups for LOX-1 levels. Significant correlations were observed between PANNS general and total and ox-LDL levels and PANNS negative and LOX-1 levels. The relationship between ox-LDL and LOX-1 and schizophrenia is quite limited in the literature and is a new field of study. Future studies are needed to evaluate their role in etiopathogenesis.
Collapse
Affiliation(s)
- Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Faculty of Medicine, Vefa Alayunt Street, 43100, Kutahya Province, Kütahya, Turkey.
| | - Hatice Solak
- Department of Physiology, Faculty of Medicine, Kütahya Health Science University, Evliya Çelebi Campus, Tavşanlı Road 10th Km, 43100, Kutahya Province, Kütahya, Turkey.
| |
Collapse
|
7
|
Wänman M, Betnér S, Esberg A, Holm CK, Isehed C, Holmlund A, Palmqvist P, Lövgren A, Lindquist S, Hänström L, Lerner UH, Kindstedt E, Lundberg P. The PerioGene North Study Uncovers Serum Proteins Related to Periodontitis. J Dent Res 2024; 103:999-1007. [PMID: 39101637 PMCID: PMC11402264 DOI: 10.1177/00220345241263320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
The sequalae of periodontitis include irreversible degradation of tooth-supporting structures and circulatory spread of inflammatory mediators. However, the serum protein profile in periodontitis is not well described, which is partly attributable to the limited number of studies based on large and well-characterized periodontitis cohorts. This study aims to identify novel, circulating inflammation-related proteins associated with periodontitis within the PerioGene North case-control study, which includes 478 cases with severe periodontitis and 509 periodontally healthy controls. The serum concentrations of high-sensitivity C-reactive protein (hs-CRP) and a panel of 45 inflammation-related proteins were analyzed using targeted proteomics. A distinguishable serum protein profile was evident in periodontitis cases. The protein pattern could separate cases from controls with a sensitivity of 0.81 and specificity of 0.81 (area under the curve = 0.87). Adjusted levels for hs-CRP and 24 of the 45 proteins were different between cases and controls. High levels of hs-CRP and matrix metalloproteinase-12, and low levels of epidermal growth factor (EGF) and oxidized low-density lipoprotein receptor 1 (OLR-1) were detected among the cases. Furthermore, the levels of C-C motif chemokine-19, granulocyte colony-stimulating factor-3 (CSF-3), interleukin-7 (IL-7), and hs-CRP were significantly higher in cases with a high degree of gingival inflammation. The levels of CSF-3 and tumor necrosis factor ligand superfamily member-10 TNFSF-10 were higher in cases with many deep periodontal pockets. The PerioGene North study includes detailed clinical periodontal data and uncovers a distinct serum protein profile in periodontitis. The findings of lower EGF and OLR-1 among the cases are highlighted, as this has not been presented before. The role of EGF and OLR-1 in periodontitis pathogenesis and as possible future biomarkers should be further explored.
Collapse
Affiliation(s)
- M Wänman
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
| | - S Betnér
- Northern Registry Centre, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - A Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - C K Holm
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
| | - C Isehed
- Gävle County Hospital, Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle, Sweden
- Center for Research and Development Uppsala University/Region Gävleborg, Gävle, Sweden
| | - A Holmlund
- Gävle County Hospital, Department of Periodontology, Public Dental Health County Council of Gävleborg, Gävle, Sweden
- Center for Research and Development Uppsala University/Region Gävleborg, Gävle, Sweden
| | - P Palmqvist
- Department of Periodontology, County Council of Västerbotten, Umeå, Sweden
| | - A Lövgren
- Department of Odontology, Umeå University, Section for Clinical Oral Physiology, Umeå, Sweden
| | - S Lindquist
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
- Lipum AB, Umeå, Sweden
| | - L Hänström
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
| | - U H Lerner
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
- Sahlgrenska Ostoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - E Kindstedt
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
| | - P Lundberg
- Department of Odontology, Umeå University, Section for Molecular Periodontology, Umeå, Sweden
| |
Collapse
|
8
|
Ashok K, Martinez T, Sesen J, Nasim S, Lang SS, Heuer G, Tucker A, Lopez-Ramirez MA, Smith ER, Ghalali A. Lectin-type oxidized LDL receptor-1 as a potential therapeutic target for cerebral cavernous malformations treatment. Front Neurosci 2024; 18:1442110. [PMID: 39234183 PMCID: PMC11371587 DOI: 10.3389/fnins.2024.1442110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Cerebral cavernous malformations (CCMs) are pathologic lesions comprised of clusters of thin-walled capillaries characterized by abnormal proliferation, angiogenesis, and bleeding secondary to somatic or germline mutations in endothelial cells. CCMs can cause headaches, seizures and/or neurological defects. There is a clinical need to develop better tools to detect CCMs and follow their progression in conjunction with the current use of neuroimaging techniques. Here we present data supporting the utility of LOX-1 (lectin-type oxidized LDL receptor 1), a 50 kDa transmembrane protein implicated in endothelial cell dysfunction and ischemia, as a putative biomarker for CCM. Methods CCM urine samples (n = 23) were collected from pediatric CCM patients. Matched healthy controls (n = 24) were collected from pediatric patients with either Chiari I malformation or fatty filum terminale, and otherwise normal findings. All samples were collected with patient/family consent and institutional review board approval.Samples were analyzed with Olink Proteomic Proximity Extension Assay (PEA). Differences in expression for 2,925 unique proteins were quantified between healthy control urine samples and CCM urine samples. The results were normalized, validated, and analyzed for demographic bias. In addition to urine samples, CCM tissue from patients was harvested and used to create primary cell lines for in vitro analysis of LOX-1 expression, in addition to immunofluorescence of lesional tissue excised at surgery. Results ANOVA analysis of the CCM urine samples showed a statistically significant increase in LOX-1 compared to the control samples, with CCM patients exhibiting a > 5-fold increase in urinary expression. Corroborating these elevated levels of circulating marker, analysis of source tissue from surgically resected CCMs revealed that LOX-1 is increased in both CCM patient cavernoma primary cell lines and operative specimens. Conclusion LOX-1 is involved with pathways implicated in CCM pathogenesis and our data here reveals that LOX-1 expression is significantly elevated in CCM patients as compared to matched healthy control individuals, including both source tissue from surgically excised CCMs and in analysis of samples collected from outside of the central nervous system, particularly urine. This proof-of-principle data suggests that LOX-1 may have potential utility as a target for CCM treatment and supports further investigation related to its potential mechanistic impact on CCM pathogenesis.
Collapse
Affiliation(s)
- Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Sana Nasim
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
| | - Shih-Shan Lang
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory Heuer
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Tucker
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA, United States
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Bing T, Shanlin X, Jisheng W, Jie H, Ruichao C, Zhiwei Z, Bin Y, Zhaoxin M, Zhenming H, Nian Z. Dysregulated lipid metabolism and intervertebral disc degeneration: the important role of ox-LDL/LOX-1 in endplate chondrocyte senescence and calcification. Mol Med 2024; 30:117. [PMID: 39123116 PMCID: PMC11311918 DOI: 10.1186/s10020-024-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lipid metabolism disorders are associated with degeneration of multiple tissues and organs, but the mechanism of crosstalk between lipid metabolism disorder and intervertebral disc degeneration (IDD) has not been fully elucidated. In this study we aim to investigate the regulatory mechanism of abnormal signal of lipid metabolism disorder on intervertebral disc endplate chondrocyte (EPC) senescence and calcification. METHODS Human intervertebral disc cartilage endplate tissue, cell model and rat hyperlipemia model were performed in this study. Histology and immunohistochemistry were used to human EPC tissue detection. TMT-labelled quantitative proteomics was used to detect differential proteins, and MRI, micro-CT, safranin green staining and immunofluorescence were performed to observe the morphology and degeneration of rat tail intervertebral discs. Flow cytometry, senescence-associated β-galactosidase staining, alizarin red staining, alkaline phosphatase staining, DCFH-DA fluorescent probe, and western blot were performed to detect the expression of EPC cell senescence, senescence-associated secretory phenotype, calcification-related proteins and the activation of cell senescence-related signaling pathways. RESULTS Our study found that the highly expressed oxidized low-density lipoprotein (ox-LDL) and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in human degenerative EPC was associated with hyperlipidemia (HLP). TMT-labelled quantitative proteomics revealed enriched pathways such as cell cycle regulation, endochondral bone morphogenesis and inflammation. The rat model revealed that HLP could induce ox-LDL, LOX-1, senescence and calcification markers high expression in EPC. Moreover, we demonstrated that ox-LDL-induced EPCs senescence and calcification were dependent on the LOX-1 receptor, and the ROS/P38-MAPK/NF-κB signaling pathway was implicated in the regulation of senescence induced by ox-LDL/LOX-1 in cell model. CONCLUSIONS So our study revealed that ox-LDL/LOX-1-induced EPCs senescence and calcification through ROS/P38-MAPK/NF-κB signaling pathway, providing information on understanding the link between lipid metabolism disorders and IDD.
