1
|
Correia Marques M, Rubin D, Shuldiner EG, Datta M, Schmitz E, Gutierrez Cruz G, Patt A, Bennett E, Grom A, Foell D, Gattorno M, Bohnsack J, Yeung RSM, Prahalad S, Mellins E, Anton J, Len CA, Oliveira S, Woo P, Ozen S, Deng Z, Ombrello MJ. Enrichment of Rare Variants of Hemophagocytic Lymphohistiocytosis Genes in Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol 2024; 76:1566-1572. [PMID: 38937141 DOI: 10.1002/art.42938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Our objective was to evaluate whether there is an enrichment of rare variants in familial hemophagocytic lymphohistiocytosis (HLH)-associated genes among patients with systemic juvenile idiopathic arthritis (sJIA) with or without macrophage activation syndrome (MAS). METHODS Targeted sequencing of HLH genes (LYST, PRF1, RAB27A, STX11, STXBP2, UNC13D) was performed in patients with sJIA from an established cohort. Sequence data from control participants were obtained in silico (database of Genotypes and Phenotypes: phs000280.v8.p2). Rare variant association testing (RVT) was performed with sequence kernel association test package. Significance was defined as P < 0.05 after 100,000 permutations. RESULTS Sequencing data from 524 sJIA cases were jointly called and harmonized with exome-derived target data from 3,000 controls. Quality control operations produced a set of 480 cases and 2,924 ancestrally matched control participants. RVT of cases and controls revealed a significant association with rare protein-altering variants (minor allele frequency [MAF] < 0.01) of STXBP2 (P = 0.020) and ultrarare variants (MAF < 0.001) of STXBP2 (P = 0.006) and UNC13D (P = 0.046). A subanalysis of 32 cases with known MAS and 90 without revealed a significant difference in the distribution of rare UNC13D variants (P = 0.0047) between the groups. Additionally, patients with sJIA more often carried two or more HLH variants than did controls (P = 0.007), driven largely by digenic combinations involving LYST. CONCLUSION We identified an enrichment of rare HLH variants in patients with sJIA compared with controls, driven by STXBP2 and UNC13D. Biallelic variation in HLH genes was associated with sJIA, driven by LYST. Only UNC13D displayed enrichment in patients with MAS. This suggests that HLH variants may contribute to the pathophysiology of sJIA, even without MAS.
Collapse
Affiliation(s)
- Mariana Correia Marques
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Danielle Rubin
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Emily G Shuldiner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Mallika Datta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Elizabeth Schmitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Gustavo Gutierrez Cruz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Andrew Patt
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Elizabeth Bennett
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Alexei Grom
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dirk Foell
- University Hospital Muenster, Muenster, Germany
| | | | - John Bohnsack
- University of Utah Eccles School of Medicine, Salt Lake City
| | | | - Sampath Prahalad
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | - Jordi Anton
- Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | | | - Sheila Oliveira
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Woo
- University College London, London, United Kingdom
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | - Zuoming Deng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| | - Michael J Ombrello
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Szabó L, Pollio AR, Vogel GF. Intracellular Trafficking Defects in Congenital Intestinal and Hepatic Diseases. Traffic 2024; 25:e12954. [PMID: 39187475 DOI: 10.1111/tra.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Enterocytes and liver cells fulfill important metabolic and barrier functions and are responsible for crucial vectorial secretive and absorptive processes. To date, genetic diseases affecting metabolic enzymes or transmembrane transporters in the intestine and the liver are better comprehended than mutations affecting intracellular trafficking. In this review, we explore the emerging knowledge on intracellular trafficking defects and their clinical manifestations in both the intestine and the liver. We provide a detailed overview including more investigated diseases such as the canonical, variant and associated forms of microvillus inclusion disease, as well as recently described pathologies, highlighting the complexity and disease relevance of several trafficking pathways. We give examples of how intracellular trafficking hubs, such as the apical recycling endosome system, the trans-Golgi network, lysosomes, or the Golgi-to-endoplasmic reticulum transport are involved in the pathomechanism and lead to disease. Ultimately, understanding these processes could spark novel therapeutic approaches, which would greatly improve the quality of life of the affected patients.
