1
|
Li J, Wei W, Ma X, Ji J, Ling X, Xu Z, Guan Y, Zhou L, Wu Q, Huang W, Liu F, Zhao M. Antihypertensive effects of rice peptides involve intestinal microbiome alterations and intestinal inflammation alleviation in spontaneously hypertensive rats. Food Funct 2025; 16:1731-1759. [PMID: 39752320 DOI: 10.1039/d4fo04251d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities. However, the regulatory mechanisms linking rice peptides (RP), gut dysbiosis, and hypertension remain to be fully elucidated. In our study, male spontaneously hypertensive rats (SHR) were fed with chow diet and concomitantly treated with ddH2O (Ctrl) or varying doses of rice peptides (20, 100, or 500 mg (kg bw day)-1 designated as low-dose RP, LRP; medium-dose RP, MRP; high-dose RP, HAP) or captopril (Cap) by intragastric administration. Wistar-Kyoto (WKY) rats served as the normotensive control group and were orally administered with ddH2O. We observed beneficial effects of RP in lowering blood pressure and ameliorating cardiovascular risk profiles, as evidenced by improvements in glucolipid metabolic disorders, hepatic and renal damage, left ventricular hypertrophy and endothelial dysfunction in hypertensive rats. More importantly, we found that RP attenuated intestinal pathological damage, improved impaired intestinal barrier, and reduced intestinal inflammation by inhibiting the HMGB1-TLR4-NF-κB pathway. Notably, multi-omics integrative analyses have revealed that RP altered the composition and function of the gut microbiota. This is exemplified by the observed enrichment of beneficial bacterial constituents, such as g_Lactobacillus, g_Lactococcus, s_Lactobacillus_intestinalis, and Lactococcus lactis, and elevated production of microbiota-derived short-chain fatty acid metabolites. Collectively, these studies suggest that the hypotensive effects of RP may be associated with modulation of the gut microbiota and its short-chain fatty acids metabolites. This implicates the microbiota-gut-HMGB1-TLR4-NF-κB axis as a novel venue for the amelioration of hypertension and its complications.
Collapse
Affiliation(s)
- Juan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, 274108, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaomin Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- Center for Experimental Public Health and Preventive Medicine Education, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Ji
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Xiaomeng Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhuyan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yutong Guan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Leyan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, 201203, China.
| | - Wenhua Huang
- AMWAY (China) R&D Center, Guangzhou, 510730, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Zeng X, Ma C, Fu W, Xu Y, Wang R, Liu D, Zhang L, Hu N, Li D, Li W. Changes in Type 1 Diabetes-Associated Gut Microbiota Aggravate Brain Ischemia Injury by Affecting Microglial Polarization Via the Butyrate-MyD88 Pathway in Mice. Mol Neurobiol 2025; 62:3764-3780. [PMID: 39322832 DOI: 10.1007/s12035-024-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
People with type 1 diabetes (T1D) have a significantly elevated risk of stroke, but the mechanism through which T1D worsens ischemic stroke remains unclear. This study was aimed at investigating the roles of T1D-associated changes in the gut microbiota in aggravating ischemic stroke and the underlying mechanism. Fecal 16SrRNA sequencing indicated that T1D mice and mice with transplantation of T1D mouse gut microbiota had lower relative abundance of butyric acid producers, f_Erysipelotrichaceae and g_Allobaculum, and lower content of butyric acid in feces. After middle cerebral artery occlusion (MCAO), these mice had poorer neurological outcomes and more severe inflammation, but higher expression of myeloid differentiation factor 88 (MyD88) in the ischemic penumbra; moreover, the microglia were inclined to polarize toward the pro-inflammatory type. Administration of butyrate to T1D mice in the drinking water alleviated the neurological damage after MCAO. Butyrate influenced the response and polarization of BV2 and decreased the production of inflammatory cytokines via MyD88 after oxygen-glucose deprivation/reoxygenation. Knocking down MyD88 in the brain alleviated neurological outcomes and decreased the concentrations of inflammatory cytokines in the brain after stroke in mice with transplantation of T1D mouse gut microbiota. Poor neurological outcomes and aggravated inflammatory responses of T1D mice after ischemic stroke may be partly due to differences in microglial polarization mediated by the gut microbiota-butyrate-MyD88 pathway. These findings provide new ideas and potential intervention targets for alleviating neurological damage after ischemic stroke in T1D.
Collapse
MESH Headings
- Animals
- Myeloid Differentiation Factor 88/metabolism
- Gastrointestinal Microbiome
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/metabolism
- Microglia/metabolism
- Microglia/pathology
- Mice
- Male
- Mice, Inbred C57BL
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Brain Ischemia/microbiology
- Butyrates/metabolism
- Butyrates/pharmacology
- Signal Transduction
- Cell Polarity/drug effects
- Cytokines/metabolism
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/microbiology
- Butyric Acid/pharmacology
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Can Ma
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenchao Fu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yongmei Xu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Rui Wang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dan Liu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Lijuan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dongmei Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
3
|
Jena PK, Arditi M, Noval Rivas M. Gut Microbiota Alterations in Patients With Kawasaki Disease. Arterioscler Thromb Vasc Biol 2025; 45:345-358. [PMID: 39846163 DOI: 10.1161/atvbaha.124.321201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
The intestinal microbiota influences many host biological processes, including metabolism, intestinal barrier functions, and immune responses in the gut and distant organs. Alterations in its composition have been associated with the development of inflammatory disorders and cardiovascular diseases, including Kawasaki disease (KD). KD is an acute pediatric vasculitis of unknown etiology and the leading cause of acquired heart disease in children in the United States. The presence of gastrointestinal symptoms in the acute phase of KD has been associated with an increased risk of treatment resistance and the development of coronary artery aneurysms. Studies report alterations in fecal bacterial communities of patients with KD, characterized by the blooming of pathogenic bacteria and decreased relative abundance of short-chain fatty acid-producing bacteria. However, causality and functionality cannot be established from these observational patient cohorts of KD. This highlights the need for more advanced and rigorous studies to establish causality and functionality in both experimental models of KD vasculitis and patient cohorts. Here, we review the evidence linking an altered gut microbiota composition to the development of KD, assess the potential mechanisms involved in this process, and discuss the potential therapeutic value of these observations.
Collapse
Affiliation(s)
- Prasant K Jena
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Moshe Arditi
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Cardiology, Smidt Heart Institute (M.A.), Cedars-Sinai Medical Center, Los Angeles, CA
| | - Magali Noval Rivas
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Guerin Children's (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center (P.K.J., M.A., M.N.R.), Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
4
|
Beckers KF, Schulz CJ, Flanagan JP, Blair RV, Liu CC, Childers GW, Sones JL. Pregnancy-specific shifts in the maternal microbiome and metabolome in the BPH/5 mouse model of superimposed preeclampsia. Physiol Genomics 2025; 57:115-124. [PMID: 39773069 DOI: 10.1152/physiolgenomics.00106.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Preeclampsia (PE) is a life-threatening hypertensive disorder of pregnancy with an incidence rate of up to 8% worldwide. However, the complete pathogenesis is still unknown. Obesity increases the risk of developing PE threefold. To better understand the relationship of maternal risk factors, the BPH/5 mouse was described as a model of superimposed PE. Previous research demonstrated that adult BPH/5 female mice have an adverse cardiometabolic phenotype characterized by hypertension, obesity with increased white adipose tissue, and dyslipidemia, exaggerated by pregnancy. We hypothesize that BPH/5 mice have gut dysbiosis characterized by changes in alpha and beta diversity of bacterial community structure as well as perturbed short-chain fatty acids (SCFAs) compared with controls in pregnancy. Fecal samples were used for Illumina sequencing of 16S v4 rRNA amplicons. Microbial community composition of the pregnant BPH/5 mice compared with C57 controls was different using permutational multivariate analysis of variance (PERMANOVA) with Bray-Curtis dissimilarity. Alpha diversity was increased in pregnant BPH/5 dams compared with controls. Alistipes and Helicobacter were increased, whereas Bacteroides, Lactobacillus, Parasutterella, and Parabacteroides were decreased compared with controls. Fecal SCFAs were not different between groups, but BPH/5 serum acetic and butyric acids were decreased, whereas isobutyric and isovaleric acids were increased specifically in pregnancy. BPH/5 pregnant colons had decreased expression of free fatty acid receptor, GPR41. In conclusion, the BPH/5 maternal fecal microbiome demonstrates microbial dysbiosis characterized by community structure and diversity changes before and after the onset of pregnancy. Gut dysbiosis may be a key mechanism linking SCFA signaling and obesity to the BPH/5 PE-like phenotype.NEW & NOTEWORTHY This is the first time the pregnant fecal microbiome has been identified in the BPH/5 spontaneous mouse model of superimposed PE. Community composition changed with the onset of pregnancy in this model. BPH/5 showed an altered colonic signaling with decreased GPR41 expression, suggesting that gut dysbiosis may link SCFA signaling to the PE phenotype. This data highlights the importance of the maternal obesogenic gut microbiome in pregnancy.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Robert V Blair
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States
| | - Jenny L Sones
- Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
5
|
Chen JQ, Yuan WY, Miao W, Gong SL, Zhou J, Liu Y, Wu JL, Li N. In vitro and in vivo immune-enhancing effects of polysaccharides with different molecular weights and structural characteristics from Gastrodia elata Blume. Int J Biol Macromol 2025; 295:139526. [PMID: 39788267 DOI: 10.1016/j.ijbiomac.2025.139526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Research on high-molecular-weight polysaccharides tends to be more difficult and lag in terms of their fine structures and bioavailability. We focused on Gastrodia elata Blume polysaccharides (GEPs) with different molecular weights and structural characteristics to reveal their bioactivities, especially those abundant high-molecular-weight GEPs. A novel high-yield polysaccharide (GEP1-2) with the high molecular weight of 3.21 × 106 Da was first purified. Through conventional and enzymolysis-assisted analyses, GEP1-2 was an α-D-(1,4)(1,6)-glucan with unique linkages of →2)-β-D-Frucf-(1→, →4)-β-D-Glcp-(1→ and p-hydroxybenzyl alcohol citrate (HAC), and its main local fine structure had α-1-Glcp, α-1,4-Glcp, α-1,6-Glcp, β-1,6-Galp, and α-1,4,6-Glcp at the molar ratio of 1.20∶17.74∶2.71∶0.98∶0.76. Another refined GEP3-3 with 1.91 × 104 Da was identified as an α-1,4- and α-1,4,6-glucan (molar ratio of 4.91∶1.02). It was noteworthy that all GEPs could induce the release and mRNA expressions of NO and cytokines in RAW264.7 macrophages. Specially, the high-molecular-weight polysaccharides showed comparable in vitro immune-enhancing effects to the low-molecular-weight polysaccharide. Furthermore, the macromolecular GEP1-2 could dose-dependently increase the organ coefficient of thymus and cytokine levels of TNF-α and IL-6 in mouse serum as well as in splenic lymphocytes. These efforts will be of great significance when proceeding to the safe relief or therapy of macromolecular GEPs for immunologic diseases.