Collapse
Affiliation(s)
- Tan Bing
- Department of Spine Surgery, The Third Hospital of Mian Yang, Sichuan Mental Health Center, 621000, Mianyang, People's Republic of China
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Xiang Shanlin
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Wang Jisheng
- Department of Pharmacy, The Third Hospital of Mian Yang, Sichuan Mental Health Center, 621000, Mianyang, People's Republic of China
| | - Hao Jie
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Cao Ruichao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Zhang Zhiwei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Yu Bin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Ma Zhaoxin
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Hu Zhenming
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China
| | - Zhou Nian
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, 400000, Chongqing, People's Republic of China.
| |
Collapse
|
10
|
Sánchez-León ME, Loaeza-Reyes KJ, Matias-Cervantes CA, Mayoral-Andrade G, Pérez-Campos EL, Pérez-Campos-Mayoral L, Hernández-Huerta MT, Zenteno E, Pérez-Cervera Y, Pina-Canseco S. LOX-1 in Cardiovascular Disease: A Comprehensive Molecular and Clinical Review. Int J Mol Sci 2024; 25:5276. [PMID: 38791315 PMCID: PMC11121106 DOI: 10.3390/ijms25105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.
Collapse
Affiliation(s)
- Maria Eugenia Sánchez-León
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - Karen Julissa Loaeza-Reyes
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico
| | - Carlos Alberto Matias-Cervantes
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - Gabriel Mayoral-Andrade
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | | | - Laura Pérez-Campos-Mayoral
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico;
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Yobana Pérez-Cervera
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, Mexico; (M.E.S.-L.); (K.J.L.-R.); (C.A.M.-C.); (G.M.-A.); (L.P.-C.-M.)
| |
Collapse
|
11
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
12
|
Lu H, Xu Y, Zhao H, Xu X. A novel rabbit model of atherosclerotic vulnerable plaque established by cryofluid-induced endothelial injury. Sci Rep 2024; 14:9447. [PMID: 38658774 PMCID: PMC11043414 DOI: 10.1038/s41598-024-60287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Acute thrombosis secondary to atherosclerotic plaque rupture is the main cause of acute cardiac and cerebral ischemia. An animal model of unstable atherosclerotic plaques is highly important for investigating the mechanism of plaque rupture and thrombosis. However, current animal models involve complex operations, are costly, and have plaque morphologies that are different from those of humans. We aimed to establish a simple animal model of vulnerable plaques similar to those of humans. Rabbits were randomly divided into three groups. Group A was given a normal formula diet for 13 weeks. Group C underwent surgery on the intima of the right carotid artery with - 80 °C cryofluid-induced injury after 1 week of a high-fat diet and further feeding a 12-week high-fat diet. Group B underwent the same procedure as Group C but without the - 80 °C cryofluid. Serum lipid levels were detected via ELISA. The plaque morphology, stability and degree of stenosis were evaluated through hematoxylin-eosin (HE) staining, Masson trichrome staining, Elastica van Gieson staining (EVG), and oil red O staining. Macrophages and inflammatory factors in the plaques were assessed via immunohistochemical analysis. The serum low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and total cholesterol (TC) levels in groups B and C were significantly greater than those in group A. No plaque formation was observed in group A. The plaques in group B were very small. In group C, obvious plaques were observed in the blood vessels, and the plaques exhibited a thin fibrous cap, a large lipid core, and partially visible neovascularization, which is consistent with the characteristics of vulnerable plaques. In the plaques of group C, a large number of macrophages were present, and matrix metalloproteinase 9 (MMP-9) and lectin-like oxidized LDL receptor 1 (LOX-1) were abundantly expressed. We successfully established a rabbit model of vulnerable carotid plaque similar to that of humans through the combination of cryofluid-induced endothelial injury and a high-fat diet, which is feasible and cost effective.
Collapse
Affiliation(s)
- Huaizhi Lu
- Department of Cardiovascular Medicine, First People's Hospital of Shangqiu, Kaixuan South Road 292, Shangqiu, 476000, China.
| | - Yiran Xu
- The Second Naval Hospital of Southern Theater Command of PLA, Sanya, 572029, China
| | - Hui Zhao
- Department of Cardiovascular Medicine, First People's Hospital of Shangqiu, Kaixuan South Road 292, Shangqiu, 476000, China
| | - Xuesheng Xu
- Department of Cardiovascular Medicine, First People's Hospital of Shangqiu, Kaixuan South Road 292, Shangqiu, 476000, China
| |
Collapse
|
13
|
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S. LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes After Acute Ischemic Stroke. Circ Res 2024; 134:954-969. [PMID: 38501247 DOI: 10.1161/circresaha.123.323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.
Collapse
Affiliation(s)
- Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Henrik Andersson
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Anaële Arnou
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | | | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| |
Collapse
|
14
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
15
|
Truthe S, Klassert TE, Schmelz S, Jonigk D, Blankenfeldt W, Slevogt H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J Innate Immun 2024; 16:105-132. [PMID: 38232720 PMCID: PMC10866614 DOI: 10.1159/000535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.
Collapse
Affiliation(s)
- Sarah Truthe
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany,
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany,
- Hannover Biomedical Research School (HRBS) and ZIB (Centre of Infection Biology), Braunschweig, Germany,
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Medical University Aachen, Aachen, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Dynamics of Respiratory Infection Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
16
|
Schiopu A, Björkbacka H, Narasimhan G, Loong BJ, Engström G, Melander O, Orho-Melander M, Nilsson J. Elevated soluble LOX-1 predicts risk of first-time myocardial infarction. Ann Med 2023; 55:2296552. [PMID: 38134912 PMCID: PMC10763917 DOI: 10.1080/07853890.2023.2296552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND There is an unmet clinical need for novel therapies addressing the residual risk in patients receiving guideline preventive therapy for coronary heart disease. Experimental studies have identified a pro-atherogenic role of the oxidized LDL receptor LOX-1. We investigated the association between circulating soluble LOX-1 (sLOX-1) and the risk for development of myocardial infarction. METHODS The study subjects (n = 4658) were part of the Malmö Diet and Cancer study. The baseline investigation was carried out 1991-1994 and the incidence of cardiovascular events monitored through national registers during a of 19.5 ± 4.9 years follow-up. sLOX-1 and other biomarkers were analyzed by proximity extension assay and ELISA in baseline plasma. RESULTS Subjects in the highest tertile of sLOX-1 had an increased risk of myocardial infarction (hazard ratio (95% CI) 1.76 (1.40-2.21) as compared with those in the lowest tertile. The presence of cardiovascular risk factors was related to elevated sLOX-1, but the association between sLOX-1 and risk of myocardial infarction remained significant when adjusting for risk factors. CONCLUSIONS In this prospective population study we found an association between elevated sLOX-1, the presence of carotid disease and the risk for first-time myocardial infarction. Taken together with previous experimental findings of a pro-atherogenic role of LOX-1, this observation supports LOX-1 inhibition as a possible target for prevention of myocardial infarction.
Collapse
Affiliation(s)
- Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Sweden
- Department of Transitional Science, Lund University, Sweden
| | | | | | - Bi Juin Loong
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | | | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| |
Collapse
|
17
|
Narsini R, Bhaskar V, Luqman H, O SS, Parupati SSR, B V RRA, Krishna Mohan I. Clinical Utility of Soluble Lectin Type Oxidized Low-Density Lipoprotein Receptor as a Biomarker for Myocardial Infarction and Stable Angina. Cureus 2023; 15:e50719. [PMID: 38234947 PMCID: PMC10792998 DOI: 10.7759/cureus.50719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Background and objectives Endothelial soluble lectin-type oxidized low-density lipoprotein receptor 1 (sLOX-1) recognizes oxidized low-density lipoprotein (LDL) and triggers downstream signaling leading to atherosclerosis. The objective of this study was to demonstrate the utility of sLOX-1 as a biomarker for detecting acute myocardial infarction (MI) and stable angina (SA) and to develop a diagnostic algorithm for distinguishing coronary vasospasm from coronary plaque rupture. Methods We enrolled 62 patients who underwent diagnostic coronary angiography (CAG) and 30 healthy controls (21 men and nine women) and measured sLOX-1, troponin I, and cardiac myosin-binding protein C (c-MyBPC) using commercial kits. Results Patients with MI exhibited higher sLOX-1 levels (301.55 ± 196.16 pg/ml) than patients with stable angina (220.76 ± 103.65 pg/ml) and healthy controls (121.14 ± 77.10, F: 10.55, p<0.001). Although higher troponin I levels were detected in MI patients (263.00 ± 493.00 vs. 3.19 ± 2.15 ng/ml, p=0.0019), no significant elevation was observed in SA patients (1.91 ± 0.79 ng/ml). Plasma sLOX-1 levels showed a positive association with age (r=0.37, p=0.003), but not with gender (r=0.04, p=0.75). Troponin I showed no association with age (r=0.12, p=0.36) or gender (r=0.06, p=0.62). Receiver operating characteristic (ROC) curves revealed that among the three biomarkers, troponin-I showed a higher area under the curve (AUC) (AUC: 0.941), followed by sLOX-1 (AUC: 0.888), while c-MyBPC showed no clinical utility in the detection of MI (AUC: 0.666). Conclusions A marked elevation of sLOX-1 can detect MI and differentiate the presence or absence of plaque rupture, along with diagnosing stable angina.