Collapse
Affiliation(s)
- Luca Szabó
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adam R Pollio
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Friedrich Vogel
- Institute of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Kaji I, Thiagarajah JR, Goldenring JR. Modeling the cell biology of monogenetic intestinal epithelial disorders. J Cell Biol 2024; 223:e202310118. [PMID: 38683247 PMCID: PMC11058565 DOI: 10.1083/jcb.202310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA, USA
- Harvard Digestive Disease Center, Boston, MA, USA
| | - James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Nashville VA Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Pasquier N, Jaulin F, Peglion F. Inverted apicobasal polarity in health and disease. J Cell Sci 2024; 137:jcs261659. [PMID: 38465512 PMCID: PMC10984280 DOI: 10.1242/jcs.261659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Collapse
Affiliation(s)
- Nicolas Pasquier
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
- Cell Adhesion and Cancer lab, University of Turku, FI-20520 Turku, Finland
| | - Fanny Jaulin
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| | - Florent Peglion
- Collective Invasion Team, Inserm U-1279, Gustave Roussy, Villejuif F-94805, France
| |
Collapse
|
6
|
Klee KMC, Hess MW, Lohmüller M, Herzog S, Pfaller K, Müller T, Vogel GF, Huber LA. A CRISPR screen in intestinal epithelial cells identifies novel factors for polarity and apical transport. eLife 2023; 12:e80135. [PMID: 36661306 PMCID: PMC9889089 DOI: 10.7554/elife.80135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Epithelial polarization and polarized cargo transport are highly coordinated and interdependent processes. In our search for novel regulators of epithelial polarization and protein secretion, we used a genome-wide CRISPR/Cas9 screen and combined it with an assay based on fluorescence-activated cell sorting (FACS) to measure the secretion of the apical brush-border hydrolase dipeptidyl peptidase 4 (DPP4). In this way, we performed the first CRISPR screen to date in human polarized epithelial cells. Using high-resolution microscopy, we detected polarization defects and mislocalization of DPP4 to late endosomes/lysosomes after knockout of TM9SF4, anoctamin 8, and ARHGAP33, confirming the identification of novel factors for epithelial polarization and apical cargo secretion. Thus, we provide a powerful tool suitable for studying polarization and cargo secretion in epithelial cells. In addition, we provide a dataset that serves as a resource for the study of novel mechanisms for epithelial polarization and polarized transport and facilitates the investigation of novel congenital diseases associated with these processes.
Collapse
Affiliation(s)
- Katharina MC Klee
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael W Hess
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Medical University of InnsbruckInnsbruckAustria
| | - Kristian Pfaller
- Institute of Histology and Embryology, Medical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Georg F Vogel
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
- Department of Paediatrics I, Medical University of InnsbruckInnsbruckAustria
| | - Lukas A Huber
- Institute of Cell Biology, Medical University of InnsbruckInnsbruckAustria
| |
Collapse
|
7
|
Fujikawa H, Shimizu H, Nambu R, Takeuchi I, Matsui T, Sakamoto K, Gocho Y, Miyamoto T, Yasumi T, Yoshioka T, Arai K. Monogenic inflammatory bowel disease with STXBP2 mutations is not resolved by hematopoietic stem cell transplantation but can be alleviated via immunosuppressive drug therapy. Clin Immunol 2023; 246:109203. [PMID: 36503158 DOI: 10.1016/j.clim.2022.109203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
STXBP2, encoding syntaxin-binding protein 2, is involved in intracellular organelle trafficking and is associated with familial hemophagocytic lymphohistiocytosis type 5. Although STXBP2 mutations reportedly cause monogenic inflammatory bowel disease, the clinical course and underlying pathogenic mechanisms remain unclear. We identified a novel mutation in STXBP2 [c.1197delC, p.Ala400fs] in a boy with congenital intractable diarrhea and hemophagocytic lymphohistiocytosis (HLH). HLH was treated with intravenous prednisolone, cyclosporine, and dexamethasone palmitate. Hematopoietic stem cell transplantation (HSCT) along with prophylaxis for graft-versus-host-disease was performed at 5 months of age. Additionally, colonoscopies done before and after HSCT showed mild colitis with cryptitis. The patient showed elevated fecal calprotectin levels and persistent diarrhea even after HSCT and required partial parenteral nutrition. While anti-inflammatory treatment reduced diarrhea, it was not completely normalized even after HSCT, suggesting that the pathogenesis of inflammatory bowel disease associated with STXBP2 mutations involves both hyperinflammation and functional epithelial barrier defects.
