1
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Nahrendorf M. Tuning Into Immune Cell Responses of Chronic Stress With Intravital Microscopy. Arterioscler Thromb Vasc Biol 2024. [PMID: 39445423 DOI: 10.1161/atvbaha.124.321865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Matthias Nahrendorf
- Center for Systems Biology and Gordon Center for Medical Imaging, Department of Radiology, and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston. Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
4
|
Chen X, Yu P, Zhou L, Tan Y, Wang J, Wang Y, Wu Y, Song X, Yang Q. Low concentration of serum vitamin B 12 may be a strong predictor of large-artery atherosclerosis stroke: A case-control study. Clin Biochem 2024; 131-132:110813. [PMID: 39197572 DOI: 10.1016/j.clinbiochem.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Identifying controllable risk factors for large-artery atherosclerosis (LAA) stroke is crucial due to its significant role as a leading cause of ischemic stroke. We aimed to validate the correlation of serum vitamin B12 with LAA stroke. METHODS Inpatients with LAA stroke and healthy controls were retrospectively collected for a case-control study from January 2020 to May 2022. Serum vitamin B12 concentration and other blood indicators, demographic, lifestyle factors and comorbidities were investigated. Logistic regression analysis was used to identify the correlation of serum vitamin B12 concentrations with LAA stroke, meanwhile adjusted for confounding factors. RESULTS Patients with LAA stroke had significantly lower serum vitamin B12 concentrations in comparison to those of controls. In the fully adjusted model, vitamin B12 (per 1 interquartile range increase, odds ratio [OR] = 0.84, 95 % confidence interval [CI]: 0.77-0.91), vitamin B12 < 200 pg/mL (OR=7.70, 95 %CI: 2.19-27.03) and vitamin B12 < 300 pg/mL (OR=4.19, 95 %CI: 1.82-9.66) were independently factors for LAA stroke. Furthermore, the optimal cut-off values for vitamin B12 to predict LAA stroke were 305.25 pg/mL (area under the curve [AUC] = 0.71) when unadjusted and 308.25 pg/mL when adjusted for age and sex (AUC=0.68). Lower vitamin B12 concentrations were significantly associated with male sex, smoking, older age, higher neutrophil count, higher creatinine, lower folate and higher total homocysteine. CONCLUSION Results indicate that low concentration of serum vitamin B12 may be a strong predictor for the risk of LAA stroke.
Collapse
Affiliation(s)
- Xia Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, the Seventh People's Hospital of Chongqing, Chongqing 400054, China
| | - Pingping Yu
- Department of Health Management, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yongjun Tan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiani Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yilin Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Wu
- Department of Neurology, Chongzhou People's Hospital, Sichuan 611200, China
| | - Xiaosong Song
- Department of Neurology, the Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Guo QW, Lin J, Shen YL, Zheng YJ, Chen X, Su M, Zhang JC, Wang JH, Tang H, Su GM, Li ZK, Fang DZ. Reduced hepatic AdipoR2 by increased glucocorticoid mediates effect of psychosocial stress to elevate serum cholesterol. Mol Cell Endocrinol 2024; 592:112282. [PMID: 38815796 DOI: 10.1016/j.mce.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024]
Abstract
Understanding the effects of psychosocial stress on serum cholesterol may offer valuable insights into the relationship between psychological disorders and endocrine diseases. However, these effects and their underlying mechanisms have not been elucidated yet. Here we show that serum corticosterone, total cholesterol and low-density lipoprotein cholesterol (LDL-C) are elevated in a mouse model of psychosocial stress. Furthermore, alterations occur in AdipoR2-mediated AMPK and PPARα signaling pathways in liver, accompanied by a decrease in LDL-C clearance and an increase in cholesterol synthesis. These changes are further verified in wild-type and AdipoR2 overexpression HepG2 cells incubated with cortisol and AdipoR agonist, and are finally confirmed by treating wild-type and hepatic-specific AdipoR2 overexpression mice with corticosterone. We conclude that increased glucocorticoid mediates the effects of psychosocial stress to elevate serum cholesterol by inhibiting AdipoR2-mediated AMPK and PPARα signaling to decrease LDL-C clearance and increase cholesterol synthesis in liver.
Collapse
Affiliation(s)
- Qi Wei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yi Lin Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Yan Jiang Zheng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Xu Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Mi Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Ji Cheng Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Jin Hua Wang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Hui Tang
- Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University Chongqing, PR China
| | - Guo Ming Su
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China
| | - Zheng Ke Li
- Department of Thoracic/Head and Neck Medical Oncology, The MD Anderson Cancer Center, University of Texas Houston, TX, USA
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu, 610041, PR China.
| |
Collapse
|
6
|
Walczak P, Ji X, Li S, Boltze J. Effects of immunological processes and mild ambient atmosphere alterations on the brain in health and disease. NEUROPROTECTION 2024; 2:179-181. [PMID: 39346949 PMCID: PMC7616641 DOI: 10.1002/nep3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Affiliation(s)
- Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland, Baltimore, Maryland, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Shen Li
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Bashore AC, Xue C, Kim E, Yan H, Zhu LY, Pan H, Kissner M, Ross LS, Zhang H, Li M, Reilly MP. Monocyte Single-Cell Multimodal Profiling in Cardiovascular Disease Risk States. Circ Res 2024; 135:685-700. [PMID: 39105287 PMCID: PMC11430373 DOI: 10.1161/circresaha.124.324457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.
Collapse
Affiliation(s)
- Alexander C Bashore
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Eunyoung Kim
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Hanying Yan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Lucie Y Zhu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Huize Pan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.P.)
| | - Michael Kissner
- Columbia Stem Cell Initiative, Department of Genetics and Development (M.K.), Columbia University Irving Medical Center, New York
| | - Leila S Ross
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia (H.Y., M.L.)
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.)
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine (A.C.B., C.X., E.K., L.Y.Z., L.S.R., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
- Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York (M.P.R.)
| |
Collapse
|
8
|
Cesaro A, Acerbo V, Indolfi C, Filardi PP, Calabrò P. The clinical relevance of the reversal of coronary atherosclerotic plaque. Eur J Intern Med 2024:S0953-6205(24)00348-0. [PMID: 39164156 DOI: 10.1016/j.ejim.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of death globally despite advances in preventive therapies. Understanding of the initiation and progression of atherosclerosis, the interplay between lipoproteins, endothelial dysfunction, inflammation, and immune responses is critical to treating this disease. The development of vulnerable coronary plaques prone to thrombosis, can lead to acute coronary syndromes, for these reasons, the potential plaque stabilization and regression through pharmacological interventions, particularly lipid-lowering agents like statins and PCSK9 inhibitors is crucial. The imaging techniques such as intravascular ultrasound (IVUS), near-infrared spectroscopy (NIRS), and optical coherence tomography (OCT) play a key role in assessing plaque composition and guiding interventional therapeutic strategies. Clinical evidence supports the efficacy of intensive lipid-lowering therapy in inducing plaque regression, with studies demonstrating reductions in plaque volume and improvements in plaque morphology assessed by IVUS, OCT and NIRS. While pharmacological interventions show promise in promoting plaque regression and stabilization, their impact on long-term cardiovascular events requires further investigation. Multimodality imaging and comprehensive outcome trials are proposed as essential tools for elucidating the relationship between plaque modification and clinical benefit in coronary atherosclerosis. The stabilization or regression of atherosclerotic plaque might serve as the phenomenon linking the reduction in LDL-C levels to the decrease in cardiovascular events. Overall, this review emphasizes the ongoing efforts to advance our understanding of ASCVD pathophysiology and optimize therapeutic approaches for improving patient outcomes.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Vincenzo Acerbo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
| | - Ciro Indolfi
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy.
