1
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Rahbek-Hansen SH, Mikkelsen M, Stokholm J, Bønnelykke K, Chawes BL, Brustad N. Preventive effects of prenatal administration of OM-85/BV on asthma and respiratory infection risk in the offspring: A review of animal models. Pediatr Allergy Immunol 2024; 35:e14184. [PMID: 38924159 DOI: 10.1111/pai.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.
Collapse
Affiliation(s)
- Signe Hahn Rahbek-Hansen
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Marianne Mikkelsen
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
3
|
Monk PD, Brookes JL, Tear VJ, Batten TN, Newall C, Mankowski M, Crooks MG, Singh D, Chaudhuri R, Leaker B, Lunn K, Reynolds S, Dudley S, Gabbay FJ, Holgate ST, Djukanovic R, Wilkinson TM. Nebulised interferon beta-1a (SNG001) in the treatment of viral exacerbations of COPD. Respir Res 2024; 25:228. [PMID: 38811970 PMCID: PMC11138078 DOI: 10.1186/s12931-024-02854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-β is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-β1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION EU clinical trials register (2017-003679-75), 6 October 2017.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Mankowski
- Synairgen Research Ltd, Southampton, UK
- tranScrip Ltd, Wokingham, UK
| | - Michael G Crooks
- Respiratory Research Group, Hull York Medical School, University of Hull, Kingston Upon Hull, Hull, UK
| | - Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rekha Chaudhuri
- Gartnavel General Hospital, Glasgow, UK
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Brian Leaker
- Respiratory Clinical Trials Ltd, Fitzrovia Hospital, London, UK
| | | | | | | | | | - Stephen T Holgate
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Ratko Djukanovic
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Thomas Ma Wilkinson
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Fitzpatrick AM, Huang M, Mohammad AF, Stephenson ST, Kamaleswaran R, Grunwell JR. Dysfunctional neutrophil type 1 interferon responses in preschool children with recurrent wheezing and IL-4-mediated aeroallergen sensitization. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100229. [PMID: 38510797 PMCID: PMC10950716 DOI: 10.1016/j.jacig.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/24/2023] [Indexed: 03/22/2024]
Abstract
Background The innate mechanisms associated with viral exacerbations in preschool children with recurrent wheezing are not understood. Objective We sought to assess differential gene expression in blood neutrophils from preschool children with recurrent wheezing, stratified by aeroallergen sensitization, at baseline and after exposure to polyinosinic:polycytidylic acid (poly(I:C)) and also to examine whether poly(I:C)-stimulated blood neutrophils influenced airway epithelial gene expression. Methods Blood neutrophils were purified and cultured overnight with poly(I:C) and underwent next-generation sequencing with Reactome pathway analysis. Primary human small airway epithelial cells were treated with poly(I:C)-treated neutrophil culture supernatants and were analyzed for type 1 interferon gene expression with a targeted array. Symptoms and exacerbations were assessed in participants over 12 months. Results A total of 436 genes were differently expressed in neutrophils from children with versus without aeroallergen sensitization at baseline, with significant downregulation of type 1 interferons. These type 1 interferons were significantly upregulated in sensitized children after poly(I:C) stimulation. Confirmatory experiments demonstrated similar upregulation of type 1 interferons in IL-4-treated neutrophils stimulated with poly(I:C). Poly(I:C)-treated neutrophil supernatants from children with aeroallergen sensitization also induced a type 1 interferon response in epithelial cells. Children with aeroallergen sensitization also had higher symptom scores during exacerbations, and these symptom differences persisted for 3 days after prednisolone treatment. Conclusions Type 1 interferon responses are dysregulated in preschool children with aeroallergen sensitization, which is in turn associated with exacerbation severity. Given the importance of type 1 interferon signaling in viral resolution, additional studies of neutrophil type 1 interferon responses are needed in this population.
Collapse
Affiliation(s)
- Anne M. Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Pulmonary Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| | - Min Huang
- Department of Biomedical Informatics, Emory University, Atlanta, Ga
| | | | | | | | - Jocelyn R. Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga
- Division of Critical Care Medicine, Children’s Healthcare of Atlanta, Atlanta, Ga
| |
Collapse
|
5
|
Ennadif B, Alaoui-Inboui FZ, Benmoussa AY, El Kettani A, Elmdaghri N, Slaoui B. Virological Profile of Asthma Exacerbation in Children: A Hospital-Based Retrospective Study. Cureus 2024; 16:e60261. [PMID: 38872674 PMCID: PMC11170309 DOI: 10.7759/cureus.60261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Viruses are the most common triggering factors for asthma exacerbation during the autumn and winter seasons. Viruses, such as influenza A and rhinovirus, play a major role in the occurrence of severe exacerbation of asthma. This association between viral infection and asthma exacerbation in children is a result of the antiviral response of the immune system and various anti-inflammatory phenomena. In this work, we aimed to identify the virological profile of asthma exacerbation in children and analyze the correlation between viral infection type and the severity of exacerbation. Materials and methods This retrospective study was conducted from January 2016 to January 2024. The study included children hospitalized for asthma exacerbation associated with signs of viral-like respiratory infection with positive virological testing by multiplex real-time polymerase chain reaction or rapid test in the case of influenza A or respiratory syncytial virus (RSV). Data analysis was performed with Microsoft Excel and SPSS software using a previously established data collection sheet Results Thirty cases were collected for the study period. The mean age of the patients was 4 years and 8 months, with a male-to-female ratio of 3.3. Eighteen patients were known to have asthma, of which nine had uncontrolled asthma, and exacerbation was inaugural in 12 patients. Viral shedding was found in 14 patients. A viral agent was found in all patients, with coinfection of two or more viruses in three patients. The viruses found were influenza A (18 cases), coupled rhinovirus/enterovirus (eight cases), RSV (eight cases), human metapneumovirus (three patients), and parainfluenza type IV in only one inaugural patient. Asthma exacerbation was severe in 20 patients, moderate in eight patients, and two patients had severe acute asthma requiring intensive care management. We noted a higher frequency of severe exacerbation among those with an influenza A viral infection. All patients with RSV infection exhibited moderate exacerbation. No other significant correlation between asthma severity and other types of viruses was found. Conclusions Our results demonstrate the major role played by viruses in triggering asthma exacerbation, primarily influenza virus, followed by enterovirus, rhinovirus, RSV, and metapneumovirus. Larger-scale studies should be carried out to establish a more complete virological profile and further investigate the viral factor in the management of asthma in children.