Collapse
Affiliation(s)
- Hiroki Fujikawa
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Hirotaka Shimizu
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama-city, Saitama 330-0877, Japan.
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Toshihiro Matsui
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Kenichi Sakamoto
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yoshihiro Gocho
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
8
|
Ouahed JD. Understanding inborn errors of immunity: A lens into the pathophysiology of monogenic inflammatory bowel disease. Front Immunol 2022; 13:1026511. [PMID: 36248828 PMCID: PMC9556666 DOI: 10.3389/fimmu.2022.1026511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract, including Crohn’s disease, ulcerative colitis and inflammatory bowel disease-undefined (IBD-U). IBD are understood to be multifactorial, involving genetic, immune, microbial and environmental factors. Advances in next generation sequencing facilitated the growing identification of over 80 monogenic causes of IBD, many of which overlap with Inborn errors of immunity (IEI); Approximately a third of currently identified IEI result in gastrointestinal manifestations, many of which are inflammatory in nature, such as IBD. Indeed, the gastrointestinal tract represents an opportune system to study IEI as it consists of the largest mass of lymphoid tissue in the body and employs a thin layer of intestinal epithelial cells as the critical barrier between the intestinal lumen and the host. In this mini-review, a selection of pertinent IEI resulting in monogenic IBD is described involving disorders in the intestinal epithelial barrier, phagocytosis, T and B cell defects, as well as those impairing central and peripheral tolerance. The contribution of disrupted gut-microbiota-host interactions in disturbing intestinal homeostasis among patients with intestinal disease is also discussed. The molecular mechanisms driving pathogenesis are reviewed along with the personalized therapeutic interventions and investigational avenues this growing knowledge has enabled.
Collapse
|
9
|
Caldirola MS, Raccio AG, Giovanni DD, Gaillard MI, Preciado MV. Pediatric inborn errors of immunity causing hemophagocytic lymphohistiocytosis: Case report and review of the literature. J Leukoc Biol 2022; 112:607-615. [PMID: 35899932 DOI: 10.1002/jlb.5mr0622-037r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Indexed: 11/07/2022] Open
Abstract
Inborn errors of immunity are a group of genetic disorders caused by mutations that affect the development and/or function of several compartments of the immune system, predisposing patients to infections, autoimmunity, allergy and malignancies. In this regard, mutations that affect proteins involved in trafficking, priming, docking, or membrane fusion will impair the exocytosis of lytic granules of effector NK and cytotoxic T lymphocytes. This may predispose patients to hemophagocytic lymphohistiocytosis, a life-threatening immune disorder characterized by systemic lymphocyte and macrophage activation, and increased levels of cytokines, which lead to an uncontrolled hyperinflammation state and progressive multiorgan damage. In this review, we will describe a clinical case and recent advances in inborn errors of immunity predisposing to hemophagocytic lymphohistiocytosis. Summary sentence: Review of recent advances in inborn errors of immunity predisposing to hemophagocytic lymphohistiocytosis.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Servicio Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)- Hospital de Niños "Dr. Ricardo Gutiérrez,", Buenos Aires, Argentina
| | - Andrea Gómez Raccio
- Servicio de Inmunología, Hospital de Niños "Dr. Ricardo Gutiérrez,", Buenos Aires, Argentina
| | - Daniela Di Giovanni
- Servicio de Inmunología, Hospital de Niños "Dr. Ricardo Gutiérrez,", Buenos Aires, Argentina
| | - María Isabel Gaillard
- Servicio Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)- Hospital de Niños "Dr. Ricardo Gutiérrez,", Buenos Aires, Argentina.,Sección Citometría - Laboratorio Stamboulian, Buenos Aires, Argentina
| | - María Victoria Preciado
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Hospital de Niños "Dr. Ricardo Gutiérrez,", Buenos Aires, Argentina
| |
Collapse
|