Collapse
Affiliation(s)
- Jia-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Wei-Yuan Yuan
- Zhuhai & University of Macau Science and Technology Research Institute, Zhuhai 519000, PR China
| | - Wen Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Shi-Lin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Jie Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao
| | - Ying Liu
- School of Basic Medicinal Sciences and Nursing, Chengdu University, Chengdu 610106, PR China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao.
| |
Collapse
|
6
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
7
|
Yang Q, Chang S, Tian Y, Zhang H, Zhu Y, Li W, Ren J. Simulated digestion and gut microbiota fermentation of polysaccharides from Lactarius hatsudake Tanaka mushroom. Food Chem 2025; 466:142146. [PMID: 39591778 DOI: 10.1016/j.foodchem.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Lactarius hatsudake Tanaka is a popular edible mushroom known for its delicious flavor and health benefits. Its polysaccharides (LHP) exhibit significant bioactivity, but their application is limited due to uncertainties in digestion. This study used in vitro simulated models to explore the dynamic changes of LHP during the digestive and fermentation process and validated them through mouse models. Results revealed that LHP cannot be digested by the simulated digestive system, but is primarily degraded into fatty acids by gut microbes, accompanied by reductions in molecular weight, carbohydrate content, and pH. Additionally, LHP promotes the proliferation of beneficial bacteria (Faecalibacterium, Bifidobacterium, Lactobacillus, etc.), while inhibiting harmful bacteria (Escherichia and Shigella). Metabolite analysis in serum indicated that LHP can regulate amino acid and lipid metabolism, enhancing overall health. These findings provide a theoretical foundation for developing LHP as a potential prebiotic, highlighting its considerable promise for disease prevention through improved intestinal health.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Songlin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yiming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Hui Zhang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
8
|
Davison S, Mascellani Bergo A, Ward Z, Sackett A, Strykova A, Jaimes JD, Travis D, Clayton JB, Murphy HW, Danforth MD, Smith BK, Blekhman R, Fuh T, Niatou Singa FS, Havlik J, Petrzelkova K, Gomez A. Cardiometabolic disease risk in gorillas is associated with altered gut microbial metabolism. NPJ Biofilms Microbiomes 2025; 11:33. [PMID: 39984469 PMCID: PMC11845621 DOI: 10.1038/s41522-025-00664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Cardiometabolic disease is the leading cause of death in zoo apes; yet its etiology remains unknown. Here, we investigated compositional and functional microbial markers in fecal samples from 57 gorillas across U.S. zoos, 20 of which are diagnosed with cardiovascular disease, in contrast with 17 individuals from European zoos and 19 wild gorillas from Central Africa. Results show that zoo-housed gorillas in the U.S. exhibit the most diverse gut microbiomes and markers of increased protein and carbohydrate fermentation, at the expense of microbial metabolic traits associated with plant cell-wall degradation. Machine learning models identified unique microbial traits in U.S. gorillas with cardiometabolic distress; including reduced metabolism of sulfur-containing amino acids and hexoses, increased abundance of potential enteric pathogens, and low fecal butyrate and propionate production. These findings show that cardiometabolic disease in gorillas is potentially associated with altered gut microbial function, influenced by zoo-specific diets and environments.
Collapse
Affiliation(s)
- Samuel Davison
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Zoe Ward
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - April Sackett
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA
| | - Anna Strykova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - José Diógenes Jaimes
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Dominic Travis
- The Marine Mammal Center, Sausalito, CA, USA
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jonathan B Clayton
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Hayley W Murphy
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | - Marietta D Danforth
- HWM and MDD: Great Ape Heart Project, Detroit Zoological Society, Royal Oak, MI, USA
| | | | - Ran Blekhman
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terence Fuh
- WWF Central African Republic, Bayanga, Central African Republic
| | | | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czech Republic.
| | - Klara Petrzelkova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Brno, Czech Republic.
- Liberec Zoo, Liberec, Czech Republic.
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, Saint Paul, MN, USA.
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
9
|
Wang P, Shen Y, Yan K, Wang S, Jiao J, Chi H, Zhong J, Sun Q, Dong Y, Li J. CKD patients comorbid with hypertension are associated with imbalanced gut microbiome. iScience 2025; 28:111766. [PMID: 39911351 PMCID: PMC11795142 DOI: 10.1016/j.isci.2025.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Intestinal flora has been linked to chronic kidney disease (CKD) and hypertension, respectively. This study aimed to investigate the microbial community among 54 individuals without CKD, 46 hypertensive CKD patients (CKD_HTN), and 48 non-hypertensive CKD patients. Variations in microbial diversity were detected in CKD. The Prevotella-dominated type progressively increased from CKD to CKD_HTN. Based on the variation patterns, we identified six distinct clusters. Klebsiella, Turicibacter, and Enterobacter were enriched in CKD, whereas Escherichia and Mogibacterium were elevated, and Blautia and Clostridium were reduced in CKD_HTN. Enhanced phenylalanine metabolism and siderophore group nonribosomal peptides biosynthesis from non-CKD to CKD were observed, particularly in CKD with hypertension. The connections between genera and KEGG pathways suggest an impact of microbial dysbiosis on metabolism. Our findings demonstrate that imbalances in gut microorganisms and functions are associated with increased susceptibility to hypertension in CKD patients and could be targeted for improving kidney function in CKD.
Collapse
Affiliation(s)
- Pan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaixin Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siyuan Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Jiao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qianmei Sun
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shen S, Tian B, Zhang H, Wang YC, Li T, Cao Y. Heart Failure and Gut Microbiota: What Is Cause and Effect? RESEARCH (WASHINGTON, D.C.) 2025; 8:0610. [PMID: 39981296 PMCID: PMC11839986 DOI: 10.34133/research.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Emerging evidence highlights the central role of gut microbiota in maintaining physiological homeostasis within the host. Disruptions in gut microbiota can destabilize systemic metabolism and inflammation, driving the onset and progression of cardiometabolic diseases. In heart failure (HF), intestinal dysfunction may induce the release of endotoxins and metabolites, leading to dysbiosis and exacerbating HF through the gut-heart axis. Understanding the relationship between gut microbiota and HF offers critical insights into disease mechanisms and therapeutic opportunities. Current research highlights promising potential to improve patient outcomes by restoring microbiota balance. In this review, we summarize the current studies in understanding the gut microbiota-HF connection and discuss avenues for future investigation.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Beiduo Tian
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Haizhu Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics,
University of California, Los Angeles, CA, USA
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics,
West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yang Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
11
|
do Carmo DJAC, Lazari MGT, dos Santos LCC, Costa PAC, Jesus ICG, Guatimosim S, Guimaraes PPG, Andrade SP, Campos PP. Sodium propionate decreases implant-induced foreign body response in mice. PLoS One 2025; 20:e0316764. [PMID: 39970160 PMCID: PMC11838875 DOI: 10.1371/journal.pone.0316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 02/21/2025] Open
Abstract
The short-chain fatty acid (SCFA) propionate, beyond its actions on the intestine, has been able to lower inflammation and modulate angiogenesis and fibrogenesis in pathological conditions in experimental animal models. Its effects on foreign body reaction (FBR), an abnormal healing process induced by implantation of medical devices, have not been investigated. We have evaluated the effects of sodium propionate (SP) on inflammation, neovascularization and remodeling on a murine model of implant-induced FBR. Polyether-polyurethane sponge discs implanted subcutaneously in C57BL/6 mice provided the scaffold for the formation of the fibrovascular tissue. Fifteen-day old implants of the treated group (SP, 100 mg/kg for 14 days) presented a decrease in the inflammatory response as evaluated by cellular influx (flow cytometry; Neutrophils 54%; Lymphocytes 25%, Macrophages 40%). Myeloperoxidase activity, TNF-α levels and mast cell number were also lower in the treated group relative to the control group. Angiogenesis was evaluated by blood vessel number and VEGF levels, which were downregulated by the treatment. Moreover, the number of foreign body giant cells HE (FBGC) and the thickness of the collagenous capsule were reduced by 58% and 34%, respectively. Collagen deposition inside the implant, TGF-β1 levels, α-SMA and TGF-β1 expression were also reduced. These effects may indicate that SP holds potential as a therapeutic agent for attenuating adverse remodeling processes associated with implantable devices, expanding its applications in biomedical contexts.
Collapse
Affiliation(s)
| | - Marcela Guimarães Takahashi Lazari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Cristine Cardoso dos Santos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Pires Goulart Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Holle J, Reitmeir R, Behrens F, Singh D, Schindler D, Potapenko O, McParland V, Anandakumar H, Kanzelmeyer N, Sommerer C, Hartleif S, Andrassy J, Heemann U, Neuenhahn M, Forslund-Startceva SK, Gerhard M, Oh J, Wilck N, Löber U, Bartolomaeus H. Gut microbiome alterations precede graft rejection in kidney transplantation patients. Am J Transplant 2025:S1600-6135(25)00093-0. [PMID: 39978595 DOI: 10.1016/j.ajt.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease, with graft survival critically affected by the recipient's immune response. The role of the gut microbiome in modulating this immune response remains underexplored. Our study investigates how microbiome alterations might associate with allograft rejection by analyzing the gut microbiome using 16S rRNA gene amplicon sequencing of a multicenter prospective study involving 562 samples from 245 individuals of which 217 received KT. Overall, gut microbiome composition showed gradual recovery post-KT, mirroring CKD-to-health transition as indicated by an increase of Shannon diversity. Prior to graft rejection, we observed a decrease in microbial diversity and SCFA-producing taxa. Functional analysis highlighted a decreased potential for SCFA production in patients preceding the rejection event, validated by quantitative PCR for the production potential of propionate and butyrate. Post-rejection analysis revealed normalization of these microbiome features. Comparison to published microbiome signatures from CKD patients demonstrated a partial overlap of the microbiome alterations preceding graft rejection with the alterations typically found in CKD. Our findings suggest that alterations in gut microbiome composition and function may precede and influence KT rejection, suggesting potential implications as biomarkers or for early therapeutic microbiome-targeting interventions.