Collapse
Affiliation(s)
- Basma Ennadif
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Fatima Zahra Alaoui-Inboui
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - AbdelHakim Youssef Benmoussa
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Assiya El Kettani
- Department of Microbiology, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Department of Microbiology, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Naima Elmdaghri
- Department of Microbiology, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Department of Microbiology, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| | - Bouchra Slaoui
- Department of Pediatrics, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, MAR
- Pediatric Pneumo-Allergology Unit, Pediatric Department 2, Hôpital Mère-Enfants Abderrahim Harouchi, Centre Hospitalier Universitaire Ibn Rochd, Casablanca, MAR
| |
Collapse
|
6
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Quoc QL, Choi Y, Hur GY, Park HS. New targets for type 2-low asthma. Korean J Intern Med 2024; 39:215-227. [PMID: 38317271 PMCID: PMC10918384 DOI: 10.3904/kjim.2023.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 02/07/2024] Open
Abstract
Asthma is characterized by airway obstruction and inflammation, and presents significant diagnostic and treatment challenges. The concept of endotypes has improved understanding of the mechanisms of asthma and has stimulated the development of effective treatment strategies. Sputum profiles may be used to classify asthma into two major inflammatory types: type 2-high (T2H) and type 2-low (T2L) asthma. T2H, characterized by elevated type 2 inflammation, has been extensively studied and several effective biologic treatments have been developed. However, managing T2L is more difficult due to the lack of reliable biomarkers for accurate diagnosis and classification. Additionally, conventional anti-inflammatory therapy does not completely control the symptoms of T2L; therefore, further research is needed to identify effective biologic treatments. This review provides new insights into the clinical characteristics and underlying mechanisms of severe T2L and investigates potential therapeutic approaches to control the disease.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang,
Korea
| | - Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| |
Collapse
|
8
|
Andreakos E. Type I and type III interferons: From basic biology and genetics to clinical development for COVID-19 and beyond. Semin Immunol 2024; 72:101863. [PMID: 38271892 DOI: 10.1016/j.smim.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Type I and type III interferons (IFNs) constitute a key antiviral defense systems of the body, inducing viral resistance to cells and mediating diverse innate and adaptive immune functions. Defective type I and type III IFN responses have recently emerged as the 'Achilles heel' in COVID-19, with such patients developing severe disease and exhibiting a high risk for critical pneumonia and death. Here, we review the biology of type I and type III IFNs, their similarities and important functional differences, and their roles in SARS-CoV-2 infection. We also appraise the various mechanisms proposed to drive defective IFN responses in COVID-19 with particular emphasis to the ability of SARS-CoV-2 to suppress IFN production and activities, the genetic factors involved and the presence of autoantibodies neutralizing IFNs and accounting for a large proportion of individuals with severe COVID-19. Finally, we discuss the long history of the type I IFN therapeutics for the treatment of viral diseases, cancer and multiple sclerosis, the various efforts to use them in respiratory infections, and the newly emerging type III IFN therapeutics, with emphasis to the more recent studies on COVID-19 and their potential use as broad spectrum antivirals for future epidemics or pandemics.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece.
| |
Collapse
|
9
|
Zhang H, Xue K, Li W, Yang X, Gou Y, Su X, Qian F, Sun L. Cullin5 drives experimental asthma exacerbations by modulating alveolar macrophage antiviral immunity. Nat Commun 2024; 15:252. [PMID: 38177117 PMCID: PMC10766641 DOI: 10.1038/s41467-023-44168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Asthma exacerbations caused by respiratory viral infections are a serious global health problem. Impaired antiviral immunity is thought to contribute to the pathogenesis, but the underlying mechanisms remain understudied. Here using mouse models we find that Cullin5 (CUL5), a key component of Cullin-RING E3 ubiquitin ligase 5, is upregulated and associated with increased neutrophil count and influenza-induced exacerbations of house dust mite-induced asthma. By contrast, CUL5 deficiency mitigates neutrophilic lung inflammation and asthma exacerbations by augmenting IFN-β production. Mechanistically, following thymic stromal lymphopoietin stimulation, CUL5 interacts with O-GlcNAc transferase (OGT) and induces Lys48-linked polyubiquitination of OGT, blocking the effect of OGT on mitochondrial antiviral-signaling protein O-GlcNAcylation and RIG-I signaling activation. Our results thus suggest that, in mouse models, pre-existing allergic injury induces CUL5 expression, impairing antiviral immunity and promoting neutrophilic inflammation for asthma exacerbations. Targeting of the CUL5/IFN-β signaling axis may thereby serve as a possible therapy for treating asthma exacerbations.
Collapse
Affiliation(s)
- Haibo Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Keke Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wen Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xinyi Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yusen Gou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| | - Feng Qian
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Lei Sun
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
10
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
11
|
Bonnesen B, Jensen JUS, Mathioudakis AG, Corlateanu A, Sivapalan P. Promising treatment biomarkers in asthma. FRONTIERS IN DRUG SAFETY AND REGULATION 2023; 3. [DOI: 10.3389/fdsfr.2023.1291471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Asthma is a highly heterogenous disease which researchers over time have attempted to classify into different phenotypes and endotypes to improve diagnosis, prognosis and treatment. Earlier classifications based on reaction to environmental allergens, age, sex and lung function have evolved, and today, the use of precision medicine guided by biomarkers offers new perspectives on asthma management. Identifying biomarkers that may reveal the underlying pathophysiology of the disease will help to select the patients who will benefit most from specific treatments. This review explores the classification of asthma phenotypes and focuses on the most recent advances in using biomarkers to guide treatment.
Collapse
|
12
|
Jagannathan P, Chew KW, Giganti MJ, Hughes MD, Moser C, Main MJ, Monk PD, Javan AC, Li JZ, Fletcher CV, McCarthy C, Wohl DA, Daar ES, Eron JJ, Currier JS, Singh U, Smith DM, Fischer W. Safety and efficacy of inhaled interferon-β1a (SNG001) in adults with mild-to-moderate COVID-19: a randomized, controlled, phase II trial. EClinicalMedicine 2023; 65:102250. [PMID: 37855026 PMCID: PMC10579289 DOI: 10.1016/j.eclinm.2023.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background With the emergence of SARS-CoV-2 variants resistant to monoclonal antibody therapies and limited global access to therapeutics, the evaluation of novel therapeutics to prevent progression to severe COVID-19 remains a critical need. Methods Safety, clinical and antiviral efficacy of inhaled interferon-β1a (SNG001) were evaluated in a phase II randomized controlled trial on the ACTIV-2/A5401 platform (ClinicalTrials.govNCT04518410). Adult outpatients with confirmed SARS-CoV-2 infection within 10 days of symptom onset were randomized and initiated either orally inhaled nebulized SNG001 given once daily for 14 days (n = 110) or blinded pooled placebo (n = 110) between February 10 and August 18, 2021. Findings The proportion of participants reporting premature treatment discontinuation was 9% among SNG001 and 13% among placebo participants. There were no differences between participants who received SNG001 or placebo in the primary outcomes of treatment emergent Grade 3 or higher adverse events (3.6% and 8.2%, respectively), time to symptom improvement (median 13 and 9 days, respectively), or proportion with unquantifiable nasopharyngeal SARS-CoV-2 RNA at days 3 (28% [26/93] vs. 39% [37/94], respectively), 7 (65% [60/93] vs. 66% [62/94]) and 14 (91% [86/95] vs. 91% [83/81]). There were fewer hospitalizations with SNG001 (n = 1; 1%) compared with placebo (n = 7; 6%), representing an 86% relative risk reduction (p = 0.07). There were no deaths in either arm. Interpretation In this trial, SNG001 was safe and associated with a non-statistically significant decrease in hospitalization for COVID-19 pneumonia. Funding The ACTIV-2 platform study is funded by the NIH. Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number UM1 AI068634, UM1 AI068636 and UM1 AI106701. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark J. Main
- Synairgen Research Ltd, Southampton, United Kingdom
| | | | | | - Jonathan Z. Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Upinder Singh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William Fischer
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Boboltz A, Kumar S, Duncan GA. Inhaled drug delivery for the targeted treatment of asthma. Adv Drug Deliv Rev 2023; 198:114858. [PMID: 37178928 PMCID: PMC10330872 DOI: 10.1016/j.addr.2023.114858] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Asthma is a chronic lung disease affecting millions worldwide. While classically acknowledged to result from allergen-driven type 2 inflammatory responses leading to IgE and cytokine production and the influx of immune cells such as mast cells and eosinophils, the wide range in asthmatic pathobiological subtypes lead to highly variable responses to anti-inflammatory therapies. Thus, there is a need to develop patient-specific therapies capable of addressing the full spectrum of asthmatic lung disease. Moreover, delivery of targeted treatments for asthma directly to the lung may help to maximize therapeutic benefit, but challenges remain in design of effective formulations for the inhaled route. In this review, we discuss the current understanding of asthmatic disease progression as well as genetic and epigenetic disease modifiers associated with asthma severity and exacerbation of disease. We also overview the limitations of clinically available treatments for asthma and discuss pre-clinical models of asthma used to evaluate new therapies. Based on the shortcomings of existing treatments, we highlight recent advances and new approaches to treat asthma via inhalation for monoclonal antibody delivery, mucolytic therapy to target airway mucus hypersecretion and gene therapies to address underlying drivers of disease. Finally, we conclude with discussion on the prospects for an inhaled vaccine to prevent asthma.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Sahana Kumar
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
14
|
Urbani F, Cometa M, Martelli C, Santoli F, Rana R, Ursitti A, Bonato M, Baraldo S, Contoli M, Papi A. Update on virus-induced asthma exacerbations. Expert Rev Clin Immunol 2023; 19:1259-1272. [PMID: 37470413 DOI: 10.1080/1744666x.2023.2239504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Viral infections are common triggers for asthma exacerbation. Subjects with asthma are more susceptible to viral infections and develop more severe or long-lasting lower respiratory tract symptoms than healthy individuals owing to impaired immune responses. Of the many viruses associated with asthma exacerbation, rhinovirus (RV) is the most frequently identified virus in both adults and children. AREAS COVERED We reviewed epidemiological and clinical links and mechanistic studies on virus-associated asthma exacerbations. We included sections on severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the latest evidence of coronavirus disease 2019 (COVID-19) in asthma patients, and past and future searches for therapeutic and prevention targets. EXPERT OPINION Early treatment or prevention of viral infections might significantly reduce the rate of asthma exacerbation, which is one of the key points of disease management. Although it is hypothetically possible nowadays to interfere with every step of the infectious cycle of respiratory tract viruses, vaccination development has provided some of the most encouraging results. Future research should proceed toward the development of a wider spectrum of vaccines to achieve a better quality of life for patients with asthma and to reduce the economic burden on the healthcare system.