Collapse
Affiliation(s)
| | - Vijaya Bhaskar
- Biochemistry, Nizam's Institute of Medical Sciences, Hyderabad, IND
| | - Hajra Luqman
- Biochemistry, Nizam's Institute of Medical Sciences, Hyderabad, IND
| | - Sai Satish O
- Cardiology, Nizam's Institute of Medical Sciences, Hyderabad, IND
| | | | | | | |
Collapse
|
18
|
Florida EM, Li H, Hong CG, Ongstad EL, Gaddipati R, Sitaula S, Varma V, Parel PM, O'Hagan R, Chen MY, Teague HL, Playford MP, Karathanasis SK, Collén A, Mehta NN, Remaley AT, Sorokin AV. Relationship of Soluble Lectin-Like Low-Density Lipoprotein Receptor-1 (sLOX-1) With Inflammation and Coronary Plaque Progression in Psoriasis. J Am Heart Assoc 2023; 12:e031227. [PMID: 37982276 PMCID: PMC10727277 DOI: 10.1161/jaha.123.031227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory condition associated with coronary artery disease risk. Uptake of oxidized low-density lipoprotein by the lectin-like low-density lipoprotein receptor-1 triggers release of the soluble extracellular domain of the receptor (sLOX-1). We sought to characterize the relationship between sLOX-1, inflammation, and coronary plaque progression in psoriasis. METHODS AND RESULTS A total of 327 patients with psoriasis had serum sLOX-1 levels measured at baseline by an ELISA-based assay. Stratification by high-sensitivity C-reactive protein ≥4.0 mg/L (quartile 4), identified 81 participants who had coronary plaque phenotyping at baseline and were followed longitudinally by coronary computed tomography angiography. Subjects within high-sensitivity C-reactive protein quartile 4 were middle-aged (51.47±12.62 years), predominantly men (54.3%) with moderate psoriasis disease severity (6.60 [interquartile range, 3.30-13.40]). In the study cohort, participants with sLOX-1 above the median displayed increased vulnerable coronary plaque features. At baseline, sLOX-1 was associated with total burden (rho=0.296; P=0.01), noncalcified burden (rho=0.286; P=0.02), fibro-fatty burden (rho=0.346; P=0.004), and necrotic burden (rho=0.394; P=0.002). A strong relationship between sLOX-1, noncalcified burden (β=0.19; P=0.03), and fibro-fatty burden (β=0.29; P=0.003) was found in fully adjusted models at baseline and 1- and 4-year follow-up. Finally, coronary plaque features progressed over 1 year regardless of biologic or systemic treatment in subjects with high sLOX-1. CONCLUSIONS Patients with psoriasis with both high sLOX-1 and high-sensitivity C-reactive protein levels have increased coronary plaque burden associated with atherosclerotic plaque progression independent of biologic and systemic treatment. Thus, sLOX-1 might be considered as a promising marker in coronary artery disease risk estimation beyond traditional risk factors. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT01778569.
Collapse
Affiliation(s)
- Elizabeth M. Florida
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Haiou Li
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Christin G. Hong
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Emily L. Ongstad
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Ranjitha Gaddipati
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Sadichha Sitaula
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Vijayalakshmi Varma
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Philip M. Parel
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Ross O'Hagan
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Marcus Y. Chen
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Heather L. Teague
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Sotirios K. Karathanasis
- NeoProgenBaltimoreMDUSA
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National HeartLung and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Alan T. Remaley
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, National HeartLung and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Alexander V. Sorokin
- Section of Inflammation and Cardiometabolic DiseasesNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
19
|
Slavetinsky J, Lehmann E, Slavetinsky C, Gritsch L, van Dalen R, Kretschmer D, Bleul L, Wolz C, Weidenmaier C, Peschel A. Wall Teichoic Acid Mediates Staphylococcus aureus Binding to Endothelial Cells via the Scavenger Receptor LOX-1. ACS Infect Dis 2023; 9:2133-2140. [PMID: 37910786 DOI: 10.1021/acsinfecdis.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.
Collapse
Affiliation(s)
- Jessica Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Esther Lehmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christoph Slavetinsky
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
- Pediatric Surgery and Urology, University Children's Hospital Tübingen, Tübingen 72076, Germany
| | - Lisa Gritsch
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Christopher Weidenmaier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen72076, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tübingen, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen 72076 , Germany
| |
Collapse
|
20
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
21
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
22
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Higham JP, Cooper EB, Whalen C, Stahl-Hennig C, Giavedoni LD, Heistermann M. Urinary cytokine measurements do not reflect surgery-induced inflammation in rhesus macaques. Am J Primatol 2023; 85:e23506. [PMID: 37222418 DOI: 10.1002/ajp.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/14/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Measurement of the health and disease status of free-ranging primates is often limited by a lack of available biomarkers of immune activation and inflammation that can be applied noninvasively via the measurement of urine or fecal samples. Here, we evaluate the potential usefulness of noninvasive urinary measurements of a number of cytokines, chemokines, and other markers of inflammation and infection. We took advantage of surgery-associated inflammation in seven captive rhesus macaques, collecting urine samples before and after the medical interventions. We measured these urine samples for 33 different markers of inflammation and immune activation that are known to be responsive to inflammation and infection in rhesus macaque blood samples, via the Luminex platform. We also measured all samples for concentrations of the soluble urokinase plasminogen activator receptor (suPAR), which we had validated in a prior study as an effective biomarker of inflammation. Despite urine samples being collected in captivity under ideal conditions (clean, no contamination with feces or soil, frozen quickly), 13/33 biomarkers measured via Luminex were found at concentrations below detection limits in >50% of samples. Of the remaining 20 markers, only 2 showed significant increases in response to surgery-IL18 and MPO (myeloperoxidase). However, suPAR measurements of the same samples show a consistent marked increase in response to surgery that is absent from the patterns of IL18 and MPO measurement. Given that our samples were collected under conditions that are greatly preferable to those usually encountered in the field, urinary cytokine measurements via the Luminex platform seem overall unpromising for primate field studies.
Collapse
Affiliation(s)
- James P Higham
- Department of Anthropology, New York University, New York, New York, USA
| | - Eve B Cooper
- Department of Anthropology, New York University, New York, New York, USA
| | - Connor Whalen
- Department of Anthropology, New York University, New York, New York, USA
| | | | - Luis D Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, Texas, San Antonio, USA
- Department of Biology, Trinity University, San Antonio, Texas, USA
| | | |
Collapse
|
24
|
Hofmann A, Khorzom Y, Klimova A, Wolk S, Busch A, Sabarstinski P, Müglich M, Egorov D, Kopaliani I, Poitz DM, Kapalla M, Hamann B, Frank F, Jänichen C, Brunssen C, Morawietz H, Reeps C. Associations of Tissue and Soluble LOX-1 with Human Abdominal Aortic Aneurysm. J Am Heart Assoc 2023:e027537. [PMID: 37421287 PMCID: PMC10382096 DOI: 10.1161/jaha.122.027537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Background Indication for prophylactic surgical abdominal aortic aneurysm (AAA) repair depends on the maximal aortic diameter. The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for uptake of oxidized low-density lipoprotein cholesterol and is implicated in atherosclerosis. A soluble form of LOX-1 (sLOX-1) has been discussed as a novel biomarker in coronary artery disease and stroke. Herein, we assessed the regulation of aortic LOX-1 as well as the diagnostic and risk stratification potential of sLOX-1 in patients with AAA. Methods and Results Serum sLOX-1 was assessed in a case-control study in AAA (n=104) and peripheral artery disease (n=104). sLOX-1 was not statistically different between AAA and peripheral artery disease but was higher in AAA (β=1.28, P=0.04) after adjusting for age, atherosclerosis, type 2 diabetes, prescription of statins, β-blockers, ACE inhibitors, and therapeutic anticoagulation. sLOX-1 was not associated with the aortic diameter, AAA volume, or the thickness of the intraluminal thrombus. Aortic LOX-1 mRNA expression tended to be higher in AAA when compared with disease, and expression was positively associated with cleaved caspase-3, smooth muscle actin, collagen, and macrophage content. Conclusions In AAA, sLOX-1 was differently affected by age, cardiometabolic diseases, and corresponding medical therapies. Comparison with nonatherosclerotic disease would be beneficial to further elucidate the diagnostic potential of sLOX-1, although it was not useful for risk stratification. Aneurysmal LOX-1 mRNA expression was increased and positively associated with smooth muscle cells and collagen content, suggesting that LOX-1 is eventually not deleterious in human AAA and could counteract AAA rupture.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Yazan Khorzom
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Anna Klimova
- National Center for Tumor Diseases, Partner Site Dresden and Institute for Medical Informatics and Biometry, Faculty of Medicine Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Dmitry Egorov
- Department of Physiology, Medical Faculty Carl Gustav Carus Technische Universität Dresden Germany
| | - Irakli Kopaliani
- Department of Physiology, Medical Faculty Carl Gustav Carus Technische Universität Dresden Germany
| | - David M Poitz
- Institute of Clinical Chemistry and Laboratory Medicine Medical Faculty Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Christian Jänichen
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery Faculty of Medicine andUniversity Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
25
|
Gliga AR, Grahn K, Gustavsson P, Ljungman P P, Albin M, Selander J, Broberg K. Short and long-term associations between serum proteins linked to cardiovascular disease and particle exposure among constructions workers. Scand J Work Environ Health 2023; 49:145-154. [PMID: 36409488 PMCID: PMC10577013 DOI: 10.5271/sjweh.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Construction workers are exposed to respirable dust, including respirable crystalline silica (RCS), which is a potential risk factor for cardiovascular disease (CVD). The aim of this study was to evaluate whether exposure to particles among construction workers is associated with short- and long-term alterations in CVD-related serum proteins. METHODS Using proximity extension assay, we measured 92 serum proteins linked to CVD among active male construction workers (N=65, non-smokers) sampled on two occasions: during work and after vacation. First, we used linear models to identify short-term changes in proteins associated with particle exposure (assessed as respirable dust and RCS) during work. Secondly, we used linear mixed models to evaluate whether these associations were long-term, ie, persistent after vacation. RESULTS The median exposure to respirable dust and RCS during work were 0.25 mg/m3 and 0.01 mg/m3, respectively. Respirable dust was associated with short-term changes in six proteins (tissue factor, growth hormone, heme oxygenase-1, dickkopf-related protein-1, platelet-derived growth factor-B, stem cell factor); long-term associations were observed for the former three proteins. RCS was associated with short-term changes in five proteins (carcinoembryonic antigen-related cell adhesion molecule-8, hydroxyacid oxidase-1, tissue factor, carbonic anhydrase-5A, lectin-like oxidized LDL receptor-1); long-term associations were observed for the former four proteins. CONCLUSIONS Moderate exposure to particles in the construction industry is associated with both short- and long-term changes in circulating CVD-related proteins. Further studies are needed to evaluate if these changes are predictors of occupationally induced clinical CVD.