10
|
Sun Y, Leng C, van Ijzendoorn SCD. Fetal Bowel Abnormalities Suspected by Ultrasonography in Microvillus Inclusion Disease: Prevalence and Clinical Significance. J Clin Med 2022; 11:jcm11154331. [PMID: 35893420 PMCID: PMC9332086 DOI: 10.3390/jcm11154331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Microvillus inclusion disease (MVID) is a rare, inherited, congenital, diarrheal disorder that is invariably fatal if left untreated. Within days after birth, MVID presents as a life-threatening emergency characterized by severe dehydration, metabolic acidosis, and weight loss. Diagnosis is cumbersome and can take a long time. Whether MVID could be diagnosed before birth is not known. Anecdotal reports of MVID-associated fetal bowel abnormalities suspected by ultrasonography (that is, dilated bowel loops and polyhydramnios) have been published. These are believed to be rare, but their prevalence in MVID has not been investigated. Here, we have performed a comprehensive retrospective study of 117 published MVID cases spanning three decades. We find that fetal bowel abnormalities in MVID occurred in up to 60% of cases of MVID for which prenatal ultrasonography or pregnancy details were reported. Suspected fetal bowel abnormalities appeared in the third trimester of pregnancy and correlated with postnatal, early-onset diarrhea and case-fatality risk during infancy. Fetal bowel dilation correlated with MYO5B loss-of-function variants. In conclusion, MVID has already started during fetal life in a significant number of cases. Genetic testing for MVID-causing gene variants in cases where fetal bowel abnormalities are suspected by ultrasonography may allow for the prenatal diagnosis of MVID in a significant percentage of cases, enabling optimal preparation for neonatal intensive care.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
| | - Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China
| | - Sven C. D. van Ijzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (Y.S.); (C.L.)
- Center for Liver, Digestive & Metabolic Disease, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
11
|
Duclaux-Loras R, Lebreton C, Berthelet J, Charbit-Henrion F, Nicolle O, Revenu de Courtils C, Waich S, Valovka T, Khiat A, Rabant M, Racine C, Guerrera IC, Baptista J, Mahe MM, Hess MW, Durel B, Lefort N, Banal C, Parisot M, Talbotec C, Lacaille F, Ecochard-Dugelay E, Demir AM, Vogel GF, Faivre L, Rodrigues A, Fowler D, Janecke AR, Müller T, Huber LA, Rodrigues-Lima F, Ruemmele FM, Uhlig HH, Del Bene F, Michaux G, Cerf-Bensussan N, Parlato M. UNC45A deficiency causes microvillus inclusion disease-like phenotype by impairing myosin VB-dependent apical trafficking. J Clin Invest 2022; 132:154997. [PMID: 35575086 PMCID: PMC9106349 DOI: 10.1172/jci154997] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Variants in the UNC45A cochaperone have been recently associated with a syndrome combining diarrhea, cholestasis, deafness, and bone fragility. Yet the mechanism underlying intestinal failure in UNC45A deficiency remains unclear. Here, biallelic variants in UNC45A were identified by next-generation sequencing in 6 patients with congenital diarrhea. Corroborating in silico prediction, variants either abolished UNC45A expression or altered protein conformation. Myosin VB was identified by mass spectrometry as client of the UNC45A chaperone and was found misfolded in UNC45AKO Caco-2 cells. In keeping with impaired myosin VB function, UNC45AKO Caco-2 cells showed abnormal epithelial morphogenesis that was restored by full-length UNC45A, but not by mutant alleles. Patients and UNC45AKO 3D organoids displayed altered luminal development and microvillus inclusions, while 2D cultures revealed Rab11 and apical transporter mislocalization as well as sparse and disorganized microvilli. All those features resembled the subcellular abnormalities observed in duodenal biopsies from patients with microvillus inclusion disease. Finally, microvillus inclusions and shortened microvilli were evidenced in enterocytes from unc45a-deficient zebrafish. Taken together, our results provide evidence that UNC45A plays an essential role in epithelial morphogenesis through its cochaperone function of myosin VB and that UNC45A loss causes a variant of microvillus inclusion disease.