| |
Collapse
|
9
|
Meyer-Lindemann U, Sager HB. Neuroimmune crosstalk : How mental stress fuels vascular inflammation. Herz 2024; 49:249-253. [PMID: 38954012 DOI: 10.1007/s00059-024-05254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Pathophysiologically, metabolic and inflammatory processes contribute substantially to the development and progression of cardiovascular diseases. Over the past decade, the role of disease-propagating inflammatory processes has been strengthened and reframed, leading to trials testing anti-inflammatory drugs for the treatment of atherosclerosis and its complications. Despite these achievements, further research in both pre-clinical and clinical studies is warranted to explore new targets, to better identify responders, and to refine therapy strategies to combat inflammation in human disease. Environmental disturbances, so-called lifestyle-associated cardiovascular risk factors, greatly alter the immune system in general and leukocytes in particular, thus affecting the progression of atherosclerosis. Epidemiological studies have shown that exposure to mental stress can be closely linked to the occurrence of cardiovascular disease. Here, we describe how acute and chronic mental stress alter the immune system via neuroimmune interactions, thereby modifying vascular inflammation. In addition, we identify gaps that still need to be addressed in the future.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
10
|
Chen Q, Zhang JL, Yang JS, Jin Q, Yang J, Xue Q, Guang XF. Novel Diagnostic Biomarkers Related to Necroptosis and Immune Infiltration in Coronary Heart Disease. J Inflamm Res 2024; 17:4525-4548. [PMID: 39006493 PMCID: PMC11246668 DOI: 10.2147/jir.s457469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Necroptosis, a monitored form of inflammatory cell death, contributes to coronary heart disease (CHD) progression. This study examined the potential of using necroptosis genes as diagnostic markers for CHD and sought to elucidate the underlying roles. Methods Through bioinformatic analysis of GSE20680 and GSE20681, we first identified the differentially expressed genes (DEGs) related to necroptosis in CHD. Hub genes were identified using least absolute shrinkage and selection operator (LASSO) regression and random forest analysis after studying immune infiltration and transcription factor-miRNA interaction networks according to the DEGs. Quantitative polymerase chain reaction and immunohistochemistry were used to further investigate hub gene expression in vivo, for which a diagnostic model was constructed and the predictive efficacy was validated. Finally, the CHD group was categorized into high- and low-score groups in accordance with the single-sample gene set enrichment analysis (ssGSEA) score of the necroptosis genes. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, GSEA, and further immune infiltration analyses were performed on the two groups to explore the possible roles of hub genes. Results Based on the results of the LASSO regression and random forest analyses, four genes were used to construct a diagnostic model to establish a nomogram. Additionally, an extensive analysis of all seventeen necroptosis genes revealed notable distinctions in expression between high-risk and low-risk groups. Evaluation of immune infiltration revealed that neutrophils, monocytes, B cells, and activated dendritic cells were highly distributed in the peripheral blood of patients with CHD. Specifically, the high CHD score group exhibited greater neutrophil and monocyte infiltration. Conversely, the high-score group showed lower infiltration of M0 and M2 macrophages, CD8+ T, plasma, and resting mast cells. Conclusion TLR3, MLKL, HMGB1, and NDRG2 may be prospective biomarkers for CHD diagnosis. These findings offer plausible explanations for the role of necroptosis in CHD progression through immune infiltration and inflammatory response.
Collapse
Affiliation(s)
- Qiu Chen
- Department of Cardiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Ji-Lei Zhang
- Department of Cardiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Jie-Shun Yang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Qing Jin
- Department of Cardiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Jun Yang
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Qiang Xue
- Department of Cardiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| | - Xue-Feng Guang
- Department of Cardiology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
11
|
Shimabukuro M. Leucocyte Count: Inflammatory and ROS Biomarkers of ASCVD. J Atheroscler Thromb 2024; 31:861-863. [PMID: 38599821 PMCID: PMC11150727 DOI: 10.5551/jat.ed258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Michio Shimabukuro
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
12
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
13
|
Hu B, Feng J, Wang Y, Hou L, Fan Y. Transnational inequities in cardiovascular diseases from 1990 to 2019: exploration based on the global burden of disease study 2019. Front Public Health 2024; 12:1322574. [PMID: 38633238 PMCID: PMC11021694 DOI: 10.3389/fpubh.2024.1322574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background To describe the burden and examine transnational inequities in overall cardiovascular disease (CVD) and ten specific CVDs across different levels of societal development. Methods Estimates of disability-adjusted life-years (DALYs) for each disease and their 95% uncertainty intervals (UI) were extracted from the Global Burden of Diseases (GBD). Inequalities in the distribution of CVD burdens were quantified using two standard metrics recommended absolute and relative inequalities by the World Health Organization (WHO), including the Slope Index of Inequality (SII) and the relative concentration Index. Results Between 1990 and 2019, for overall CVD, the Slope Index of Inequality changed from 3760.40 (95% CI: 3758.26 to 3756.53) in 1990 to 3400.38 (95% CI: 3398.64 to 3402.13) in 2019. For ischemic heart disease, it shifted from 2833.18 (95% CI: 2831.67 to 2834.69) in 1990 to 1560.28 (95% CI: 1559.07 to 1561.48) in 2019. Regarding hypertensive heart disease, the figures changed from-82.07 (95% CI: -82.56 to-81.59) in 1990 to 108.99 (95% CI: 108.57 to 109.40) in 2019. Regarding cardiomyopathy and myocarditis, the data evolved from 273.05 (95% CI: 272.62 to 273.47) in 1990 to 250.76 (95% CI: 250.42 to 251.09) in 2019. Concerning aortic aneurysm, the index transitioned from 104.91 (95% CI: 104.65 to 105.17) in 1990 to 91.14 (95% CI: 90.94 to 91.35) in 2019. Pertaining to endocarditis, the figures shifted from-4.50 (95% CI: -4.64 to-4.36) in 1990 to 16.00 (95% CI: 15.88 to 16.12) in 2019. As for rheumatic heart disease, the data transitioned from-345.95 (95% CI: -346.47 to-345.42) in 1990 to-204.34 (95% CI: -204.67 to-204.01) in 2019. Moreover, the relative concentration Index for overall CVD and each specific type also varied from 1990 to 2019. Conclusion There's significant heterogeneity in transnational health inequality for ten specific CVDs. Countries with higher levels of societal development may bear a relatively higher CVD burden except for rheumatic heart disease, with the extent of inequality changing over time.
Collapse
Affiliation(s)
- Ben Hu
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Jun Feng
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wang
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Linlin Hou
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
14
|
Nusslock R, Alloy LB, Brody GH, Miller GE. Annual Research Review: Neuroimmune network model of depression: a developmental perspective. J Child Psychol Psychiatry 2024; 65:538-567. [PMID: 38426610 PMCID: PMC11090270 DOI: 10.1111/jcpp.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Depression is a serious public health problem, and adolescence is an 'age of risk' for the onset of Major Depressive Disorder. Recently, we and others have proposed neuroimmune network models that highlight bidirectional communication between the brain and the immune system in both mental and physical health, including depression. These models draw on research indicating that the cellular actors (particularly monocytes) and signaling molecules (particularly cytokines) that orchestrate inflammation in the periphery can directly modulate the structure and function of the brain. In the brain, inflammatory activity heightens sensitivity to threats in the cortico-amygdala circuit, lowers sensitivity to rewards in the cortico-striatal circuit, and alters executive control and emotion regulation in the prefrontal cortex. When dysregulated, and particularly under conditions of chronic stress, inflammation can generate feelings of dysphoria, distress, and anhedonia. This is proposed to initiate unhealthy, self-medicating behaviors (e.g. substance use, poor diet) to manage the dysphoria, which further heighten inflammation. Over time, dysregulation in these brain circuits and the inflammatory response may compound each other to form a positive feedback loop, whereby dysregulation in one organ system exacerbates the other. We and others suggest that this neuroimmune dysregulation is a dynamic joint vulnerability for depression, particularly during adolescence. We have three goals for the present paper. First, we extend neuroimmune network models of mental and physical health to generate a developmental framework of risk for the onset of depression during adolescence. Second, we examine how a neuroimmune network perspective can help explain the high rates of comorbidity between depression and other psychiatric disorders across development, and multimorbidity between depression and stress-related medical illnesses. Finally, we consider how identifying neuroimmune pathways to depression can facilitate a 'next generation' of behavioral and biological interventions that target neuroimmune signaling to treat, and ideally prevent, depression in youth and adolescents.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA. USA
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens GA, USA
| | - Gregory E. Miller