Collapse
Affiliation(s)
- Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Vavere AL, Sinsakul M, Ongstad EL, Yang Y, Varma V, Jones C, Goodman J, Dubois VFS, Quartino AL, Karathanasis SK, Abuhatzira L, Collén A, Antoniades C, Koren MJ, Gupta R, George RT. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc 2023; 12:e027540. [PMID: 36688371 PMCID: PMC9973634 DOI: 10.1161/jaha.122.027540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Background Blockade of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a potentially attractive mechanism for lowering inflammatory and lipid risk in patients with atherosclerosis. This study aims to assess the safety, tolerability, and target engagement of MEDI6570, a high-affinity monoclonal blocking antibody to LOX-1. Methods and Results This phase 1, first-in-human, placebo-controlled study (NCT03654313) randomized 88 patients with type 2 diabetes to receive single ascending doses (10, 30, 90, 250, or 500 mg) or multiple ascending doses (90, 150, or 250 mg once monthly for 3 months) of MEDI6570 or placebo. Primary end point was safety; secondary and exploratory end points included pharmacokinetics, immunogenicity, free soluble LOX-1 levels, and change in coronary plaque volume. Mean age was 57.6/58.1 years in the single ascending doses/multiple ascending doses groups, 31.3%/62.5% were female, and mean type 2 diabetes duration was 9.7/8.7 years. Incidence of adverse events was similar among cohorts. MEDI6570 exhibited nonlinear pharmacokinetics, with terminal half-life increasing from 4.6 days (30 mg) to 11.2 days (500 mg), consistent with target-mediated drug disposition. Dose-dependent reductions in mean soluble LOX-1 levels from baseline were observed (>66% at 4 weeks and 71.61-82.96% at 10 weeks in the single ascending doses and multiple ascending doses groups, respectively). After 3 doses, MEDI6570 was associated with nonsignificant regression of noncalcified plaque volume versus placebo (-13.45 mm3 versus -8.25 mm3). Conclusions MEDI6570 was well tolerated and demonstrated dose-dependent soluble LOX-1 suppression and a pharmacokinetic profile consistent with once-monthly dosing. Registration URL: https://clinicaltrials.gov/; Unique identifier: NCT03654313.
Collapse
Affiliation(s)
- Andrea L. Vavere
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Marvin Sinsakul
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Emily L. Ongstad
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Ye Yang
- Early CVRM Biometrics, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Vijayalakshmi Varma
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Christopher Jones
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Joanne Goodman
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Vincent F. S. Dubois
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Angelica L. Quartino
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Sotirios K. Karathanasis
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Liron Abuhatzira
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordUnited Kingdom
| | - Michael J. Koren
- Jacksonville Center for Clinical Research (JCCR)JacksonvilleFLUSA
| | - Ruchi Gupta
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Richard T. George
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| |
Collapse
|
27
|
Stinson SE, Jonsson AE, Andersen MK, Lund MAV, Holm LA, Fonvig CE, Huang Y, Stankevič E, Juel HB, Ängquist L, Sørensen TIA, Ongstad EL, Gaddipati R, Grimsby J, Rhodes CJ, Pedersen O, Christiansen M, Holm J, Hansen T. High Plasma Levels of Soluble Lectin-like Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Inflammation and Cardiometabolic Risk Profiles in Pediatric Overweight and Obesity. J Am Heart Assoc 2023; 12:e8145. [PMID: 36695299 PMCID: PMC9973661 DOI: 10.1161/jaha.122.027042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background Lectin-like oxidized low-density lipoprotein (ox-LDL) receptor-1 is a scavenger receptor for oxidized low-density lipoprotein. In adults, higher soluble lectin-like ox-LDL receptor-1 (sLOX-1) levels are associated with cardiovascular disease, type 2 diabetes, and obesity, but a similar link in pediatric overweight/obesity remains uncertain. Methods and Results Analyses were based on the cross-sectional HOLBAEK Study, including 4- to 19-year-olds from an obesity clinic group with body mass index >90th percentile (n=1815) and from a population-based group (n=2039). Fasting plasma levels of sLOX-1 and inflammatory markers were quantified, cardiometabolic risk profiles were assessed, and linear and logistic regression analyses were performed. Pubertal/postpubertal children and adolescents from the obesity clinic group exhibited higher sLOX-1 levels compared with the population (P<0.001). sLOX-1 positively associated with proinflammatory cytokines, matrix metalloproteinases, body mass index SD score, waist SD score, body fat %, plasma alanine aminotransferase, serum high-sensitivity C-reactive protein, plasma low-density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure SD score, and inversely associated with plasma high-density lipoprotein cholesterol (all P<0.05). sLOX-1 positively associated with high alanine aminotransferase (odds ratio [OR], 1.16, P=4.1 E-04), insulin resistance (OR, 1.16, P=8.6 E-04), dyslipidemia (OR, 1.25, P=1.8 E-07), and hypertension (OR, 1.12, P=0.02). Conclusions sLOX-1 levels were elevated during and after puberty in children and adolescents with overweight/obesity compared with population-based peers and associated with inflammatory markers and worsened cardiometabolic risk profiles. sLOX-1 may serve as an early marker of cardiometabolic risk and inflammation in pediatric overweight/obesity. Registration The HOLBAEK Study, formerly known as The Danish Childhood Obesity Biobank, ClinicalTrials.gov identifier number NCT00928473, https://clinicaltrials.gov/ct2/show/NCT00928473 (registered June 2009).
Collapse
Affiliation(s)
- Sara E. Stinson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Anna E. Jonsson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Mette K. Andersen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Morten A. V. Lund
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Louise Aas Holm
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark
| | - Cilius E. Fonvig
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department of PediatricsKolding Hospital a part of Lillebælt HospitalKoldingDenmark
| | - Yun Huang
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Evelina Stankevič
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Helene Bæk Juel
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Lars Ängquist
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Thorkild I. A. Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,Department of Public Health, Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Emily L. Ongstad
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Ranjitha Gaddipati
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Joseph Grimsby
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD,Regeneron Pharmaceuticals, Inc.TarrytownNY
| | - Christopher J. Rhodes
- Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZenecaGaithersburgMD
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| | - Michael Christiansen
- The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Department for Congenital DisordersStatens Serum InstituteCopenhagenDenmark
| | - Jens‐Christian Holm
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark,The Children’s Obesity Clinic, Accredited European Centre for Obesity Management, Department of PediatricsHolbæk HospitalHolbækDenmark,Faculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical Sciences, University of CopenhagenDenmark
| |
Collapse
|
28
|
Hong CG, Florida E, Li H, Parel PM, Mehta NN, Sorokin AV. Oxidized low-density lipoprotein associates with cardiovascular disease by a vicious cycle of atherosclerosis and inflammation: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 9:1023651. [PMID: 36727024 PMCID: PMC9885196 DOI: 10.3389/fcvm.2022.1023651] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Low-density lipoprotein cholesterol (LDL-C) is an established marker for cardiovascular disease (CVD) and a therapeutic target. Oxidized LDL (oxLDL) is known to be associated with excessive inflammation and abnormal lipoprotein metabolism. Chronic inflammatory diseases confer an elevated risk of premature atherosclerosis and adverse cardiovascular events. Whether oxLDL may serve as a potential biomarker for CVD stratification in populations with chronic inflammatory conditions remains understudied. Objective To perform a systematic review and meta-analysis evaluating the relationship between oxLDL and CVD (defined by incident CVD events, carotid intima-media thickness, presence of coronary plaque) in patients with chronic inflammatory diseases. Methods A systematic literature search was performed using studies published between 2000 and 2022 from PubMed, Cochrane Library, Embase (Elsevier), CINHAL (EBSCOhost), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) databases on the relationship between oxLDL and cardiovascular risk on inflamed population. The pooled effect size was combined using the random effect model and publication bias was assessed if P < 0.05 for the Egger or Begg test along with the funnel plot test. Results A total of three observational studies with 1,060 participants were ultimately included in the final meta-analysis. The results demonstrated that oxLDL is significantly increased in participants with CVD in the setting of chronic inflammatory conditions. This meta-analysis suggests that oxLDL may be a useful biomarker in risk stratifying cardiovascular disease in chronically inflamed patients.