Collapse
Affiliation(s)
- Rémi Duclaux-Loras
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Corinne Lebreton
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | | | - Fabienne Charbit-Henrion
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Ophelie Nicolle
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR)–UMR 6290, Rennes, France
| | - Céline Revenu de Courtils
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Stephanie Waich
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Taras Valovka
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anis Khiat
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | - Marion Rabant
- Department of Pathology, Assistance Publique–Hopitaux de Paris, Hopital Necker–Enfants Malades, Paris, France
| | - Caroline Racine
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Fédération Hospitalo–Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire, and Equipe GAD, Université de Bourgogne Franche-Comté, Faculté de Médecine, INSERM LNC UMR 1231, Dijon, France
| | - Ida Chiara Guerrera
- Proteomics Platform 3P5-Necker, Université Paris Descartes-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Júlia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Maxime M. Mahe
- Université de Nantes, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Michael W. Hess
- Institut für Histologie und Embryologie Medical University of Innsbruck, Innsbruck, Austria
| | - Béatrice Durel
- Cell Imaging Platform, INSERM-US24-CNRS UMS 3633 Structure Fédérative de Recherche Necker, Université Paris Cité, Paris, France
| | - Nathalie Lefort
- iPS Core Facility, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
| | - Céline Banal
- iPS Core Facility, Imagine Institute, INSERM U1163, Paris Descartes University, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine–Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Cecile Talbotec
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Florence Lacaille
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | | | - Arzu Meltem Demir
- Ankara Child Health and Diseases, Training and Research Hospital, Pediatric Gastroenterology, Ankara, Turkey
| | - Georg F. Vogel
- Universitätsklinik für Pädiatrie I and
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Laurence Faivre
- Department of Pathology, Assistance Publique–Hopitaux de Paris, Hopital Necker–Enfants Malades, Paris, France
| | | | | | | | | | - Lukas A. Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Frank M. Ruemmele
- Department of Pediatric Gastroenterology, Assistance Publique-Hopitaux de Paris, Hopital Necker–Enfants Malades, F-75015, Paris, France
| | - Holm H. Uhlig
- Translational Gastroenterology Unit and Department of Paediatrics, John Radcliffe Hospital, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR)–UMR 6290, Rennes, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| | - Marianna Parlato
- Université Paris Cité, Imagine Institute, Laboratory of Intestinal Immunity, INSERM, UMR1163, Paris, France
| |
Collapse
|
12
|
Theratyping of the Rare CFTR Variants E193K and R334W in Rectal Organoid-Derived Epithelial Monolayers. J Pers Med 2022; 12:jpm12040632. [PMID: 35455747 PMCID: PMC9027586 DOI: 10.3390/jpm12040632] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The effect of presently available CFTR modulator combinations, such as elexacaftor (ELX), tezacaftor (TEZ), and ivacaftor (IVA), on rare CFTR alleles is often unknown. Several assays have been developed, such as forskolin-induced swelling (FIS), to evaluate the rescue of such uncommon CFTR alleles both by established and novel modulators in patient-derived primary cell cultures (organoids). Presently, we assessed the CFTR-mediated electrical current across rectal organoid-derived epithelial monolayers. This technique, which allows separate measurement of CFTR-dependent chloride or bicarbonate transport, was used to assess the effect of ELX/TEZ/IVA on two rare CFTR variants. Methods: Intestinal organoid cultures were established from rectal biopsies of CF patients carrying the rare missense mutations E193K or R334W paired with F508del. The effect of the CFTR modulator combination ELX/TEZ/IVA on CFTR-mediated Cl− and HCO3− secretion was assessed in organoid-derived intestinal epithelial monolayers. Non-CF organoids were used for comparison. Clinical biomarkers (sweat chloride, FEV1) were monitored in patients receiving modulator therapy. Results: ELX/TEZ/IVA markedly enhanced CFTR-mediated bicarbonate and chloride transport across intestinal epithelium of both patients. Consistent with the rescue of CFTR function in cultured intestinal cells, ELX/TEZ/IVA therapy improved biomarkers of CFTR function in the R334W/F508del patient. Conclusions: Current measurements in organoid-derived intestinal monolayers can readily be used to monitor CFTR-dependent epithelial Cl− and HCO3− transport. This technique can be explored to assess the functional consequences of rare CFTR mutations and the efficacy of CFTR modulators. We propose that this functional CFTR assay may guide personalized medicine in patients with CF-like clinical manifestations as well as in those carrying rare CFTR mutations.
