1
|
Pacyga DC, Jolly L, Whalen J, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Exploring diet as a source of plasticizers in pregnancy and implications for maternal second-trimester metabolic health. ENVIRONMENTAL RESEARCH 2024; 263:120198. [PMID: 39427938 DOI: 10.1016/j.envres.2024.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Diet plays critical roles in modulating maternal metabolic health in pregnancy, but is also a source of metabolic-disrupting phthalates and their replacements. We aimed to evaluate whether the effects of better diet quality on favorable maternal metabolic outcomes could be partially explained by lower exposure to phthalates/replacements. METHODS At 13 weeks gestation, 295 Illinois women (enrolled 2015-2018) completed a three-month food frequency questionnaire that we used to calculate the Alternative Healthy Eating Index (AHEI)-2010 to assess diet quality. We quantified 19 metabolites, reflecting exposure to 10 phthalates/replacements, in a pool of five first-morning urine samples collected monthly across pregnancy. We measured 15 metabolic biomarkers in fasting plasma samples collected at 17 weeks gestation, which we reduced to five uncorrelated principal components (PCs), representing adiposity, lipids, cholesterol, inflammation, and growth. We used linear regression to estimate associations of diet quality with [1] phthalates/replacements and [2] metabolic PCs, as well as [3] associations of phthalates/replacements with metabolic PCs. We estimated the proportion of associations between diet quality and metabolic outcomes explained by phthalates/replacements using a causal mediation framework. RESULTS Overall, every 10-point improvement in AHEI-2010 score was associated with -0.15 (95% CI: -0.27, -0.04) lower adiposity scores, reflecting lower glucose, insulin, C-peptide, leptin, C-reactive protein, but higher adiponectin biomarker levels. Every 10-point increase in diet quality was also associated with 18% (95%CI: 7%, 28%) lower sum of di-2-ethylhexyl terephthalate urinary metabolites (∑DEHTP). Correspondingly, each 18% increase in ∑DEHTP was associated with 0.03 point (95% CI: 0.01, 0.05) higher adiposity PC scores. In mediation analyses, 21% of the inverse relationship between diet quality and adiposity PC scores was explained by lower ∑DEHTP. CONCLUSIONS The favorable impact of diet quality on maternal adiposity biomarkers may be partially attributed to lower metabolite concentrations of DEHTP, a plasticizer allowed to be used in food packaging materials.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Luca Jolly
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA; Honors College, Michigan State University, East Lansing, MI, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Ekici M, Çakır Biçer N, Yirün A, Demirel G, Erkekoğlu P. Evaluation of Exposure to Bisphenol Analogs through Canned and Ready-to-Eat Meal Consumption and Their Possible Effects on Blood Pressure and Heart Rate. Nutrients 2024; 16:2275. [PMID: 39064718 PMCID: PMC11279681 DOI: 10.3390/nu16142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Bisphenols are endocrine-disrupting chemicals used in plastics and resins for food packaging. This study aimed to evaluate the exposure to bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) associated with the consumption of fresh, canned, and ready-to-eat meals and determine the effects of bisphenols on blood pressure and heart rate. Forty-eight healthy young adults were recruited for this study, and they were divided into the following three groups: fresh, canned, and ready-to-eat meal groups. Urine samples were collected 2, 4, and 6 h after meal consumption, and blood pressure and heart rate were measured. The consumption of ready-to-eat meals significantly increased urine BPA concentrations compared with canned and fresh meal consumption. No significant difference in BPS and BPF concentrations was observed between the groups. The consumption of ready-to-eat meals was associated with a significant increase in systolic blood pressure and pulse pressure and a marked decrease in diastolic blood pressure and heart rate. No significant differences were noted in blood pressure and heart rate with canned and fresh meal consumption. It can be concluded that total BPA concentration in consumed ready-to-eat meals is high. High BPA intake causes increase in urinary BPA concentrations, which may, in turn, lead to changes in some cardiovascular parameters.
Collapse
Affiliation(s)
- Merve Ekici
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Agri Ibrahim Cecen University, 04100 Agri, Turkey;
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34638 Istanbul, Turkey
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, 34638 Istanbul, Turkey
| | - Anıl Yirün
- Department of Toxicology, Faculty of Pharmacy, Cukurova University, 01250 Adana, Turkey; (A.Y.); (G.D.)
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06430 Ankara, Turkey;
| | - Göksun Demirel
- Department of Toxicology, Faculty of Pharmacy, Cukurova University, 01250 Adana, Turkey; (A.Y.); (G.D.)
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06430 Ankara, Turkey;
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06430 Ankara, Turkey
| |
Collapse
|
3
|
Xiao T, Huang Z, Zheng C, Quach B, Zhu Y, Li F, Liang W, Baker J, Reichetzeder C, Hocher B, Yang Y. Associations of bisphenol A exposure with metabolic syndrome and its components: A systematic review and meta-analysis. Obes Rev 2024; 25:e13738. [PMID: 38491337 DOI: 10.1111/obr.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/21/2024] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Mounting evidence shows that bisphenol A (BPA) is associated with metabolic risk factors. The aim of this study was to review related epidemiologic studies and conduct a meta-analysis to quantitatively estimate the association between BPA and metabolic syndrome. Four electronic databases were systematically searched to identify suitable articles. A total of 47 published studies were finally included. Two studies involved metabolic syndrome. Of the 17, 17, 14, and 13 studies on the relationship between BPA with abdominal obesity, blood pressure, fasting plasma glucose, and dyslipidemia, 10, 6, 3, and 4 studies were included in the meta-analysis, respectively. The results showed that the risk of abdominal obesity increased with the increase of BPA exposure, especially in the group with higher BPA exposure levels (Quartile 2 vs. Quartile 1, pooled OR = 1.16, 95%CI: 1.01, 1.33; Q3 vs. Q1, pooled OR = 1.31, 95%CI: 1.13, 1.51; Q4 vs. Q1, pooled OR = 1.40, 95%CI: 1.21, 1.61). However, there was no significant correlation between BPA exposure and metabolic syndrome components including hypertension, abnormal fasting plasma glucose, and dyslipidemia. The present study found that BPA exposure is significantly associated with a higher risk of abdominal obesity. However, the relationship between BPA with metabolic syndrome and its other components needs further longitudinal studies to verify.
Collapse
Affiliation(s)
- Tianli Xiao
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Zehua Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Chanjuan Zheng
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| | - Binh Quach
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
| | - Yulian Zhu
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Feifei Li
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Wei Liang
- School of Physical Education, Shenzhen University, Shenzhen, China
| | - Julien Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Hong Kong, China
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- HMU - Health and Medical University, Potsdam, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China
| | - Yide Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
- The Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
5
|
Sieck NE, Bruening M, van Woerden I, Whisner C, Payne-Sturges DC. Effects of Behavioral, Clinical, and Policy Interventions in Reducing Human Exposure to Bisphenols and Phthalates: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:36001. [PMID: 38477609 PMCID: PMC10936218 DOI: 10.1289/ehp11760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND There is growing interest in evidence-based interventions, programs, and policies to mitigate exposures to bisphenols and phthalates and in using implementation science frameworks to evaluate hypotheses regarding the importance of specific approaches to individual or household behavior change or institutions adopting interventions. OBJECTIVES This scoping review aimed to identify, categorize, and summarize the effects of behavioral, clinical, and policy interventions focused on exposure to the most widely used and studied bisphenols [bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF)] and phthalates with an implementation science lens. METHODS A comprehensive search of all individual behavior, clinical, and policy interventions to reduce exposure to bisphenols and phthalates was conducted using PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Google Scholar. We included studies published between January 2000 and November 2022. Two reviewers screened references in CADIMA, then extracted data (population characteristics, intervention design, chemicals assessed, and outcomes) for studies meeting inclusion criteria for the present review. RESULTS A total of 58 interventions met the inclusion criteria. We classified interventions as dietary (n = 27 ), clinical (n = 13 ), policy (n = 14 ), and those falling outside of these three categories as "other" (n = 4 ). Most interventions (81%, 47/58) demonstrated a decrease in exposure to bisphenols and/or phthalates, with policy level interventions having the largest magnitude of effect. DISCUSSION Studies evaluating policy interventions that targeted the reduction of phthalates and BPA in goods and packaging showed widespread, long-term impact on decreasing exposure to bisphenols and phthalates. Clinical interventions removing bisphenol and phthalate materials from medical devices and equipment showed overall reductions in exposure biomarkers. Dietary interventions tended to lower exposure with the greatest magnitude of effect in trials where fresh foods were provided to participants. The lower exposure reductions observed in pragmatic nutrition education trials and the lack of diversity (sociodemographic backgrounds) present limitations for generalizability to all populations. https://doi.org/10.1289/EHP11760.
Collapse
Affiliation(s)
- Nicole E. Sieck
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Meg Bruening
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Irene van Woerden
- Department of Community and Public Health, Idaho State University, Pocatello, Idaho, USA
| | - Corrie Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Devon C. Payne-Sturges
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
6
|
Sagheer U, Al-Kindi S, Abohashem S, Phillips CT, Rana JS, Bhatnagar A, Gulati M, Rajagopalan S, Kalra DK. Environmental Pollution and Cardiovascular Disease: Part 2 of 2: Soil, Water, and Other Forms of Pollution. JACC. ADVANCES 2024; 3:100815. [PMID: 38939394 PMCID: PMC11198458 DOI: 10.1016/j.jacadv.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
With a growing body of evidence that now links environmental pollution to adverse cardiovascular disease (CVD) outcomes, pollution has emerged as an important risk factor for CVD. There is thus an urgent need to better understand the role of pollution in CVD, key pathophysiological mechanisms, and to raise awareness among health care providers, the scientific community, the general population, and regulatory authorities about the CV impact of pollution and strategies to reduce it. This article is part 2 of a 2-part state-of-the-art review on the topic of pollution and CVD-herein we discuss major environmental pollutants and their effects on CVD, highlighting pathophysiological mechanisms, and strategies to reduce CVD risk.