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| |
Collapse
|
15
|
Chen E, Yu T, Ehrlich KB, Lam PH, Jiang T, McDade TW, Miller GE, Brody GH. Family Disadvantage, Education, and Health Outcomes Among Black Youths Over a 20-Year Period. JAMA Netw Open 2024; 7:e242289. [PMID: 38551566 PMCID: PMC10980964 DOI: 10.1001/jamanetworkopen.2024.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 04/01/2024] Open
Abstract
Importance Upward mobility (via educational attainment) is highly valued, but longitudinal associations with mental and physical health among Black youths are less understood. Objective To examine associations of childhood family disadvantage and college graduation with adult mental and physical health in Black youths followed up into adulthood. Design, Setting, and Participants This longitudinal, prospective cohort study of Black youths from the state of Georgia who were studied for 20 years (ages 11 to 31 years) was conducted between 2001 and 2022. Participants for this study were drawn from the Strong African American Healthy Adults Program. Data analysis was conducted from April 2023 to January 2024. Exposures Family economic disadvantage (measured during the adolescent years) and college graduation (indicating upward mobility). Main Outcomes and Measures Primary outcomes included mental health, substance use, and physical health. Mental health included a composite of internalizing and disruptive problems (anxiety, depression, anger, aggressive behaviors, and emotional reactivity). Substance use included a composite of smoking, drinking, and drug use. Physical health included metabolic syndrome (MetS) and proinflammatory phenotypes (immune cells mounting exaggerated cytokine responses to bacterial challenge and being insensitive to inhibitory signals from glucocorticoids). Mental and physical health measures were taken at age 31 and during the adolescent years. Linear and logistic regression analyses, as well as mediated moderation analyses, were conducted. Results The study population consisted of 329 Black youths (212 women [64%]; 117 men [36%]; mean [SD] age at follow-up, 31 [1] years). Compared with those who did not graduate college, those who graduated from college had 0.14 SD fewer mental health problems (b = -1.377; 95% CI, -2.529 to -0.226; β = -0.137; P = .02) and 0.13 SD lower levels of substance use (b = -0.114; 95% CI, -0.210 to -0.018; β = -0.131; P = .02). Residualized change scores revealed that college graduates showed greater decreases from age 16 to 31 years in mental health problems (b = -1.267; 95% CI, -2.360 to -0.174; β = -0.133; P = .02) and substance use problems (b = -0.116; 95% CI, -0.211 to -0.021; β = -0.136; P = .02). For physical health, significant interactions between childhood family disadvantage and college completion emerged in association with MetS (OR, 1.495; 95% CI, 1.111-2.012; P = .008) and proinflammatory phenotype (b = 0.051; 95% CI, 0.003 to 0.099; β = 0.131; P = .04). Among youths growing up in disadvantaged households, college completion was associated with a 32.6% greater likelihood of MetS (OR, 3.947; 95% CI, 1.003-15.502; P = .049) and 0.59 SD more proinflammatory phenotype (mean difference, 0.249, 95% CI, 0.001 to 0.497; P = .049). Conversely, among those from economically advantaged backgrounds, college completion was correlated with lower MetS and less proinflammatory phenotype. Findings held after controlling for body mass index at age 19 years. Conclusions and Relevance In this longitudinal cohort study of Black youths, graduating from college was associated with an adult profile of better mental health but poorer physical health among those from economic disadvantage. These findings suggest that developing interventions that foster healthy outcomes across multiple life domains may be important for ensuring that striving for upward mobility is not accompanied by unintended cardiometabolic risk.
Collapse
Affiliation(s)
- Edith Chen
- Institute for Policy Research, Northwestern University, Evanston, Illinois
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Tianyi Yu
- Center for Family Research, University of Georgia, Athens
| | - Katherine B. Ehrlich
- Center for Family Research, University of Georgia, Athens
- Department of Psychology, University of Georgia, Athens
| | - Phoebe H. Lam
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Tao Jiang
- Institute for Policy Research, Northwestern University, Evanston, Illinois
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Thomas W. McDade
- Institute for Policy Research, Northwestern University, Evanston, Illinois
- Department of Anthropology, Northwestern University, Evanston, Illinois
| | - Gregory E. Miller
- Institute for Policy Research, Northwestern University, Evanston, Illinois
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens
| |
Collapse
|
16
|
Mitroulis I, Hajishengallis G, Chavakis T. Bone marrow inflammatory memory in cardiometabolic disease and inflammatory comorbidities. Cardiovasc Res 2024; 119:2801-2812. [PMID: 36655373 PMCID: PMC10874275 DOI: 10.1093/cvr/cvad003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/20/2023] Open
Abstract
Cardiometabolic disorders are chief causes of morbidity and mortality, with chronic inflammation playing a crucial role in their pathogenesis. The release of differentiated myeloid cells with elevated pro-inflammatory potential, as a result of maladaptively trained myelopoiesis may be a crucial factor for the perpetuation of inflammation. Several cardiovascular risk factors, including sedentary lifestyle, unhealthy diet, hypercholesterolemia, and hyperglycemia, may modulate bone marrow hematopoietic progenitors, causing sustained functional changes that favour chronic metabolic and vascular inflammation. In the present review, we summarize recent studies that support the function of long-term inflammatory memory in progenitors of the bone marrow for the development and progression of cardiometabolic disease and related inflammatory comorbidities, including periodontitis and arthritis. We also discuss how maladaptive myelopoiesis associated with the presence of mutated hematopoietic clones, as present in clonal hematopoiesis, may accelerate atherosclerosis via increased inflammation.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- First Department of Internal Medicine and Department of Haematology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
17
|
Zhou Y, Han X, Mu Q, Xing L, Wu Y, Li C, Liu Y, Wang F. The effect of the interaction of sleep onset latency and age on ischemic stroke severity via inflammatory chemokines. Front Neurol 2024; 15:1323878. [PMID: 38434201 PMCID: PMC10906267 DOI: 10.3389/fneur.2024.1323878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Objective Prolonged sleep onset latency (PSOL) and age have been linked to ischemic stroke (IS) severity and the production of chemokines and inflammation, both of which contribute to IS development. This study aimed to explore the relationship between chemokines, inflammation, and the interplay between sleep onset latency (SOL) and age in influencing stroke severity. Methods A cohort of 281 participants with mild to moderate IS was enrolled. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS), and SOL was recorded. Serum levels of macrophage inflammatory protein-1alpha (MIP-1α), macrophage inflammatory protein-1beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured. Results NIHSS scores of middle-aged participants with PSOL were significantly higher than those with normal sleep onset latency (NSOL) (p = 0.046). This difference was also observed when compared to both the elderly with NSOL (p = 0.022), and PSOL (p < 0.001). Among middle-aged adults with PSOL, MIP-1β exhibited a protective effect on NIHSS scores (β = -0.01, t = -2.11, p = 0.039, R2 = 0.13). MIP-1α demonstrated a protective effect on NIHSS scores in the elderly with NSOL (β = -0.03, t = -2.27, p = 0.027, R2 = 0.12). Conclusion This study reveals a hitherto undocumented association between PSOL and IS severity, along with the potential protective effects of MIP-1β in mitigating stroke severity, especially among middle-aged patients.
Collapse
Affiliation(s)
- Yuyu Zhou
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lifei Xing
- Department of Neurology, Sinopharm North Hospital, Baotou, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Cunbao Li
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
18
|
Kleimann P, Irschfeld LM, Grandoch M, Flögel U, Temme S. Trained Innate Immunity in Animal Models of Cardiovascular Diseases. Int J Mol Sci 2024; 25:2312. [PMID: 38396989 PMCID: PMC10889825 DOI: 10.3390/ijms25042312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Acquisition of immunological memory is an important evolutionary strategy that evolved to protect the host from repetitive challenges from infectious agents. It was believed for a long time that memory formation exclusively occurs in the adaptive part of the immune system with the formation of highly specific memory T cells and B cells. In the past 10-15 years, it has become clear that innate immune cells, such as monocytes, natural killer cells, or neutrophil granulocytes, also have the ability to generate some kind of memory. After the exposure of innate immune cells to certain stimuli, these cells develop an enhanced secondary response with increased cytokine secretion even after an encounter with an unrelated stimulus. This phenomenon has been termed trained innate immunity (TI) and is associated with epigenetic modifications (histone methylation, acetylation) and metabolic alterations (elevated glycolysis, lactate production). TI has been observed in tissue-resident or circulating immune cells but also in bone marrow progenitors. Risk-factors for cardiovascular diseases (CVDs) which are associated with low-grade inflammation, such as hyperglycemia, obesity, or high salt, can also induce TI with a profound impact on the development and progression of CVDs. In this review, we briefly describe basic mechanisms of TI and summarize animal studies which specifically focus on TI in the context of CVDs.