Collapse
Affiliation(s)
- Francesca Urbani
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Marianna Cometa
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Chiara Martelli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Federica Santoli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Roberto Rana
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Antonio Ursitti
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Matteo Bonato
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Simonetta Baraldo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Marco Contoli
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara Medical School, University of Ferrara, Sant'anna University Hospital, Ferrara, Italy
| |
Collapse
|
15
|
Garcia-Huidobro D, Iturriaga C, Perez-Mateluna G, Fajuri P, Severino N, Urzúa M, Fraga JP, de la Cruz J, Poli C, Castro-Rodríguez JA, Fish E, Borzutzky A. Safety, Tolerability, Bioavailability, and Biological Activity of Inhaled Interferon-α2b in Healthy Adults: The IN 2COVID Phase I Randomized Trial. Clin Drug Investig 2023:10.1007/s40261-023-01278-3. [PMID: 37347370 DOI: 10.1007/s40261-023-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Interferons have been identified as a potential treatment alternative for coronavirus disease 2019. This study assessed the safety, tolerability, bioavailability, and biological activity of inhaled interferon-α2b (IFN)-α2b in healthy adults. METHODS A double-blind, randomized, phase I clinical trial was conducted with two cohorts of healthy subjects aged 18-50 years. The first cohort received 2.5 MIU of inhaled IFN-α2b twice daily for 10 days (n = 6) or placebo (n = 3); the second cohort received 5.0 MIU of inhaled IFN-α2b in a similar scheme (n = 6) or placebo (n = 3). The first two doses were administered in an emergency department, then participants completed their treatment at home. Safety was measured through vital signs, new symptoms, and laboratory tests. Tolerability was measured as participants' treatment acceptability. Bioavailability and biological activity were measured from serum IFNα concentrations and real-time quantitative polymerase chain reaction of interferon-induced genes in blood before and after treatments. RESULTS Exposure to inhaled IFN-α2b at 2.5-MIU or 5-MIU doses did not produce statistically significant changes in participant vital signs, or elicit new symptoms, and standard hematological and biochemical blood measurements were comparable to those recorded in individuals who received placebo. A total of 58 adverse events were observed. All were mild or moderate and did not require medical care. All participants reported very high tolerability towards a twice-daily nebulized treatment for 10 days (98.0, 97.0, and 97.0 in the placebo, 2.5-MIU, and 5-MIU groups, respectively, on a 0- to 100-mm visual analog scale). A dose-dependent mild increase in serum IFN-α concentrations and an increase in serum RNA expression of IFN-induced genes were observed 11 days after treatment (p < 0.05 for all between-group comparisons). CONCLUSIONS Inhaled IFN-α2b was preliminarily safe and well tolerated, and induced systemic biological activity in healthy subjects. CLINICAL TRIAL REGISTRATION The trial was registered in ClinicalTrials.gov (NCT04988217), 3 August, 2021.
Collapse
Affiliation(s)
- Diego Garcia-Huidobro
- Department of Family Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Iturriaga
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo Perez-Mateluna
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Fajuri
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Severino
- Pharmacology and Toxicology ProgramSchool of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Urzúa
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Fraga
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera de la Cruz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Poli
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - José A Castro-Rodríguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eleanor Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arturo Borzutzky
- Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
16
|
Benfante A, Pirrello G, Sala F, Seminara G, Scichilone N. Coronavirus disease 2019 and severe asthma. Curr Opin Allergy Clin Immunol 2023; 23:193-198. [PMID: 36752375 DOI: 10.1097/aci.0000000000000893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
PURPOSE OF REVIEW The relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the most severe forms of asthma has been an object of discussion. Indeed, it is not clear whether asthma is among the risk factors for the occurrence of severe coronavirus disease 2019 (COVID-19) disease, or rather it plays a protective role against the worsening of the respiratory involvement in the SARS-CoV-2 infection. On the other hand, the extent to which coronavirus infection may trigger asthma attacks is still partly unknown. The current investigation aims at reviewing the available literature on the topic to address factors influencing this relationship. RECENT FINDINGS Based on recent observations, it is likely that type 2 inflammation plays a protective role against SARS-CoV-2 infection and disease. In particular, asthmatics show different expression of angiotensin-converting enzyme2 (ACE2) and Transmembrane protease, serine 2 (TMPRSS2) that are responsible for a reduced risk of infection as well as lower risk of hospitalization. Interestingly, studies showed a safe profile of inhaled corticosteroids and biological drugs in SARS-CoV-2 infection. In addition, inhaled corticosteroid could play a protective role against worsening of asthma. SUMMARY The current findings suggest that current treatment for asthma should be maintained to avoid severe exacerbations. Severe asthmatics under biological treatment should continue their medications, and be encouraged to receive COVID-19 vaccines.
Collapse
Affiliation(s)
- Alida Benfante
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Division of Respiratory Medicine, "Paolo Giaccone" University Hospital, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
17
|
Bosco A. Emerging role for interferons in respiratory viral infections and childhood asthma. Front Immunol 2023; 14:1109001. [PMID: 36895568 PMCID: PMC9989033 DOI: 10.3389/fimmu.2023.1109001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) and Rhinovirus (RV) infections are major triggers of severe lower respiratory illnesses (sLRI) in infants and children and are strongly associated with the subsequent development of asthma. Decades of research has focused on the role of type I interferons in antiviral immunity and ensuing airway diseases, however, recent findings have highlighted several novel aspects of the interferon response that merit further investigation. In this perspective, we discuss emerging roles of type I interferons in the pathogenesis of sLRI in children. We propose that variations in interferon response patterns exist as discrete endotypes, which operate locally in the airways and systemically through a lung-blood-bone marrow axis. We discuss new insights into the role of interferons in immune training, bacterial lysate immunotherapy, and allergen-specific immunotherapy. Interferons play complex and diverse roles in the pathogenesis of sLRI and later asthma, providing new directions for mechanistic studies and drug development.