Collapse
Affiliation(s)
- Usman Sagheer
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Sadeer Al-Kindi
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shady Abohashem
- Divison of Cardiovascular Imaging, Radiology Department, Massachusetts General Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Colin T. Phillips
- Department of Cardiology, Maine Medical Center, Portland, Maine, USA
| | - Jamal S. Rana
- The Permanente Medical Group, Department of Cardiology, Oakland Medical Center, Oakland, California, USA
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Martha Gulati
- Department of Cardiology, Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sanjay Rajagopalan
- Division of Cardiology, Department of Medicine, University Hospitals, Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dinesh K. Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
9
|
Cheng MD, Li CL, Pei XY, Zhang YF, Jia DD, Zuo YB, Cai SL, Li PF, Xin H, Zhang YF. Integrative analysis of DNA methylome and transcriptome reveals epigenetic regulation of bisphenols-induced cardiomyocyte hypertrophy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115391. [PMID: 37611474 DOI: 10.1016/j.ecoenv.2023.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Cardiac hypertrophy, a kind of cardiomyopathic abnormality, might trigger heart contractile and diastolic dysfunction, and even heart failure. Currently, bisphenols (BPs) including bisphenol A (BPA), and its alternatives bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol S (BPS) are ubiquitously applied in various products and potentially possess high cardiovascular risks for humans. However, the substantial experimental evidences of BPs on heart function, and their structure-related effects on cardiomyocyte hypertrophy are still urgently needed. DNA methylation, a typical epigenetics, play key roles in BPs-induced transcription dysregulation, thereby affecting human health including cardiovascular system. Thus, in this study, we performed RNA-seq and reduced representation bisulfite sequencing (RRBS) to profile the landscapes of BPs-induced cardiotoxicity and to determine the key roles of DNA methylation in the transcription. Further, the capabilities of three BPA analogues, together with BPA, in impacting heart function and changing DNA methylation and transcription were compared. We concluded that similar to BPA, BPAF, BPF and BPS exposure deteriorated heart function in a mouse model, and induced cardiomyocyte hypertrophy in a H9c2 cell line. BPAF, BPF and BPS all played BPA-like roles in both transcriptive and methylated hierarchies. Moreover, we validated the expression levels of four cardiomyocyte hypertrophy related candidate genes, Psmc1, Piptnm2, Maz and Dusp18, which were all upregulated and with DNA hypomethylation. The findings on the induction of BPA analogues on cardiomyocyte hypertrophy and DNA methylation revealed their potential detrimental risks in heart function of humans.
Collapse
Affiliation(s)
- Meng-Die Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China
| | - Chang-Lei Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Xiang-Yu Pei
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Ying-Bing Zuo
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China; Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China
| | - Shang-Lang Cai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, PR China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, Shandong, PR China.
| |
Collapse
|
10
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
11
|
Yang TC, Jovanovic N, Chong F, Worcester M, Sakhi AK, Thomsen C, Garlantézec R, Chevrier C, Jensen G, Cingotti N, Casas M, McEachan RR, Vrijheid M, Philippat C. Interventions to Reduce Exposure to Synthetic Phenols and Phthalates from Dietary Intake and Personal Care Products: a Scoping Review. Curr Environ Health Rep 2023:10.1007/s40572-023-00394-8. [PMID: 36988899 DOI: 10.1007/s40572-023-00394-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW A scoping review was conducted to identify interventions that successfully alter biomarker concentrations of phenols, glycol ethers, and phthalates resulting from dietary intake and personal care product (PCPs) use. RECENT FINDINGS Twenty-six interventions in populations ranging from children to older adults were identified; 11 actively removed or replaced products, 9 provided products containing the chemicals being studied, and 6 were education-only based interventions. Twelve interventions manipulated only dietary intake with a focus on bisphenol A (BPA) and phthalates, 8 studies intervened only on PCPs use and focused on a wider range of chemicals including BPA, phthalates, triclosan, parabens, and ultraviolet absorbers, while 6 studies intervened on both diet and PCPs and focused on phthalates, parabens, and BPA and its alternatives. No studies assessed glycol ethers. All but five studies reported results in the expected direction, with interventions removing potential sources of exposures lowering EDC concentrations and interventions providing exposures increasing EDC concentrations. Short interventions lasting a few days were successful. Barriers to intervention success included participant compliance and unintentional contamination of products. The identified interventions were generally successful but illustrated the influence of participant motivation, compliance, ease of intervention adherence, and the difficulty of fully removing exposures due their ubiquity and the difficulties of identifying "safer" replacement products. Policy which reduces or removes EDC in manufacturing and processing across multiple sectors, rather than individual behavior change, may have the greatest impact on population exposure.
Collapse
Affiliation(s)
- Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK.
| | - Nicolas Jovanovic
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Felisha Chong
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Meegan Worcester
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Ronan Garlantézec
- CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Cécile Chevrier
- CHU de Rennes, Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Génon Jensen
- Health and Environment Alliance (HEAL), Brussels, Belgium
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rosemary Rc McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología Y Salud Pública (CIBERESP), Barcelona, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| |
Collapse
|
12
|
Flieger J, Śniegocki T, Dolar-Szczasny J, Załuska W, Rejdak R. The First Evidence on the Occurrence of Bisphenol Analogues in the Aqueous Humor of Patients Undergoing Cataract Surgery. J Clin Med 2022; 11:6402. [PMID: 36362630 PMCID: PMC9655480 DOI: 10.3390/jcm11216402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Human exposure to BPs is inevitable mostly due to contaminated food. In this preliminary study, for the first time, the presence of bisphenols (BPs) in aqueous humor (AH) collected from 44 patients undergoing cataract surgery was investigated. The measurements were performed using a sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC−MS/MS). Chromatographic separation was achieved using a reverse-phase column and a gradient elution mode. Multiple reaction monitoring (MRM) was used. The method was validated for bisphenol A (BPA) and bisphenol F (BPF). The limits of quantification (LOQs) of both investigated analytes were 0.25 ng mL−1. The method was linear in the range of 0.25−20.0 ng mL−1 with correlation coefficients (R2) higher than 0.98. Recovery of analytes was in the range of 99.9 to 104.3% and intra-assay and inter-assay precision expressed by relative standard deviations (RSD%) were less than 5%. BPA was detected in 12 AH samples with mean concentrations of 1.41 ng mL−1. BPF was not detected at all. Furthermore, two structural isomers termed BPA-1, and BPA-2 were identified, for the first time, in 40.9% of the AH samples, with almost twice higher mean concentrations of 2.15 ng mL−1, and 2.25 ng mL−1, respectively. The total content of BPs were higher in patients with coexisting ocular pathologies such as glaucoma, age-related macular degeneration (AMD), and diabetes in comparison to cataracts alone. However, the difference between these groups did not reach statistical significance (p > 0.05). Performed investigations indicate the need for further research on a larger population with the aim of knowing the consequences of BPs’ accumulation in AH for visual function.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Tomasz Śniegocki
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Joanna Dolar-Szczasny
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Robert Rejdak
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, Chmielna 1, 20-079 Lublin, Poland
| |
Collapse
|
13
|
Mulcahy MC, Tellez-Rojo MM, Cantoral A, Solano-González M, Baylin A, Bridges D, Peterson KE, Perng W. Maternal carbohydrate intake during pregnancy is associated with child peripubertal markers of metabolic health but not adiposity. Public Health Nutr 2022; 25:2541-2553. [PMID: 34814962 PMCID: PMC9991622 DOI: 10.1017/s1368980021004614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the associations of trimester-specific maternal prenatal carbohydrate (CHO) intake with offspring adiposity and metabolic health during peripuberty. DESIGN Prospective cohort study in which maternal dietary intake was collected via validated FFQ during each trimester. Offspring adiposity and metabolic biomarkers were evaluated at age 8-14 years. We used multivariable linear regression to examine associations between total energy-adjusted maternal CHO intake and offspring BMI z-score, skinfold thickness and metabolic syndrome risk z-score calculated as the average of waist circumference, fasting glucose, fasting C-peptide, TAG:HDL and systolic blood pressure + diastolic blood pressure/2. SETTING Mexico City, Mexico. PARTICIPANTS 237 mother-child pairs in the Early Life Exposure in Mexico to Environmental Toxicants cohort. RESULTS We found non-linear associations of maternal CHO intake during pregnancy with offspring metabolic health during peripuberty. After adjusting for maternal age, and child age, sex and pubertal status, children whose mothers were in the fourth v. first quartile of total CHO intake during the third trimester had 0·42 (95 % CI -0·01, 0·08) ng/ml lower C-peptide and 0·10 (95 % CI -0·02, 0·22) units lower C-peptide insulin resistance (CP-IR). We found similar magnitude and direction of association with respect to net CHO intake during the first trimester and offspring C-peptide and CP-IR. Maternal CHO intake during pregnancy was not associated with offspring adiposity. CONCLUSIONS In this study of mother-child pairs in Mexico City, children born to women in the highest quartile of CHO intake during pregnancy had lowest C-peptide and CP-IR during peripuberty. Additional research is warranted to replicate and identify mechanisms.