Collapse
|
29
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
30
|
Blanch-Ruíz MA, Sánchez-López A, Ríos-Navarro C, Ortega-Luna R, Collado-Díaz V, Orden S, Martínez-Cuesta MA, Esplugues JV, Álvarez Á. Abacavir causes leukocyte/platelet crosstalk by activating neutrophil P2X7 receptors thus releasing soluble lectin-like oxidized low-density lipoprotein receptor-1. Br J Pharmacol 2022; 180:1516-1532. [PMID: 36541109 DOI: 10.1111/bph.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Abacavir, an antiretroviral drug used in HIV therapy associated with myocardial infarction, promotes thrombosis through P2X7 receptors. The role of platelets as pro-thrombotic cells is acknowledged whereas that of neutrophils-due to their secretory capacity-is gaining recognition. This study analyses the role of neutrophils-specifically the secretome of abacavir-treated neutrophils (SNABC )-in platelet activation that precedes thrombosis. EXPERIMENTAL APPROACH Effects of abacavir or SNABC on platelet activation and platelet-leukocyte interactions and expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) were analysed by flow cytometry. The secretome was analysed by proteomics. The role of leukocytes in the actions of abacavir was evaluated in a mouse model of thrombosis. KEY RESULTS Abacavir induced platelet-leukocyte interactions, not directly via effects of abacavir on platelets, but via activation of neutrophils, which triggered interactions between platelet P-selectin and neutrophil P-selectin glycoprotein ligand-1 (PSGL-1). SNABC stimulated platelet activation and platelet-leukocyte interactions through a process that was dependent on LOX-1, neutrophil P2X7 and platelet P2Y1, P2Y12 and P2X1 receptors. Abacavir induced the expression of LOX-1 on neutrophils and of the soluble form of LOX-1 (sLOX-1) in SNABC . Neutrophils, LOX-1, P2X7, P2Y1, P2Y12 and P2X1 receptors were required for the pro-thrombotic actions of abacavir in vivo. CONCLUSION AND IMPLICATIONS Neutrophils are target cells in abacavir-induced thrombosis. Abacavir released sLOX-1 from neutrophils via activation of their P2X7 receptors, which in turn activated platelets. Hence, sLOX-1 could be the missing link in the cardiovascular risk associated with abacavir.
Collapse
Affiliation(s)
| | - Ainhoa Sánchez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - César Ríos-Navarro
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Víctor Collado-Díaz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Samuel Orden
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain
| | - María Angeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| | - Juan V Esplugues
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,FISABIO-Fundación Hospital Universitario Dr. Peset, Valencia, Spain.,CIBERehd, Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.,CIBERehd, Valencia, Spain
| |
Collapse
|
31
|
Rojas M, Prado Y, Tapia P, Carreño LJ, Cabello-Verrugio C, Simon F. Oxidized High-Density Lipoprotein Induces Endothelial Fibrosis Promoting Hyperpermeability, Hypotension, and Increased Mortality. Antioxidants (Basel) 2022; 11:2469. [PMID: 36552677 PMCID: PMC9774523 DOI: 10.3390/antiox11122469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
During systemic inflammation, reactive oxygen species (ROS) are generated in the bloodstream, producing large amounts of oxidized HDL (oxHDL). OxHDL loses the vascular protective features of native HDL, acquiring detrimental actions. Systemic inflammation promotes endothelial fibrosis, characterized by adhesion protein downregulation and fibrotic-specific gene upregulation, disrupting endothelial monolayer integrity. Severe systemic inflammatory conditions, as found in critically ill patients in the intensive care unit (ICU), exhibit endothelial hyperpermeability, hypotension, and organ hypoperfusion, promoting organ dysfunction and increased mortality. Because endothelial fibrosis disturbs the endothelium, it is proposed that it is the cellular and molecular origin of endothelial hyperpermeability and the subsequent deleterious consequences. However, whether oxHDL is involved in this process is unknown. The aim of this study was to investigate the fibrotic effect of oxHDL on the endothelium, to elucidate the underlying molecular and cellular mechanism, and to determine its effects on vascular permeability, blood pressure, and mortality. The results showed that oxHDL induces endothelial fibrosis through the LOX-1/NOX-2/ROS/NF-κB pathway, TGF-β secretion, and ALK-5/Smad activation. OxHDL-treated rats showed endothelial hyperpermeability, hypotension, and an enhanced risk of death and mortality, which was prevented using an ALK-5 inhibitor and antioxidant diet consumption. Additionally, the ICU patients showed fibrotic endothelial cells, and the resuscitation fluid volume administered correlated with the plasma oxHDL levels associated with an elevated risk of death and mortality. We conclude that oxHDL generates endothelial fibrosis, impacting blood pressure regulation and survival.
Collapse
Affiliation(s)
- Macarena Rojas
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Pablo Tapia
- Unidad de Paciente Crítico Adulto, Hospital Clínico La Florida, La Florida, Santiago 8242238, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Claudio Cabello-Verrugio
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Science, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8331150, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
| |
Collapse
|
32
|
Bezna MC, Pisoschi C, Bezna M, Danoiu S, Tudorascu IR, Negroiu CE, Melinte PR. Decrease of glutathione peroxidase in arrhythmic cardiac pathology in young individuals and its therapeutic implications. Biomed Rep 2022; 17:93. [PMID: 36382261 PMCID: PMC9634505 DOI: 10.3892/br.2022.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Glutathione peroxidase (GPx), as an antioxidant enzyme, is involved in the regulation of processes that cause cellular oxidative stress, with implications in various pathologies. The aim of the present study was to evaluate GPx variations in patients with arrhythmic, non-structural cardiac disorders. The research was performed on 120 patients, with a mean age of 33 years old, divided into 3 equal groups, of which 2 groups included patients with cardiac arrhythmias, the first group, associated with dyslipidemia and the second one, without dyslipidemia, and a control group consisting of healthy individuals. The method for determining GPx was based on the GPx enzyme catalysis reaction of the reduced glutathione (GSH) oxidation reaction by cumene hydroperoxide. The results revealed that GPx variation was decreased in patients with cardiac arrhythmias, with or without dyslipidemia, up to 66 and 74% of mean control values, respectively, the differences being statistically significant, showing the existence of an oxidative stress imbalance, that may be involved in triggering arrhythmogenic electrochemical mechanisms. The GPx deficiency determined in relation to cardiac arrhythmias was in dyslipidemic and non-lipidemic patients as follows: 29-35% in sinus bradycardia, 31-35% in associated cardiac arrhythmias, 30-33% in sinus tachycardia, 27-33% in atrial fibrillation, 32-33% in atrial flutter, 27-32% in atrial extrasystolic arrhythmia, 28-30% in ventricular extrasystolic arrhythmia and 18-26% in paroxysmal supraventricular tachycardia. Collectively, the results revealed that GPx, an antioxidant enzyme, is a specific biomarker, whose decrease indicated the existence of oxidative stress in young individuals with cardiac arrhythmias and its involvement in arrhythmogenic electrochemical processes. In addition, GPx deficiencies were between 18-35% in all types of cardiac arrhythmias, the highest being recorded in sinus bradycardia and the lowest in paroxysmal supraventircular tachycardia. Furthermore, the oxidative stress favored by the decrease of GPx induced lipid oxidation, regardless of the presence or absence of dyslipidemia, which triggered the formation of anti-lipid antibodies and a subclinical endothelial aggression, with early atherosclerotic potential. GPx evaluation may argue for the existence of oxidative stress in non-structural cardiac arrhythmias, and by its proper correction (antioxidants), prophylaxis of atherogenic dysfunction.
Collapse
Affiliation(s)
- Maria Cristina Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cătălina Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Marinela Bezna
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Iulia-Robertina Tudorascu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cristina-Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Petru Razvan Melinte
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| |
Collapse
|
33
|
Karpouzas GA, Papotti B, Ormseth S, Palumbo M, Hernandez E, Adorni MP, Zimetti F, Budoff M, Ronda N. Serum cholesterol loading capacity on macrophages is linked to coronary atherosclerosis and cardiovascular event risk in rheumatoid arthritis. RMD Open 2022; 8:rmdopen-2022-002411. [PMID: 36113961 PMCID: PMC9486392 DOI: 10.1136/rmdopen-2022-002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022] Open
Abstract
Objectives Cholesterol loading capacity (CLC) describes the ability of serum to deliver cholesterol to cells. It is linked to foam cell formation, a pivotal step in atherosclerotic plaque development. We evaluate the associations of CLC with coronary atherosclerosis presence, burden and cardiovascular risk in patients with rheumatoid arthritis (RA). Methods Coronary atherosclerosis (any, high-risk low-attenuation plaque and obstructive plaque) was evaluated with CT angiography in 141 patients. Participants were prospectively followed for 6.0±2.4 years and cardiovascular events including cardiac death, myocardial infarction, unstable angina, stroke, claudication, revascularisation and hospitalised heart failure were recorded. CLC was quantified as intracellular cholesterol in human macrophages after incubation with patient serum. Results CLC was not linked to overall plaque presence or burden after adjustments for atherosclerotic cardiovascular disease (ASCVD) score, statin use and low-density lipoprotein cholesterol. However, CLC associated with presence and numbers of any, low-attenuation and obstructive plaques exclusively in biologic disease-modifying antirheumatic drugs (bDMARD) non-users (p for interaction ≤0.018). CLC associated with cardiovascular event risk overall after adjustments for ASCVD and number of segments with plaque (HR=1.76 (95% CI 1.16 to 2.67) per 1 SD increase in CLC, p=0.008). Additionally, bDMARD use modified the impact of CLC on event risk; CLC associated with events in bDMARD non-users (HR=2.52 (95% CI 1.36 to 4.65) per 1SD increase in CLC, p=0.003) but not users. Conclusion CLC was linked to long-term cardiovascular event risk in RA and associated with high-risk low attenuation and obstructive coronary plaque presence and burden in bDMARD non-users. Its prospective validation as a predictive biomarker may be, therefore, warranted.