Collapse
Affiliation(s)
- Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
18
|
Virolainen SJ, VonHandorf A, Viel KCMF, Weirauch MT, Kottyan LC. Gene-environment interactions and their impact on human health. Genes Immun 2023; 24:1-11. [PMID: 36585519 PMCID: PMC9801363 DOI: 10.1038/s41435-022-00192-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors contribute to a given disease or phenotype in a non-additive manner, yielding a gene-environment (G × E) interaction. In this work, we broadly review current knowledge on the impact of gene-environment interactions on human health. We first explain the independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with possibilities and challenges for studying G × E interactions.
Collapse
Affiliation(s)
- Samuel J Virolainen
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Kenyatta C M F Viel
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
| | - Leah C Kottyan
- Division of Human Genetics, Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
- Immunology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45229, USA.
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., MLC 15012, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Bartlett NW, Feghali-Bostwick C, Gunst SJ. Call for Papers: "Targeting Airway Immunity in Lung Disease". Am J Physiol Lung Cell Mol Physiol 2023; 324:L48-L52. [PMID: 36472349 DOI: 10.1152/ajplung.00375.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nathan W Bartlett
- Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
20
|
Price AS, Kennedy JL. T-helper 2 mechanisms involved in human rhinovirus infections and asthma. Ann Allergy Asthma Immunol 2022; 129:681-691. [PMID: 36002092 PMCID: PMC10316285 DOI: 10.1016/j.anai.2022.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Human rhinovirus (HRV) is the most common causative agent for the common cold and its respiratory symptoms. For those with asthma, cystic fibrosis, or chronic obstructive pulmonary disease, HRVs can lead to severe and, at times, fatal complications. Furthermore, an array of innate and adaptive host immune responses leads to varying outcomes ranging from subclinical to severe. In this review, we discuss the viral pathogenesis and host immune responses associated with this virus. Specifically, we focus on the immune responses that might skew a T-helper type 2 response, including alarmins, in those with allergic asthma. We also discuss the role of a poor innate immune response with interferons. Finally, we consider therapeutic options for HRV-associated exacerbations of asthma, including biologics and intranasal sprays on the basis of the current literature.
Collapse
Affiliation(s)
- Adam S Price
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Joshua L Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Research Institute, Little Rock, Arkansas; Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
21
|
Rhinovirus Infection and Virus-Induced Asthma. Viruses 2022; 14:v14122616. [PMID: 36560620 PMCID: PMC9781665 DOI: 10.3390/v14122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
While the aetiology of asthma is unclear, the onset and/or exacerbation of asthma may be associated with respiratory infections. Virus-induced asthma is also known as virus-associated/triggered asthma, and the reported main causative agent is rhinovirus (RV). Understanding the relationship between viral infections and asthma may overcome the gaps in deferential immunity between viral infections and allergies. Moreover, understanding the complicated cytokine networks involved in RV infection may be necessary. Therefore, the complexity of RV-induced asthma is not only owing to the response of airway and immune cells against viral infection, but also to allergic immune responses caused by the wide variety of cytokines produced by these cells. To better understand RV-induced asthma, it is necessary to elucidate the nature RV infections and the corresponding host defence mechanisms. In this review, we attempt to organise the complexity of RV-induced asthma to make it easily understandable for readers.
Collapse
|
22
|
Sanzi Yangqin Decoction Alleviates Allergic Asthma by Modulating Th1/Th2 Balance: Coupling Network Pharmacology with Biochemical Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9037154. [PMID: 36212941 PMCID: PMC9536894 DOI: 10.1155/2022/9037154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
This study aimed to verify that Sanzi Yangqin Decoction (SYD) can relieve asthma in mice and explore the effect on TH1/Th2 balance. The targets of SYD and asthma were explored from the public database using various methods. The potential targets and signaling pathways were identified by KEGG enrichment analysis from DAVID database. Mice asthma models were established using OVA and aluminum hydroxide. Lung tissues of mice were stained with HE and Masson. The contents of IFN-γ, IL-4, and TNF-α in BALF and IgE in mouse serum were detected using ELISA. In addition, the changes in Th1 and Th2 cells of the spleen were detected by flow cytometry. Fourteen core targets including IL4, IFNG, and MMP9 were identified for the treatment of asthma by SYD. The content of IL-4 in the lung tissue and BALF was gradually decreased with the increase in SYD concentration, while the IFN-γ was gradually increased. The drug significantly reduced IgE levels in serum and TNF-α in BALF. The number of Th1 cells in the spleen increased, while Th2 cells decreased in a concentration-dependent manner. SYD can alleviate pulmonary inflammation, restore Th1/Th2 balance, and relieve asthma.
Collapse
|
23
|
Farne H, Lin L, Jackson DJ, Rattray M, Simpson A, Custovic A, Joshi S, Wilson PA, Williamson R, Edwards MR, Singanayagam A, Johnston SL. In vivo bronchial epithelial interferon responses are augmented in asthma on day 4 following experimental rhinovirus infection. Thorax 2022; 77:929-932. [PMID: 35790388 DOI: 10.1136/thoraxjnl-2021-217389] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Despite good evidence of impaired innate antiviral responses in asthma, trials of inhaled interferon-β given during exacerbations showed only modest benefits in moderate/severe asthma. Using human experimental rhinovirus infection, we observe robust in vivo induction of bronchial epithelial interferon response genes 4 days after virus inoculation in 25 subjects with asthma but not 11 control subjects. This signature correlated with virus loads and lower respiratory symptoms. Our data indicate that the in vivo innate antiviral response is dysregulated in asthma and open up the potential that prophylactic rather than therapeutic interferon therapy may have greater clinical benefit.
Collapse
Affiliation(s)
- Hugo Farne
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lijing Lin
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - David J Jackson
- National Heart and Lung Institute, Imperial College London, London, UK
- Guy's Severe Asthma Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Magnus Rattray
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity & Respiratory Medicine, The University of Manchester, Manchester, UK
| | - Adnan Custovic
- Department of Paediatrics, Imperial College London, London, UK
| | | | | | | | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | |
Collapse
|
24
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
25
|
Wang GQ, Gu Y, Wang C, Wang F, Hsu ACY. A Game of Infection - Song of Respiratory Viruses and Interferons. Front Cell Infect Microbiol 2022; 12:937460. [PMID: 35846766 PMCID: PMC9277140 DOI: 10.3389/fcimb.2022.937460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Humanity has experienced four major pandemics since the twentieth century, with the 1918 Spanish flu, the 2002 severe acute respiratory syndrome (SARS), the 2009 swine flu, and the 2019 coronavirus disease (COVID)-19 pandemics having the most important impact in human health. The 1918 Spanish flu caused unprecedented catastrophes in the recorded human history, with an estimated death toll between 50 – 100 million. While the 2002 SARS and 2009 swine flu pandemics caused approximately 780 and 280,000 deaths, respectively, the current COVID-19 pandemic has resulted in > 6 million deaths globally at the time of writing. COVID-19, instigated by the SARS – coronavirus-2 (SARS-CoV-2), causes unprecedented challenges in all facets of our lives, and never before brought scientists of all fields together to focus on this singular topic. While for the past 50 years research have been heavily focused on viruses themselves, we now understand that the host immune responses are just as important in determining the pathogenesis and outcomes of infection. Research in innate immune mechanisms is crucial in understanding all aspects of host antiviral programmes and the mechanisms underpinning virus-host interactions, which can be translated to the development of effective therapeutic avenues. This review summarizes what is known and what remains to be explored in the innate immune responses to influenza viruses and SARS-CoVs, and virus-host interactions in driving disease pathogenesis. This hopefully will encourage discussions and research on the unanswered questions, new paradigms, and antiviral strategies against these emerging infectious pathogens before the next pandemic occurs.