Collapse
Affiliation(s)
- Molly C Mulcahy
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Maria Tellez-Rojo
- Center for Nutrition and Health Research, Instituto de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Alejandra Cantoral
- Department of Health, Universidad Iberoamericana, Prolongación Paseo de Reforma 880, Lomas de Santa Fe, Ciudad de México, C.P. 01219, Mexico
| | - Maritsa Solano-González
- Center for Nutrition and Health Research, Instituto de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Ana Baylin
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Department of Epidemiology, Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Endocrine-Disrupting Effects of Bisphenol A on the Cardiovascular System: A Review. J Xenobiot 2022; 12:181-213. [PMID: 35893265 PMCID: PMC9326625 DOI: 10.3390/jox12030015] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Currently, the plastic monomer and plasticizer bisphenol A (BPA) is one of the most widely used chemicals. BPA is present in polycarbonate plastics and epoxy resins, commonly used in food storage and industrial or medical products. However, the use of this synthetic compound is a growing concern, as BPA is an endocrine-disrupting compound and can bind mainly to estrogen receptors, interfering with different functions at the cardiovascular level. Several studies have investigated the disruptive effects of BPA; however, its cardiotoxicity remains unclear. Therefore, this review’s purpose is to address the most recent studies on the implications of BPA on the cardiovascular system. Our findings suggest that BPA impairs cardiac excitability through intracellular mechanisms, involving the inhibition of the main ion channels, changes in Ca2+ handling, the induction of oxidative stress, and epigenetic modifications. Our data support that BPA exposure increases the risk of developing cardiovascular diseases (CVDs) including atherosclerosis and its risk factors such as hypertension and diabetes. Furthermore, BPA exposure is also particularly harmful in pregnancy, promoting the development of hypertensive disorders during pregnancy. In summary, BPA exposure compromises human health, promoting the development and progression of CVDs and risk factors. Further studies are needed to clarify the human health effects of BPA-induced cardiotoxicity.
Collapse
|
15
|
Nguyen TM, Le HL, Hwang KB, Hong YC, Kim JH. Predicting High Blood Pressure Using DNA Methylome-Based Machine Learning Models. Biomedicines 2022; 10:biomedicines10061406. [PMID: 35740428 PMCID: PMC9220060 DOI: 10.3390/biomedicines10061406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
DNA methylation modification plays a vital role in the pathophysiology of high blood pressure (BP). Herein, we applied three machine learning (ML) algorithms including deep learning (DL), support vector machine, and random forest for detecting high BP using DNA methylome data. Peripheral blood samples of 50 elderly individuals were collected three times at three visits for DNA methylome profiling. Participants who had a history of hypertension and/or current high BP measure were considered to have high BP. The whole dataset was randomly divided to conduct a nested five-group cross-validation for prediction performance. Data in each outer training set were independently normalized using a min–max scaler, reduced dimensionality using principal component analysis, then fed into three predictive algorithms. Of the three ML algorithms, DL achieved the best performance (AUPRC = 0.65, AUROC = 0.73, accuracy = 0.69, and F1-score = 0.73). To confirm the reliability of using DNA methylome as a biomarker for high BP, we constructed mixed-effects models and found that 61,694 methylation sites located in 15,523 intragenic regions and 16,754 intergenic regions were significantly associated with BP measures. Our proposed models pioneered the methodology of applying ML and DNA methylome data for early detection of high BP in clinical practices.
Collapse
Affiliation(s)
- Thi Mai Nguyen
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Hoang Long Le
- Department of Computer Science & Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
| | - Kyu-Baek Hwang
- School of Computer Science & Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea;
- Correspondence: ; Tel.: +82-2-3408-3655
| |
Collapse
|
16
|
Jiang S, Zeng J, Zhang X, Zhou S, Wang L, Xu S, Lu Q. Association of urinary rubidium concentrations with hypertension risk and blood pressure levels: A cross-sectional study in China. J Trace Elem Med Biol 2022; 71:126936. [PMID: 35092936 DOI: 10.1016/j.jtemb.2022.126936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
BACHGROUND Rubidium resembles potassium. We hypothesized that rubidium might play a role in blood pressure control. METHODS We measured urinary rubidium concentrations and blood pressure levels using validated techniques and methods in 2002 eligible participants. Multivariable logistic and linear regression models were applied to explore the associations. The restricted cubic spline model was utilized to investigate the dose-response relationship. Furthermore, we explored the associations of rubidium with risk factors (glomerular filtration rate, uric acid, and homocysteine) for hypertension and relevant biochemical indexes. RESULTS After adjustment for potential confounders and urinary potassium and sodium levels, doubling of urinary rubidium concentrations was significantly associated with decreased hypertension risk [odds ratio (OR), 0.76; 95% confidence interval (CI), 0.61, 0.93] and reduced systolic blood pressure (SBP) levels of 2.92 (95% CI: 1.56, 4.26) mm Hg. Each 1.00 mg/L increase in rubidium concentrations was associated with a 1.25 mm Hg decreased SBP levels, which was at least 200 times more effective than potassium. Furthermore, urinary rubidium concentrations were negatively associated with the risk factors for hypertension. CONCLUSIONS Rubidium might have more prominent effects on lowering blood pressure levels than potassium. Prospective studies and experimental research focusing on our findings are needed.
Collapse
Affiliation(s)
- Shunli Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junchao Zeng
- Healthcare Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | - Xu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sanping Xu
- Healthcare Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, #1277 Jiefang Road, Wuhan, Hubei, 430022, China.
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Dias P, Tvdrý V, Jirkovský E, Dolenc MS, Peterlin Mašič L, Mladěnka P. The effects of bisphenols on the cardiovascular system. Crit Rev Toxicol 2022; 52:66-87. [PMID: 35394415 DOI: 10.1080/10408444.2022.2046690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bisphenols, endocrine disrupting chemicals, have frequently been used for producing food packaging materials. The best-known member, bisphenol A (BPA), has been linked to impaired foetal development in animals. Possible negative effects of BPA on human health have resulted in the production of novel, so-called next-generation (NextGen) bisphenols whose effects on humans are much less explored or even missing. This review aimed to summarise and critically assess the main findings and shortages in current bisphenol research in relation to their potential impact on the cardiovascular system in real biological exposure. Because of the common presence of bisphenols in daily use products, humans are clearly exposed to these compounds. Most data are available on BPA, where total serum levels (i.e. included conjugated metabolite) can reach up to ∼430 nM, while free bisphenol levels have been reported up to ∼80 nM. Limited data are available for other bisphenols, but maximal serum levels of bisphenol S have been reported (680 nM). Such levels seem to be negligible, although in vitro studies have showed effects on ion channels, and thyroid, oestrogenic and androgenic receptors in low micromolar concentrations. Ex vivo studies suggest vasodilatory effects of bisphenols. This stays in clear contrast to the elevation of arterial blood pressure documented in vivo and in observatory cross-sectional human studies. Bisphenols are also claimed to have a negative effect on lipidic spectrum and coronary artery disease. Regardless, the reported data are generally inconsistent and unsatisfactory. Hence novel well-designed studies, testing in particular NextGen bisphenols, are needed.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Václav Tvdrý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | | | | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
19
|
Sakaki JR, Provatas AA, Perkins C, Chun OK. Urinary excretion of estrogenic chemicals following consumption of capsule coffee and French press coffee: A crossover study. Toxicol Rep 2022; 9:728-734. [PMID: 36518418 PMCID: PMC9742817 DOI: 10.1016/j.toxrep.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Coffee brewed from capsules contain estrogenic chemicals (ECs) that may harm the reproductive system. However, there are no studies investigating whether consuming capsule coffee causes these ECs to present in urine. Objective Compare the effects of consuming capsule coffee vs. a plastic-free (French press) method on the appearance of ECs in urine. Methods Participants (n = 30) were randomized to consume 540 mL of capsule or French press coffee once, then switched and consumed the other coffee after washout. Urine samples were collected prior to consumption, at 6 h and 24 h. Coffee and urine samples were analyzed for nine ECs using ultra-performance liquid chromatography with tandem mass spectrometry: bisphenol A (BPA), bisphenol F (BPF), bisphenol S, di(2-ethylhexyl) phthalate (DEHP), benzophenone, 4-nonylphenol (4-NP), dibutyl phthalate, caprolactam and dimethyl terephthalate. Results In coffee samples, BPF (French press: 13.9 ng/mL, capsule: 16.1 ng/mL) and DEHP (capsule: 1.12 ng/mL) were present. In 6 h urine samples, the detection frequency for DEHP was 6.7% in capsule and 13.3% in French press coffee. BPF was detected in only one urine sample post-consumption. Conclusion Consuming capsule coffee did not increase urinary EC exposure compared to consuming French press coffee.