Collapse
Affiliation(s)
- George Athanasios Karpouzas
- Internal Medicine-Rheumatology, Lundquist Institute, Torrance, California, USA .,Department of Rheumatology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Sarah Ormseth
- Internal Medicine-Rheumatology, Lundquist Institute, Torrance, California, USA
| | | | | | | | - Francesca Zimetti
- Department of Pharmacy, University of Parma, Parma, Emilia-Romagna, Italy
| | - Matthew Budoff
- Internal Medicine, Lundquist Institute, Torrance, California, USA
| | - Nicoletta Ronda
- Department of Pharmacy, University of Parma, Parma, Emilia-Romagna, Italy
| |
Collapse
|
34
|
Zhang HY, Lu X, Hao YH, Tang L, He ZY. Oxidized low-density lipoprotein receptor 1: a novel potential therapeutic target for intracerebral hemorrhage. Neural Regen Res 2022; 17:1795-1801. [PMID: 35017440 PMCID: PMC8820711 DOI: 10.4103/1673-5374.332157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022] Open
Abstract
Oxidized low-density lipoprotein receptor 1 (OLR1) is upregulated in neurons and participates in hypertension-induced neuronal apoptosis. OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke. Therefore, OLR1 is likely involved in the progress of intracerebral hemorrhage. In this study, we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model. OLR1 small interfering RNA (10 μL; 50 pmol/μL) was injected into the right basal ganglia to knock down OLR1. Twenty-four hours later, 0.5 U collagenase type VII was injected to induce intracerebral hemorrhage. We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma, neuron loss, inflammatory reaction, and oxidative stress in rat brain tissue. We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway. Therefore, silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage. These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Lu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Han Hao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
35
|
Schirrmann R, Erkelenz M, Lamers K, Sritharan O, Nachev M, Sures B, Schlücker S, Brandau S. Gold Nanorods Induce Endoplasmic Reticulum Stress and Autocrine Inflammatory Activation in Human Neutrophils. ACS NANO 2022; 16:11011-11026. [PMID: 35737452 DOI: 10.1021/acsnano.2c03586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold nanorods (AuNRs) are promising agents for diverse biomedical applications such as drug and gene delivery, bioimaging, and cancer treatment. Upon in vivo application, AuNRs quickly interact with cells of the immune system. On the basis of their strong intrinsic phagocytic activity, polymorphonuclear neutrophils (PMNs) are specifically equipped for the uptake of particulate materials such as AuNRs. Therefore, understanding the interaction of AuNRs with PMNs is key for the development of safe and efficient therapeutic applications. In this study, we investigated the uptake, intracellular processing, and cell biological response induced by AuNRs in PMNs. We show that uptake of AuNRs mainly occurs via phagocytosis and macropinocytosis with rapid deposition of AuNRs in endosomes within 5 min. Within 60 min, AuNR uptake induced an unfolded protein response (UPR) along with induction of inositol-requiring enzyme 1 α (IREα) and features of endoplasmic reticulum (ER) stress. This early response was followed by a pro-inflammatory autocrine activation loop that involves LOX1 upregulation on the cell surface and increased secretion of IL8 and MMP9. Our study provides comprehensive mechanistic insight into the interaction of AuNRs with immune cells and suggests potential targets to limit the unwanted immunopathological activation of PMNs during application of AuNRs.
Collapse
Affiliation(s)
- Ronja Schirrmann
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Michael Erkelenz
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Kim Lamers
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Oliver Sritharan
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- University of Duisburg-Essen, Universitätsstraße 5, 451471 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- Center of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Center of Medical Biotechnology (ZMB), University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
- University of Duisburg-Essen, Universitätsstraße 5, 451471 Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, 45147 Essen, Germany
| |
Collapse
|
36
|
Loxin Reduced the Inflammatory Response in the Liver and the Aortic Fatty Streak Formation in Mice Fed with a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23137329. [PMID: 35806336 PMCID: PMC9266330 DOI: 10.3390/ijms23137329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation regulating inflammatory cytokines and chemotactic factor secretion. Recently, a Lox-1 truncated protein isoform lacking the ox-LDL binding domain named LOXIN has been described. We have previously shown that LOXIN overexpression blocked Lox-1-mediated ox-LDL internalization in human endothelial progenitor cells in vitro. However, the functional role of LOXIN in targeting inflammation or tissue injury in vivo remains unknown. In this study, we investigate whether LOXIN modulated the expression of Lox-1 and reduced the inflammatory response in a high-fat-diet mice model. Results indicate that human LOXIN blocks Lox-1 mediated uptake of ox-LDL in H4-II-E-C3 cells. Furthermore, in vivo experiments showed that overexpression of LOXIN reduced both fatty streak lesions in the aorta and inflammation and fibrosis in the liver. These findings were associated with the down-regulation of Lox-1 in endothelial cells. Then, LOXIN prevents hepatic and aortic tissue damage in vivo associated with reduced Lox-1 expression in endothelial cells. We encourage future research to understand better the underlying molecular mechanisms and potential therapeutic use of LOXIN.
Collapse
|
37
|
Kuzan A, Królewicz E, Kustrzeba-Wójcicka I, Lindner-Pawłowicz K, Sobieszczańska M. How Diabetes and Other Comorbidities of Elderly Patients and Their Treatment Influence Levels of Glycation Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127524. [PMID: 35742776 PMCID: PMC9223786 DOI: 10.3390/ijerph19127524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022]
Abstract
Medical care for geriatric patients is a great challenge, mainly due to various overlapping deficits relevant to numerous coexisting diseases, of which the most common are diabetes mellitus and atherosclerosis. In the case of diabetes, the glycation process is intensified, which accelerates atherosclerosis development and diabetic complications. Our goal was to investigate the relationship between the classical biochemical parameters of diabetes and atherosclerosis, as well as parameters which may indicate a nephropathy, and the parameters strictly related to glycation, taking into account the pharmacological treatment of patients. Methods: We analyzed the patients’ serum concentrations of fluorescent glycation product—pentosidine, concentrations of soluble receptors for advanced glycation products (sRAGE), lipoprotein receptor-1 (LOX-1), galectin 3 (GAL3), scavenger receptor class A (SR-A), and scavenger receptor class B (SR-BI), as well as the level of lipid peroxidation and free amine content. Among the identified correlations, the most interesting are the following: sRAGE with triglycerides (r = 0.47, p = 0.009), sRAGE with SR-BI (r = 0.47, p = 0.013), SR-BI with LOX-1 (r = 0.31, p = 0.013), and SR-BI with HDL (r = −0.30, p = 0.02). It has been shown that pentosidine and reactive free amine contents are significantly higher in elderly patients with ischemic heart disease. Pentosidine is also significantly higher in patients with arterial hypertension. Malondialdehyde turned out to be higher in patients with diabetes mellitus type 2 that was not treated with insulin or metformin than in those treated with both medications (p = 0.052). GAL3 was found to be lower both in persons without diabetes and in diabetics treated with metformin (p = 0.005). LOX-1 was higher in diabetic patients not treated with metformin or insulin, and lowest in diabetics treated with both insulin and metformin, with the effect of metformin reducing LOX-1 levels (p = 0.039). Our results were the basis for a discussion about the diagnostic value in the clinical practice of LOX-1 and GAL3 in geriatric patients with diabetes and also provide grounds for inferring the therapeutic benefits of insulin and metformin treatment.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
- Correspondence: ; Tel.: +48-71-7841-379
| | - Emilia Królewicz
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
| | - Irena Kustrzeba-Wójcicka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (E.K.); (I.K.-W.)
| | - Karolina Lindner-Pawłowicz
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.L.-P.); (M.S.)
| | - Małgorzata Sobieszczańska
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-369 Wroclaw, Poland; (K.L.-P.); (M.S.)
| |
Collapse
|
38
|
Ajafar MH, Al-Thuwaini TM, Dakhel HH. Association of OLR1 gene polymorphism with live body weight and body morphometric traits in Awassi ewes: short communication. Mol Biol Rep 2022; 49:4149-4153. [PMID: 35553328 DOI: 10.1007/s11033-022-07481-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Oxidized low-density lipoprotein receptor 1 (OLR1) is an endothelial receptor that binds and degrades oxidized low-density lipoproteins (Ox-LDL), thus having a physiological role in metabolism. Polymorphisms in the OLR1 gene are associated with animals with different production traits. Due to this, the study aimed to determine if OLR1 polymorphisms in Awassi ewes associate with live body weight and body measurement. METHODS AND RESULTS In this study, 200 ewes between the ages of 2.5 and 5 years, not pregnant or lactating, were selected. Phenotypic measurements including live body weight and body measurements were collected. A sheep's blood was collected to extract genomic DNA, genotyped, and sequenced to confirm the presence of the variants that arose from the amplified fragments. One novel C246A single nucleotide polymorphism (SNP) was identified in the OLR1 gene (exon 3) that assigned two genotypes CC and CA. The study indicated significant differences (P ≤ 0.05) in live body weight and body measurements of the genotype CC compared with the genotype CA. The genotype CC correlated positively with live body weight, height at shoulder, height at hip, chest girth, and chest width (r = 0.67, P = 0.02), (r = 0.54, P = 0.03), (r = 0.61, P = 0.02), (r = 0.53, P = 0.01) and (r = 0.66, P = 0.04) respectively. CONCLUSIONS Sheep with the CC genotype had a higher live body weight and larger body measurement, making them better for productivity. These genotypic data and associations can be used to better select sheep for future marker-assisted selection programs.