Collapse
Affiliation(s)
- Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Institute of Translational Pharmacology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Liu W, You J, Ge Y, Wu B, Zhang Y, Chen S, Zhang Y, Huang S, Ma L, Feng J, Cheng W, Yu J. Association of biological age with health outcomes and its modifiable factors. Aging Cell 2023; 22:e13995. [PMID: 37723992 PMCID: PMC10726867 DOI: 10.1111/acel.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Collapse
Affiliation(s)
- Wei‐Shi Liu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jia You
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Yi‐Jun Ge
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Bang‐Sheng Wu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shi‐Dong Chen
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ya‐Ru Zhang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shu‐Yi Huang
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ling‐Zhi Ma
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoChina
| | - Jian‐Feng Feng
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Department of Computer ScienceUniversity of WarwickCoventryUK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
- Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired IntelligenceZhejiang Normal UniversityJinhuaChina
- Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer CenterShanghaiChina
| | - Jin‐Tai Yu
- Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
20
|
Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res 2023; 58:1139-1147. [PMID: 37712722 DOI: 10.1111/jre.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
Periodontitis, a chronic infectious disease, primarily arises from infections and the invasion of periodontal pathogens. This condition is typified by alveolar bone loss resulting from host immune responses and inflammatory reactions. Periodontal pathogens trigger aberrant inflammatory reactions within periodontal tissues, thereby exacerbating the progression of periodontitis. Simultaneously, these pathogens and metabolites stimulate osteoclast differentiation, which leads to alveolar bone resorption. Moreover, a range of systemic diseases, including diabetes, postmenopausal osteoporosis, obesity and inflammatory bowel disease, can contribute to the development and progression of periodontitis. Many studies have underscored the pivotal role of gut microbiota in bone health through the gut-alveolar bone axis. The circulation may facilitate the transfer of gut pathogens or metabolites to distant alveolar bone, which in turn regulates bone homeostasis. Additionally, gut pathogens can elicit gut immune responses and direct immune cells to remote organs, potentially exacerbating periodontitis. This review summarizes the influence of oral microbiota on the development of periodontitis as well as the association between gut microbiota and periodontitis. By uncovering potential mechanisms of the gut-bone axis, this analysis provides novel insights for the targeted treatment of pathogenic bacteria in periodontitis.
Collapse
Affiliation(s)
- Nannan Han
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology, Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Riksen NP, Bekkering S, Mulder WJM, Netea MG. Trained immunity in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2023; 20:799-811. [PMID: 37322182 DOI: 10.1038/s41569-023-00894-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Trained immunity, also known as innate immune memory, is a persistent hyper-responsive functional state of innate immune cells. Accumulating evidence implicates trained immunity as an underlying mechanism of chronic inflammation in atherosclerotic cardiovascular disease. In this context, trained immunity is induced by endogenous atherosclerosis-promoting factors, such as modified lipoproteins or hyperglycaemia, causing broad metabolic and epigenetic reprogramming of the myeloid cell compartment. In addition to traditional cardiovascular risk factors, lifestyle factors, including unhealthy diets, sedentary lifestyle, sleep deprivation and psychosocial stress, as well as inflammatory comorbidities, have been shown to activate trained immunity-like mechanisms in bone marrow haematopoietic stem cells. In this Review, we discuss the molecular and cellular mechanisms of trained immunity, its systemic regulation through haematopoietic progenitor cells in the bone marrow, and the activation of these mechanisms by cardiovascular disease risk factors. We also highlight other trained immunity features that are relevant for atherosclerotic cardiovascular disease, including the diverse cell types that show memory characteristics and transgenerational inheritance of trained immunity traits. Finally, we propose potential strategies for the therapeutic modulation of trained immunity to manage atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| |
Collapse
|
22
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
23
|
Martini N, Streckwall L, McCarthy AD. Osteoporosis and vascular calcifications. Endocr Connect 2023; 12:e230305. [PMID: 37698112 PMCID: PMC10563638 DOI: 10.1530/ec-23-0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone-vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products-RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.
Collapse
Affiliation(s)
- Nancy Martini
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucas Streckwall
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Desmond McCarthy
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
24
|
Hupe J, Worthmann H, Ravenberg KK, Grosse GM, Ernst J, Haverich A, Bengel FM, Weissenborn K, Schmitto JD, Hanke JS, Derlin T, Gabriel MM. Interplay between driveline infection, vessel wall inflammation, cerebrovascular events and mortality in patients with left ventricular assist device. Sci Rep 2023; 13:18552. [PMID: 37899422 PMCID: PMC10613624 DOI: 10.1038/s41598-023-45110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023] Open
Abstract
In patients with left ventricular assist device (LVAD), infections and thrombotic events represent severe complications. We investigated device-specific local and systemic inflammation and its impact on cerebrovascular events (CVE) and mortality. In 118 LVAD patients referred for 18F-FDG-PET/CT, metabolic activity of LVAD components, thoracic aortic wall, lymphoid and hematopoietic organs, was quantified and correlated with clinical characteristics, laboratory findings, and outcome. Driveline infection was detected in 92/118 (78%) patients by 18F-FDG-PET/CT. Activity at the driveline entry site was associated with increased signals in aortic wall (r = 0.32, p < 0.001), spleen (r = 0.20, p = 0.03) and bone marrow (r = 0.20, p = 0.03), indicating systemic interactions. Multivariable analysis revealed independent associations of aortic wall activity with activity of spleen (β = 0.43, 95% CI 0.18-0.68, p < 0.001) and driveline entry site (β = 0.04, 95% CI 0.01-0.06, p = 0.001). Twenty-two (19%) patients suffered CVE after PET/CT. In a binary logistic regression analysis metabolic activity at the driveline entry site missed the level of significance as an influencing factor for CVE after adjusting for anticoagulation (OR = 1.16, 95% CI 1-1.33, p = 0.05). Metabolic activity of the subcutaneous driveline (OR = 1.13, 95% CI 1.02-1.24, p = 0.016) emerged as independent risk factor for mortality. Molecular imaging revealed systemic inflammatory interplay between thoracic aorta, hematopoietic organs, and infected device components in LVAD patients, the latter predicting CVE and mortality.
Collapse
Affiliation(s)
- Juliane Hupe
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans Worthmann
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kim K Ravenberg
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Gerrit M Grosse
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Ernst
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Axel Haverich
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Karin Weissenborn
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jan D Schmitto
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasmin S Hanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Maria M Gabriel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
25
|
Mohanta SK, Sun T, Lu S, Wang Z, Zhang X, Yin C, Weber C, Habenicht AJR. The Impact of the Nervous System on Arteries and the Heart: The Neuroimmune Cardiovascular Circuit Hypothesis. Cells 2023; 12:2485. [PMID: 37887328 PMCID: PMC10605509 DOI: 10.3390/cells12202485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Three systemic biological systems, i.e., the nervous, the immune, and the cardiovascular systems, form a mutually responsive and forward-acting tissue network to regulate acute and chronic cardiovascular function in health and disease. Two sub-circuits within the cardiovascular system have been described, the artery brain circuit (ABC) and the heart brain circuit (HBC), forming a large cardiovascular brain circuit (CBC). Likewise, the nervous system consists of the peripheral nervous system and the central nervous system with their functional distinct sensory and effector arms. Moreover, the immune system with its constituents, i.e., the innate and the adaptive immune systems, interact with the CBC and the nervous system at multiple levels. As understanding the structure and inner workings of the CBC gains momentum, it becomes evident that further research into the CBC may lead to unprecedented classes of therapies to treat cardiovascular diseases as multiple new biologically active molecules are being discovered that likely affect cardiovascular disease progression. Here, we weigh the merits of integrating these recent observations in cardiovascular neurobiology into previous views of cardiovascular disease pathogeneses. These considerations lead us to propose the Neuroimmune Cardiovascular Circuit Hypothesis.
Collapse
Affiliation(s)
- Sarajo K. Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| | - Ting Sun
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Shu Lu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Zhihua Wang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Xi Zhang
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510030, China
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Andreas J. R. Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) München, 80336 Munich, Germany; (T.S.); (S.L.); (Z.W.); (X.Z.); (C.Y.); (C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Easemedcontrol R&D, Schraudolphstraße 5, 80799 Munich, Germany
| |
Collapse
|
26
|
Shen B, Ma C, Wu G, Liu H, Chen L, Yang G. Effects of exercise on circadian rhythms in humans. Front Pharmacol 2023; 14:1282357. [PMID: 37886134 PMCID: PMC10598774 DOI: 10.3389/fphar.2023.1282357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The biological clock system is an intrinsic timekeeping device that integrates internal physiology and external cues. Maintaining a healthy biological clock system is crucial for life. Disruptions to the body's internal clock can lead to disturbances in the sleep-wake cycle and abnormalities in hormone regulation, blood pressure, heart rate, and other vital processes. Long-term disturbances have been linked to the development of various common major diseases, including cardiovascular diseases, metabolic disorders, tumors, neuropsychiatric conditions, and so on. External factors, such as the diurnal rhythm of light, have a significant impact on the body's internal clock. Additionally, as an important non-photic zeitgeber, exercise can regulate the body's internal rhythms to a certain extent, making it possible to become a non-drug intervention for preventing and treating circadian rhythm disorders. This comprehensive review encompasses behavioral, physiological, and molecular perspectives to provide a deeper understanding of how exercise influences circadian rhythms and its association with related diseases.