Collapse
Key Words
- 4-NP, 4-nonylphenol
- BP, benzophenone
- BPA, bisphenol A
- BPF, bisphenol F
- BPS, bisphenol S
- Capsule
- Coffee
- DBP, dibutyl phthalate
- DEHP, di(2-ethylhexyl) phthalate
- DMTP, dimethyl terephthalate
- EC, estrogenic chemical
- Estrogenic chemical
- HPLC, high-performance liquid chromatography
- Intervention
- LOD, limit of detection
- Plastic
- UPLC-MS/MS, ultra-performance liquid chromatography with tandem mass spectrometry
Collapse
Affiliation(s)
- Junichi R. Sakaki
- Department of Nutritional Sciences, University of Connecticut, 27 Manter Rd., Unit 4017, Storrs, CT 06269, USA
| | - Anthony A. Provatas
- Center for Environmental Sciences and Engineering, University of Connecticut, 3107 Horsebarn Hill Rd., Storrs, CT 06269, USA
| | - Christopher Perkins
- Center for Environmental Sciences and Engineering, University of Connecticut, 3107 Horsebarn Hill Rd., Storrs, CT 06269, USA
| | - Ock K. Chun
- Department of Nutritional Sciences, University of Connecticut, 27 Manter Rd., Unit 4017, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Cooper BL, Posnack NG. Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol 2022; 22:273-280. [PMID: 35143014 PMCID: PMC9204785 DOI: 10.1007/s12012-022-09719-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol a (BPA) is a high production volume chemical that is frequently used to manufacture epoxy resins and polycarbonate plastics. BPA-containing products are now pervasive, and as a result, biomonitoring studies report widespread exposure in > 90% of adults, adolescents, and children. Both epidemiological and experimental studies have reported associations between BPA exposure and adverse cardiovascular health outcomes. With increasing concerns regarding BPA exposure, a few structurally similar bisphenol chemicals have been introduced as replacements, including bisphenol s (BPS) and bisphenol f (BPF). In accordance with the recently established "Key characteristics of cardiovascular toxicants", we reviewed the literature to highlight the immediate effects of bisphenol chemicals on (1) cardiac excitability, and (2) contractility and relaxation. BPA inhibits key cardiac ion channels, impairs cardiac excitability, and acts as a more potent inhibitor as compared to BPF and BPS. Through the inhibition of calcium current, some studies report that bisphenol chemicals can act as negative inotropic agents. Yet, others suggest that low dose exposures may increase contractility and precipitate triggered arrhythmias via the phosphorylation of key calcium handling proteins. Accordingly, we propose additional considerations for future work to comprehensively address the cardiac safety profile of BPA, as compared to replacement chemicals.
Collapse
Affiliation(s)
- Blake L. Cooper
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA,Department of Pharmacology & Physiology, George Washington University, Washington, DC 20037, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, 20010, USA. .,Department of Pediatrics, George Washington University, Washington, DC, 20037, USA. .,Department of Pharmacology & Physiology, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
21
|
Corbett GA, Lee S, Woodruff TJ, Hanson M, Hod M, Charlesworth AM, Giudice L, Conry J, McAuliffe FM. Nutritional interventions to ameliorate the effect of endocrine disruptors on human reproductive health: A semi-structured review from FIGO. Int J Gynaecol Obstet 2022; 157:489-501. [PMID: 35122246 PMCID: PMC9305939 DOI: 10.1002/ijgo.14126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Background Endocrine disrupting chemicals have harmful effects on reproductive, perinatal, and obstetric outcomes. Objective To analyze the evidence on nutritional interventions to reduce the negative effects of endocrine disruptors on reproductive, perinatal, and obstetric outcomes. Search strategy A search of MEDLINE (PubMed), Allied Health Literature (CINAHL), EMBASE, Web of Science, and the Cochrane Database was conducted from inception to May 2021. Selection criteria Experimental studies on human populations. Data collection and analysis Data were collected from eligible studies. Risk of bias assessment was completed using the Cochrane risk of bias tool and the ROBINS‐I Tool. Results Database searches yielded 15 362 articles. Removing 11 181 duplicates, 4181 articles underwent abstract screening, 26 articles were eligible for full manuscript review, and 16 met full inclusion criteria. Several interventions were found to be effective in reducing exposure to endocrine disruptors: avoidance of plastic containers, bottles, and packaging; avoidance of canned food/beverages; consumption of fresh and organic food; avoidance of fast/processed foods; and supplementation with vitamin C, iodine, and folic acid. There were some interventional studies examining therapies to improve clinical outcomes related to endocrine disruptors. Conclusion Dietary alterations can reduce exposure to endocrine disruptors, with limited data on interventions to improve endocrine‐disruptor–related clinical outcomes. This review provides useful instruction to women, their families, healthcare providers, and regulatory bodies. Nutritional interventions shown to reduce exposure to endocrine disruptors include avoidance of canned/processed or plastic‐packaged foods. Consumption of fresh/organic foods and vitamin C, iodine, and folic acid also reduce exposure.
Collapse
Affiliation(s)
- Gillian A Corbett
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Sadhbh Lee
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Tracey J Woodruff
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Mark Hanson
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Institute of Developmental Sciences and NIHR Biomedical Research Centre, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Moshe Hod
- International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health.,Mor Comprehensive Women's Health Care Centre, Tel Aviv, Israel
| | - Anne Marie Charlesworth
- Program on Reproductive Health and Environment, Department of Obstetrics and Gynecology, Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Linda Giudice
- International Federation of Gynecology and Obstetrics (FIGO) Committee on Climate Change and Toxic Environmental Exposures.,Centre for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jeanne Conry
- Environmental Health and Leadership Foundation, United States
| | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland.,International Federation of Gynaecology and Obstetrics (FIGO) Committee on Impact of Pregnancy on Long-term Health
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
23
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [DOI: https:/doi.org/10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Moreno-Gómez-Toledano R, Arenas MI, Muñoz-Moreno C, Olea-Herrero N, Reventun P, Izquierdo-Lahuerta A, Antón-Cornejo A, González-Santander M, Zaragoza C, Saura M, Bosch RJ. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166296. [PMID: 34718120 DOI: 10.1016/j.bbadis.2021.166296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA), a chemical -xenoestrogen- used in the production of the plastic lining of food and beverage containers, is present in the urine of almost the entire population. Recent studies have shown that BPA exposure is associated with podocytopathy, increased urinary albumin excretion (UAE), and hypertension. Since these changes are characteristic of early diabetic nephropathy (DN), we explored the renal effects of BPA and diabetes including the potential role of sexual dimorphism. Male and female mice were included in the following animals' groups: control mice (C), mice treated with 21.2 mg/kg of BPA in the drinking water (BPA), diabetic mice induced by streptozotocin (D), and D mice treated with BPA (D + BPA). Male mice form the D + BPA group died by the tenth week of the study due probably to hydro-electrolytic disturbances. Although BPA treated mice did not show an increase in serum creatinine, as observed in D and D + BPA groups, they displayed similar alteration to those of the D group, including increased in kidney damage biomarkers NGAL and KIM-1, UAE, hypertension, podocytopenia, apoptosis, collapsed glomeruli, as well as TGF-β, CHOP and PCNA upregulation. UAE, collapsed glomeruli, PCNA staining, TGF-β, NGAL and animal survival, significantly impaired in D + BPA animals. Moreover, UAE, collapsed glomeruli and animal survival also displayed a sexual dimorphism pattern. In conclusion, oral administration of BPA is capable of promoting in the kidney alterations that resemble early DN. Further translational studies are needed to clarify the potential role of BPA in renal diseases, particularly in diabetic patients.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - María I Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, Alcalá de Henares, Spain
| | - Carmen Muñoz-Moreno
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Nuria Olea-Herrero
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Paula Reventun
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adriana Izquierdo-Lahuerta
- University Rey Juan Carlos, Biochemistry and Molecular Biology Area, Department of Basic Sciences of Health, Alcorcon, Spain
| | - Alba Antón-Cornejo
- Clinical Analysis Service, Principe de Asturias Hospital, Alcalá de Henares, Spain
| | - Marta González-Santander
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain
| | - Carlos Zaragoza
- Unidad de Investigación Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)/Facultad de Medicina Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marta Saura
- Universidad de Alcalá, Laboratory of Pathophysiology of the Vascular Wall, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, IRICYS, Department of System Biology/Physiology Unit, Alcalá de Henares, Spain
| | - Ricardo J Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Group of Pathophysiology of the Cardiovascular, Renal and Nervous Systems, Department of Biological Systems/Physiology Unit, Alcalá de Henares, Spain.
| |
Collapse
|
25
|
Singh P, Covassin N, Marlatt K, Gadde KM, Heymsfield SB. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr Physiol 2021; 12:2949-2993. [PMID: 34964120 PMCID: PMC10068688 DOI: 10.1002/cphy.c210014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in adults, highlighting the need to develop novel strategies to mitigate cardiovascular risk. The advancing obesity epidemic is now threatening the gains in CVD risk reduction brought about by contemporary pharmaceutical and surgical interventions. There are sex differences in the development and outcomes of CVD; premenopausal women have significantly lower CVD risk than men of the same age, but women lose this advantage as they transition to menopause, an observation suggesting potential role of sex hormones in determining CVD risk. Clear differences in obesity and regional fat distribution among men and women also exist. While men have relatively high fat in the abdominal area, women tend to distribute a larger proportion of their fat in the lower body. Considering that regional body fat distribution is an important CVD risk factor, differences in how men and women store their body fat may partly contribute to sex-based alterations in CVD risk as well. This article presents findings related to the role of obesity and sex hormones in determining CVD risk. Evidence for the role of sex hormones in determining body composition in men and women is also presented. Lastly, the clinical potential for using sex hormones to alter body composition and reduce CVD risk is outlined. © 2022 American Physiological Society. Compr Physiol 12:1-45, 2022.