Collapse
|
13
|
Li Q, Zhou Z, Sun Y, Sun C, Klappe K, van IJzendoorn SC. A Functional Relationship Between UNC45A and MYO5B Connects Two Rare Diseases With Shared Enteropathy. Cell Mol Gastroenterol Hepatol 2022; 14:295-310. [PMID: 35421597 PMCID: PMC9218578 DOI: 10.1016/j.jcmgh.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven C.D. van IJzendoorn
- Correspondence Address correspondence to: Sven C. D. van IJzendoorn, PhD, Department of Biomedical Sciences of Cells & Systems, Section Molecular Cell Biology, University of Groningen, University Medical Center, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
14
|
van Vugt AH, Bijvelds MJ, de Jonge HR, Meijsen KF, Restin T, Bryant MB, Ballauff A, Koot B, Müller T, Houwen RH, Janecke AR, Middendorp S. A Potential Treatment of Congenital Sodium Diarrhea in Patients With Activating GUCY2C Mutations. Clin Transl Gastroenterol 2021; 12:e00427. [PMID: 34797252 PMCID: PMC8604003 DOI: 10.14309/ctg.0000000000000427] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Gain-of-function mutations in guanylyl cyclase C (GCC) result in persistent diarrhea with perinatal onset. We investigated a specific GCC inhibitor, SSP2518, for its potential to treat this disorder. METHODS We investigated the effect of SSP2518 on GCC-mediated intracellular cyclic guanosine monophosphate (cGMP) levels and on GCC-mediated chloride secretion in intestinal organoids from 3 patients with distinct activating GCC mutations and from controls, with and without stimulation of GCC with heat-stable enterotoxin. RESULTS Patient-derived organoids had significantly higher basal cGMP levels than control organoids, which were lowered by SSP2518 to levels found in control organoids. In addition, SSP2518 significantly reduced cGMP levels and chloride secretion in patient-derived and control organoids (P < 0.05 for all comparisons) after heat-stable enterotoxin stimulation. DISCUSSION We reported in this study that the GCC inhibitor SSP2518 normalizes cGMP levels in intestinal organoids derived from patients with GCC gain-of-function mutations and markedly reduces cystic fibrosis transmembrane conductance regulator-dependent chloride secretion, the driver of persistent diarrhea.
Collapse
Affiliation(s)
- Anke H.M. van Vugt
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), Utrecht, the Netherlands;
- Regenerative Medicine Center, UMCU, UU, Utrecht, the Netherlands;
| | - Marcel J.C. Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands;
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands;
| | - Kelly F. Meijsen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands;
| | - Tanja Restin
- Newborn Research Zürich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland;
- Institute of Physiology, University of Zurich, Zurich, Switzerland;
| | - Manuel B. Bryant
- Newborn Research Zürich, Department of Neonatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland;
| | - Antje Ballauff
- Kinder- und Jugendmedizin, Helios Klinikum, Krefeld, Germany;
| | - Bart Koot
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology, Amsterdam, the Netherlands;
| | - Thomas Müller
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria;
| | - Roderick H.J. Houwen
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), Utrecht, the Netherlands;
| | - Andreas R. Janecke
- Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria;
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Sabine Middendorp
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), Utrecht, the Netherlands;
- Regenerative Medicine Center, UMCU, UU, Utrecht, the Netherlands;
- Current affiliation: Gadeta BV, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Ouahed J, Kelsen JR, Spessott WA, Kooshesh K, Sanmillan ML, Dawany N, Sullivan KE, Hamilton KE, Slowik V, Nejentsev S, Neves JF, Flores H, Chung WK, Wilson A, Anyane-Yeboa K, Wou K, Jain P, Field M, Tollefson S, Dent MH, Li D, Naito T, McGovern DPB, Kwong AC, Taliaferro F, Ordovas-Montanes J, Horwitz BH, Kotlarz D, Klein C, Evans J, Dorsey J, Warner N, Elkadri A, Muise AM, Goldsmith J, Thompson B, Engelhardt KR, Cant AJ, Hambleton S, Barclay A, Toth-Petroczy A, Vuzman D, Carmichael N, Bodea C, Cassa CA, Devoto M, Maas RL, Behrens EM, Giraudo CG, Snapper SB. Variants in STXBP3 are Associated with Very Early Onset Inflammatory Bowel Disease, Bilateral Sensorineural Hearing Loss and Immune Dysregulation. J Crohns Colitis 2021; 15:1908-1919. [PMID: 33891011 PMCID: PMC8575043 DOI: 10.1093/ecco-jcc/jjab077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Waldo A Spessott
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kameron Kooshesh
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Maria L Sanmillan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Noor Dawany
- Department of Biomedical Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Voytek Slowik
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sergey Nejentsev