Collapse
Affiliation(s)
- Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of General Pediatrics and Hematology/Oncology, University Children's Hospital, University Hospital Tübingen, Tübingen, Germany.
| | - Rosa Reitmeir
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dharmesh Singh
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Daniela Schindler
- German Center for Infection Research (DZIF), Partner Site Braunschweig, Germany
| | - Olena Potapenko
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Nele Kanzelmeyer
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Children's Hospital, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover, Germany
| | - Claudia Sommerer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Germany
| | - Steffen Hartleif
- Paediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Partner Site Tübingen, Germany
| | - Joachim Andrassy
- German Center for Infection Research (DZIF), Partner Site München, Germany; Klinik für Allgemeine, Viszeral, und Transplantationschirurgie, Klinikum der Universität München, Munich, Germany
| | - Uwe Heemann
- German Center for Infection Research (DZIF), Partner Site München, Germany; Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Michael Neuenhahn
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Gerhard
- Department of Preclinical Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), TUM School of Medicine and Health, Munich, Germany; German Center for Infection Research (DZIF), Partner Site München, Germany
| | - Jun Oh
- Department of Pediatric Nephrology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hendrik Bartolomaeus
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| |
Collapse
|
13
|
Khan MM, Kirabo A. Fiber, Fatty Acids, and Blood Pressure: A Gut-Level Solution. Circ Res 2025; 136:358-360. [PMID: 39946444 PMCID: PMC11839179 DOI: 10.1161/circresaha.125.326065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (M.M.K., A.K.)
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 (M.M.K., A.K.)
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology, and Inflammation (A.K.)
- Vanderbilt Institute for Global Health (A.K.)
| |
Collapse
|
14
|
Li C, Yao J, Yang C, Yu S, Yang Z, Wang L, Li S, He N. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis. Metab Brain Dis 2025; 40:122. [PMID: 39921774 DOI: 10.1007/s11011-025-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
The gut microbiota plays a crucial role in the communication between the gut, liver, and brain through the production of short chain fatty acids (SCFAs). SCFAs serve as key mediators in the Gut-Liver-Brain Axis, influencing various physiological processes and contributing to overall health. SCFAs are produced by bacterial fermentation of dietary fiber in the gut, and they exert systemic effects by signaling through various pathways. In the Gut-Liver axis, SCFAs regulate liver metabolism through peroxisome proliferator-activated receptor-γ (PPAR-γ), AMP-activated protein kinase (AMPK) and other pathways, promotes fat oxidation, modulate inflammation through mTOR pathway, and impact metabolic health. In the Gut-Brain axis, SCFAs influence brain function, behavior, and may have implications for neurological disorders, in which G-protein coupled receptors (GPCRs) play an essential role, along with other pathways such as hypothalamic-pituitary-adrenal (HPA) pathway. Understanding the mechanisms by which SCFAs mediate communication between the gut, liver, and brain is crucial for elucidating the complex interplay of the Gut-Liver-Brain Axis. This review aims to provide insight into the role of gut microbiota-derived SCFAs as mediators of the Gut-Liver-Brain Axis and their potential therapeutic implications. Further research in this area will be instrumental in developing novel strategies to target the Gut-Liver-Brain Axis for the prevention and treatment of various health conditions.
Collapse
Affiliation(s)
- Cunyin Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Chang Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
- Affiliated Hospital of Inner Mongolia University for Nationalities, TongLiao, 028005, China
| | - Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Lijing Wang
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
15
|
Yu W, Sun S, Fu Q. The role of short-chain fatty acid in metabolic syndrome and its complications: focusing on immunity and inflammation. Front Immunol 2025; 16:1519925. [PMID: 39991152 PMCID: PMC11842938 DOI: 10.3389/fimmu.2025.1519925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Metabolic syndrome (Mets) is an important contributor to morbidity and mortality in cardiovascular, liver, neurological, and reproductive diseases. Short-chain fatty acid (SCFA), an organismal energy donor, has recently been demonstrated in an increasing number of studies to be an important molecule in ameliorating immuno-inflammation, an important causative factor of Mets, and to improve lipid distribution, blood glucose, and body weight levels in animal models of Mets. This study reviews recent research advances on SCFA in Mets from an immune-inflammatory perspective, including complications dominated by chronic inflammation, as well as the fact that these findings also contribute to the understanding of the specific mechanisms by which gut flora metabolites contribute to metabolic processes in humans. This review proposes an emerging role for SCFA in the inflammatory Mets, followed by the identification of major ambiguities to further understand the anti-inflammatory potential of this substance in Mets. In addition, this study proposes novel strategies to modulate SCFA for the treatment of Mets that may help to mitigate the prognosis of Mets and its complications.
Collapse
Affiliation(s)
- Wenqian Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Siyuan Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Chulenbayeva L, Issilbayeva A, Sailybayeva A, Bekbossynova M, Kozhakhmetov S, Kushugulova A. Short-Chain Fatty Acids and Their Metabolic Interactions in Heart Failure. Biomedicines 2025; 13:343. [PMID: 40002756 PMCID: PMC11853371 DOI: 10.3390/biomedicines13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Short-chain fatty acids (SCFAs), produced through fermentation of dietary fibers by gut bacteria, play a central role in modulating cardiovascular function and heart failure (HF) development. The progression of HF is influenced by intestinal barrier dysfunction and microbial translocation, where SCFAs serve as key mediators in the gut-heart axis. This review examines the complex metabolic interactions between SCFAs and other gut microbiota metabolites in HF, including their relationships with trimethylamine N-oxide (TMAO), aromatic amino acids (AAAs), B vitamins, and bile acids (BAs). We analyze the associations between SCFA production and clinical parameters of HF, such as left ventricular ejection fraction (LVEF), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and glomerular filtration rate (GFR). Gaining insights into metabolic networks offers new potential therapeutic targets and prognostic markers for managing heart failure, although their clinical significance needs further exploration.
Collapse
Affiliation(s)
- Laura Chulenbayeva
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Argul Issilbayeva
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Aliya Sailybayeva
- Heart Center, CF “University Medical Center”, Astana 010000, Kazakhstan; (A.S.); (M.B.)
| | | | - Samat Kozhakhmetov
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
| | - Almagul Kushugulova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (A.I.); (S.K.); (A.K.)
- Heart Center, CF “University Medical Center”, Astana 010000, Kazakhstan; (A.S.); (M.B.)
| |
Collapse
|
17
|
Deng J, Li J, Li S, Zhang D, Bai X. Progress of research on short-chain fatty acids, metabolites of gut microbiota, and acute ischemic stroke. Clin Neurol Neurosurg 2025; 249:108725. [PMID: 39805257 DOI: 10.1016/j.clineuro.2025.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/28/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Acute ischemic stroke (AIS) significantly impacts the well-being and quality of life of individuals within our population. Short-chain fatty acids (SCFAs), metabolites produced by the intestinal microbiota, are integral to the bidirectional regulatory pathway linking the gut and the brain. SCFAs may significantly influence the risk, prognosis, recurrence, and management of complications associated with AIS. Potential mechanisms underlying these effects include the facilitation of brain-gut barrier repair, the mitigation of oxidative stress, the reduction of neuroinflammatory responses, and the inhibition of autophagy and apoptosis. Consequently, SCFAs hold promise as a prospective target for AIS intervention, with the potential to significantly impact AIS prevention and treatment strategies.
Collapse
Affiliation(s)
- Jinbao Deng
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Jianrong Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
18
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Cheng L, Huang Z, He J, Zhang X, Di J, Jiang H, Liu Y. Exploring the effects of Tianma Gouteng granules on L-NAME-induced hypertensive rats based on 16S rDNA gene sequencing and metabolomics. Heliyon 2025; 11:e41786. [PMID: 39897797 PMCID: PMC11786837 DOI: 10.1016/j.heliyon.2025.e41786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Background A growing number of studies have shown that hypertension symptoms are closely related to intestinal flora. The body's metabolites are closely related to disease states. Tianma Gouteng Granules (TG), a traditional Chinese medicine compound, has been proven to be an effective compound for the treatment of hypertension by traditional Chinese medicine diagnosis, but the target and therapeutic mechanism of TG on hypertension are still unclear. Aim of the study We explored the mechanism of action of TG on hypertension by 16S rDNA gene sequencing and non-targeted metabolomics, verified the correlation between hypertension and intestinal flora, searched for potential markers of intestinal flora, and screened for the correlation between different flora and different metabolites, which facilitates a more scientific and reasonable guidance for the administration of TG. Materials and methods The hypertensive model rats were induced by L-NAME. After drug administration, 16S rDNA gene sequencing and non-targeted metabolomics were applied to detect and analyze the intestinal flora and fecal metabolites of the rats in each group. The Spearman coefficient method was used to construct the interactions system of different flora and metabolites, which explore the potential mechanism of TG treatment hypertension. Results After TG administration, the symptoms of hypertension were significantly reduced to normal in SD rats.16S rDNA gene sequencing and non-targeted metabolomics screened for differential flora p_Actinobacteriota, o_Micrococcaceae, f_ Micrococcales, g_Rothias_Rothia_unclassified, etc. and differential metabolites such as L-Alanine and Hydroxyprolyl-Leucine. TG treatment of hypertension was found to be associated with vitamin B6 metabolic pathway and lipid metabolic pathway. Conclusions TG can treat hypertension by affecting differential strains and differential metabolites, providing a scientific basis for guiding the rational use of TG.
Collapse
Affiliation(s)
- Li Cheng
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| | - Zhenyang Huang
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| | - Jiawei He
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| | - Xinyi Zhang
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| | - Jiangxue Di
- College of Management, Hubei University of Chinese Medicine, 16 West Road of Huangjiahu River, Wuhan, 430065, Hubei, China
| | - Hanmei Jiang
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| | - Yi Liu
- Hubei University of Traditional Chinese Medicine, Medicinal Plant Research and Development Center of Hubei Province, 430065, Hubei, China
| |
Collapse
|
20
|
Huang L, Liu M, Shen L, Chen D, Wu T, Gao Y. Polysaccharides from Yupingfeng granules ameliorated cyclophosphamide-induced immune injury by protecting intestinal barrier. Int Immunopharmacol 2025; 146:113866. [PMID: 39709910 DOI: 10.1016/j.intimp.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Immune injury is the main side effect caused by cyclophosphamide and the disruption of the intestinal barrier may be an important cause. Yupingfeng granules have been reported to have immunomodulatory effects and polysaccharides are important components of them. This study aimed to investigate the ameliorative effect of polysaccharides from Yupingfeng granules (YPFP) on cyclophosphamide induced immune injury and reveal their potential mechanisms based on its protective effect on the intestine. YPFP were isolated and preliminarily characterized. Pharmacodynamic evaluation revealed that YPFP treatment could effectively mitigate lesions of immune organs, ameliorate white blood cells and downregulate IL-10 level. Further, the protective effect of intestinal barrier on the basis of intestinal tight junctions, MUC-2, microflora, endogenous metabolites, pathways and immune cells was discussed to outline mechanisms. The results showed that YPFP repaired the integrity of intestinal epithelium, enhanced the abundance of Muribaculaceae_unclassified, Bacteroide and Muribaculum, downgraded the abundance of Lachnospiraceae_NK4A136_group, improved the excretion of lipids and bile acids especially 3-oxo-LCA, increased the content of SCFAs in feces and inhibited the expression of key proteins of PI3K-AKT and MAPK-JUN pathways. More importantly, Th17 and Treg balance was remodeled after YPFP administration, which might be related to certain differential metabolites and pathways enriched by metabolomics. This study provides a rich understanding of YPFP and lays a foundation for further development of Yupingfeng granules. It was shown for the first time that the immunomodulatory effect of YPFP might be involved in multiple mechanisms of intestinal homeostasis. YPFP could be regarded as an immunomodulator to alleviate immune damage caused by cyclophosphamide.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mo Liu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Longhai Shen
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201201, China.