Collapse
Affiliation(s)
- Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Changxiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guanlin Wu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Haibin Liu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
27
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Edward B. Thorp
- Address for correspondence: Dr Edward B. Thorp, Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue Ward 4-116, Chicago, Illinois 60611, USA.
| |
Collapse
|
28
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
29
|
Kumric M, Urlic H, Bozic J, Vilovic M, Ticinovic Kurir T, Glavas D, Miric D, Zanchi J, Bradaric-Slujo A, Lozo M, Borovac JA. Emerging Therapies for the Treatment of Atherosclerotic Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 2023; 24:8062. [PMID: 37175766 PMCID: PMC10178593 DOI: 10.3390/ijms24098062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Primarily a consequence of sedentary lifestyle, atherosclerosis has already reached pandemic proportions, and with every year the burden of it is only increasing. As low-density lipoprotein cholesterol (LDL-C) represents a crucial factor in atherosclerosis formation and progression, stringent lipid-lowering therapy could conceivably be the key to preventing the unfavorable outcomes that arise as a consequence of atherosclerosis. The use of statins in lipid-lowering is often burdened by adverse events or is insufficient to prevent cardiovascular events as a monotherapy. Therefore, in the present review, the authors aimed to discuss the underlying mechanisms of dyslipidemia and associated atherosclerotic cardiovascular disease (ASCVD) and preclinical and clinical trials of novel therapeutic approaches to its treatment, some of which are still in the early stages of development. Apart from novel therapies, a novel change in perspective is needed. Specifically, the critical objective in the future management of ASCVD is to embrace emerging evidence in the field of atherosclerosis, because clinicians are often burden by common practice and personal experience, both of which have so far been shown to be futile in the setting of atherosclerosis.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (M.K.)
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Duska Glavas
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Dino Miric
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Jaksa Zanchi
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Anteo Bradaric-Slujo
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Mislav Lozo
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Josip A. Borovac
- Cardiovascular Diseases Department, University Hospital of Split, 21000 Split, Croatia
| |
Collapse
|
30
|
Chen E, Yu T, Brody GH, Lam PH, Goosby BJ, Miller GE. Discrimination and Inflammation in Adolescents of Color. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:204-212. [PMID: 37124354 PMCID: PMC10140455 DOI: 10.1016/j.bpsgos.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background This study examined how experiences with discrimination relate to inflammation, a key biological pathway in mental and physical illnesses, and whether associations are moderated by gender across two samples of adolescents of color. Methods Study 1 was a longitudinal study of 419 African American adolescents assessed on discrimination (ages 19-20), with trajectories of biomarkers of low-grade inflammation (C-reactive protein and soluble urokinase plasminogen activator receptor) measured from ages 25 to 29. Study 2 was a cross-sectional study of 201 eighth graders of color assessed on discrimination and mechanistic indicators of a proinflammatory phenotype: 1) in vitro studies of immune cells' inflammatory cytokine responses to stimuli; 2) in vitro studies of cells' sensitivity to anti-inflammatory agents; 3) circulating numbers of classical monocytes, key cellular drivers of low-grade inflammation; and 4) a composite of six biomarkers of low-grade inflammation. Results Interactions of discrimination by gender were found across both studies. In study 1, African American males experiencing high discrimination showed increasing trajectories of soluble urokinase plasminogen activator receptor over time (p < .001). In study 2, adolescent boys of color experiencing greater discrimination evinced a more proinflammatory phenotype: larger cytokine responses to stimuli (p = .003), lower sensitivity to anti-inflammatory agents (p = .003), higher numbers of classical monocytes (p = .008), and more low-grade inflammation (p = .003). No such associations were found in females. Conclusions Discrimination is a pressing societal issue that will need to be addressed in efforts to promote health equity. This study suggests that adolescent males of color may be particularly vulnerable to its effects on mental health-relevant inflammatory processes.
Collapse
Affiliation(s)
- Edith Chen
- Institute for Policy Research and Department of Psychology, Northwestern University, Evanston, Illinois
| | - Tianyi Yu
- Center for Family Research, University of Georgia, Athens, Georgia
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens, Georgia
| | - Phoebe H. Lam
- Institute for Policy Research and Department of Psychology, Northwestern University, Evanston, Illinois
| | - Bridget J. Goosby
- Department of Sociology, University of Texas at Austin, Austin, Texas
| | - Gregory E. Miller
- Institute for Policy Research and Department of Psychology, Northwestern University, Evanston, Illinois
| |
Collapse
|
31
|
Tian M, Ma H, Shen J, Hu T, Cui H, Huangfu N. Causal association between sleep traits and the risk of coronary artery disease in patients with diabetes. Front Cardiovasc Med 2023; 10:1132281. [PMID: 36937914 PMCID: PMC10020648 DOI: 10.3389/fcvm.2023.1132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Background and aims The association between sleep traits and coronary artery disease (CAD) in patients with diabetes has been reported in previous observational studies. However, whether these potential relationships are causal remains unclear. We aim to assess the causal relationship between sleep traits and CAD in diabetic. Methods Genetic instrumental variables associated with five sleep-related traits (insomnia, sleep duration, ease of getting up, morningness and snoring) were extracted from corresponding genome-wide association studies (GWAS). The associations of genetic variants with CAD were based on 15,666 individuals with diabetes (3,968 CAD cases and 11,696 controls). The primary analysis was derived using the inverse variance weighting method. Further sensitivity analysis was conducted to confirm the robustness and consistency of the main results. Results Genetic liability to insomnia was significantly related to the increased risk of CAD in individuals with diabetes [odds ratio (OR): 1.163; 95% CI: 1.072-1.254; p = 0.001]. Suggestive evidence was found for the borderline associations between both sleep duration (OR: 0.629; 95% CI: 0.380-1.042, p = 0.072) and snoring (OR: 1.010, 95% CI: 1.000-1.020, p = 0.050) with CAD risk. However, no consistent evidence was found for the association between ease of getting up and morningness with the risk of CAD in diabetic. Similar results can be verified in most sensitivity analyses. Conclusions We provide consistent evidence for the causal effect of insomnia on the increased risk of CAD in individuals with diabetes. The management of sleep health should be emphasized to prevent CAD in diabetic patients.
Collapse
Affiliation(s)
- Mengyun Tian
- School of Medicine, Ningbo University, Ningbo, China
| | - Hongchuang Ma
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Jiaxi Shen
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Teng Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Hanbin Cui
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Ning Huangfu
- Department of Cardiology, Ningbo First Hospital, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| |
Collapse
|
32
|
Vazgiourakis VM, Zervou MI, Papageorgiou L, Chaniotis D, Spandidos DA, Vlachakis D, Eliopoulos E, Goulielmos GN. Association of endometriosis with cardiovascular disease: Genetic aspects (Review). Int J Mol Med 2023; 51:29. [PMID: 36799179 PMCID: PMC9943539 DOI: 10.3892/ijmm.2023.5232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a broad spectrum of pathological conditions that affect the heart or blood vessels, including sequelae that arise from damaged vasculature in other organs of the body, such as the brain, kidneys or eyes. Atherosclerosis is a chronic inflammatory disease of the arterial intima and is the primary cause of coronary artery disease, peripheral vascular disease, heart attack, stroke and renal pathology. It represents a leading cause of mortality worldwide and the loss of human productivity that is marked by an altered immune response. Endometriosis is a heritable, heterogeneous, common gynecological condition influenced by multiple genetic, epigenetic and environmental factors, affecting up to 10% of the female population of childbearing age, causing pain and infertility; it is characterized by the ectopic growth of endometrial tissue outside the uterine cavity. Of note, epidemiological data obtained thus far have suggested a link between endometriosis and the risk of developing CVD. The similarities observed in specific molecular and cellular pathways of endometriosis and CVD may be partially explained by a shared genetic background. The present review presents and discusses the shared genetic factors which have been reported to be associated with the development of both disorders.