Collapse
Affiliation(s)
- Guo Qiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia.,Viruses, Infections/Immunity, Vaccines and Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Wark PAB. We need to understand why viral infections lead to acute asthma. Eur Respir J 2022; 60:60/1/2200194. [PMID: 35902102 DOI: 10.1183/13993003.00194-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peter A B Wark
- Immune Health Program, Hunter Medical Research institute, University of Newcastle, New Lambton, Australia
| |
Collapse
|
27
|
Nakagome K, Nagata M. Innate Immune Responses by Respiratory Viruses, Including Rhinovirus, During Asthma Exacerbation. Front Immunol 2022; 13:865973. [PMID: 35795686 PMCID: PMC9250977 DOI: 10.3389/fimmu.2022.865973] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/13/2022] [Indexed: 01/14/2023] Open
Abstract
Viral infection, especially with rhinovirus (RV), is a major cause of asthma exacerbation. The production of anti-viral cytokines such as interferon (IFN)-β and IFN-α from epithelial cells or dendritic cells is lower in patients with asthma or those with high IgE, which can contribute to viral-induced exacerbated disease in these patients. As for virus-related factors, RV species C (RV-C) induces more exacerbated disease than other RVs, including RV-B. Neutrophils activated by viral infection can induce eosinophilic airway inflammation through different mechanisms. Furthermore, virus-induced or virus-related proteins can directly activate eosinophils. For example, CXCL10, which is upregulated during viral infection, activates eosinophils in vitro. The role of innate immune responses, especially type-2 innate lymphoid cells (ILC2) and epithelial cell-related cytokines including IL-33, IL-25, and thymic stromal lymphopoietin (TSLP), in the development of viral-induced airway inflammation has recently been established. For example, RV infection induces the expression of IL-33 or IL-25, or increases the ratio of ILC2 in the asthmatic airway, which is correlated with the severity of exacerbation. A mouse model has further demonstrated that virus-induced mucous metaplasia and ILC2 expansion are suppressed by antagonizing or deleting IL-33, IL-25, or TSLP. For treatment, IFNs including IFN-β suppress not only viral replication but also ILC2 activation in vitro. Agonists of toll-like receptor (TLR) 3 or 7 can induce IFNs, which can then suppress viral replication and ILC2 activation. Therefore, if delivered in the airway, IFNs or TLR agonists could become innovative treatments for virus-induced asthma exacerbation.
Collapse
Affiliation(s)
- Kazuyuki Nakagome
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
- Allergy Center, Saitama Medical University, Saitama, Japan
- *Correspondence: Kazuyuki Nakagome,
| | - Makoto Nagata
- Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
- Allergy Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
28
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Kountz TS, Biyasheva A, Schleimer RP, Prakriya M. Extracellular Nucleotides and Histamine Suppress TLR3- and RIG-I-Mediated Release of Antiviral IFNs from Human Airway Epithelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2390-2402. [PMID: 35459743 PMCID: PMC9444327 DOI: 10.4049/jimmunol.2101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/03/2022] [Indexed: 05/17/2023]
Abstract
Respiratory viruses stimulate the release of antiviral IFNs from the airway epithelium. Previous studies have shown that asthmatic patients show diminished release of type I and type III IFNs from bronchial epithelia. However, the mechanism of this suppression is not understood. In this study, we report that extracellular nucleotides and histamine, which are elevated in asthmatic airways, strongly inhibit release of type I and type III IFNs from human bronchial airway epithelial cells (AECs). Specifically, ATP, UTP, and histamine all inhibited the release of type I and type III IFNs from AECs induced by activation of TLR3, retinoic acid-inducible gene I (RIG-I), or cyclic GMP-AMP synthase-STING. This inhibition was at least partly mediated by Gq signaling through purinergic P2Y2 and H1 receptors, but it did not involve store-operated calcium entry. Pharmacological blockade of protein kinase C partially reversed inhibition of IFN production. Conversely, direct activation of protein kinase C with phorbol esters strongly inhibited TLR3- and RIG-I-mediated IFN production. Inhibition of type I and type III IFNs by ATP, UTP, histamine, and the proteinase-activated receptor 2 (PAR2) receptor agonist SLIGKV also occurred in differentiated AECs grown at an air-liquid interface, indicating that the suppression is conserved following mucociliary differentiation. Importantly, histamine and, more strikingly, ATP inhibited type I IFN release from human airway cells infected with live influenza A virus or rhinovirus 1B. These results reveal an important role for extracellular nucleotides and histamine in attenuating the induction of type I and III IFNs from AECs and help explain the molecular basis of the suppression of IFN responses in asthmatic patients.
Collapse
Affiliation(s)
- Timothy S Kountz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
| | - Assel Biyasheva
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL; and
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
30
|
Williams TC, Loo SL, Nichol KS, Reid AT, Veerati PC, Esneau C, Wark PAB, Grainge CL, Knight DA, Vincent T, Jackson CL, Alton K, Shimkets RA, Girkin JL, Bartlett NW. IL-25 blockade augments antiviral immunity during respiratory virus infection. Commun Biol 2022; 5:415. [PMID: 35508632 PMCID: PMC9068710 DOI: 10.1038/s42003-022-03367-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
IL-25 is implicated in the pathogenesis of viral asthma exacerbations. However, the effect of IL-25 on antiviral immunity has yet to be elucidated. We observed abundant expression and colocalization of IL-25 and IL-25 receptor at the apical surface of uninfected airway epithelial cells and rhinovirus infection increased IL-25 expression. Analysis of immune transcriptome of rhinovirus-infected differentiated asthmatic bronchial epithelial cells (BECs) treated with an anti-IL-25 monoclonal antibody (LNR125) revealed a re-calibrated response defined by increased type I/III IFN and reduced expression of type-2 immune genes CCL26, IL1RL1 and IL-25 receptor. LNR125 treatment also increased type I/III IFN expression by coronavirus infected BECs. Exogenous IL-25 treatment increased viral load with suppressed innate immunity. In vivo LNR125 treatment reduced IL-25/type 2 cytokine expression and increased IFN-β expression and reduced lung viral load. We define a new immune-regulatory role for IL-25 that directly inhibits virus induced airway epithelial cell innate anti-viral immunity.
Collapse
Affiliation(s)
- Teresa C Williams
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Su-Ling Loo
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Kristy S Nichol
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew T Reid
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Punnam C Veerati
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Camille Esneau
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter A B Wark
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Christopher L Grainge
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
- UBC Providence Health Care Research Institute, Vancouver, BC, Canada
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Thomas Vincent
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Kirby Alton
- Abeome Corporation/Lanier Biotherapeutics, Athens, GA, USA
| | | | - Jason L Girkin
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Nathan W Bartlett
- The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
31
|
Liew KY, Koh SK, Hooi SL, Ng MKL, Chee HY, Harith HH, Israf DA, Tham CL. Rhinovirus-Induced Cytokine Alterations With Potential Implications in Asthma Exacerbations: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:782936. [PMID: 35242128 PMCID: PMC8886024 DOI: 10.3389/fimmu.2022.782936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Rhinovirus (RV) infections are a major cause of asthma exacerbations. Unlike other respiratory viruses, RV causes minimal cytotoxic effects on airway epithelial cells and cytokines play a critical role in its pathogenesis. However, previous findings on RV-induced cytokine responses were largely inconsistent. Thus, this study sought to identify the cytokine/chemokine profiles induced by RV infection and their correlations with airway inflammatory responses and/or respiratory symptoms using systematic review, and to determine whether a quantitative difference exists in cytokine levels between asthmatic and healthy individuals via meta-analysis. Methods Relevant articles were obtained from PubMed, Scopus, and ScienceDirect databases. Studies that compared RV-induced cytokine responses between asthmatic and healthy individuals were included in the systematic review, and their findings were categorized based on the study designs, which were ex vivo primary bronchial epithelial cells (PBECs), ex vivo peripheral blood mononuclear cells (PBMCs), and human experimental studies. Data on cytokine levels were also extracted and analyzed using Review Manager 5.4. Results Thirty-four articles were included in the systematic review, with 18 of these further subjected to meta-analysis. Several studies reported the correlations between the levels of cytokines, such as IL-8, IL-4, IL-5, and IL-13, and respiratory symptoms. Evidence suggests that IL-25 and IL-33 may be the cytokines that promote type 2 inflammation in asthmatics after RV infection. Besides that, a meta-analysis revealed that PBECs from children with atopic asthma produced significantly lower levels of IFN-β [Effect size (ES): -0.84, p = 0.030] and IFN-λ (ES: -1.00, p = 0.002), and PBECs from adult atopic asthmatics produced significantly lower levels of IFN-β (ES: -0.68, p = 0.009), compared to healthy subjects after RV infection. A trend towards a deficient production of IFN-γ (ES: -0.56, p = 0.060) in PBMCs from adult atopic asthmatics was observed. In lower airways, asthmatics also had significantly lower baseline IL-15 (ES: -0.69, p = 0.020) levels. Conclusion Overall, RV-induced asthma exacerbations are potentially caused by an imbalance between Th1 and Th2 cytokines, which may be contributed by defective innate immune responses at cellular levels. Exogenous IFNs delivery may be beneficial as a prophylactic approach for RV-induced asthma exacerbations. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=184119, identifier CRD42020184119.