| | - Tong Wu
- National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Yongjian Gao
- Sinopharm Group Guangdong Medi-World Pharmaceutical Co., Ltd., Guangzhou, China
| |
Collapse
|
21
|
Mahmod AI, Govindaraju K, Lokanathan Y, Said NABM, Ibrahim B. Exploring the Potential of Stem Cells in Modulating Gut Microbiota and Managing Hypertension. Stem Cells Dev 2025. [PMID: 39836384 DOI: 10.1089/scd.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood. Recent studies indicate that an imbalance in gut microbiota, referred to as dysbiosis, may promote hypertension, affecting blood pressure regulation through metabolites such as short-chain fatty acids and trimethylamine N-oxide. Current antihypertensive medications face limitations, including resistance and adherence issues, highlighting the need for novel therapeutic approaches. Stem cell therapy, an emerging field in regenerative medicine, shows promise in addressing these challenges. Stem cells, with mesenchymal stem cells being a prime example, have regenerative, anti-inflammatory, and immunomodulatory properties. Emerging research indicates that stem cells can modulate gut microbiota, reduce inflammation, and improve vascular health, potentially aiding in blood pressure management. Research has shown the positive impact of stem cells on gut microbiota in various disorders, suggesting their potential therapeutic role in treating hypertension. This review synthesizes the recent studies on the complex interactions between gut microbiota, stem cells, and systemic arterial hypertension. By offering a thorough analysis of the current literature, it highlights key insights, uncovers critical gaps, and identifies emerging trends that will inform and guide future investigations in this rapidly advancing field.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Li X, Cui J, Ding Z, Tian Z, Kong Y, Li L, Liu Y, Zhao W, Chen X, Guo H, Cui Z, Li X, Yuan J, Zhang H. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Cell Commun Signal 2025; 23:21. [PMID: 39800699 PMCID: PMC11726972 DOI: 10.1186/s12964-024-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells. Endothelial dysfunction is an important early event in the pathogenesis of hypertension, yet the impact of K.pn-secreted EVs (K.pn EVs) on endothelial function remains unclear. This study aimed to investigate the effects of K.pn EVs on endothelial function and to elucidate the underlying mechanisms. METHODS K.pn EVs were purified from the bacterial suspension using ultracentrifugation and characterized by transmission electron microscopy nanoparticle tracking analysis, and EV marker expression. Endothelium-dependent relaxation was measured using a wire myograph after in vivo or ex vivo treatment with K.pn EVs. Superoxide anion production was measured by confocal microscopy and HUVEC senescence was assessed by SA-β-gal activity. SIRT1 overexpression or activator was utilized to investigate the underlying mechanisms. RESULTS Our data showed that K.pn significantly impaired acetylcholine-induced endothelium-dependent relaxation and increased superoxide anion production in endothelial cells in vivo. Similarly, in vivo and ex vivo studies showed that K.pn EVs caused significant endothelial dysfunction, endothelial provocation, and increased blood pressure. Further examination revealed that K.pn EVs reduced the levels of SIRT1 and p-eNOS and increased the levels of NOX2, COX-2, ET-1, and p53 in endothelial cells. Notably, overexpression or activation of SIRT1 attenuated the adverse effects and protein changes induced by K.pn EVs on endothelial cells. CONCLUSION This study reveals a novel role of K.pn EVs in endothelial dysfunction and dissects the relevant mechanism involved in this process, which will help to establish a comprehensive understanding of K.pn EVs in endothelial dysfunction and hypertension from a new scope.
Collapse
Affiliation(s)
- Xinxin Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jinghua Cui
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Zanbo Ding
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Ziyan Tian
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yiming Kong
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yang Liu
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Wen Zhao
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xueying Chen
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Han Guo
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Zhengshuo Cui
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xinwei Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jing Yuan
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
23
|
Franz K, Markó L, Mähler A, Chakaroun R, Heinitz S, Schlögl H, Sacher J, Steckhan N, Dechend R, Adams N, Andersen M, Glintborg D, Viehweger M, Bahr LS, Forslund-Startceva SK. Sex hormone-dependent host-microbiome interactions and cardiovascular risk (XCVD): design of a longitudinal multi-omics cohort study. BMJ Open 2025; 15:e087982. [PMID: 39788783 PMCID: PMC11751863 DOI: 10.1136/bmjopen-2024-087982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations. METHODS AND ANALYSES This observational, longitudinal cohort study includes baseline, 1- and 2-year follow-ups with transgender participants beginning GAHT. It involves comprehensive phenotyping and microbiome genotyping, integrating computational analyses of high-dimensional data. Microbial diversity will be assessed using gut, skin, and oral samples via 16S rRNA and shotgun metagenomic sequencing of gut samples. Blood measurements will include sex hormones, CVD risk markers, cardiometabolic parameters, cytokines, and immune cell counts. Hair samples will be analysed for cortisol. Participants will complete online questionnaires on physical activity, mental health, stress, quality of life, fatigue, sleep, pain, and gender dysphoria, tracking medication use and diet to control for confounders. Statistical analyses will integrate phenomic, lifestyle, and multi-omic data to model health effects, testing gut microbiome mediation of CVD risk as the endocrine environment shifts between that typical for cisgender men to women and vice versa. ETHICS AND DISSEMINATION The study adheres to Good Clinical Practice and the Declaration of Helsinki. The protocol was approved by the Charité Ethical Committee (EA1/339/21). Signed informed consent will be obtained. Results will be published in peer-reviewed journals and conferences and shared as accessible summaries for participants, community groups, and the public, with participants able to view their data securely after public and patient involvement review for accessibility. TRIAL REGISTRATION NUMBER The XCVD study was registered on ClinicalTrials.gov (NCT05334888) as 'Sex-differential host-microbiome CVD risk - a longitudinal cohort approach (XCVD)" on 4 April 2022. Data set link can be found at https://classic. CLINICALTRIALS gov/ct2/show/NCT05334888.
Collapse
Affiliation(s)
- Kristina Franz
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rima Chakaroun
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg Wallenberg Laboratory for Cardiovascular and Metabolic Research, Goteborg, Sweden
| | - Sascha Heinitz
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Haiko Schlögl
- Medical Department III Endocrinology Nephrology Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- HI-MAG, Helmholtz Institute for Metabolic Obesity and Vascular Research, Leipzig, Germany
| | - Julia Sacher
- Clinic for Cognitive Neurology, University of Leipzig Medical Center, and Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Max-Planck-Institut fur molekulare Physiologie, Dortmund, Germany
| | - Nico Steckhan
- Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Helios Clinic Berlin-Buch, Berlin, Germany
| | - Noah Adams
- University of Toronto, Toronto, Ontario, Canada
- Center for Applied Transgender Studies (CATS), Chicago, Illinois, USA
- Transgender Professional Association for Transgender Health, TPATH, Toronto, Ontario, Canada
| | - Marianne Andersen
- Department of Endocrinology, Odense Universitetshospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Dorte Glintborg
- Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
- Body Identity Clinic, Odense Universitetshospital Endokrinologisk Afdeling M, Odense, Denmark
| | | | - Lina Samira Bahr
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sofia Kirke Forslund-Startceva
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) partner site Berlin, DZHK, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Transgender Professional Association for Transgender Health, TPATH, Toronto, Ontario, Canada
- European Molecular Biology Laboratory Structural and Computational Biology Unit, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
24
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
25
|
Escobar C, Aldeguer X, Vivas D, Manzano Fernández S, Gonzalez Caballero E, Garcia Martín A, Barrios V, Freixa-Pamias R. The gut microbiota and its role in the development of cardiovascular disease. Expert Rev Cardiovasc Ther 2025; 23:23-34. [PMID: 39915986 DOI: 10.1080/14779072.2025.2463366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The pathophysiology of cardiovascular diseases encompasses a complex interplay of genetic and environmental risk factors. Even if traditional risk factors are treated to target, there remains a residual risk. AREAS COVERED This manuscript reviews the potential role of gut microbiota in the development of cardiovascular disease, and as potential target. A systematic search was conducted until 30 October 2024 on PubMed (MEDLINE), using the MeSH terms [Gut microbiota] + [Dysbiosis] + [Cardiovascular] + [TMAO] + [bile acids] + [short-chain fatty acids]. EXPERT OPINION The term dysbiosis implies changes in equilibrium, with modifications in the composition and functionality of microbiota and a series of additional factors: reduced diversity and uniformity of microorganisms; reduced short-chain fatty acid-producing bacteria; increased gut permeability; release of metabolites, such as trimethylamine N-oxide, betaine, phenylalanine, tryptophan-kynurenine, phenylacetylglutamine, and lipopolysaccharides; and reduced secondary bile acid excretion, leading to inflammation, oxidative stress, and endothelial dysfunction and facilitating the onset of pathological conditions, including obesity, hypertension, diabetes, atherosclerosis, and heart failure. Attempts to restore gut microbiota balance through different interventions, mainly changes in diet, have been shown to positively affect individual components and metabolites and reduce the risk of cardiovascular disease. In addition, probiotics and prebiotics are potentially useful. Fecal microbiota transplantation is a promising therapy.
Collapse
Affiliation(s)
- Carlos Escobar
- Cardiology Department, University Hospital La Paz, Madrid, Spain
| | - Xavier Aldeguer
- Gastroenterology Department, Hospital Doctor Josep Trueta i Santa Caterina, Institut d'investigació Biomèdica de Girona IDIBGI, Girona/Salt, Spain
| | - David Vivas
- Cardiovascular Institute, San Carlos University Hospital, Madrid, Spain
- Cardiology Department, Cardiovascular Institute Vithas Milagrosa and Aravaca, Madrid, Spain
| | | | | | - Ana Garcia Martín
- Cardiology Department, University Hospital Ramón y Cajal, Alcalá University, Madrid, Spain
| | - Vivencio Barrios
- Cardiology Department, University Hospital Ramón y Cajal, Alcalá University, Madrid, Spain
| | - Román Freixa-Pamias
- Cardiology Department, Complex Hospitalari Moisès Broggi, Sant Joan Despí, Barcelona, Spain
| |
Collapse
|
26
|
Bloomfield SJ, Hildebrand F, Zomer AL, Palau R, Mather AE. Ecological insights into the microbiology of food using metagenomics and its potential surveillance applications. Microb Genom 2025; 11. [PMID: 39752189 DOI: 10.1099/mgen.0.001337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
A diverse array of micro-organisms can be found on food, including those that are pathogenic or resistant to antimicrobial drugs. Metagenomics involves extracting and sequencing the DNA of all micro-organisms on a sample, and here, we used a combination of culture and culture-independent approaches to investigate the microbial ecology of food to assess the potential application of metagenomics for the microbial surveillance of food. We cultured common foodborne pathogens and other organisms including Escherichia coli, Klebsiella/Raoultella spp., Salmonella spp. and Vibrio spp. from five different food commodities and compared their genomes to the microbial communities obtained by metagenomic sequencing following host (food) DNA depletion. The microbial populations of retail food were found to be predominated by psychrotrophic bacteria, driven by the cool temperatures in which the food products are stored. Pathogens accounted for a small percentage of the food metagenome compared to the psychrotrophic bacteria, and cultured pathogens were inconsistently identified in the metagenome data. The microbial composition of food varied amongst different commodities, and metagenomics was able to classify the taxonomic origin of 59% of antimicrobial resistance genes (ARGs) found on food to the genus level, but it was unclear what percentage of ARGs were associated with mobile genetic elements and thus transferable to other bacteria. Metagenomics may be used to survey the ARG burden, composition and carriage on foods to which consumers are exposed. However, food metagenomics, even after depleting host DNA, inconsistently identifies pathogens without enrichment or further bait capture.