Collapse
Affiliation(s)
- Vassilios M. Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece
| | - Maria I. Zervou
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
| | - Louis Papageorgiou
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Dimitrios Chaniotis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece
| | - George N. Goulielmos
- Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece
- Department of Internal Medicine, University Hospital of Heraklion, 71500 Heraklion, Greece
| |
Collapse
|
33
|
HDL Functions-Current Status and Future Perspectives. Biomolecules 2023; 13:biom13010105. [PMID: 36671490 PMCID: PMC9855960 DOI: 10.3390/biom13010105] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low HDL-C is associated with the development of CVD. However, recent epidemiology studies have shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background, HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL functionality is ongoing. In this review, we summarize the current status of HDL functions and their future perspectives from the findings of basic research and clinical trials.
Collapse
|
34
|
Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Comput Biol Med 2023; 152:106364. [PMID: 36525832 DOI: 10.1016/j.compbiomed.2022.106364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Guidance for preventing myocardial infarction and ischemic stroke by tailoring treatment for individual patients with atherosclerosis is an unmet need. Such development may be possible with computational modeling. Given the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Here, we aimed to develop a clinically relevant scale model of atherosclerosis, calibrate it with individual patient data, and use it to simulate optimized pharmacotherapy for individual patients. APPROACH AND RESULTS The study used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model for simulating individualized responses to pharmacotherapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. After calibrating the systems biology models for individual patients, we simulated intensive lipid-lowering, anti-inflammatory, and anti-diabetic drugs. We also simulated a combination therapy. Drug response was evaluated as the degree of change in plaque stability, where an improvement was defined as a reduction of plaque instability. In patients with initially unstable lesions, simulated responses varied from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement. CONCLUSION In this pilot study, proteomics-based system biology modeling was shown to simulate drug response based on atherosclerotic plaque instability with a power of 90%, providing a potential strategy for improved personalized management of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Andrew J Buckler
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Elucid Bioimaging Inc., Boston, MA, USA
| | - David Marlevi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos T Skenteris
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Mensink FB, Los J, Ten Cate TJF, Oemrawsingh RM, Brouwer MA, El Messaoudi S, van Royen N, Cornel JH, Riksen NP, van Geuns RJM. Pharmaco-invasive therapy: Early implementation of statins and proprotein convertase subtilisin/kexin type 9 inhibitors after acute coronary syndrome. Front Cardiovasc Med 2022; 9:1061346. [PMID: 36568547 PMCID: PMC9772027 DOI: 10.3389/fcvm.2022.1061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Elevated LDL-cholesterol (LDL-C) plays a major role in atheroma formation and inflammation. Medical therapy to lower elevated LDL-C is the cornerstone for reducing the progression of atherosclerotic cardiovascular disease. Statin therapy, and more recently, other drugs such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven efficacy in long-term lowering of LDL-C and therefore diminish cardiovascular risk. During an acute coronary syndrome (ACS), a systemic inflammatory response can destabilize other non-culprit atherosclerotic plaques. Patients with these vulnerable plaques are at high risk of experiencing recurrent cardiovascular events in the first few years post-ACS. Initiating intensive LDL-C lowering therapy in these patients with statins or PCSK9 inhibitors can be beneficial via several pathways. High-intensity statin therapy can reduce inflammation by directly lowering LDL-C, but also through its pleiotropic effects. PCSK9 inhibitors can directly lower LDL-C to recommended guideline thresholds, and could have additional effects on inflammation and plaque stability. We discuss the potential role of early implementation of statins combined with PCSK9 inhibitors to influence these cascades and to mediate the associated cardiovascular risk, over and above the well-known long-term beneficial effects of chronic LDL-C lowering.
Collapse
Affiliation(s)
- F. B. Mensink
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands,*Correspondence: F. B. Mensink,
| | - J. Los
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - T. J. F. Ten Cate
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - R. M. Oemrawsingh
- Department of Cardiology, Albert Schweitzer Ziekenhuis, Dordrecht, Netherlands
| | - M. A. Brouwer
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - S. El Messaoudi
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - N. van Royen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - J. H. Cornel
- Department of Cardiology, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - N. P. Riksen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - R. J. M. van Geuns
- Department of Cardiology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
36
|
Henein MY, Vancheri S, Longo G, Vancheri F. The Role of Inflammation in Cardiovascular Disease. Int J Mol Sci 2022; 23:12906. [PMID: 36361701 PMCID: PMC9658900 DOI: 10.3390/ijms232112906] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease, in which the immune system has a prominent role in its development and progression. Inflammation-induced endothelial dysfunction results in an increased permeability to lipoproteins and their subendothelial accumulation, leukocyte recruitment, and platelets activation. Recruited monocytes differentiate into macrophages which develop pro- or anti-inflammatory properties according to their microenvironment. Atheroma progression or healing is determined by the balance between these functional phenotypes. Macrophages and smooth muscle cells secrete inflammatory cytokines including interleukins IL-1β, IL-12, and IL-6. Within the arterial wall, low-density lipoprotein cholesterol undergoes an oxidation. Additionally, triglyceride-rich lipoproteins and remnant lipoproteins exert pro-inflammatory effects. Macrophages catabolize the oxidized lipoproteins and coalesce into a lipid-rich necrotic core, encapsulated by a collagen fibrous cap, leading to the formation of fibro-atheroma. In the conditions of chronic inflammation, macrophages exert a catabolic effect on the fibrous cap, resulting in a thin-cap fibro-atheroma which makes the plaque vulnerable. However, their morphology may change over time, shifting from high-risk lesions to more stable calcified plaques. In addition to conventional cardiovascular risk factors, an exposure to acute and chronic psychological stress may increase the risk of cardiovascular disease through inflammation mediated by an increased sympathetic output which results in the release of inflammatory cytokines. Inflammation is also the link between ageing and cardiovascular disease through increased clones of leukocytes in peripheral blood. Anti-inflammatory interventions specifically blocking the cytokine pathways reduce the risk of myocardial infarction and stroke, although they increase the risk of infections.
Collapse
Affiliation(s)
- Michael Y. Henein
- Institute of Public Health and Clinical Medicine, Umea University, 90187 Umea, Sweden
- Institute of Environment & Health and Societies, Brunel University, Middlesex SW17 0RE, UK
- Molecular and Clinical Sciences Research Institute, St. George’s University, London UB8 3PH, UK
| | - Sergio Vancheri
- Interventional Neuroradiology Department, Besançon University Hospital, 25000 Besançon, France
| | - Giovanni Longo
- Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy
| | - Federico Vancheri
- Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy
| |
Collapse
|
37
|
Meinhausen C, Prather AA, Sumner JA. Posttraumatic stress disorder (PTSD), sleep, and cardiovascular disease risk: A mechanism-focused narrative review. Health Psychol 2022; 41:663-673. [PMID: 35007121 PMCID: PMC9271141 DOI: 10.1037/hea0001143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Growing longitudinal research has demonstrated that posttraumatic stress disorder (PTSD) precedes and predicts the onset of cardiovascular disease (CVD), and a number of physiological (e.g., dysregulation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, chronic systemic inflammation) and behavioral (e.g., physical inactivity, smoking, poor diet) factors might underlie this association. In this narrative review, we focus on sleep as a modifiable risk factor linking PTSD with CVD. METHOD We summarize the evidence for sleep disturbance after trauma exposure and the potential cardiotoxic effects of poor sleep, with an emphasis on mechanisms. In addition, we review the literature that has examined sleep in the context of the PTSD-CVD risk relation. RESULTS Although sleep disturbance is a hallmark symptom of PTSD and a well-established risk factor for the development of CVD, the role of sleep in the association between PTSD and CVD has been largely unexamined in the extant literature. However, such work has the potential to improve our understanding of mechanisms of risk and inform intervention efforts to offset elevated CVD risk after trauma. CONCLUSIONS We outline several recommendations for future research and behavioral medicine models in order to help define and address the role of sleep behavior in the development of CVD among trauma-exposed individuals with PTSD. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Corinne Meinhausen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer A. Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
38
|
Meyer-Lindemann U, Mauersberger C, Schmidt AC, Moggio A, Hinterdobler J, Li X, Khangholi D, Hettwer J, Gräßer C, Dutsch A, Schunkert H, Kessler T, Sager HB. Colchicine Impacts Leukocyte Trafficking in Atherosclerosis and Reduces Vascular Inflammation. Front Immunol 2022; 13:898690. [PMID: 35860249 PMCID: PMC9289246 DOI: 10.3389/fimmu.2022.898690] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Inflammation strongly contributes to atherosclerosis initiation and progression. Consequently, recent clinical trials pharmacologically targeted vascular inflammation to decrease the incidence of atherosclerosis-related complications. Colchicine, a microtubule inhibitor with anti-inflammatory properties, reduced cardiovascular events in patients with recent acute coronary syndrome and chronic coronary disease. However, the biological basis of these observations remains elusive. We sought to explore the mechanism by which colchicine beneficially alters the course of atherosclerosis. Methods and Results In mice with early atherosclerosis (Apoe-/- mice on a high cholesterol diet for 8 weeks), we found that colchicine treatment (0.25 mg/kg bodyweight once daily over four weeks) reduced numbers of neutrophils, inflammatory monocytes and macrophages inside atherosclerotic aortas using flow cytometry and immunohistochemistry. Consequently, colchicine treatment resulted in a less inflammatory plaque composition and reduced plaque size. We next investigated how colchicine prevented plaque leukocyte expansion and found that colchicine treatment mitigated recruitment of blood neutrophils and inflammatory monocytes to plaques as revealed by adoptive transfer experiments. Causally, we found that colchicine reduced levels of both leukocyte adhesion molecules and receptors for leukocyte chemoattractants on blood neutrophils and monocytes. Further experiments showed that colchicine treatment reduced vascular inflammation also in post-myocardial infarction accelerated atherosclerosis through similar mechanisms as documented in early atherosclerosis. When we examined whether colchicine also decreased numbers of macrophages inside atherosclerotic plaques by impacting monocyte/macrophage transitioning or in-situ proliferation of macrophages, we report that colchicine treatment did not influence macrophage precursor differentiation or macrophage proliferation using cell culture experiments with bone marrow derived macrophages. Conclusions Our data reveal that colchicine prevents expansion of plaque inflammatory leukocytes through lowering recruitment of blood myeloid cells to plaques. These data provide novel mechanistic clues on the beneficial effects of colchicine in the treatment of atherosclerosis and may inform future anti-inflammatory interventions in patients at risk.