Collapse
Affiliation(s)
- Kong Yen Liew
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sue Kie Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suet Li Hooi
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Hui-Yee Chee
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
32
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
33
|
Mesic A, Jackson EK, Lalika M, Koelle DM, Patel RC. Interferon-based agents for current and future viral respiratory infections: A scoping literature review of human studies. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000231. [PMID: 36962150 PMCID: PMC10022196 DOI: 10.1371/journal.pgph.0000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
The interferon (IFN) system is a potent line of defense against viral infections. IFN-based agents already tested may be of use in COVID-19 or future viral respiratory outbreaks. Here we review the comparative efficacy, safety/tolerability, and future potential of IFN-based therapeutics. We reviewed human studies in which IFN or IFN pathway-interacting agents were used for viral respiratory infections. We identified 977 articles, of which 194 were included for full-text review. Of these, we deemed 35 articles to be relevant. The use of IFN-based agents for pre-exposure prophylaxis (n = 19) and treatment (n = 15) were most common, with intranasal (n = 22) as the most common route. We found IFN-α (n = 23) was used most often, and rhinovirus (n = 14) was the most common causative agent. Studies demonstrated mixed efficacy but generally positive safety and tolerability. Host-directed therapies, such as IFN or IFN inducers, are worthy of additional research to target viral respiratory infections lacking direct-acting antivirals.
Collapse
Affiliation(s)
- Aldina Mesic
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Emahlea K. Jackson
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Mathias Lalika
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - David M. Koelle
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Benaroya Research Institute, Seattle, WA, United States of America
| | - Rena C. Patel
- Department of Global Health, The Strategic Analysis, Research & Training (START) Center, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
34
|
Flores-Torres AS, Samarasinghe AE. Impact of Therapeutics on Unified Immunity During Allergic Asthma and Respiratory Infections. FRONTIERS IN ALLERGY 2022; 3:852067. [PMID: 35386652 PMCID: PMC8974821 DOI: 10.3389/falgy.2022.852067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.
Collapse
Affiliation(s)
- Armando S. Flores-Torres
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Amali E. Samarasinghe
- Division of Pulmonology, Allergy-Immunology, and Sleep, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, United States
| |
Collapse
|
35
|
Jackson DJ, Gern JE. Rhinovirus Infections and Their Roles in Asthma: Etiology and Exacerbations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:673-681. [PMID: 35074599 DOI: 10.1016/j.jaip.2022.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Rhinovirus infections can cause wheezing illnesses in all age groups. In preschool children, rhinovirus infections frequently initiate acute wheezing illnesses. Children who wheeze with rhinoviruses are at increased risk to go on to develop asthma. Once asthma is established, rhinovirus infections are potent triggers for acute airway obstruction and exacerbations in children and adults. Paradoxically, for most individuals, rhinovirus infections commonly cause cold symptoms with little or no involvement of the lower airways. This paradox has led investigators to identify specific risk factors and mechanisms for rhinovirus wheezing, and this review will outline progress in 3 main areas. First, the 3 species of rhinoviruses have different patterns of infection and virulence. Second, personal factors such as lung function and immunity influence lower respiratory outcomes of rhinovirus infection. The mucosal immune response is critical, and the quality of the interferon response and allergic inflammation interacts to determine the risk for rhinovirus wheezing. Finally, rhinovirus infections can promote pathogen-dominated airway microbiota that increase the risk for wheezing. Although specific antivirals for rhinovirus are still not available, identifying risk factors for wheezing illnesses has provided several other potential targets and strategies for reducing the risk of rhinovirus-induced wheezing and exacerbations of asthma.
Collapse
Affiliation(s)
- David J Jackson
- Guy's Severe Asthma Centre, Guy's & St Thomas' NHS Trust, London, United Kingdom; School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.
| | - James E Gern
- Departments of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
36
|
TLR3-driven IFN-β antagonizes STAT5-activating cytokines and suppresses innate type 2 response in the lung. J Allergy Clin Immunol 2022; 149:1044-1059.e5. [PMID: 34428519 PMCID: PMC8859010 DOI: 10.1016/j.jaci.2021.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are involved in type 2 immune responses in mucosal organs and are associated with various allergic diseases in humans. Studies are needed to understand the molecules and pathways that control ILC2s. OBJECTIVE The aims of this study were to develop a mouse model that limits the innate type 2 immune response in the lung and to investigate the immunologic mechanisms involved in regulation of lung ILC2s. METHODS Naive BALB/c mice were administered various Toll-like receptor agonists and exposed intranasally to the fungal allergen Alternaria alternata. The mechanisms were investigated using gene knockout mice as well as cultures of lung cells and isolated lung ILC2s. RESULTS Polyinosinic-polycytidylic acid, or poly (I:C), effectively inhibited innate type 2 response to A alternata. Poly (I:C) promoted production of IFNα, -β, and -γ, and its inhibitory effects were dependent on the IFN-α/β receptor pathway. IFN-β was 100 times more potent than IFN-α at inhibiting type 2 cytokine production by lung ILC2s. Signal transducer and activator of transcription 5 (STAT5)-activating cytokines, including IL-2, IL-7, and thymic stromal lymphopoietin, but not IL-33, promoted survival and proliferation of lung ILC2s in vitro, while IFN-β blocked these effects. Expression of the transcription factor GATA3, which is critical for differentiation and maintenance of ILC2s, was inhibited by IFN-β. CONCLUSIONS IFN-β blocks the effects of STAT5-activating cytokines on lung ILC2s and inhibits their survival and effector functions. Administration of IFN-β may provide a new strategy to treat diseases involving ILC2s.
Collapse
|
37
|
Esneau C, Duff AC, Bartlett NW. Understanding Rhinovirus Circulation and Impact on Illness. Viruses 2022; 14:141. [PMID: 35062345 PMCID: PMC8778310 DOI: 10.3390/v14010141] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Rhinoviruses (RVs) have been reported as one of the main viral causes for severe respiratory illnesses that may require hospitalization, competing with the burden of other respiratory viruses such as influenza and RSV in terms of severity, economic cost, and resource utilization. With three species and 169 subtypes, RV presents the greatest diversity within the Enterovirus genus, and despite the efforts of the research community to identify clinically relevant subtypes to target therapeutic strategies, the role of species and subtype in the clinical outcomes of RV infection remains unclear. This review aims to collect and organize data relevant to RV illness in order to find patterns and links with species and/or subtype, with a specific focus on species and subtype diversity in clinical studies typing of respiratory samples.