Collapse
Affiliation(s)
- Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
27
|
Tian Y, Gu M, Chen D, Dong Q, Wang Y, Sun W, Kong X. Causal Associations Between the Gut Microbiota and Hypertension-Related Traits Through Mendelian Randomization: A Cross-Sectional Cohort Study. J Clin Hypertens (Greenwich) 2025; 27:e14925. [PMID: 39468693 PMCID: PMC11771804 DOI: 10.1111/jch.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Previous studies have suggested a link between the gut microbiome and hypertension-related traits like blood pressure. However, these reports are often limited by weak causal evidence. This study investigates the potential causal association between gut microbiota and hypertension-related traits using Mendelian randomization with summary data from genome-wide association studies. The inverse-variance weighted method revealed that the Clostridium innocuum group (Odds ratio [OR]: 1.0047, 95% confidence interval [CI]: 1.0004-1.0090, p = 0.0336), Eubacterium fissicatena group (OR: 1.0047, 95% CI: 1.0005-1.0088, p = 0.0266), Lachnospiraceae FCS020 group (OR: 1.0063, 95% CI: 1.0004-1.0122, p = 0.0361), and Olsenella (OR: 1.0044, 95% CI: 1.0001-1.0088, p = 0.0430) were associated with an increased risk of hypertension. Conversely, Flavonifractor (OR: 0.9901, 95% CI: 0.9821-0.9982, p = 0.0166), Parabacteroides (OR: 0.9874, 95% CI: 0.9776-0.9972, p = 0.0121), and Senegalimassilia (OR: 0.9907, 95% CI: 0.9842-0.9974, p = 0.0063) were associated with a decreased risk of hypertension. External validation with the Guangdong Gut Microbiome Project confirmed a negative correlation between Parabacteroides and hypertension, potentially through metabolic pathways. These findings provide further evidence supporting the hypothesis that microbes and their metabolites play a role in blood pressure regulation.
Collapse
Affiliation(s)
- Yunfan Tian
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingxia Gu
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Dazhong Chen
- Department of pharmacy920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Quanbin Dong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yifeng Wang
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei Sun
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiangqing Kong
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
28
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
29
|
Doustmohammadian A, Zamani F, Hébert JR, Moradi-Lakeh M, Esfandyiari S, Amirkalali B, Motamed N, Maadi M, Price S, Gholizadeh E, Ajdarkosh H. Exploring the link between dietary inflammatory index and NAFLD through a structural equation modeling approach. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:224. [PMID: 39719637 DOI: 10.1186/s41043-024-00721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant global public health dilemma with wide-ranging social and economic implications. Diet and lifestyle modifications remain essential components of NAFLD management. The current study investigated the association between diet-related inflammation and NAFLD among 3110 Iranian adults participating in the Amol Cohort Study (AmolCS), employing the Structural Equation Modeling (SEM) approach.The inflammatory potential of the diet was quantified using an energy-adjusted dietary index (E-DII) score. Findings showed that in the total sample and separately in males, the E-DII score had a significant effect on NAFLD, with mediation through hypertension (βstandardized = 0.16, and 0.13, p < 0.001, respectively) and c-reactive protein (CRP) (βstandardized = 0.07, and 0.07, p < 0.001, respectively). In the total sample and separately in females, the E-DII score significantly affected NAFLD, with mediation through diabetes (βstandardized = 0.06, p < 0.001, and 0.07, p = 0.006, respectively). In full and both gender-specific models, dyslipidemia was a risk factor for NAFLD and partially mediated the effect of hypertension on NAFLD.The current study concluded a mediated association between dietary inflammation and NAFLD through hypertension, CRP, diabetes, and dyslipidemia, suggesting further longitudinal studies, especially in high-risk populations. These findings underscore the complex interplay between diet, inflammation, and NAFLD in Iranian adults.
Collapse
Affiliation(s)
- Azam Doustmohammadian
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - James R Hébert
- Cancer Prevention & Control Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, 29208, USA
| | - Maziar Moradi-Lakeh
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, University of Medical Sciences, Tehran, Iran
| | - Sepideh Esfandyiari
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Amirkalali
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansooreh Maadi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sherry Price
- Cancer Prevention & Control Program, University of South Carolina, Columbia, SC, 29208, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC, 29208, USA
| | - Esmaeel Gholizadeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Farraj A, Akeredolu T, Wijeyesekera A, Mills CE. Coffee and Cardiovascular Health: A Review of Literature. Nutrients 2024; 16:4257. [PMID: 39770879 PMCID: PMC11677373 DOI: 10.3390/nu16244257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is on the rise. Diet is considered to be a key modifiable risk factor for reducing the incidence of cardiovascular disease. Dietary approaches have proved advantageous for preventing disease morbidity and mortality but tend to focus on fruit, vegetables, fiber, lean protein and healthy fats. Coffee is one of the most popular beverages worldwide but is often surrounded by controversy with regard to its impact on health. This review aims to explore the relationship between coffee consumption and cardiovascular disease. The evidence from observational trials as well as randomized controlled trials is discussed. By focusing on specific bioactive compounds in coffee, potential mechanisms are explored, and future directions of research in the field are considered.
Collapse
Affiliation(s)
| | | | | | - Charlotte E. Mills
- Department of Food and Nutritional Sciences, School of Chemistry, Food & Pharmacy, University of Reading, Reading RG6 6AP, UK; (A.F.); (T.A.); (A.W.)
| |
Collapse
|
31
|
Chen W, Xiao L, Guo W, Li H, Chen R, Duan Z, Chen Q, Lei Q. Research progress of traditional Chinese medicine regulating intestinal flora in the treatment of hypertension. Front Pharmacol 2024; 15:1449972. [PMID: 39717555 PMCID: PMC11664361 DOI: 10.3389/fphar.2024.1449972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Hypertension is a common disease; however, it is more prevalent in older adults, and its prevalence is increasing in younger populations. Numerous studies have revealed that hypertension and the composition and functionality of the intestinal flora are closely correlated. The balance of the intestinal flora, intestinal barrier integrity, and metabolite content of the intestinal flora play significant roles in the occurrence and progression of hypertension. Therefore, we performed a comprehensive review of Traditional Chinese medicine (TCM) for hypertension, focusing on the role of the intestinal flora to understand the mechanism by which TCM regulates hypertension through its effects on the intestinal flora. We analyzed the findings using the terms "traditional Chinese medicine," "hypertension," "high blood pressure," "blood pressure," "intestinal flora," "intestinal barrier function," "intestinal flora metabolites," and other keywords from the China National Knowledge Infrastructure, VIP Chinese Science and Technology, Wanfang Data, PubMed, and ScienceDirect databases. We found that TCM treats hypertension by regulating the balance of the intestinal microbiota, increasing the abundance of beneficial bacteria, reducing the abundance of harmful bacteria, improving intestinal barrier function, increasing compact proteins, reducing intestinal permeability, and regulating the content of intestinal flora metabolites. The use of TCM to treat hypertension by regulating the intestinal flora is a promising therapeutic strategy. However, most studies are limited by small sample sizes and there is a lack of large-scale randomized controlled trials. In the future, multi-center controlled clinical trials are needed to verify the efficacy and safety of TCM, optimize therapeutic protocols, and establish a foundation for the standardized and personalized application of TCM in hypertension management.
Collapse
Affiliation(s)
- Wenjun Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Longfei Xiao
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wenlong Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hailin Li
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhongyu Duan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qinghua Chen
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qing Lei
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Yao F, Liu C, Luo D, Zhou Y, Li Q, Huang H, Xu H. Metabolites of Microbiota: A Novel Therapy for Heart Disease. FOOD REVIEWS INTERNATIONAL 2024:1-17. [DOI: 10.1080/87559129.2024.2437410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Fei Yao
- School of Mental Health, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chao Liu
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duo Luo
- Department of Geriatrics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqing Li
- Department of Electrocardiogram, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
Furukawa N, Kobayashi M, Ito M, Matsui H, Ohashi K, Murohara T, Takeda JI, Ueyama J, Hirayama M, Ohno K. Soy protein β-conglycinin ameliorates pressure overload-induced heart failure by increasing short-chain fatty acid (SCFA)-producing gut microbiota and intestinal SCFAs. Clin Nutr 2024; 43:124-137. [PMID: 39447394 DOI: 10.1016/j.clnu.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND AND AIMS Soybeans and their ingredients have antioxidant and anti-inflammatory effects on cardiovascular diseases. β-Conglycinin (β-CG), a major constituent of soy proteins, is protective against obesity, hypertension, and chronic kidney disease, but its effects on heart failure remain to be elucidated. We tested the effects of β-CG on left ventricular (LV) remodeling in pressure overload-induced heart failure. METHODS A transverse aortic constriction (TAC)-induced pressure overload was applied to the heart in 7-week-old C57BL6 male mice that were treated with β-CG, GlcNAc, or sodium propionate. Gut microbiota was analyzed by 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) were quantified by GC-MS. The effects of oral antibiotics were examined in β-CG-fed mice. RESULTS β-CG ameliorated impaired cardiac contractions, cardiac hypertrophy, and myocardial fibrosis in TAC-operated mice. As β-CG is a highly glycosylated protein, we examined the effects of GlcNAc. GlcNAc had similar but less efficient effects on LV remodeling compared to β-CG. β-CG increased three major SCFA-producing intestinal bacteria, as well as fecal concentrations of SCFAs, in sham- and TAC-operated mice. Oral administration of antibiotics nullified the effects of β-CG in TAC-operated mice by markedly reducing SCFA-producing intestinal bacteria and fecal SCFAs. In contrast, oral administration of sodium propionate, one of SCFAs, ameliorated LV remodeling in TAC-operated mice to a similar extent as β-CG. CONCLUSIONS β-CG was protective against TAC-induced LV remodeling, which was likely to be mediated by increased SCFA-producing gut microbiota and increased intestinal SCFAs. Modified β-CG and/or derivatives arising from β-CG are expected to be developed as prophylactic and/or therapeutic agents to ameliorate devastating symptoms in heart failure.