Collapse
Affiliation(s)
- Prachi Singh
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | | | - Kara Marlatt
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Kishore M Gadde
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Steven B Heymsfield
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
26
|
Moreno-Gómez-Toledano R, Sánchez-Esteban S, Cook A, Mínguez-Moratinos M, Ramírez-Carracedo R, Reventún P, Delgado-Marín M, Bosch RJ, Saura M. Bisphenol A Induces Accelerated Cell Aging in Murine Endothelium. Biomolecules 2021; 11:biom11101429. [PMID: 34680063 PMCID: PMC8533150 DOI: 10.3390/biom11101429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023] Open
Abstract
Bisphenol A (BPA) is a widespread endocrine disruptor affecting many organs and systems. Previous work in our laboratory demonstrated that BPA could induce death due to necroptosis in murine aortic endothelial cells (MAECs). This work aims to evaluate the possible involvement of BPA-induced senescence mechanisms in endothelial cells. The β-Gal assays showed interesting differences in cell senescence at relatively low doses (100 nM and 5 µM). Western blots confirmed that proteins involved in senescence mechanisms, p16 and p21, were overexpressed in the presence of BPA. In addition, the UPR (unfolding protein response) system, which is part of the senescent phenotype, was also explored by Western blot and qPCR, confirming the involvement of the PERK-ATF4-CHOP pathway (related to pathological processes). The endothelium of mice treated with BPA showed an evident increase in the expression of the proteins p16, p21, and CHOP, confirming the results observed in cells. Our results demonstrate that oxidative stress induced by BPA leads to UPR activation and senescence since pretreatment with N-acetylcysteine (NAC) in BPA-treated cells reduced the percentage of senescent cells prevented the overexpression of proteins related to BPA-induced senescence and reduced the activation of the UPR system. The results suggest that BPA participates actively in accelerated cell aging mechanisms, affecting the vascular endothelium and promoting cardiovascular diseases.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Sandra Sánchez-Esteban
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Alberto Cook
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Mínguez-Moratinos
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | | | - Paula Reventún
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - María Delgado-Marín
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Ricardo J. Bosch
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
| | - Marta Saura
- Universidad de Alcalá, Systems Biology Department, IRYCIS, 28772 Alcalá de Henares, Spain; (R.M.-G.-T.); (S.S.-E.); (A.C.); (M.M.-M.); (P.R.); (M.D.-M.); (R.J.B.)
- Correspondence:
| |
Collapse
|
27
|
Strategies to Protect Dialysis Patients against Bisphenol A. Biomolecules 2021; 11:biom11091375. [PMID: 34572587 PMCID: PMC8471555 DOI: 10.3390/biom11091375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Bisphenol A (BPA), also known as 2,2,-bis(4-hydroxyphenyl) propane, is a common component of plastics worldwide. However, it has been shown to act as an endocrine disruptor with some hormonal functions. Furthermore, high levels of BPA have been related to the development of cardiovascular events and the activation of carcinogenesis pathways. Patients with chronic kidney disease (CKD) have higher serum concentrations of BPA due to their impaired renal function. This situation is aggravated in CKD patients requiring dialysis, because the BPA content of dialysis devices (such as, for example, the filters) is added to the lack of excretion. In addition to the development of BPA-free dialysis filters, some techniques can contribute to the reduction of BPA levels in these patients. The aim of this review is to illustrate the impact of BPA on dialysis patients and suggest some strategies to reduce its inherent risks.
Collapse
|
28
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
29
|
|
30
|
Jiang S, Yang G, Zhou S, Zhang X, Peng C, Lu Q. Bisphenol A, S, and F exposure, ESR1/2, CAT, and eNOS genetic polymorphisms, and the risk of hypertension. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112684. [PMID: 34438265 DOI: 10.1016/j.ecoenv.2021.112684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
While bisphenol A (BPA) exposure was inconsistently associated with hypertension risk, little is known about whether its alternatives bisphenol S and F (BPS and BPF) have similar hypertensive effects. Furthermore, epidemiologic studies on the genetic susceptibility to the hypertensive effects of bisphenols are scarce. We conducted a case-control study in 439 pairs of hypertension cases and matched controls. Urinary bisphenols concentrations were measured to characterize the internal exposure levels. The genotyping of ESR1/2, CAT, and eNOS was performed by a multiplex fluorescent polymerase chain reaction. BPA exposure was positively associated with hypertension risk. Carriers of rs2234693 C allele in ESR1 were associated with increased hypertension risk. Significant associations of BPA exposure with increased hypertension risk were suggested in individuals with the major allele of rs1256049 in ESR2, rs769214 in CAT, and rs1799983 in eNOS. Besides, rs4755374 in CAT might modify the association of BPA exposure with hypertension risk. Individuals with specific genotypes in ESR1/2, CAT, and eNOS might be more susceptible to the hypertensive effects of BPA.
Collapse
Affiliation(s)
- Shunli Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Guanlin Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuang Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xu Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Barrett ES, Groth SW, Preston EV, Kinkade C, James-Todd T. Endocrine-Disrupting Chemical Exposures in Pregnancy: a Sensitive Window for Later-Life Cardiometabolic Health in Women. CURR EPIDEMIOL REP 2021; 8:130-142. [PMID: 35291208 PMCID: PMC8920413 DOI: 10.1007/s40471-021-00272-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Purpose of Review
Pregnancy can be seen as a “stress test” with complications predicting later-life cardiovascular disease risk. Here, we review the growing epidemiological literature evaluating environmental endocrine-disrupting chemical (EDC) exposure in pregnancy in relation to two important cardiovascular disease risk factors, hypertensive disorders of pregnancy and maternal obesity.
Recent Findings
Overall, evidence of EDC-maternal cardiometabolic associations was mixed. The most consistent associations were observed for phenols and maternal obesity, as well as for perfluoroalkyl substances (PFASs) with hypertensive disorders. Research on polybrominated flame retardants and maternal cardiometabolic outcomes is limited, but suggestive.
Summary
Although numerous studies evaluated pregnancy outcomes, few evaluated the postpartum period or assessed chemical mixtures. Overall, there is a need to better understand whether pregnancy exposure to these chemicals could contribute to adverse cardiometabolic health outcomes in women, particularly given that cardiovascular disease is the leading cause of death in women.
Collapse
Affiliation(s)
- Emily S. Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Susan W. Groth
- University of Rochester School of Nursing, Rochester, NY 14642, USA
| | - Emma V. Preston
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA 02120, USA
| | - Carolyn Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Ave., Bldg. 1, 14th Floor, Boston, MA 02120, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
32
|
Moreno-Gómez-Toledano R, Arenas MI, Vélez-Vélez E, Coll E, Quiroga B, Bover J, Bosch RJ. Bisphenol a Exposure and Kidney Diseases: Systematic Review, Meta-Analysis, and NHANES 03-16 Study. Biomolecules 2021; 11:1046. [PMID: 34356670 PMCID: PMC8301850 DOI: 10.3390/biom11071046] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) is a compound that is especially widespread in most commonly used objects due to its multiple uses in the plastic industry. However, several data support the need to restrict its use. In recent years, new implications of BPA on the renal system have been discovered, which denotes the need to expand studies in patients. To this end, a systematic review and a meta-analysis was performed to explore existing literature that examines the BPA-kidney disease paradigm and to determine what and how future studies will need to be carried out. Our systematic review revealed that only few relevant publications have focused on the problem. However, the subsequent meta-analysis revealed that high blood concentrations of BPA could be a factor in developing kidney disease, at least in people with previous pathologies such as diabetes or hypertension. Furthermore, BPA could also represent a risk factor in healthy people whose urinary excretion is higher. Finally, the data analyzed from the NHANES 03-16 cohort provided new evidence on the possible involvement of BPA in kidney disease. Therefore, our results underline the need to carry out a thorough and methodologically homogeneous study, delving into the relationship between urinary and blood BPA, glomerular filtration rate, and urine albumin-to-creatinine ratio, preferably in population groups at risk, and subsequently in the general population, to solve this relevant conundrum with critical potential implications in Public Health.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| | - María I. Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Spain;
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, 28040 Madrid, Spain;
| | - Elisabeth Coll
- Nephrology Service, Fundació Puigvert, 08025 Barcelona, Spain;
| | - Borja Quiroga
- Nephrology Service, La Princesa Universitary Hospital, 28806 Madrid, Spain;
| | - Jordi Bover
- Nephrology Service, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Ricardo J. Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| |
Collapse
|
33
|
Prudencio TM, Swift LM, Guerrelli D, Cooper B, Reilly M, Ciccarelli N, Sheng J, Jaimes R, Posnack NG. Bisphenol S and bisphenol F are less disruptive to cardiac electrophysiology, as compared to bisphenol A. Toxicol Sci 2021; 183:214-226. [PMID: 34240201 DOI: 10.1093/toxsci/kfab083] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) is a high-production volume chemical used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA. This study aimed to examine the direct effects of BPA on cardiac electrophysiology compared with recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F). Whole-cell voltage-clamp recordings were performed on cell lines transfected to express the voltage-gated sodium channel (Nav1.5), L-type voltage-gated calcium channel (Cav1.2), or the rapidly activating delayed rectifier potassium channel (hERG). Cardiac electrophysiology parameters were measured using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole rat heart preparations. BPA was the most potent inhibitor of fast/peak (INa-P) and late (INa-L) sodium channel (IC50= 55.3, 23.6 µM, respectively), L-type calcium channel (IC50= 30.8 µM) and hERG channel current (IC50= 127 µM). Inhibitory effects on L-type calcium channels were supported by microelectrode array recordings, which revealed a shortening of the extracellular field potential (akin to QT interval). BPA and BPF exposures slowed atrioventricular (AV) conduction and increased AV node refractoriness in isolated rat heart preparations, in a dose-dependent manner (BPA: +9.2% 0.001 µM, +95.7% 100 µM; BPF: +20.7% 100 µM). BPS did not alter any of the cardiac electrophysiology parameters tested. Results of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, while BPS is markedly less potent. Additional studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.