Collapse
Affiliation(s)
| | | | - Nathan W. Bartlett
- Hunter Medical Research Institute, College of Health Medicine and Wellbeing, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (C.E.); (A.C.D.)
| |
Collapse
|
38
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|
39
|
Kabata H, Motomura Y, Kiniwa T, Kobayashi T, Moro K. ILCs and Allergy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:75-95. [DOI: 10.1007/978-981-16-8387-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Nieto-Fontarigo JJ, Tillgren S, Cerps S, Sverrild A, Hvidtfeldt M, Ramu S, Menzel M, Sander AF, Porsbjerg C, Uller L. Imiquimod Boosts Interferon Response, and Decreases ACE2 and Pro-Inflammatory Response of Human Bronchial Epithelium in Asthma. Front Immunol 2021; 12:743890. [PMID: 34950134 PMCID: PMC8688760 DOI: 10.3389/fimmu.2021.743890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Background Both anti-viral and anti-inflammatory bronchial effects are warranted to treat viral infections in asthma. We sought to investigate if imiquimod, a TLR7 agonist, exhibits such dual actions in ex vivo cultured human bronchial epithelial cells (HBECs), targets for SARS-CoV-2 infectivity. Objective To investigate bronchial epithelial effects of imiquimod of potential importance for anti-viral treatment in asthmatic patients. Methods Effects of imiquimod alone were examined in HBECs from healthy (N=4) and asthmatic (N=18) donors. Mimicking SARS-CoV-2 infection, HBECs were stimulated with poly(I:C), a dsRNA analogue, or SARS-CoV-2 spike-protein 1 (SP1; receptor binding) with and without imiquimod treatment. Expression of SARS-CoV-2 receptor (ACE2), pro-inflammatory and anti-viral cytokines were analyzed by RT-qPCR, multiplex ELISA, western blot, and Nanostring and proteomic analyses. Results Imiquimod reduced ACE2 expression at baseline and after poly(I:C) stimulation. Imiquimod also reduced poly(I:C)-induced pro-inflammatory cytokines including IL-1β, IL-6, IL-8, and IL-33. Furthermore, imiquimod increased IFN-β expression, an effect potentiated in presence of poly(I:C) or SP1. Multiplex mRNA analysis verified enrichment in type-I IFN signaling concomitant with suppression of cytokine signaling pathways induced by imiquimod in presence of poly(I:C). Exploratory proteomic analyses revealed potentially protective effects of imiquimod on infections. Conclusion Imiquimod triggers viral resistance mechanisms in HBECs by decreasing ACE2 and increasing IFN-β expression. Additionally, imiquimod improves viral infection tolerance by reducing viral stimulus-induced epithelial cytokines involved in severe COVID-19 infection. Our imiquimod data highlight feasibility of producing pluripotent drugs potentially suited for anti-viral treatment in asthmatic subjects.
Collapse
Affiliation(s)
| | - Sofia Tillgren
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Samuel Cerps
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Asger Sverrild
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mandy Menzel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Adam Frederik Sander
- Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Celeste Porsbjerg
- Department of Respiratory Medicine, University Hospital Bispebjerg, Copenhagen, Denmark
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Porsbjerg C, Nieto-Fontarigo JJ, Cerps S, Ramu S, Menzel M, Hvidtfeldt M, Silberbrandt A, Froessing L, Klein D, Sverrild A, Uller L. Phenotype and severity of asthma determines bronchial epithelial immune responses to a viral mimic. Eur Respir J 2021; 60:13993003.02333-2021. [PMID: 34916261 DOI: 10.1183/13993003.02333-2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is characterised by an aggravated immune response to respiratory viral infections: This phenomenon is a clinically well-recognised driver of acute exacerbations, but how different phenotypes of asthma respond immunologically to virus is unclear. OBJECTIVES To describe the association between different phenotypes and severity of asthma and bronchial epithelial immune responses to viral stimulation. METHODS In the Immunoreact study, healthy subjects (n=10) and 50 patients with asthma were included; 30 (60%) were atopic, and 34 (68%) were eosinophilic; 14 (28%) had severe asthma. All participants underwent bronchoscopy with collection of bronchial brushings. Bronchial epithelial cells (BECs) were expanded and stimulated with the viral replication mimic poly (I:C) (TLR3 agonist) in vitro. The expression of TLR3-induced pro-inflammatory and anti-viral responses of BECs were analysed using RT-qPCR and multiplex ELISA and compared across asthma phenotypes and severity of disease. RESULTS Patients with atopic asthma had increased induction of IL-4, IFN-β, IL-6, TNF-α, and IL-1β after poly (I:C) stimulation compared to non-atopic patients, whereas in patients with eosinophilic asthma only IL-6 and IL-8 induction was higher than in non-eosinophilic asthma. Patients with severe asthma displayed a decreased antiviral IFN-β, and increased expression of IL-8, most pronounced in atopic and eosinophilic asthmatics. Furthermore, induction of IL-33 in response to poly (I:C) was increased in severe atopic and in severe eosinophilic asthma, but TSLP only in severe eosinophilic asthma. CONCLUSIONS The bronchial epithelial immune response to a viral mimic stimulation differs between asthma phenotypes and severities, which may be important to consider when targeting novel asthma treatments.
Collapse
Affiliation(s)
- Celeste Porsbjerg
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark .,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark.,Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Both authors contributed equally to the manuscript
| | - Juan Jose Nieto-Fontarigo
- Respiratory Immunopharmacology, University of Lund, Lund, Sweden.,Both authors contributed equally to the manuscript
| | - Samuel Cerps
- Respiratory Immunopharmacology, University of Lund, Lund, Sweden
| | - Sangheeta Ramu
- Respiratory Immunopharmacology, University of Lund, Lund, Sweden
| | - Mandy Menzel
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Respiratory Immunopharmacology, University of Lund, Lund, Sweden.,Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hvidtfeldt
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alexander Silberbrandt
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark
| | - Laurits Froessing
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark
| | - Ditte Klein
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark
| | - Asger Sverrild
- Respiratory Research Unit, Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Translational Research, Bispebjerg Hospital, Copenhagen, Denmark
| | - Lena Uller
- Respiratory Immunopharmacology, University of Lund, Lund, Sweden
| |
Collapse
|
42
|
Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Sci Rep 2021; 11:23741. [PMID: 34887467 PMCID: PMC8660814 DOI: 10.1038/s41598-021-03044-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022] Open
Abstract
The mechanisms explaining excess morbidity and mortality in respiratory infections among males are poorly understood. Innate immune responses are critical in protection against respiratory virus infections. We hypothesised that innate immune responses to respiratory viruses may be deficient in males. We stimulated peripheral blood mononuclear cells from 345 participants at age 16 years in a population-based birth cohort with three live respiratory viruses (rhinoviruses A16 and A1, and respiratory syncytial virus) and two viral mimics (R848 and CpG-A, to mimic responses to SARS-CoV-2) and investigated sex differences in interferon (IFN) responses. IFN-α responses to all viruses and stimuli were 1.34-2.06-fold lower in males than females (P = 0.018 - < 0.001). IFN-β, IFN-γ and IFN-induced chemokines were also deficient in males across all stimuli/viruses. Healthcare records revealed 12.1% of males and 6.6% of females were hospitalized with respiratory infections in infancy (P = 0.017). In conclusion, impaired innate anti-viral immunity in males likely results in high male morbidity and mortality from respiratory virus infections.