Collapse
Affiliation(s)
- Majeed H Ajafar
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, Iraq.
| | - Hashim H Dakhel
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil, Iraq
| |
Collapse
|
39
|
Compliance with Cardiovascular Prevention Guidelines in Type 2 Diabetes Individuals in a Middle-Income Region: A Cross-Sectional Analysis. Diagnostics (Basel) 2022; 12:diagnostics12040814. [PMID: 35453862 PMCID: PMC9024646 DOI: 10.3390/diagnostics12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Stricter control of risk factors has been pursued as a compelling strategy to mitigate cardiovascular events (CVE) in type 2 diabetes (T2D) individuals. However, the achievement rate of the recommended goals has remained low in clinical practice. This study investigated the 2019 ESC guideline recommendation attainment among T2D individuals enrolled in a national cohort held in Brazil. Data from 1030 individuals (mean age: 58 years old; 54% male; mean T2D duration: 9.7 years) were analyzed. The control rates were 30.6% for SBP, 18.8% for LDL-C, and 41% for A1c, and only 3.2% of the study participants met all three targets. Statins and high-intensity lipid-lowering therapy prescription rates were 45% and 8.2%, respectively. Longer T2D duration and those at higher CV risk were less likely to be controlled. Longer diabetes duration and higher CV risk were inversely related to the chance of achieving the recommended targets. Treatment escalation using conventional therapies would be sufficient to gain optimal control in most of the study sample. In conclusion, a minimal proportion of T2D individuals comply with guidelines-oriented CV prevention targets. Given the significant burden of the disease, and the substantial effect size predicted for these therapies, bridging this gap between guidelines and clinical practice should be considered an urgent call to public health managers.
Collapse
|
40
|
Periodontal Disease Augments Cardiovascular Disease Risk Biomarkers in Rheumatoid Arthritis. Biomedicines 2022; 10:biomedicines10030714. [PMID: 35327515 PMCID: PMC8945365 DOI: 10.3390/biomedicines10030714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Objectives: Periodontal disease (PD) and rheumatoid arthritis (RA) are known chronic conditions with sustained inflammation leading to osteolysis. Cardiovascular diseases (CVD) are frequent comorbidities that may arise from sustained inflammation associated with both PD and RA. In order to determine CVD risk, alterations at the molecular level need to be identified. The objective of this study, therefore, was to assess the relationship of CVD associated biomarkers in RA patients and how it is influenced by PD. Methods: The study consisted of patient (26 RA with PD, 21 RA without PD, 51 patients with PD only) and systemically and periodontally healthy control (n = 20) groups. Periodontal parameters bleeding on probing, probing pocket depth, and marginal bone loss were determined to characterize the patient groups. Proteomic analysis of 92 CVD-related protein biomarkers was performed using a multiplex proximity extension assay. Biomarkers were clustered using the search tool for retrieval of interacting genes (STRING) to determine protein−protein interaction (PPI) networks. Results: RA patients with PD had higher detection levels for 47% of the measured markers (ANGPT1, BOC, CCL17, CCL3, CD4, CD84, CTRC, FGF-21, FGF-23, GLO1, HAOX1, HB-EGF, hOSCAR, HSP 27, IL16, IL-17D, IL18, IL-27, IL6, LEP, LPL, MERTK, MMP12, MMP7, NEMO, PAPPA, PAR-1, PARP-1, PD-L2, PGF, PIgR, PRELP, RAGE, SCF, SLAMF7, SRC, THBS2, THPO, TNFRSF13B, TRAIL-R2, VEGFD, VSIG2, and XCL1) as compared to RA without PD. Furthermore, a strong biological network was identified amongst these proteins (clustering coefficient = 0.52, PPI enrichment p-value < 0.0001). Coefficients for protein clusters involved in CVD (0.59), metabolic (0.53), and skeletal (0.51) diseases were strongest in the PD group. Conclusion: Periodontal disease augments CVD-related biomarkers in RA through shared pathological clusters, concurrently enhancing metabolic and skeletal disease protein interactions, independent of autoimmune status.
Collapse
|
41
|
Silva LMR, Velásquez ZD, López-Osorio S, Hermosilla C, Taubert A. Novel Insights Into Sterol Uptake and Intracellular Cholesterol Trafficking During Eimeria bovis Macromeront Formation. Front Cell Infect Microbiol 2022; 12:809606. [PMID: 35223543 PMCID: PMC8878908 DOI: 10.3389/fcimb.2022.809606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites are considered as defective in cholesterol synthesis. Consequently, they need to scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating host cellular de-novo biosynthesis. Given that Eimeria bovis macromeront formation in bovine lymphatic endothelial host cells in vivo is a highly cholesterol-demanding process, we here examined host parasite interactions based on host cellular uptake of different low-density lipoprotein (LDL) types, i.e., of non-modified (LDL), oxidized (oxLDL), and acetylated LDL (acLDL). Furthermore, the expression of lipoprotein-oxidized receptor 1 (LOX-1), which mediates acLDL and oxLDL internalization, was monitored throughout first merogony, in vitro and ex vivo. Moreover, the effects of inhibitors blocking exogenous sterol uptake or intracellular transport were studied during E. bovis macromeront formation in vitro. Hence, E. bovis-infected primary bovine umbilical vein endothelial cells (BUVEC) were treated with inhibitors of sterol uptake (ezetimibe, poly-C, poly-I, sucrose) and of intracellular sterol transport and release from endosomes (progesterone, U18666A). As a read-out system, the size and number of macromeronts as well as merozoite I production were estimated. Overall, the internalization of all LDL modifications (LDL, oxLDL, acLDL) was observed in E. bovis-infected BUVEC but to different extents. Supplementation with oxLDL and acLDL at lower concentrations (5 and 10 µg/ml, respectively) resulted in a slight increase of both macromeront numbers and size; however, at higher concentrations (25-50 µg/ml), merozoite I production was diminished. LOX-1 expression was enhanced in E. bovis-infected BUVEC, especially toward the end of merogony. As an interesting finding, ezetimibe treatments led to a highly significant blockage of macromeront development and merozoite I production confirming the relevance of sterol uptake for intracellular parasite development. Less prominent effects were induced by non-specific inhibition of LDL internalization via sucrose, poly-I, and poly-C. In addition, blockage of cholesterol transport via progesterone and U18666A treatments resulted in significant inhibition of parasite development. Overall, current data underline the relevance of exogenous sterol uptake and intracellular cholesterol transport for adequate E. bovis macromeront development, unfolding new perspectives for novel drug targets against E. bovis.
Collapse
Affiliation(s)
- Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin, Colombia
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
42
|
Taskin HE, Kocael A, Kocael P, Zengin K, Al M, Sozer V, Buchwald JN, McGlennon TW, Uzun H. Original contribution: sleeve gastrectomy reduces soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) levels in patients with morbid obesity. Surg Endosc 2022; 36:2643-2652. [PMID: 35044516 DOI: 10.1007/s00464-021-08989-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Early diagnosis of subclinical cardiovascular disease (CVD) in patients with morbid obesity is important. We investigated the effects of sleeve gastrectomy (SG) on serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1), oxidized LDL (oxLDL), and other metabolic and inflammatory parameters associated with atherosclerosis in patients with morbid obesity. METHODS Body mass index (BMI) measurements and assays of metabolic and inflammatory markers were taken in patients in an SG surgery group and a healthy control group and compared at baseline and 12 months after SG. Correlations with changes in these parameters and variations in sLOX-1 were analyzed. RESULTS Metabolic and inflammatory marker values in the surgery (n = 20) and control (n = 20) groups were significantly different at baseline (p < 0.001). The majority of surgery group biomarker levels significantly decreased with mean BMI loss (- 11.8 ± 9.0, p < 0.001) at 12 months, trending toward control group values. Baseline albumin level as well as percentage reductions in oxLDL and the cholesterol retention fraction (CRF) were found to be significantly correlated with percentage reduction in sLOX-1 at 12 months following SG. CONCLUSION Metabolic and inflammatory biomarkers elevated at baseline significantly decreased after SG weight loss. Weight loss induced by SG may limit endothelial damage by reducing levels of oxLDL and LOX-1 as assessed by sLOX-1. These findings suggest that sLOX-1 may function as a marker of atherosclerotic disease states in patients with morbid obesity and that metabolic/bariatric surgery can play a meaningful role in CVD prevention.