Collapse
Affiliation(s)
- Tomas M Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Devon Guerrelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Biomedical Engineering, George Washington University, Washington DC, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nina Ciccarelli
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | | | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.,Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.,Department of Pharmacology & Physiology, George Washington University, Washington DC, USA.,Department of Pediatrics, George Washington University, Washington DC, USA
| |
Collapse
|
34
|
Zhang W, Li L, Chen H, Zhang Y, Zhang Z, Lin Z, Shi M, Zhang W, Li X, Tang Z, Liu Y, Guo L, Shi M. Bisphenol F promotes the secretion of pro-inflammatory cytokines in macrophages by enhanced glycolysis through PI3K-AKT signaling pathway. Toxicol Lett 2021; 350:30-39. [PMID: 34147605 DOI: 10.1016/j.toxlet.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Bisphenol F (BPF) is a member of endocrine disrupting chemicals (EDCs). As a substitute of bisphenol A (BPA), BPF is widely used in various consumer products, leading to an increased risk of people's exposure. However, there are few studies on the immunotoxicity and mechanism of BPF. This study aimed to investigate the effect of BPF on the secretion of pro-inflammatory cytokines by macrophages and explore its mechanism. In our study, RAW264.7 macrophages were treated with different concentrations of BPF (0, 5, 10 and 20 μM) for 24 h. The results showed that the secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and the production of lactate were increased in a dose-dependent manner. BPFalso led to the activation of the PI3K-AKT signaling pathway. After pretreatment with glycolysis inhibitor (2-DG) and exposure to BPF (20 μM), the secretion of pro-inflammatory cytokines induced by BPF was inhibited. PI3K inhibitor (LY294002) and estrogen receptor (ER) antagonist (ICI 182,780) could also inhibit the above effects induced by BPF (20 μM). In conclusion, our results suggested that BPF can enhance glycolysis through ER mediated PI3K-AKT signaling pathway, and the enhanced glycolysis further promoted the secretion of pro-inflammatory cytokines. Our research provides basic data for future studies on bisphenol exposure and immunotoxicity.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Huiling Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Yanchao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zihan Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zeheng Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Mingjie Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Wei Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Xing Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Zhi Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China; Liaobu Hospital, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
35
|
García-Arévalo M, Lorza-Gil E, Cardoso L, Batista TM, Araujo TR, Ramos LAF, Areas MA, Nadal A, Carneiro EM, Davel AP. Ventricular Fibrosis and Coronary Remodeling Following Short-Term Exposure of Healthy and Malnourished Mice to Bisphenol A. Front Physiol 2021; 12:638506. [PMID: 33912069 PMCID: PMC8072349 DOI: 10.3389/fphys.2021.638506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/03/2021] [Indexed: 11/15/2022] Open
Abstract
Bisphenol-A (BPA) is an endocrine disruptor associated with higher risk of insulin resistance, type 2 diabetes, and cardiovascular diseases especially in susceptible populations. Because malnutrition is a nutritional disorder associated with high cardiovascular risk, we sought to compare the effects of short-term BPA exposure on cardiovascular parameters of healthy and protein-malnourished mice. Postweaned male mice were fed a normo- (control) or low-protein (LP) diet for 8 weeks and then exposed or not to BPA (50 μg kg−1 day−1) for the last 9 days. Systolic blood pressure was higher in BPA or LP groups compared with the control group. However, diastolic blood pressure was enhanced by BPA only in malnourished mice. Left ventricle (LV) end diastolic pressure (EDP), collagen deposition, and CTGF mRNA expression were higher in the control or malnourished mice exposed to BPA than in the respective nonexposed groups. Nevertheless, mice fed LP diet exposed to BPA exhibited higher angiotensinogen and cardiac TGF-β1 mRNA expression than mice treated with LP or BPA alone. Wall:lumen ratio and cross-sectional area of intramyocardial arteries were higher either in the LP or BPA group compared with the control mice. Taken together, our data suggest that short-term BPA exposure results in LV diastolic dysfunction and fibrosis, and intramyocardial arteries inward remodeling, besides potentiate protein malnutrition-induced hypertension and cardiovascular risk.
Collapse
Affiliation(s)
- Marta García-Arévalo
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Leandro Cardoso
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Thiago Reis Araujo
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | | | - Miguel Arcanjo Areas
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| | - Angel Nadal
- Instituto de Biología Molecular y Celular, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Universidad Miguel Hernández, Elche, Spain
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil.,Obesity and Comorbidities Research Center-OCRC, UNICAMP, Campinas, Brazil
| | - Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, Campinas, Brazil
| |
Collapse
|
36
|
Sokal A, Jarmakiewicz-Czaja S, Tabarkiewicz J, Filip R. Dietary Intake of Endocrine Disrupting Substances Presents in Environment and Their Impact on Thyroid Function. Nutrients 2021; 13:867. [PMID: 33800806 PMCID: PMC7998837 DOI: 10.3390/nu13030867] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
According to the available data, environmental pollution is a serious problem all over the world. Between 2015 and 2016, pollution was responsible for approximately nine million deaths worldwide. They also include endocrine disrupting chemicals (EDCs) that can interfere with the functioning of the thyroid gland. They are characterized by high persistence in the environment. These substances can enter the body through the gastrointestinal tract, respiratory system, as well as contact with the skin and overcome the placental barrier. EDC can be found in food, water, and personal care products. They can get into food from the environment and as a result of their migration to food products and cosmetics from packaging. EDCs can disrupt the functioning of the thyroid gland through a number of mechanisms, including disrupting the activation of thyroid receptors and the expression of genes that are related to the metabolism, synthesis, and transport of thyroid hormones (HT). There is a need to strengthen the food safety policy that aimed at the use of appropriate materials in direct contact with food. At the same time, an important action is to reduce the production of all waste and, when possible, use biodegradable packaging, which may contribute to the improvement of the quality of the entire ecosystem and the health of food, thus reducing the risk of developing thyroid diseases.
Collapse
Affiliation(s)
- Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Jacek Tabarkiewicz
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (J.T.); (R.F.)
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
37
|
vom Saal FS, Vandenberg LN. Update on the Health Effects of Bisphenol A: Overwhelming Evidence of Harm. Endocrinology 2021; 162:6124507. [PMID: 33516155 PMCID: PMC7846099 DOI: 10.1210/endocr/bqaa171] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/14/2022]
Abstract
In 1997, the first in vivo bisphenol A (BPA) study by endocrinologists reported that feeding BPA to pregnant mice induced adverse reproductive effects in male offspring at the low dose of 2 µg/kg/day. Since then, thousands of studies have reported adverse effects in animals administered low doses of BPA. Despite more than 100 epidemiological studies suggesting associations between BPA and disease/dysfunction also reported in animal studies, regulatory agencies continue to assert that BPA exposures are safe. To address this disagreement, the CLARITY-BPA study was designed to evaluate traditional endpoints of toxicity and modern hypothesis-driven, disease-relevant outcomes in the same set of animals. A wide range of adverse effects was reported in both the toxicity and the mechanistic endpoints at the lowest dose tested (2.5 µg/kg/day), leading independent experts to call for the lowest observed adverse effect level (LOAEL) to be dropped 20 000-fold from the current outdated LOAEL of 50 000 µg/kg/day. Despite criticism by members of the Endocrine Society that the Food and Drug Administration (FDA)'s assumptions violate basic principles of endocrinology, the FDA rejected all low-dose data as not biologically plausible. Their decisions rely on 4 incorrect assumptions: dose responses must be monotonic, there exists a threshold below which there are no effects, both sexes must respond similarly, and only toxicological guideline studies are valid. This review details more than 20 years of BPA studies and addresses the divide that exists between regulatory approaches and endocrine science. Ultimately, CLARITY-BPA has shed light on why traditional methods of evaluating toxicity are insufficient to evaluate endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Frederick S vom Saal
- University of Missouri – Columbia, Division of Biological Sciences, Columbia, Missouri
- Correspondence: Dr. Frederick vom Saal, University of Missouri-Columbia, Division of Biological Sciences, 105 Lefevre Hall, Columbia, MO, 65211, USA. E-mail:
| | - Laura N Vandenberg
- University of Massachusetts – Amherst, Department of Environmental Health Sciences, Amherst, Massachusetts
| |
Collapse
|
38
|
Martínez-Ibarra A, Martínez-Razo LD, MacDonald-Ramos K, Morales-Pacheco M, Vázquez-Martínez ER, López-López M, Rodríguez Dorantes M, Cerbón M. Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116380. [PMID: 33387779 DOI: 10.1016/j.envpol.2020.116380] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer. In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.