Collapse
|
43
|
The Dietary Intake of Carrot-Derived Rhamnogalacturonan-I Accelerates and Augments the Innate Immune and Anti-Viral Interferon Response to Rhinovirus Infection and Reduces Duration and Severity of Symptoms in Humans in a Randomized Trial. Nutrients 2021; 13:nu13124395. [PMID: 34959949 PMCID: PMC8704532 DOI: 10.3390/nu13124395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory infections are an important health concern. Traditionally, polysaccharide-enriched extracts from plants, containing immunomodulatory rhamnogalacturonan-I (RG-1), were used prophylactically. We established the effects of dietary supplementation with carrot-derived RG-I (cRG-I, 0–0.3–1.5 g/day) in 177 healthy individuals (18–65 years) on symptoms following infection with rhinovirus strain 16 (RV16). Primary outcomes were changes in severity and duration of symptoms, and viral load in nasal lavage. Secondary outcomes were changes in innate immune and anti-viral responses, reflected by CXCL10 and CXCL8 levels and cell differentials in nasal lavage. In a nested cohort, exploratory transcriptome analysis was conducted on nasal epithelium. Intake of cRG-I was safe, well-tolerated and accelerated local cellular and humoral innate immune responses induced by RV16 infection, with the strongest effects at 1.5 g/d. At 0.3 g/d, a faster interferon-induced response, induction of the key anti-viral gene EIF2AK2, faster viral clearance, and reduced symptom severity (−20%) and duration (−25%) were observed. Anti-viral responses, viral clearance and symptom scores at 1.5 g/d were in between those of 0 and 0.3 g/d, suggesting a negative feedback loop preventing excessive interferon responses. Dietary intake of cRG-I accelerated innate immune and antiviral responses, and reduced symptoms of an acute respiratory viral infection.
Collapse
|
44
|
Cojocaru E, Cojocaru C, Antoniu SA, Stafie CS, Rajnoveanu A, Rajnoveanu RM. Inhaled interferons beta and SARS-COV2 infection: a preliminary therapeutic perspective. Expert Rev Respir Med 2021; 16:257-261. [PMID: 34793285 PMCID: PMC8726005 DOI: 10.1080/17476348.2022.2008910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction SARS-COV2 infection represents a therapeutic challenge due to the limited number of effective therapies available and due to the fact that it is not clear which host response in terms of inflammation pattern is the most predictive for an optimal (and rapid) recovery. Interferon β pathway is impaired in SARS-COV2 infection and this is associated with a bigger disease burden. Exogenous inhaled interferon might be beneficial in this setting. Areas covered Nebulized interferon-β is currently investigated as a potential therapy for SARS-COV2 because the available data from a phase II study demonstrate that this medication is able to accelerate the recovery from disease. Expert opinion Further clinical studies are needed in order to better document the efficacy of this therapy especially in severe forms of COVID-19, the optimal duration of therapy and if such a medication is appropriate for domiciliary use. Also combined regimens with antivirals or with compounds which are able to enhance the endogenous production of interferon might be of promise.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Celina Silvia Stafie
- Preventive Medicine and Interdisciplinarity Department, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Armand Rajnoveanu
- Occupational Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
45
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
46
|
Carr TF. Treatment approaches for the patient with T2 low asthma. Ann Allergy Asthma Immunol 2021; 127:530-535. [PMID: 34688426 DOI: 10.1016/j.anai.2021.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To identify treatment approaches that can be used in the management of patients with asthma who lack significant type 2 inflammation, also called T2 low asthma. DATA SOURCES Recent expert guideline updates on the management of asthma, recent journal articles and review articles, and foundational journal articles are referenced. STUDY SELECTIONS This review cites clinical cohort studies of highly characterized patients with asthma, clinical interventional trials of high impact, mechanistic studies relevant to T2 low asthma, and emerging work in this area. RESULTS T2 low asthma accounts for approximately one-third to one-half of individuals with asthma. Characteristics of participants with T2 low asthma include higher body mass index, cigarette smoking/smoke exposure, relative lack of responsiveness to steroids, less bronchodilator reversibility, and often the presence of neutrophilic inflammation. Multiple available interventions target these characteristics, including standard inhalers, azithromycin, and lifestyle interventions of weight loss and smoking cessation. CONCLUSION Treatment of T2 low asthma should involve currently available approaches and will benefit from improved definition and understanding of disease pathobiology.
Collapse
Affiliation(s)
- Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona.
| |
Collapse
|
47
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021; 13:1077. [PMID: 34371768 PMCID: PMC8308954 DOI: 10.3390/pharmaceutics13071077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Julie G. Ledford
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
48
|
Coultas JA, Cafferkey J, Mallia P, Johnston SL. Experimental Antiviral Therapeutic Studies for Human Rhinovirus Infections. J Exp Pharmacol 2021; 13:645-659. [PMID: 34276229 PMCID: PMC8277446 DOI: 10.2147/jep.s255211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022] Open
Abstract
Rhinovirus infection is common and usually causes mild, self-limiting upper respiratory tract symptoms. Rhinoviruses can cause exacerbation of chronic respiratory diseases, such as asthma or chronic obstructive pulmonary disease, leading to a significant burden of morbidity and mortality. There has been a great deal of progress in efforts to understand the immunological basis of rhinovirus infection. However, despite a number of in vitro and in vivo attempts, there have been no effective treatments developed. This review article summarises the up to date virological and immunological understanding of these infections. We discuss the challenges researchers face, and key solutions, in their work to investigate potential therapies including in vivo rhinovirus challenge studies. Finally, we explore past and present experimental therapeutic strategies employed in the treatment of rhinovirus infections and highlight promising areas of future work.
Collapse
Affiliation(s)
- James A Coultas
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Cafferkey
- Respiratory Medicine, St Mary's Hospital, Imperial College Healthcare Foundation Trust, London, UK
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
49
|
Mansouri S, Gogoi H, Pipkin M, Machuca TN, Emtiazjoo AM, Sharma AK, Jin L. In vivo reprogramming of pathogenic lung TNFR2 + cDC2s by IFNβ inhibits HDM-induced asthma. Sci Immunol 2021; 6:6/61/eabi8472. [PMID: 34244314 DOI: 10.1126/sciimmunol.abi8472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/21/2021] [Indexed: 01/28/2023]
Abstract
Asthma is a common inflammatory lung disease with no known cure. Previously, we uncovered a lung TNFR2+ conventional DC2 subset (cDC2s) that induces regulatory T cells (Tregs) maintaining lung tolerance at steady state but promotes TH2 response during house dust mite (HDM)-induced asthma. Lung IFNβ is essential for TNFR2+ cDC2s-mediated lung tolerance. Here, we showed that exogenous IFNβ reprogrammed TH2-promoting pathogenic TNFR2+ cDC2s back to tolerogenic DCs, alleviating eosinophilic asthma and preventing asthma exacerbation. Mechanistically, inhaled IFNβ, not IFNα, activated ERK2 signaling in pathogenic lung TNFR2+ cDC2s, leading to enhanced fatty acid oxidation (FAO) and lung Treg induction. Last, human IFNβ reprogrammed pathogenic human lung TNFR2+ cDC2s from patients with emphysema ex vivo. Thus, we identified an IFNβ-specific ERK2-FAO pathway that might be harnessed for DC therapy.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauricio Pipkin
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Tiago N Machuca
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Amir M Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ashish K Sharma
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, University of Florida, Gainesville, FL 32610, USA
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
50
|
Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GK. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. FRONTIERS IN ALLERGY 2021; 2:668781. [PMID: 35387044 PMCID: PMC8974912 DOI: 10.3389/falgy.2021.668781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant "reservoir" for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
Collapse
Affiliation(s)
- Yorissa Padayachee
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Sabine Flicker
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sophia Linton
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre (KHSC), Kingston, ON, Canada
| | - John Cafferkey
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Martin Desrosiers
- Department of Otorhinolaryngologie, The University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Paul Turner
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rudolf Valenta
- Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Glenis Kathleen Scadding
- Royal National Ear Nose and Throat Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|