Collapse
Affiliation(s)
- Nozomi Furukawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Miku Kobayashi
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Matsui
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Maebashi, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Japan
| |
Collapse
|
34
|
Wang Y, Zhu S, He W, Marchuk H, Richard E, Desviat LR, Young SP, Koeberl D, Kasumov T, Chen X, Zhang GF. The attenuated hepatic clearance of propionate increases cardiac oxidative stress in propionic acidemia. Basic Res Cardiol 2024; 119:1045-1062. [PMID: 38992300 DOI: 10.1007/s00395-024-01066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Propionic acidemia (PA), arising from PCCA or PCCB variants, manifests as life-threatening cardiomyopathy and arrhythmias, with unclear pathophysiology. In this work, propionyl-CoA metabolism in rodent hearts and human pluripotent stem cell-derived cardiomyocytes was investigated with stable isotope tracing analysis. Surprisingly, gut microbiome-derived propionate rather than the propiogenic amino acids (valine, isoleucine, threonine, and methionine) or odd-chain fatty acids was found to be the primary cardiac propionyl-CoA source. In a Pcca-/-(A138T) mouse model and PA patients, accumulated propionyl-CoA and diminished acyl-CoA synthetase short-chain family member 3 impede hepatic propionate disposal, elevating circulating propionate. Prolonged propionate exposure induced significant oxidative stress in PCCA knockdown HL-1 cells and the hearts of Pcca-/-(A138T) mice. Additionally, Pcca-/-(A138T) mice exhibited mild diastolic dysfunction after the propionate challenge. These findings suggest that elevated circulating propionate may cause oxidative damage and functional impairment in the hearts of patients with PA.
Collapse
Affiliation(s)
- You Wang
- School of Basic Medicine, Jining Medical University, Shandong, 272067, China
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, Shandong, 272067, China
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Wentao He
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA
| | - Eva Richard
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM-CSIC, CIBERER, IdiPaz, IUBM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sarah P Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
35
|
Yakoub M, Rahman M, Kleimann P, Hoffe J, Feige M, Bouvain P, Alter C, Kluczny JI, Reidel S, Nederlof R, Hering L, Argov D, Arifaj D, Kantauskaite M, Meister J, Kleinewietfeld M, Rump LC, Jantsch J, Flögel U, Müller DN, Temme S, Stegbauer J. Transient High Salt Intake Promotes T-Cell-Mediated Hypertensive Vascular Injury. Hypertension 2024; 81:2415-2429. [PMID: 39411864 DOI: 10.1161/hypertensionaha.124.23115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Dietary high salt (HS) intake has a strong impact on cardiovascular diseases. Here, we investigated the link between HS-aggravated immune responses and the development of hypertensive vascular disease. METHODS ApolipoproteinE-deficient mice were transiently treated with HS (1% NaCl) via drinking water for 2 weeks, followed by a washout period, and subsequent Ang II (angiotensin II) infusion (1000 ng/kg per min for 10 days) to induce abdominal aortic aneurysms/dissections and inflammation. RESULTS While transient HS intake alone triggered nonpathologic infiltration of activated T cells into the aorta, subsequent Ang II infusion increased mortality and the incidence of abdominal aortic aneurysms/dissections and atherosclerosis compared with hypertensive control mice. There were no differences in blood pressure between both groups. In transient HS-treated hypertensive mice, the aortic injury was associated with increased inflammation, accumulation of neutrophils, monocytes, CD69+CD4+ T cells, as well as CD4+ and CD8+ memory T cells. Mechanistically, transient HS intake increased expression levels of aortic RORγt as well as splenic CD4+TH17 and CD8+TC1 T cells in Ang II-treated mice. Isolated aortas of untreated mice were incubated with supernatants of TH17, TH1, or TC1 cells polarized in vitro under HS or normal conditions which revealed that secreted factors of HS-differentiated TH17 and TC1 cells, but not TH1 cells accelerated endothelial dysfunction. CONCLUSIONS Our data suggest that transient HS intake induces a subclinical T-cell-mediated aortic immune response, which is enhanced by Ang II. We propose a 2-hit model, in which HS acts as a predisposing factor to enhance hypertension-induced TH17 and TC1 polarization and aortic disease.
Collapse
Affiliation(s)
- Mina Yakoub
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Masudur Rahman
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jasmina Hoffe
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Milena Feige
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology (P.K., P.B., C.A.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Isabel Kluczny
- Department of Anaesthesiology, Faculty of Medicine, University Hospital (J.-I.K., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Sophia Reidel
- Institut für Herz-Kreislauf-Physiologie (S.R., R.N.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Rianne Nederlof
- Institut für Herz-Kreislauf-Physiologie (S.R., R.N.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Lydia Hering
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Doron Argov
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Denada Arifaj
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Marta Kantauskaite
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Researc at Heinrich Heine University, Düsseldorf, Germany (J.M.)
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany (J.M.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC) (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
- University Multiple Sclerosis Center (UMSC) (M. Kleinewietfeld), Hasselt University, Diepenbeek, Belgium
| | - Lars Christian Rump
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany (J.J.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (D.N.M.)
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany (D.N.M.)
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (D.N.M.)
- DZHK (German Centre for Cardiovascular Research), Germany (D.N.M.)
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology (P.K., P.B., U.F., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Department of Anaesthesiology, Faculty of Medicine, University Hospital (J.-I.K., S.T.), Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Faculty of Medicine, University Hospital (M.Y., M.R., J.H., M.F., L.H., D. Argov, D. Arifaj, M. Kantauskaite, L.C.R., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty and University Hospital Düsseldorf (L.C.R., U.F., S.T., J.S.), Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
36
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024; 102:418-429. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
37
|
Pham QH, Bui TVA, Sim WS, Lim KH, Law COK, Tan W, Kim RY, Chow KT, Park HJ, Ban K, Lau TCK. Daily oral administration of probiotics engineered to constantly secrete short-chain fatty acids effectively prevents myocardial injury from subsequent ischaemic heart disease. Cardiovasc Res 2024; 120:1737-1751. [PMID: 38850165 PMCID: PMC11587561 DOI: 10.1093/cvr/cvae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024] Open
Abstract
AIMS Given the extremely limited regeneration potential of the heart, one of the most effective strategies to reduce the prevalence and mortality of coronary artery disease is prevention. Short-chain fatty acids (SCFAs), which are by-products of beneficial probiotics, have been reported to possess cardioprotective effects. Despite their beneficial roles, delivering SCFAs and maintaining their effective concentration in plasma present major challenges. Therefore, in the present study, we aimed to devise a strategy to prevent coronary heart disease effectively by using engineered probiotics to continuously release SCFAs in vivo. METHODS AND RESULTS We engineered a novel probiotic cocktail, namely EcN_TL, from the commercially available Escherichia coli Nissle 1917 (EcN) strain to continuously secrete SCFAs by introducing the propionate and butyrate biosynthetic pathways. Oral administration of EcN_TL enhanced and maintained an effective concentration of SCFAs in the plasma. As a preventative strategy, we observed that daily intake of EcN_TL for 14 days prior to ischaemia-reperfusion injury significantly reduced myocardial injury and improved cardiac performance compared with EcN administration. We uncovered that EcN_TL's protective mechanisms included reducing neutrophil infiltration into the infarct site and promoting the polarization of wound healing macrophages. We further revealed that SCFAs at plasma concentration protected cardiomyocytes from inflammation by suppressing the NF-κB activation pathway. CONCLUSION These data provide strong evidence to support the use of SCFA-secreting probiotics to prevent coronary heart disease. Since SCFAs also play a key role in other metabolic diseases, EcN_TL can potentially be used to treat a variety of other diseases.
Collapse
Affiliation(s)
- Quynh Hoa Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Woo-Sup Sim
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
| | - King Hoo Lim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Carmen Oi Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Wanyu Tan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Ri Youn Kim
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Kwan Ting Chow
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Hun-Jun Park
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137701, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Terrence Chi Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong Special Administrative Region
| |
Collapse
|
38
|
Zhang Y, Wu Y, Guan Y, Lu Y, Zhu W, Ping F, Wang Y. Maidong Dishao Decoction mitigates submandibular gland injury in NOD mice through modulation of gut microbiota and restoration of Th17/Treg immune balance. Heliyon 2024; 10:e38421. [PMID: 39524804 PMCID: PMC11550758 DOI: 10.1016/j.heliyon.2024.e38421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Primary Sjogren's syndrome (pSS) is a common chronic autoimmune disease that presents limited treatment options and poses significant challenges for patients. Maidong Dishao Decoction (MDDST), a traditional Chinese medicine compound, has demonstrated potential in alleviating dryness symptoms associated with pSS. Therefore, it is important to study the specific mechanism of its therapeutic effect. Objective This study aims to investigate the effects of MDDST on gut microbiota, short-chain fatty acids (SCFAs), and the Th17/Treg immune balance in non-obese diabetes (NOD) mice. Methods The study employed ultrahigh-performance liquid chromatography coupled with quadrupole-exactive mass spectrometry (UHPLC-QE-MS) to identify the primary components of MDDST. Subsequently, hematoxylin and eosin (HE) staining, enzyme-linked immunosorbent assays (ELISA), and flow cytometry analyses were conducted to evaluate the therapeutic effects of MDDST in NOD mice. Additionally, 16S rDNA sequencing and gas chromatography-mass spectrometry (GC-MS) were utilized to assess the influence of MDDST on gut microbiota and SCFAs. Finally, fecal microbiota transplantation (FMT) and SCFA-based interventions were performed to elucidate the mechanisms through which MDDST exerts its effects. Results The research findings demonstrate that MDDST exerts therapeutic effects on NOD mice, primarily manifested as reduced inflammation, decreased water intake, ameliorated pathological changes and lowered levels of Sjogren's syndrome antigen A (SSA) and immunoglobulin G (IgG). Additionally, MDDST significantly decreased serum levels of interleukin-6 (IL-6) and interleukin-17 (IL-17), while enhancing levels of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), thereby regulating the Th17/Treg immune balance. Further investigations revealed that MDDST treatment induces alterations in gut microbiota composition and elevates SCFA levels in the gut. Subsequent FMT and SCFA intervention experiments demonstrated a downregulation of pSS-related phenotypes. Conclusion In summary, MDDST demonstrates protective effects against pSS by restoring the balance between Th17 and Treg cells. The therapeutic effects can be partially attributed to its regulation of gut microbiota and SCFAs. Our finding provides a new option for treating pSS.