Collapse
Affiliation(s)
- A Martínez-Ibarra
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico; Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - L D Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - K MacDonald-Ramos
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - M Morales-Pacheco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - E R Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - M López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | | | - M Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de Los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
39
|
Jain RB. Concentrations of bisphenol A and its associations with urinary albumin creatinine ratios across the various stages of renal function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9946-9953. [PMID: 33164123 DOI: 10.1007/s11356-020-11535-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 05/26/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2003-2016 for US adults aged ≥ 20 years (N = 10,942) were used to study variabilities and associations with urinary albumin creatinine ratio (UACR) in the adjusted concentrations (AGM) of urine bisphenol A (BPA) across various stages of renal function (RF). RF stages considered were RF-1 (eGFR > 90 mL/min/1.73 m2), RF-2 (60 ≤ eGFR ≤ 90 mL/min/1.73 m2), RF-3A (45 ≤ eGFR < 60 mL/min/1.73 m2), and RF-3B/4 (15 ≤ eGFR < 45 mL/min/1.73 m2). Irrespective of gender, race/ethnicity, and smoking status, AGMs for BPA were located on U-curves with point of inflection at RF-2. In general, decreases from RF-1 to RF-2 were followed by increases from RF-2 to RF-3A and from RF-3A to RF-3B/4. For example, AGMs for males were observed to be 1.52, 1.48, 1.61, and 1.69 ng/mL at RF-1, RF-2, RF-3A, and RF-3B/4 respectively. A similar U-curve was observed for those without albuminuria but for those with albuminuria, BPA levels continued increasing until RF-3A before decreasing at RF-3B/4. Severe kidney dysfunction was found to be associated with statistically significantly higher concentrations of BPA in urine. Shape of concentration curves for BPA across RF stages is determined by the balance of actively mediated secretion and reabsorption operating on both sides of renal proximal tubules during each stage of RF. Shape of concentration curves for BPA across various stages of RF was age and concentration dependent. Associations between BPA and UACR were found to be negative (p = 0.02), positive (p = 0.23), negative (p = 0.53), and negative (p < 0.01) respectively at RF-1, RF-2, RF-3A, and RF-3B/4 respectively.
Collapse
|
40
|
Salamanca-Fernández E, Vela-Soria F, Rodríguez-Barranco M, Arrebola-Moreno A, Iribarne-Durán LM, Olea N, Sánchez MJ, Arrebola JP. Serum levels of non-persistent environmental pollutants and risk of incident hypertension in a sub-cohort from the EPIC study. ENVIRONMENTAL RESEARCH 2021; 193:110491. [PMID: 33227247 DOI: 10.1016/j.envres.2020.110491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The prevalence of arterial hypertension (AHT), a well-known risk factor for cardiovascular disease, has considerably increased over last decades. Non-persistent environmental pollutants (npEPs) are a group of ubiquitous chemicals, widely used in consumer products such as food packaging and cosmetics, which have been identified as endocrine disrupting chemicals and obesogens. The aim of this study was to assess the potential associations of serum levels of three groups of npEPs with the risk of incident AHT. METHODS Cohort study within a sub-cohort of Granada EPIC-Spain center (n = 670). We quantified serum concentrations of three groups of npEPs, i.e., bisphenol A (BPA), four parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP) and butylparaben (BP), and two benzophenones: benzophenone 1 (BP1), benzophenone 3 (BP3), in samples collected at recruitment. Statistical analyses were performed by means of Cox Proportional Hazard Models. RESULTS Median follow-up time was 23 years. BPA and MP were found in >80% of the study population. Individuals within the 4th PP quartile (0.53-9.24 ng/ml) showed a statistically significant increased risk of AHT (HR = 1.40, p = 0.015). No associations were found for the rest of pollutants. CONCLUSIONS Overall, we evidenced no associations of most npEPs with AHT risk, with the exception of an increased risk in the highest PP percentiles. Considering the limitations of using one spot serum sample for exposure characterization, further research on the potential contribution of npEPs on the development of AHT risk is warranted.
Collapse
Affiliation(s)
- E Salamanca-Fernández
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - M Rodríguez-Barranco
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain
| | | | | | - N Olea
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Radiology, School of Medicine, Granada, Spain
| | - M J Sánchez
- Andalusian School of Public Health (EASP), Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain
| | - J P Arrebola
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP). Madrid, Spain; University of Granada, Department of Preventive Medicine and Public Health, Granada, Spain.
| |
Collapse
|
41
|
Buoso E, Masi M, Racchi M, Corsini E. Endocrine-Disrupting Chemicals' (EDCs) Effects on Tumour Microenvironment and Cancer Progression: Emerging Contribution of RACK1. Int J Mol Sci 2020; 21:E9229. [PMID: 33287384 PMCID: PMC7729595 DOI: 10.3390/ijms21239229] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine disruptors (EDCs) can display estrogenic and androgenic effects, and their exposure has been linked to increased cancer risk. EDCs have been shown to directly affect cancer cell regulation and progression, but their influence on tumour microenvironment is still not completely elucidated. In this context, the signalling hub protein RACK1 (Receptor for Activated C Kinase 1) could represent a nexus between cancer and the immune system due to its roles in cancer progression and innate immune activation. Since RACK1 is a relevant EDCs target that responds to steroid-active compounds, it could be considered a molecular bridge between the endocrine-regulated tumour microenvironment and the innate immune system. We provide an analysis of immunomodulatory and cancer-promoting effects of different EDCs in shaping tumour microenvironment, with a final focus on the scaffold protein RACK1 as a pivotal molecular player due to its dual role in immune and cancer contexts.
Collapse
Affiliation(s)
- Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
- Classe di Scienze Umane e della Vita (SUV), Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; (M.M.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Politiche ed Ambientali, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| |
Collapse
|
42
|
Kim S, Lee I, Lim JE, Lee A, Moon HB, Park J, Choi K. Dietary contribution to body burden of bisphenol A and bisphenol S among mother-children pairs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140856. [PMID: 32721674 DOI: 10.1016/j.scitotenv.2020.140856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/21/2023]
Abstract
Due to the health concerns over bisphenol A (BPA), bisphenol S (BPS) has been used as an alternative in greater quantity. Diet is considered as the major source of exposure to bisphenols; however, its contribution to the total body burden has not been fully understood. In the present study, a 3-day dietary intervention was carried out for a group of mother and child(ren) pairs (37 families, 93 subjects), and contribution of the dietary factors to body burden of both bisphenols was investigated. During the intervention, the participants were asked to refrain from the foods in cans and plastic containers, fast foods, and delivery foods. Urinary levels of BPA and BPS were measured before, during, and after the intervention. In addition, the questionnaire survey was conducted for potential contributors to BPA and BPS exposure. Following the intervention, urinary levels of BPA and BPS of the mothers decreased on average by 53.1% (95% CI: -30.0, -68.6), and 63.9% (95% CI: -37.1, -79.3), respectively. Among the children, urinary BPA concentrations decreased by 47.5% (95% CI: -25.6, -62.9) by the intervention. However, BPS levels in urine did not change in the children. Interestingly, urinary BPS concentrations of the children measured during the non-intervention period were greater than those of the mothers in the same period. Consumption frequencies of several food items, e.g., canned foods, take-out drinks, or fast foods, were significantly correlated with elevated levels of urinary BPA or BPS concentrations. The results of this intervention study emphasize the importance of dietary contribution to BPA exposure among the mothers and children. Our findings also show that non-dietary sources could be a more important contributor for certain people, especially to BPS exposure among children. Further studies are warranted to identify the sources of BPS exposure among children.
Collapse
Affiliation(s)
- Sunmi Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Aram Lee
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
43
|
Zahra A, Sisu C, Silva E, De Aguiar Greca SC, Randeva HS, Chatha K, Kyrou I, Karteris E. Is There a Link between Bisphenol A (BPA), a Key Endocrine Disruptor, and the Risk for SARS-CoV-2 Infection and Severe COVID-19? J Clin Med 2020; 9:E3296. [PMID: 33066495 PMCID: PMC7602132 DOI: 10.3390/jcm9103296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Infection by the severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) is the causative agent of a new disease (COVID-19). The risk of severe COVID-19 is increased by certain underlying comorbidities, including asthma, cancer, cardiovascular disease, hypertension, diabetes, and obesity. Notably, exposure to hormonally active chemicals called endocrine-disrupting chemicals (EDCs) can promote such cardio-metabolic diseases, endocrine-related cancers, and immune system dysregulation and thus, may also be linked to higher risk of severe COVID-19. Bisphenol A (BPA) is among the most common EDCs and exerts its effects via receptors which are widely distributed in human tissues, including nuclear oestrogen receptors (ERα and ERβ), membrane-bound oestrogen receptor (G protein-coupled receptor 30; GPR30), and human nuclear receptor oestrogen-related receptor gamma. As such, this paper focuses on the potential role of BPA in promoting comorbidities associated with severe COVID-19, as well as on potential BPA-induced effects on key SARS-CoV-2 infection mediators, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Interestingly, GPR30 appears to exhibit greater co-localisation with TMPRSS2 in key tissues like lung and prostate, suggesting that BPA exposure may impact on the local expression of these SARS-CoV-2 infection mediators. Overall, the potential role of BPA on the risk and severity of COVID-19 merits further investigation.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Sophie-Christine De Aguiar Greca
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| |
Collapse
|
44
|
Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, Lucia A. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2020; 18:251-275. [PMID: 33037326 DOI: 10.1038/s41569-020-00437-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Hypertension affects approximately one third of the world's adult population and is a major cause of premature death despite considerable advances in pharmacological treatments. Growing evidence supports the use of lifestyle interventions for the prevention and adjuvant treatment of hypertension. In this Review, we provide a summary of the epidemiological research supporting the preventive and antihypertensive effects of major lifestyle interventions (regular physical exercise, body weight management and healthy dietary patterns), as well as other less traditional recommendations such as stress management and the promotion of adequate sleep patterns coupled with circadian entrainment. We also discuss the physiological mechanisms underlying the beneficial effects of these lifestyle interventions on hypertension, which include not only the prevention of traditional risk factors (such as obesity and insulin resistance) and improvements in vascular health through an improved redox and inflammatory status, but also reduced sympathetic overactivation and non-traditional mechanisms such as increased secretion of myokines.