Collapse
Affiliation(s)
- Ulrike Meyer-Lindemann
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Carina Mauersberger
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anna-Christina Schmidt
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Aldo Moggio
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Xinghai Li
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - David Khangholi
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jan Hettwer
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Gräßer
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alexander Dutsch
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
39
|
Li X, Liu X, Liang Y, Deng X, Fan Y. Spatiotemporal changes of local hemodynamics and plaque components during atherosclerotic progression in rabbit. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 220:106814. [PMID: 35523025 DOI: 10.1016/j.cmpb.2022.106814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent evidence demonstrates that the atherogenic process is discontinuous. Our goal is to study changes of plaque components and local hemodynamics during atherosclerotic progression. METHODS The histological and immunohistochemical staining of high-fat diet rabbit aorta were evaluated at 0, 8, 10 and 12 weeks, respectively. In addition, the blood flow and LDL transport were simulated at the above four time points. RESULTS The plaque thickness at different characteristic regions increased at different rates. The collagen continued to increase, while the elastin, fibronectin, macrophages and smooth muscle cells increased first and then decreased. The relative surface LDL concentration decreased at 8 weeks, and then it increased first and decreased slightly. Meanwhile, the hemodynamic environment became better firstly at 8 weeks, then got slightly worse and lastly improved again. CONCLUSIONS The local hemodynamics and plaque components vary nonlinearly during atherosclerotic progression in rabbit aorta.
Collapse
Affiliation(s)
- Xiaoyin Li
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiao Liu
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Ye Liang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyan Deng
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
40
|
Libby P, Nahrendorf M, Swirski FK. Mischief in the marrow: a root of cardiovascular evil. Eur Heart J 2022; 43:1829-1831. [PMID: 35567561 DOI: 10.1093/eurheartj/ehac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Gu L, Xia Z, Qing B, Chen H, Wang W, Chen Y, Yuan Y. The Core Role of Neutrophil–Lymphocyte Ratio to Predict All-Cause and Cardiovascular Mortality: A Research of the 2005–2014 National Health and Nutrition Examination Survey. Front Cardiovasc Med 2022; 9:847998. [PMID: 35647067 PMCID: PMC9133381 DOI: 10.3389/fcvm.2022.847998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Objective To further supplement the previous research on the relationship between neutrophil–lymphocyte ratio (NLR) and all-cause and cardiovascular mortality, and construct clinical models to predict mortality. Methods A total number of 2,827 observers were included from the National Health and Nutrition Examination Survey (NHANES) database in our research. NLR was calculated from complete blood count. According to the quartile of baseline NLR, those observers were divided into four groups. A multivariate weighted Cox regression model was used to analyze the association of NLR with mortality. We constructed simple clinical prognosis models by nomograms. Kaplan–Meier survival curves were used to depict cause-specific mortality. Restricted cubic spline regression was used to make explicit relationships between NLR and mortality. Results This study recruited 2,827 subjects aged ≥ 18 years from 2005 to 2014. The average age of these observers was 51.55 ± 17.62, and 57.69% were male. NLR is still an independent predictor, adjusted for age, gender, race, drinking, smoking, dyslipidemia, and other laboratory covariates. The area under the receiver operating characteristic curves (AUCs) of NLR for predicting all-cause mortality and cardiovascular mortality were 0.632(95% CI [0599, 0.664]) and 0.653(95% CI [0.581, 0.725]), respectively, which were superior to C-reactive protein (AUCs: 0.609 and 0.533) and WBC (AUCs: 0.522 and 0.513). The calibration and discrimination of the nomograms were validated by calibration plots and concordance index (C-index), and the C-indexes (95% CIs) of nomograms for all-cause and cardiovascular mortality were 0.839[0.819,0.859] and 0.877[0.844,0.910], respectively. The restricted cubic spline showed a non-linear relationship between NLR and mortality. NLR > 2.053 might be a risk factor for mortality. Conclusion There is a non-linear relationship between NLR and mortality. NLR is an independent factor related to mortality, and NLR > 2.053 will be a risk factor for prognosis. NLR and nomogram should be promoted to medical use for practicality and convenience.
Collapse
|
42
|
Björkegren JLM, Lusis AJ. Atherosclerosis: Recent developments. Cell 2022; 185:1630-1645. [PMID: 35504280 PMCID: PMC9119695 DOI: 10.1016/j.cell.2022.04.004] [Citation(s) in RCA: 385] [Impact Index Per Article: 192.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is an inflammatory disease of the large arteries that is the major cause of cardiovascular disease (CVD) and stroke. Here, we review the current understanding of the molecular, cellular, genetic, and environmental contributions to atherosclerosis, from both individual pathway and systems perspectives. We place an emphasis on recent developments, some of which have yielded unexpected biology, including previously unknown heterogeneity of inflammatory and smooth muscle cells in atherosclerotic lesions, roles for senescence and clonal hematopoiesis, and links to the gut microbiome.
Collapse
Affiliation(s)
- Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, Department of Human Genetics, A2-237 Center for the Health Sciences, University of California, Los Angeles, Los Angeles, CA USA.
| |
Collapse
|
43
|
Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ Res 2022; 130:1167-1186. [PMID: 35420915 DOI: 10.1161/circresaha.121.319994] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and immune mechanisms are crucially involved in the pathophysiology of the development, acute damage cascades, and chronic course after ischemic stroke. Atherosclerosis is an inflammatory disease, and, in addition to classical risk factors, maladaptive immune mechanisms lead to an increased risk of stroke. Accordingly, individuals with signs of inflammation or corresponding biomarkers have an increased risk of stroke. Anti-inflammatory drugs, such as IL (interleukin)-1β blockers, methotrexate, or colchicine, represent attractive treatment strategies to prevent vascular events and stroke. Lately, the COVID-19 pandemic shows a clear association between SARS-CoV2 infections and increased risk of cerebrovascular events. Furthermore, mechanisms of both innate and adaptive immune systems influence cerebral damage cascades after ischemic stroke. Neutrophils, monocytes, and microglia, as well as T and B lymphocytes each play complex interdependent roles that synergize to remove dead tissue but also can cause bystander injury to intact brain cells and generate maladaptive chronic inflammation. Chronic systemic inflammation and comorbid infections may unfavorably influence both outcome after stroke and recurrence risk for further stroke. In addition, stroke triggers specific immune depression, which in turn can promote infections. Recent research is now increasingly addressing the question of the extent to which immune mechanisms may influence long-term outcome after stroke and, in particular, cause specific complications such as poststroke dementia or even poststroke depression.