Collapse
Affiliation(s)
- Yue Zhang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunxia Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Guan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Lu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fan Ping
- Jiangsu Health Vocational College, Nanjing, China
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Zhou J, Zhang H, Huo P, Shen H, Huang Q, Yang L, Liu A, Chen G, Tao F, Liu K, Zhang D. The association between circulating short-chain fatty acids and blood pressure in Chinese elderly population. Sci Rep 2024; 14:27062. [PMID: 39511348 PMCID: PMC11544228 DOI: 10.1038/s41598-024-78463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The gut microbiome primarily generates short-chain fatty acids (SCFAs) by fermenting dietary fibers. Though previous studies have linked SCFAs to blood pressure, there remains a lack of research on the relationship between SCFAs levels in the serum of elderly individuals and blood pressure. Based on this, we investigated the associations of serum SCFAs with blood pressure in Chinese older adults in a cross-sectional study. In this report, we recruited 1013 older adults over 60 years of age from June to September 2016 in Lu 'an City, China. Using Ultra High Performance Liquid Chromatography-Quadrupole-Exactive-Orbitrap-Mass Spectrometry (UHPLC-QE-Orbitrap MS), we measured the level of various SCFAs, including acetic acid (AA), propanoic acid (PA), butyric acid (BA), isobutyric acid (iso-BA), valeric acid (VA), isovaleric acid (iso-VA), and caproic acid (CA), in serum samples collected from Chinese elderly adults. The study recruited 1013 older adults in total. Multiple logistic regression analysis shows that AA (OR = 0.696, 95%CI: 0.501-0.966) and VA (OR = 0.713, 95%CI: 0.516-0.985) are negatively associated with hypertension. Linear regression analysis shows a negative correlation between AA (β = -3.89, 95% CI: -7.12 - -0.66) and the systolic blood pressure (SBP) levels, and a significant negative association between iso-VA (β = -2.11, 95% CI: -3.94 - -0.29) and diastolic blood pressure (DBP) levels. Whether in unadjusted or adjusted linear regression models, we all observe significant positive associations between CA and blood pressure levels. In the Bayesian kernel-machine regression (BKMR) models, the trends between the mixture of SCFAs and hypertension, SBP are inverse, but not significant; we also observe a significant negative correlation between AA and SBP, and a significant negative association between iso-VA and DBP levels, while CA is significantly positively correlated with SBP and DBP. Collectively, our results advocate for considering SCFA as a potential intervention to lower blood pressure, and especially AA may be a possible target for research. This may provide new perspectives for understanding the role of SCFAs in hypertension.
Collapse
Affiliation(s)
- Jiamou Zhou
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Heqiao Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Pengcheng Huo
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Huiyan Shen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Huang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Linsheng Yang
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Annuo Liu
- School of Nursing, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Guimei Chen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Fangbiao Tao
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Kaiyong Liu
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Dongmei Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
41
|
Owens J, Qiu H, Knoblich C, Gerjevic L, Izard J, Xu L, Lee J, Kollala SS, Murry DJ, Riethoven JJ, Davidson JA, Singh AB, Ibrahimiye A, Ortmann L, Salomon JD. Feeding intolerance after pediatric cardiac surgery is associated with dysbiosis, barrier dysfunction, and reduced short-chain fatty acids. Am J Physiol Gastrointest Liver Physiol 2024; 327:G685-G696. [PMID: 39224072 PMCID: PMC11559637 DOI: 10.1152/ajpgi.00151.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect, occurring in roughly 40,000 U.S. births annually. Malnutrition and feeding intolerance (FI) in CHD range from 30% to 42% and are associated with longer hospitalization and increased mortality. Cardiopulmonary bypass (CPB) required for surgical repair of CHD induces a systemic inflammatory response worsening intestinal dysbiosis and leading to intestinal epithelial barrier dysfunction (EBD), possibly contributing to postoperative FI. The objective of this study was to determine the relationship of postoperative FI with intestinal microbiome, short-chain fatty acids (SCFAs), and EBD in pediatric CHD after cardiac surgery. This was a prospective study of patients aged 0-15 years undergoing cardiac surgery with CPB. Samples were collected preoperatively and postoperatively to evaluate the gut microbiome, plasma EBD markers, short-chain fatty acids (SCFAs), and plasma cytokines. Clinical data were collected to calculate a FI score and evaluate patient status postoperatively. We enrolled 26 CPB patients and identified FI (n = 13). Patients with FI had unique microbial shifts with the reduced SCFA-producing organisms Rothia, Clostridium innocuum, and Intestinimonas. Patients who developed FI had associated elevations in the plasma EBD markers claudin-2 (P < 0.05), claudin-3 (P < 0.01), and fatty acid binding protein (P < 0.01). Patients with FI had reduced plasma and stool SCFAs. Mediation analysis showed the microbiome functional shift was associated with reductions in stool butyric and propionic acid in patients with FI. In conclusion, we provide novel evidence that intestinal dysbiosis, markers of EBD, and SCFA depletion are associated with FI. These data will help identify mechanisms and therapeutics to improve clinical outcomes following pediatric cardiac surgery.NEW & NOTEWORTHY Feeding intolerance contributes to postoperative morbidity following pediatric cardiac surgery. The intestinal microbiome and milieu play a vital role in gut function. Short-chain fatty acids are gut and cardioprotective metabolites produced by commensal bacteria and help maintain appropriate barrier function. Depletion of these metabolites and barrier dysfunction contribute to postoperative feeding intolerance following cardiac surgery. Identifying mechanistic targets to improve the intestinal milieu with the goal of improved nutrition and clinical outcomes is critical.
Collapse
Affiliation(s)
- Jacob Owens
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Haowen Qiu
- Nebraska Center for Biotechnology, University of Nebraska Lincoln, Lincoln, Nebraska, United States
| | - Cole Knoblich
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Lisa Gerjevic
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jacques Izard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Frederick F. Paustian IBD Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Linda Xu
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Junghyae Lee
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Sai Sundeep Kollala
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jean Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska Lincoln, Lincoln, Nebraska, United States
| | - Jesse A Davidson
- Department of Pediatrics, University of Colorado, Aurora, Colorado, United States
| | - Amar B Singh
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Ali Ibrahimiye
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Laura Ortmann
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Jeffrey D Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
42
|
Wimmer MI, Bartolomaeus H, Anandakumar H, Chen CY, Vecera V, Kedziora S, Kamboj S, Schumacher F, Pals S, Rauch A, Meisel J, Potapenko O, Yarritu A, Bartolomaeus TUP, Samaan M, Thiele A, Stürzbecher L, Geisberger SY, Kleuser B, Oefner PJ, Haase N, Löber U, Gronwald W, Forslund-Startceva SK, Müller DN, Wilck N. Metformin modulates microbiota and improves blood pressure and cardiac remodeling in a rat model of hypertension. Acta Physiol (Oxf) 2024; 240:e14226. [PMID: 39253815 DOI: 10.1111/apha.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
AIMS Metformin has been attributed to cardiovascular protection even in the absence of diabetes. Recent observations suggest that metformin influences the gut microbiome. We aimed to investigate the influence of metformin on the gut microbiota and hypertensive target organ damage in hypertensive rats. METHODS Male double transgenic rats overexpressing the human renin and angiotensinogen genes (dTGR), a model of angiotensin II-dependent hypertension, were treated with metformin (300 mg/kg/day) or vehicle from 4 to 7 weeks of age. We assessed gut microbiome composition and function using shotgun metagenomic sequencing and measured blood pressure via radiotelemetry. Cardiac and renal organ damage and inflammation were evaluated by echocardiography, histology, and flow cytometry. RESULTS Metformin treatment increased the production of short-chain fatty acids (SCFA) acetate and propionate in feces without altering microbial composition and diversity. It significantly reduced systolic and diastolic blood pressure and improved cardiac function, as measured by end-diastolic volume, E/A, and stroke volume despite increased cardiac hypertrophy. Metformin reduced cardiac inflammation by lowering macrophage infiltration and shifting macrophage subpopulations towards a less inflammatory phenotype. The observed improvements in blood pressure, cardiac function, and inflammation correlated with fecal SCFA levels in dTGR. In vitro, acetate and propionate altered M1-like gene expression in macrophages, reinforcing anti-inflammatory effects. Metformin did not affect hypertensive renal damage or microvascular structure. CONCLUSION Metformin modulated the gut microbiome, increased SCFA production, and ameliorated blood pressure and cardiac remodeling in dTGR. Our findings confirm the protective effects of metformin in the absence of diabetes, highlighting SCFA as a potential mediators.
Collapse
Affiliation(s)
- Moritz I Wimmer
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Harithaa Anandakumar
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Valentin Vecera
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Sarah Kedziora
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sakshi Kamboj
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | | | - Sidney Pals
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Ariana Rauch
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jutta Meisel
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olena Potapenko
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alex Yarritu
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mariam Samaan
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Thiele
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Lucas Stürzbecher
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Y Geisberger
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
43
|
Wang Q, Huang H, Yang Y, Yang X, Li X, Zhong W, Wen B, He F, Li J. Reinventing gut health: leveraging dietary bioactive compounds for the prevention and treatment of diseases. Front Nutr 2024; 11:1491821. [PMID: 39502877 PMCID: PMC11534667 DOI: 10.3389/fnut.2024.1491821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The human gut harbors a complex and diverse microbiota essential for maintaining health. Diet is the most significant modifiable factor influencing gut microbiota composition and function, particularly through bioactive compounds like polyphenols, dietary fibers, and carotenoids found in vegetables, fruits, seafood, coffee, and green tea. These compounds regulate the gut microbiota by promoting beneficial bacteria and suppressing harmful ones, leading to the production of key microbiota-derived metabolites such as short-chain fatty acids, bile acid derivatives, and tryptophan metabolites. These metabolites are crucial for gut homeostasis, influencing gut barrier function, immune responses, energy metabolism, anti-inflammatory processes, lipid digestion, and modulation of gut inflammation. This review outlines the regulatory impact of typical bioactive compounds on the gut microbiota and explores the connection between specific microbiota-derived metabolites and overall health. We discuss how dietary interventions can affect disease development and progression through mechanisms involving these metabolites. We examine the roles of bioactive compounds and their metabolites in the prevention and treatment of diseases including inflammatory bowel disease, colorectal cancer, cardiovascular diseases, obesity, and type 2 diabetes mellitus. This study provides new insights into disease prevention and underscores the potential of dietary modulation of the gut microbiota as a strategy for improving health.