Collapse
Affiliation(s)
| | - Pedro Carrera-Bastos
- Centre for Primary Health Care Research, Lund University/Region Skane, Skane University Hospital, Malmö, Sweden
| | - Beatriz G Gálvez
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,IMDEA Alimentacion, Madrid, Spain
| | - Luis M Ruilope
- Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. .,Research Institute of the Hospital Universitario 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
45
|
Ouyang F, Zhang GH, Du K, Shen L, Ma R, Wang X, Wang X, Zhang J. Maternal prenatal urinary bisphenol A level and child cardio-metabolic risk factors: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115008. [PMID: 32574892 PMCID: PMC7456779 DOI: 10.1016/j.envpol.2020.115008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/11/2023]
Abstract
Exposure to endocrine disrupting chemicals during the first 1000 days of life may have long-lasting adverse effects on cardio-metabolic risk in later life. This study aimed to examine the associations between maternal prenatal Bisphenol A (BPA) exposure and child cardio-metabolic risk factors at age 2 years in a prospective cohort. During 2012-2013, 218 pregnant women were enrolled at late pregnancy from Shanghai, China. Urinary BPA concentration was measured in prenatal and child 2-year spot urine samples, and classified into high, medium and low tertiles. Child adiposity anthropometric measurements, random morning plasma glucose, serum insulin, and lipids (high-density lipoprotein, low-density lipoprotein, cholesterol, triglyceride), systolic (SBP) and diastolic blood pressure (DBP) were measured. Linear regression was used to evaluate the associations between prenatal BPA and each of the cardio-metabolic risk factors in boys and girls, respectively, adjusting for pertinent prenatal, perinatal and postnatal factors. BPA was detectable (>0.1 μg/L) in 98.2% of mothers prenatally and 99.4% of children at age 2 years. Compared to those with low prenatal BPA, mean SBP was 7.0 (95%CI: 2.9-11.2) mmHg higher, and DBP was 4.4 (95%CI: 1.2-7.5) mmHg higher in girls with high prenatal BPA levels, but these associations were not found in boys. In boys, medium maternal prenatal BPA level was associated with 0.36 (95% CI: 0.04-0.68) mmol/L higher plasma glucose. No associations were found between prenatal BPA and child BMI, skinfold thicknesses, serum lipids, or insulin in either girls or boys. There were no associations between concurrent child urinary BPA and cardio-metabolic risk factors. These results support that BPA exposure during prenatal period, susceptible time for fetal development, may be associated with increase in child BP and plasma glucose in a sex-specific manner. Further independent cohort studies are needed to confirm the findings.
Collapse
Affiliation(s)
- Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guang-Hui Zhang
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Du
- Department of Clinical Laboratory Test, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixiao Shen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Prakash A, Tiwari R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front Public Health 2020; 8:553850. [PMID: 33072697 PMCID: PMC7541969 DOI: 10.3389/fpubh.2020.553850] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023] Open
Abstract
The exponential growth of pollutant discharges into the environment due to increasing industrial and agricultural activities is a rising threat for human health and a biggest concern for environmental health globally. Several synthetic chemicals, categorized as potential environmental endocrine-disrupting chemicals (EDCs), are evident to affect the health of not only livestock and wildlife but also humankind. In recent years, human exposure to environmental EDCs has received increased awareness due to their association with altered human health as documented by several epidemiological and experimental studies. EDCs are associated with deleterious effects on male and female reproductive health; causes diabetes, obesity, metabolic disorders, thyroid homeostasis and increase the risk of hormone-sensitive cancers. Sewage effluents are a major source of several EDCs, which eventually reach large water bodies and potentially contaminate the drinking water supply. Similarly, water storage material such as different types of plastics also leaches out EDCs in drinking Water. Domestic wastewater containing pharmaceutical ingredients, metals, pesticides and personal care product additives also influences endocrine activity. These EDCs act via various receptors through a variety of known and unknown mechanisms including epigenetic modification. They differ from classic toxins in several ways such as low-dose effect, non-monotonic dose and trans-generational effects. This review aims to highlight the hidden burden of EDCs on human health and discusses the non-classical toxic properties of EDCs in an attempt to understand the magnitude of the exposome on human health. Present data on the environmental EDCs advocate that there may be associations between human exposure to EDCs and several undesirable health outcomes that warrants further human bio-monitoring of EDCs.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Vinod Verma
- Department of Stem Cell Research Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anil Prakash
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnarayan Tiwari
- National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| |
Collapse
|
47
|
Consumer behavior and exposure to parabens, bisphenols, triclosan, dichlorophenols, and benzophenone-3: Results from a crowdsourced biomonitoring study. Int J Hyg Environ Health 2020; 230:113624. [DOI: 10.1016/j.ijheh.2020.113624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
|
48
|
Nobles CJ, Mendola P, Mumford SL, Silver RM, Kim K, Andriessen VC, Connell M, Sjaarda L, Perkins NJ, Schisterman EF. Preconception Blood Pressure and Its Change Into Early Pregnancy: Early Risk Factors for Preeclampsia and Gestational Hypertension. Hypertension 2020; 76:922-929. [PMID: 32755413 DOI: 10.1161/hypertensionaha.120.14875] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preeclampsia and gestational hypertension are common complications of pregnancy associated with significant maternal and infant morbidity. Despite extensive research evaluating risk factors during pregnancy, most women who develop a hypertensive disorder of pregnancy are not considered high-risk and strategies for prevention remain elusive. We evaluated preconception blood pressure and its change into early pregnancy as novel risk markers for development of a hypertensive disorder of pregnancy. The EAGeR (Effects of Aspirin in Gestation and Reproduction) trial (2007-2011) randomized 1228 healthy women with a history of pregnancy loss to preconception-initiated low-dose aspirin versus placebo and followed participants for up to 6 menstrual cycles attempting pregnancy and throughout pregnancy if they became pregnant. Blood pressure was measured during preconception and throughout early gestation. The primary outcomes, preterm preeclampsia, term preeclampsia, and gestational hypertension, were abstracted from medical records. Among 586 women with a pregnancy >20 weeks' gestation, preconception blood pressure levels were higher for preterm preeclampsia (87.3±6.7 mm Hg mean arterial pressure), term preeclampsia (88.3±9.8 mm Hg), and gestational hypertension (87.9±9.1 mm Hg) as compared with no hypertensive disorder of pregnancy (83.9±8.6 mm Hg). Change in blood pressure from preconception into very early pregnancy was associated with development of preeclampsia (relative risk, 1.13 [95% CI, 1.02-1.25] per 2 mm Hg increase in mean arterial pressure at 4 weeks' gestation), particularly preterm preeclampsia (relative risk, 1.21 [95% CI, 1.01-1.45]). Randomization to aspirin did not alter blood pressure trajectory or risk of hypertension in pregnancy. Preconception blood pressure and longitudinal changes during early pregnancy are underexplored but crucial windows in the detection and prevention of hypertensive disorders of pregnancy. Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00467363.
Collapse
Affiliation(s)
- Carrie J Nobles
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Pauline Mendola
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Sunni L Mumford
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Robert M Silver
- Obstetrics and Gynecology, School of Medicine, University of Utah (R.M.S.)
| | - Keewan Kim
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Victoria C Andriessen
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Matthew Connell
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Lindsey Sjaarda
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Neil J Perkins
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| | - Enrique F Schisterman
- From the Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.N., P.M., S.L.M., K.K., V.C.A., M.C., L.S., N.J.P., E.F.S.)
| |
Collapse
|
49
|
Kim JH, Cho YH, Hong YC. MicroRNA expression in response to bisphenol A is associated with high blood pressure. ENVIRONMENT INTERNATIONAL 2020; 141:105791. [PMID: 32438192 DOI: 10.1016/j.envint.2020.105791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental contaminant that is known to be associated with the risk of arterial hypertension. However, the underlying mechanisms describing how BPA exposure leads to high blood pressure (BP) and the role of epigenetics are still unclear. Therefore, we evaluated associations among BPA exposure, microRNA (miRNA) expression, and BP in a randomized crossover trial with 45 non-smoking females over 60 years of age. The participants visited the study site 3 times and were dose-dependently exposed to BPA. Two hours after exposure to BPA, urine and whole blood were collected for BPA measurement and miRNA profiling, and BP was measured. Relationships among urinary BPA level, miRNA expression, and BP were estimated using the mixed effect model. Decreases in miR-30a-5p, miR-580-3p, miR-627-5p, and miR-671-3p and increases in miR-636 and miR-1224-3p attributable to BPA exposure were associated with high BP. The core functional network from BPA exposure to increased BP was found to be on the pathway through these six miRNAs and their predicted BP-related target genes. Our results suggest that epigenetic biomarkers for BPA exposure and hypertension provide mechanistic data to explain hypertension exacerbation as well as key information for predicting the health effects of BPA exposure.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Montana 59812-1552, USA.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
50
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|