Collapse
Affiliation(s)
- Halit Eren Taskin
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ahmet Kocael
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pinar Kocael
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kagan Zengin
- Department of Surgery, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muzaffer Al
- Department of Surgery, Faculty of Medicine, Near East University, Nicosia, Turkey
| | - Volkan Sozer
- Department of Biochemistry, Yildiz Technical University, Istanbul, Turkey
| | - J N Buchwald
- Division of Scientific Research Writing, Medwrite Medical Communications, Maiden Rock, WI, USA
| | - T W McGlennon
- Statistical Analysis Division, McGlennon MotiMetrics, Maiden Rock, WI, USA
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Atlas University, Istanbul, Turkey
| |
Collapse
|
43
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
44
|
Leong XF, Choy KW, Alias A. Anti-Inflammatory Effects of Thymoquinone in Atherosclerosis: A Mini Review. Front Pharmacol 2022; 12:758929. [PMID: 34975474 PMCID: PMC8715035 DOI: 10.3389/fphar.2021.758929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis poses serious health problems and increases the risk of various cardiovascular diseases, including myocardial infarction, heart failure, ischemic stroke, and peripheral arterial disease. Atherosclerosis patients require long-term medications to prevent complications, some of which are costly and may result in unwanted adverse reactions. Natural products have emerged as potential sources of bioactive compounds that provide health benefits in cardiovascular diseases. Increased inflammation and vascular remodeling have been associated with atherosclerosis pathogenesis. The molecules involved in signaling pathways are considered valuable targets for new treatment approaches. Therefore, this review aimed to summarize the available evidence of the anti-inflammatory effects of thymoquinone, the major active compound isolated from Nigella sativa L., via inflammatory signaling pathways in atherosclerosis. Specifically, nuclear factor-κB and mitogen-activated protein kinase signaling pathways were considered. Furthermore, the potential toxic effects elicited by thymoquinone were addressed. These findings suggest a potential role of thymoquinone in managing atherosclerosis, and further studies are required to ascertain its effectiveness and safety profile.
Collapse
Affiliation(s)
- Xin-Fang Leong
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Aspalilah Alias
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Yang X, Hou D, Liu J, Wang T, Luo Y, Sun W, Li C, Shen L, Liu W, Wu D. Soluble Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Level is Related to Clinical Prognosis In Patients with Acute Atherosclerosis-related Ischemic Stroke. Clin Appl Thromb Hemost 2021; 27:10760296211059500. [PMID: 34775859 PMCID: PMC8597060 DOI: 10.1177/10760296211059500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the associations between soluble Lectin-like Oxidized Low-density lipoprotein receptor-1 (sLOX-1) and clinical prognosis, especially infarct volume in patients with acute atherosclerosis-related ischemic stroke. We recruited acute ischemic stroke patients within 3 days after onset. Patients were stratified into 3 groups by sLOX-1 level. Initial stroke severity was assessed using the National Institutes of Health Stroke Scale scores, and infarct volume was measured using DWI by ITK-SNAP software. The clinical prognosis was evaluated by DWI volume, clinical response at discharge, and functional outcome at 90 days. Spearman rank correlation analysis was used to examine associations between circulating sLOX-1 levels and infarct volumes. Logistic regression was used to explore the relationship between sLOX-1 levels and clinical prognosis. A total of 207 patients were included in our study. The median DWI volume in the lowest sLOX-1 tertile was 1.98 cm3, smaller than 4.26 cm3 in the highest sLOX-1 group. The Spearman rank correlation coefficient between sLOX-1 levels and DWI volume was 0.47 (P < .01). Compared with the highest sLOX-1 tertiles, patients in the lowest sLOX-1 tertile had a higher risk of favorable functional outcome at 90 days (OR = 3.47, 95% CI, 1.21-9.96) after adjusting traditional risk factors. However, there was no difference between sLOX-1 level and clinical response at discharge. For patients with acute atherosclerosis-related ischemic stroke, circulating sLOX-1 level is correlated with DWI volume in the acute phase and favorable functional outcome at 90 days, but not with the clinical response at discharge.
Collapse
Affiliation(s)
- Xiaoli Yang
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Duanlu Hou
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyao Wang
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yufan Luo
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenbo Sun
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen Li
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liwei Shen
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenpeng Liu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Papageorgiou AA, Goutas A, Trachana V, Tsezou A. Dual Role of SIRT1 in Autophagy and Lipid Metabolism Regulation in Osteoarthritic Chondrocytes. Medicina (B Aires) 2021; 57:medicina57111203. [PMID: 34833421 PMCID: PMC8621567 DOI: 10.3390/medicina57111203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Osteoarthritis (OA) is one of the most common and highly prevalent types of arthritis, also considered a multiphenotypic disease with a strong metabolic component. Ageing is the primary risk factor for OA, while the age-related decline in autophagic activity affects cell function and chondrocyte homeostasis. The aim of this study was to investigate the role of sirtuin 1 (SIRT1) in autophagy dysregulation and lipid metabolism in human OA chondrocytes. Materials and Methods: OA chondrocytes were treated with Resveratrol, Hydroxycloroquine (HCQ) or 3-Methyladenine (3-MA) and HCQ or 3-MA followed by siRNA against SIRT1 (siSIRT1). Then, SIRT1, AcNF-κBp65, LOX-1 and autophagy-related proteins ATG5, ATG13, PI3K class III, Beclin-1, LC3 and ULK protein levels were evaluated using Western blot. Normal articular chondrocytes were treated under serum starvation and/or siSIRT1, and the protein expression levels of the above autophagy-related proteins were evaluated. The staining patterns of LC3/p62 and LOX-1 were analyzed microscopically by immunofluorescence. SIRT1/LC3 complex formation was analyzed by immunoprecipitation. Results: SIRT1 and LOX-1 protein expression were negatively correlated in OA chondrocytes. SIRT1 regulated LOX-1 expression via NF-κΒ deacetylation, while treatment with Resveratrol enhanced SIRT1 enzymatic activity, resulting in LOX-1 downregulation and autophagy induction. In OA chondrocytes, SIRT1 was recognized as an autophagy substrate, formed a complex with LC3 and was consequently subjected to cytoplasmic autophagosome-lysosome degradation. Moreover, siSIRT1-treated normal chondrocytes showed decreased autophagic activity, while double-treated (siSIRT1 and serum starvation) cells showed no induction of autophagy. Conclusions: Our results suggest that SIRT1 regulates lipid homeostasis through LOX-1 expression regulation. Additionally, we indicate that the necessity of SIRT1 for autophagy induction in normal chondrocytes, together with its selective autophagic degradation in OA chondrocytes, could contribute to autophagy dysregulation in OA. We, therefore, suggest a novel regulatory scheme that functionally connects lipid metabolism and autophagy in late-stage OA.
Collapse
Affiliation(s)
- Aliki-Alexandra Papageorgiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece;
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (V.T.)
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (V.T.)
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece;
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (V.T.)
- Correspondence:
| |
Collapse
|
47
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
48
|
Kamtchum-Tatuene J, Nomani AZ, Falcione S, Munsterman D, Sykes G, Joy T, Spronk E, Vargas MI, Jickling GC. Non-stenotic Carotid Plaques in Embolic Stroke of Unknown Source. Front Neurol 2021; 12:719329. [PMID: 34630291 PMCID: PMC8492999 DOI: 10.3389/fneur.2021.719329] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Embolic stroke of unknown source (ESUS) represents one in five ischemic strokes. Ipsilateral non-stenotic carotid plaques are identified in 40% of all ESUS. In this narrative review, we summarize the evidence supporting the potential causal relationship between ESUS and non-stenotic carotid plaques; discuss the remaining challenges in establishing the causal link between non-stenotic plaques and ESUS and describe biomarkers of potential interest for future research. In support of the causal relationship between ESUS and non-stenotic carotid plaques, studies have shown that plaques with high-risk features are five times more prevalent in the ipsilateral vs. the contralateral carotid and there is a lower incidence of atrial fibrillation during follow-up in patients with ipsilateral non-stenotic carotid plaques. However, non-stenotic carotid plaques with or without high-risk features often coexist with other potential etiologies of stroke, notably atrial fibrillation (8.5%), intracranial atherosclerosis (8.4%), patent foramen ovale (5-9%), and atrial cardiopathy (2.4%). Such puzzling clinical associations make it challenging to confirm the causal link between non-stenotic plaques and ESUS. There are several ongoing studies exploring whether select protein and RNA biomarkers of plaque progression or vulnerability could facilitate the reclassification of some ESUS as large vessel strokes or help to optimize secondary prevention strategies.
Collapse
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Faculty of Medicine and Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ali Z. Nomani
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elena Spronk
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maria Isabel Vargas
- Division of Neuroradiology, Department of Radiology and Medical Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Glen C. Jickling
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
49
|
Lorenzatti AJ. Anti-inflammatory Treatment and Cardiovascular Outcomes: Results of Clinical Trials. Eur Cardiol 2021; 16:e15. [PMID: 33976710 PMCID: PMC8086421 DOI: 10.15420/ecr.2020.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder of the vasculature where cholesterol accumulates in the arterial wall stimulating infiltration of immune cells. This plays an important role in plaque formation, as well as complications caused by its build up. Pro-inflammatory cytokines and chemokines are implicated throughout the progression of the disease and different therapies that aim to resolve this chronic inflammation, reduce cardiovascular (CV) events and improve clinical outcomes have been tested. The results from the pivotal CANTOS trial show that targeting the pro-inflammatory cytokine IL-1β successfully reduces the incidence of secondary CV events. This review briefly assesses the role of inflammation in atherosclerosis, providing a picture of the multiple players involved in the process and offering a perspective on targeting inflammation to prevent atherosclerotic CV events, as well as focusing on the results of the latest Phase III clinical trials.
Collapse
|