Collapse
Affiliation(s)
- Matthias Endres
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Excellence Cluster NeuroCure (M.E.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Center for Neurodegenerative Diseases, Partner Site Berlin, Germany (M.E.).,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Maria A Moro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (M.A.M.).,Departamento de Farmacología yToxicología, Unidad de Investigación Neurovascular, Universidad Complutense de Madrid, Madrid, Spain (M.A.M.).,Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain (M.A.M.).,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain (M.A.M.)
| | - Christian H Nolte
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,German Centre for Cardiovascular Research, Partner Site Berlin, Germany (M.E., C.H.N.)
| | - Claudia Dames
- Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Institute for Medical Immunology (C.D.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA (M.S.B.).,Wu Tsai Neurosciences Institute, Stanford University, CA (M.S.B.)
| | - Andreas Meisel
- Klinik für Neurologie mit Experimenteller Neurologie (M.E., C.H.N., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,Center for Stroke Research Berlin (M.E., C.H.N., C.D., A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany.,NeuroCure Clinical Research Center (A.M.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
44
|
Howe KL, Cybulsky M, Fish JE. The Endothelium as a Hub for Cellular Communication in Atherogenesis: Is There Directionality to the Message? Front Cardiovasc Med 2022; 9:888390. [PMID: 35498030 PMCID: PMC9051343 DOI: 10.3389/fcvm.2022.888390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke. Cellular communication lies at the core of this process. In this review, we discuss traditional (e.g., cytokines, chemokines, nitric oxide) and novel (e.g., extracellular vesicles) modes of endothelial communication with other endothelial cells as well as circulating and vessel wall cells, including monocytes, macrophages, neutrophils, vascular smooth muscle cells and other immune cells, in the context of atherosclerosis. More recently, the growing appreciation of endothelial cell plasticity during atherogenesis suggests that communication strategies are not static. Here, emerging data on transcriptomics in cells during the development of atherosclerosis are considered in the context of how this might inform altered cell-cell communication. Given the unique position of the endothelium as a boundary layer that is activated in regions overlying vascular inflammation and atherosclerotic plaque, there is a potential to exploit the unique features of this group of cells to deliver therapeutics that target the cellular crosstalk at the core of atherosclerotic disease. Data are discussed supporting this concept, as well as inherent pitfalls. Finally, we briefly review the literature for other regions of the body (e.g., gut epithelium) where cells similarly exist as a boundary layer but provide discrete messages to each compartment to govern homeostasis and disease. In this light, the potential for endothelial cells to communicate in a directional manner is explored, along with the implications of this concept - from fundamental experimental design to biomarker potential and therapeutic targets.
Collapse
Affiliation(s)
- Kathryn L. Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Liu C, Fan Z, He D, Chen H, Zhang S, Guo S, Zheng B, Cen H, Zhao Y, Liu H, Wang L. Designer Functional Nanomedicine for Myocardial Repair by Regulating the Inflammatory Microenvironment. Pharmaceutics 2022; 14:pharmaceutics14040758. [PMID: 35456592 PMCID: PMC9025700 DOI: 10.3390/pharmaceutics14040758] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction is a major global health problem, and the repair of damaged myocardium is still a major challenge. Myocardial injury triggers an inflammatory response: immune cells infiltrate into the myocardium while activating myofibroblasts and vascular endothelial cells, promoting tissue repair and scar formation. Fragments released by cardiomyocytes become endogenous “danger signals”, which are recognized by cardiac pattern recognition receptors, activate resident cardiac immune cells, release thrombin factors and inflammatory mediators, and trigger severe inflammatory responses. Inflammatory signaling plays an important role in the dilation and fibrosis remodeling of the infarcted heart, and is a key event driving the pathogenesis of post-infarct heart failure. At present, there is no effective way to reverse the inflammatory microenvironment in injured myocardium, so it is urgent to find new therapeutic and diagnostic strategies. Nanomedicine, the application of nanoparticles for the prevention, treatment, and imaging of disease, has produced a number of promising applications. This review discusses the treatment and challenges of myocardial injury and describes the advantages of functional nanoparticles in regulating the myocardial inflammatory microenvironment and overcoming side effects. In addition, the role of inflammatory signals in regulating the repair and remodeling of infarcted hearts is discussed, and specific therapeutic targets are identified to provide new therapeutic ideas for the treatment of myocardial injury.
Collapse
Affiliation(s)
- Chunping Liu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhijin Fan
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China;
| | - Dongyue He
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Huiqi Chen
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Shihui Zhang
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Sien Guo
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Bojun Zheng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Huan Cen
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Yunxuan Zhao
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; (C.L.); (D.H.); (H.C.); (S.Z.); (S.G.); (B.Z.); (H.C.); (Y.Z.)
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China
- Correspondence: (H.L.); (L.W.)
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- Correspondence: (H.L.); (L.W.)
| |
Collapse
|
46
|
Hajishengallis G, Li X, Divaris K, Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 2022; 89:215-230. [PMID: 35244943 DOI: 10.1111/prd.12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is bidirectionally associated with systemic inflammatory disorders. The prevalence and severity of this oral disease and linked comorbidities increases with aging. Here, we review two newly emerged concepts, trained innate immunity (TII) and clonal hematopoiesis of indeterminate potential (CHIP), which together support a potential hypothesis on how periodontitis affects and is affected by comorbidities and why the susceptibility to periodontitis and comorbidities increases with aging. Given that chronic diseases are largely triggered by the action of inflammatory immune cells, modulation of their bone marrow precursors, the hematopoietic stem and progenitor cells (HSPCs), may affect multiple disorders that emerge as comorbidities. Such alterations in HSPCs can be mediated by TII and/or CHIP, two non-mutually exclusive processes sharing a bias for enhanced myelopoiesis and production of innate immune cells with heightened proinflammatory potential. TII is a state of elevated immune responsiveness based on innate immune (epigenetic) memory. Systemic inflammation can initiate TII in the bone marrow via sustained rewiring of HSPCs, which thereby display a skewing toward the myeloid lineage, resulting in generation of hyper-reactive or "trained" myeloid cells. CHIP arises from aging-related somatic mutations in HSPCs, which confer a survival and proliferation advantage to the mutant HSPCs and give rise to an outsized fraction of hyper-inflammatory mutant myeloid cells in the circulation and tissues. This review discusses emerging evidence that supports the notion that TII and CHIP may underlie a causal and age-related association between periodontitis and comorbidities. A holistic mechanistic understanding of the periodontitis-systemic disease connection may offer novel diagnostic and therapeutic targets for treating inflammatory comorbidities.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatrics and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
47
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation. Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
48
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|
49
|
Zhang F, Xiong Y, Qin F, Yuan J. Short Sleep Duration and Erectile Dysfunction: A Review of the Literature. Nat Sci Sleep 2022; 14:1945-1961. [PMID: 36325277 PMCID: PMC9621223 DOI: 10.2147/nss.s375571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The meaning of sleep has puzzled people for millennia. In modern society, short sleep duration is becoming a global problem. It has been established that short sleep duration can increase the risk of several diseases, such as cardiovascular and metabolic diseases. Currently, a growing body of research has revealed a possible link between sleep disorders and erectile dysfunction (ED). However, the mechanisms linking short sleep duration and ED are largely unknown. Thus, we provide a review of clinical trials and animal studies. In this review, we propose putative pathways connecting short sleep duration and ED, including neuroendocrine pathways and molecular mechanisms, aiming to pave the way for future research. Meanwhile, the assessment and improvement of sleep quality should be recommended in the diagnosis and treatment of ED patients.
Collapse
Affiliation(s)
- Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
50
|
Hinterdobler J, Schunkert H, Kessler T, Sager HB. Impact of Acute and Chronic Psychosocial Stress on Vascular Inflammation. Antioxid Redox Signal 2021; 35:1531-1550. [PMID: 34293932 PMCID: PMC8713271 DOI: 10.1089/ars.2021.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both chronic stress and acute psychosocial stress with the occurrence of CVDs. Recent Advances: Extensive research during recent decades has not only identified major pathways in cardiovascular inflammation but also revealed a link between psychosocial factors and the immune system in the context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neuroimmune interactions and promote atherosclerosis progression. Critical Issues: The associations human epidemiological studies found between psychosocial stress and cardiovascular inflammation have been substantiated by additional experimental studies in mice and humans. However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardiovascular inflammation; consequently, specific treatment, although urgently needed, is lacking. Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531-1550.
Collapse
Affiliation(s)
- Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|