Collapse
Affiliation(s)
- Qiurong Wang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hui Huang
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Yang
- Chengdu Medical College, Chengdu, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People’s Hospital, Chengdu, China
| | - Xuemei Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Biao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng He
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Li
- Chengdu Medical College, Chengdu, China
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
44
|
Wang Z, Yang S, Tong L, Li X, Mao W, Yuan H, Chen Y, Zhang S, Zhang H, Chen R. eIF6 deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis. mSystems 2024; 9:e0059524. [PMID: 39225466 PMCID: PMC11494895 DOI: 10.1128/msystems.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that eIF6 gene knockdown changes the composition of the intestinal flora in the eIF6 gene knockdown mouse model. Lactobacillus acidophilus is significantly increased in the model. This study was designed to investigate the role of L. acidophilus in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. ApoE-/- and ApoE-/-/eIF6+/- mice on normal chow diet or a high-fat diet were treated for 16 weeks; eIF6 deficiency was evaluated atherosclerosis. ApoE-/- mice on normal chow diet or a high-fat diet were treated with L. acidophilus by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of eIF6, RNASE3, and RSAD2 were notably higher in the patients with CAD than in the healthy individuals. eIF6 deficiency altered the composition of gut microbiota. eIF6 deficiency reduced the atherosclerotic lesion formation in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (L. acidophilus, Ileibacterium, and Bifidobacterium) and metabolic levels significantly had deference in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. Correlational studies indicated that L. acidophilus had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. L. acidophilus inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of L. acidophilus against atherosclerosis. eIF6 deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. L. acidophilus attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCEeIF6 deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic ApoE-/- mice. L. acidophilus was reduced in the gut of atherosclerotic ApoE-/- mice, but administration of Lactobacillus acidophilus reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyi Mao
- School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China
| | - Honghua Yuan
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
45
|
Mazumder MHH, Hussain S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J Xenobiot 2024; 14:1595-1612. [PMID: 39449427 PMCID: PMC11503347 DOI: 10.3390/jox14040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Growing evidence suggests physiological and pathological functions of lung and gut microbiomes in various pathologies. Epidemiological and experimental data associate air pollution exposure with host microbial dysbiosis in the lungs and gut. Air pollution through increased reactive oxygen species generation, the disruption of epithelial barrier integrity, and systemic inflammation modulates microbial imbalance. Microbiome balance is crucial in regulating inflammation and metabolic pathways to maintain health. Microbiome dysbiosis is proposed as a potential mechanism for the air-pollution-induced modulation of pulmonary and systemic disorders. Microbiome-based therapeutic approaches are increasingly gaining attention and could have added value in promoting lung health. This review summarizes and discusses air-pollution-mediated microbiome alterations in the lungs and gut in humans and mice and elaborates on their role in health and disease. We discuss and summarize the current literature, highlight important mechanisms that lead to microbial dysbiosis, and elaborate on pathways that potentially link lung and lung microbiomes in the context of environmental exposures. Finally, we discuss the lung-liver-gut axis and its potential pathophysiological implications in air-pollution-mediated pathologies through microbial dysbiosis.
Collapse
Affiliation(s)
- Md Habibul Hasan Mazumder
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Microbiology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
46
|
Zhu Y, Yin C, Wang Y. Probiotic Enterococcus Faecium Attenuated Atherosclerosis by Improving SCFAs Associated with Gut Microbiota in ApoE -/- Mice. Bioengineering (Basel) 2024; 11:1033. [PMID: 39451408 PMCID: PMC11505145 DOI: 10.3390/bioengineering11101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Atherosclerosis, as the main root cause, makes cardiovascular diseases (CVDs) a substantial worldwide health concern. Inflammation and disrupted cholesterol metabolism are the primary clinical risk elements contributing to the onset of atherosclerosis. Few works exist on the improvement effect of gut microbiota on atherosclerosis. One specific probiotic strain, Enterococcus faecium NCIMB11508, has shown promise in mitigating inflammation. Consequently, it is critical to investigate its potential in reducing the progression of atherosclerosis. In our study, we administered E. faecium NCIMB11508 orally to ApoE-/- mice, resulting in a decrease in the formation of atherosclerotic lesions. Additionally, it demonstrated the ability to lower the inflammatory factor levels both in the aorta and blood serum while maintaining the integrity of the small intestine against lipopolysaccharides. Moreover, E. faecium NCIMB11508 had a beneficial impact on the gut microbiota composition by increasing the levels of short-chain fatty acids (SCFAs), which in turn helped to reduce inflammation and protect the intestine. The probiotic E. faecium NCIMB11508, according to our research, has a definitive capacity to prevent atherosclerosis progression by beneficially altering the SCFA composition in the gut microbiota of ApoE-/- mice.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China;
| | - Chao Yin
- Taian Institute for Food and Drug Control, Taian 271000, China;
| | - Yeqi Wang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
47
|
Wang H, Chen J, Chen X, Liu Y, Wang J, Meng Q, Wang H, He Y, Song Y, Li J, Ju Z, Xiao P, Qian J, Song Z. Cancer-Associated Fibroblasts Expressing Sulfatase 1 Facilitate VEGFA-Dependent Microenvironmental Remodeling to Support Colorectal Cancer. Cancer Res 2024; 84:3371-3387. [PMID: 39250301 DOI: 10.1158/0008-5472.can-23-3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024]
Abstract
Tumor stroma plays a critical role in fostering tumor progression and metastasis. Cancer-associated fibroblasts (CAF) are a major component of the tumor stroma. Identifying the key molecular determinants for the protumor properties of CAFs could enable the development of more effective treatment strategies. In this study, through analyses of single-cell sequencing data, we identified a population of CAFs expressing high levels of sulfatase 1 (SULF1), which was associated with poor prognosis in patients with colorectal cancer. Colorectal cancer models using mice with conditional SULF1 knockout in fibroblasts revealed the tumor-supportive function of SULF1+ CAFs. Mechanistically, SULF1+ CAFs enhanced the release of VEGFA from heparan sulfate proteoglycan. The increased bioavailability of VEGFA initiated the deposition of extracellular matrix and enhanced angiogenesis. In addition, intestinal microbiota-produced butyrate suppressed SULF1 expression in CAFs through its histone deacetylase (HDAC) inhibitory activity. The insufficient butyrate production in patients with colorectal cancer increased the abundance of SULF1+ CAFs, thereby promoting tumor progression. Importantly, tumor growth inhibition by HDAC was dependent on SULF1 expression in CAFs, and patients with colorectal cancer with more SULF1+ CAFs were more responsive to treatment with the HDAC inhibitor chidamide. Collectively, these findings unveil the critical role of SULF1+ CAFs in colorectal cancer and provide a strategy to stratify patients with colorectal cancer for HDAC inhibitor treatment. Significance: SULF1+ cancer-associated fibroblasts play a tumor-promoting role in colorectal cancer by stimulating extracellular matrix deposition and angiogenesis and can serve as a biomarker for the therapeutic response to HDAC inhibitors in patients.
Collapse
Affiliation(s)
- Huijuan Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoyu Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Yingqiang Liu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Jiawei Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Qing Meng
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Huogang Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Ying He
- Huzhou Key Laboratory of Translational Medicine, Huzhou, China
| | - Yujia Song
- Hangzhou No. 14 High School, Hangzhou, China
| | - Jingyun Li
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Peng Xiao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junbin Qian
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Biological Treatment of Zhejiang Province, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Research on Anorectal Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
48
|
Roessler J, Zimmermann F, Heidecker B, Landmesser U, Haghikia A. Gut microbiota-related modulation of immune mechanisms in post-infarction remodelling and heart failure. ESC Heart Fail 2024. [PMID: 39385474 DOI: 10.1002/ehf2.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
The immune system has long been recognized as a key driver in the progression of heart failure (HF). However, clinical trials targeting immune effectors have consistently failed to improve patient outcome across different HF aetiologies. The activation of the immune system in HF is complex, involving a broad network of pro-inflammatory and immune-modulating components, which complicates the identification of specific immune pathways suitable for therapeutic targeting. Increasing attention has been devoted to identifying gut microbial pathways that affect cardiac remodelling and metabolism and, thereby impacting the development of HF. In particular, gut microbiota-derived metabolites, absorbed by the host and transported to the peripheral circulation, can act as signalling molecules, influencing metabolism and immune homeostasis. Recent reports suggest that the gut microbiota plays a crucial role in modulating immune processes involved in HF. Here, we summarize recent advances in understanding the contributory role of gut microbiota in (auto-)immune pathways that critically determine the progression or alleviation of HF. We also thoroughly discuss potential gut microbiota-based intervention strategies to treat or decelerate HF progression.
Collapse
Affiliation(s)
- Johann Roessler
- University Hospital St Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Arash Haghikia
- University Hospital St Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
49
|
Liu H, Magaye R, Kaye DM, Wang BH. Heart failure with preserved ejection fraction: The role of inflammation. Eur J Pharmacol 2024; 980:176858. [PMID: 39074526 DOI: 10.1016/j.ejphar.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Heart failure (HF) is a debilitating clinical syndrome affecting 64.3 million patients worldwide. More than 50% of HF cases are attributed to HF with preserved ejection fraction (HFpEF), an entity growing in prevalence and mortality. Although recent breakthroughs reveal the prognostic benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i) in HFpEF, there is still a lack of effective pharmacological therapy available. This highlights a major gap in medical knowledge that must be addressed. Current evidence attributes HFpEF pathogenesis to an interplay between cardiometabolic comorbidities, inflammation, and renin-angiotensin-aldosterone-system (RAAS) activation, leading to cardiac remodelling and diastolic dysfunction. However, conventional RAAS blockade has demonstrated limited benefits in HFpEF, which emphasises that alternative therapeutic targets should be explored. Presently, there is limited literature examining the use of anti-inflammatory HFpEF therapies despite growing evidence supporting its importance in disease progression. Hence, this review aims to explore current perspectives on HFpEF pathogenesis, including the importance of inflammation-driven cardiac remodelling and the therapeutic potential of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Hongyi Liu
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Ruth Magaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - David M Kaye
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Bing H Wang
- Monash Alfred Baker Centre for Cardiovascular Research, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia; Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
50
|
Wang J, Zhang Z, Dai T, Zhang Z, Zhang Q, Yao J, Wang L, He N, Li S. The therapeutic effect and possible mechanisms of alginate oligosaccharide on metabolic syndrome by regulating gut microbiota. Food Funct 2024; 15:9632-9661. [PMID: 39239698 DOI: 10.1039/d4fo02802c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Metabolic syndrome (MetS) is a disease condition incorporating the abnormal accumulation of various metabolic components, including overweight or abdominal obesity, insulin resistance and abnormal glucose tolerance, hypertension, atherosclerosis, or dyslipidemia. It has been proved that the gut microbiota and microbial-derived products play an important role in regulating lipid metabolism and thus the onset and development of MetS. Previous studies have demonstrated that oligosaccharides with prebiotic effects, such as chitosan oligosaccharides, can regulate the structure of the microbial community and its derived products to control weight and reduce MetS associated with obesity. Alginate oligosaccharides (AOS), natural products extracted from degraded alginate salts with high solubility and extensive biological activity, have also been found to modulate gut microbiota. This review aims to summarize experimental evidence on the positive effects of AOS on different types of MetS while providing insights into mechanisms through which AOS regulates gut microbiota for preventing and treating MetS.
Collapse
Affiliation(s)
- Jingyi Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Ziheng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Qingfeng Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Jingtong Yao
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Lijing Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
- Department of Obstetrics and Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, 266000, China
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao, University, Qingdao 266071, China.
| |
Collapse
|