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - João Farela Neves
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam, the Netherlands.,Primary Immunodeficiencies Unit; Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Helena Flores
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Lisbon, 1150, Portugal
| | - Wendy K Chung
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Ashley Wilson
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Kwame Anyane-Yeboa
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Karen Wou
- Gastroenterology Unit, Hospital Dona Estefânia-CHLC, EPE, Lisbon, 1169, Portugal
| | - Preti Jain
- Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA.,Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Sophia Tollefson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Maiah H Dent
- Department of Genetics, Yale University, New Haven, CT, 06510, USA
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Takeo Naito
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew C Kwong
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Faith Taliaferro
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Program in Immunology, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Emergency Medicine, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Kotlarz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, 80337, Germany
| | - Jonathan Evans
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Jill Dorsey
- Department of Pediatrics, Nemours Children's Specialty Care, Jacksonville, FL 32207, USA
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jeffrey Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin Thompson
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK
| | - Andrew J Cant
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, III Theme, Institute of Cellular Medicine, Newcastle University, Newcastle, NE2 4HH, UK.,Children's Immunology Service, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, NE1 4LP, UK
| | - Andrew Barclay
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, G51 4TF, UK
| | - Agnes Toth-Petroczy
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Dana Vuzman
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nikkola Carmichael
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Corneliu Bodea
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Marcella Devoto
- Division of Human Genetics, The Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Translational and Precision Medicine, University Sapienza, Rome 00185, Italy.,CNR-IRGB, Cagliari 09042, Italy
| | - Richard L Maas
- Brigham Genomic Medicine Program, Division of Genetics, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, and Harvard Medical School, Boston, MA, 02115, USA.,Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Early onset congenital diarrheas; single center experience. Pediatr Neonatol 2021; 62:612-619. [PMID: 34330684 DOI: 10.1016/j.pedneo.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/27/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Congenital diarrheal disorders (CDDs) are a rare group of enteropathies that typically present in the early few months of life and pose a diagnostic challenge. We aimed to analyze the clinical findings and outcome of infants with CDDs and share experience about genetic testing. METHODS Demographic, clinical and genetic findings, and outcome of the patients (n = 24) with CDDs were recorded from hospital files. RESULTS The onset of diarrhea was within the neonatal period in 45.8% of the patients. The most frequent causes of CDDs were defects in digestion, absorption and transport of nutrients and electrolytes (DATN) (n = 11, 45.8%) and defects in intestinal immune-related homeostasis (IIH) (n = 6, 25%). Fat malabsorption (n = 6) was the leading cause of defects in DATN. Extraintestinal manifestations including neurological involvement (25%) and renal involvement (20.8%) were common among the patients. Genetic analyses were performed for 16 patients (targeted gene analysis in 9, congenital diarrhea panel in 3, immune deficiency panel in 1 and whole-exome sequencing in 3 patients). Genetic diagnosis was achieved in 14 of 16 patients (87.5%) with therapeutic consequences in 8 of 16 patients (50%). During the follow-up, 6 patients (25%) died. CONCLUSION The percentage of undefined etiology decreased, and treatment of the patients improved with the increased number of genetic testing in patients with CDDs.
Collapse
|
17
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
18
|
Advanced Microscopy for Liver and Gut Ultrastructural Pathology in Patients with MVID and PFIC Caused by MYO5B Mutations. J Clin Med 2021; 10:jcm10091901. [PMID: 33924896 PMCID: PMC8125609 DOI: 10.3390/jcm10091901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in the actin motor protein myosinVb (myo5b) cause aberrant apical cargo transport and the congenital enteropathy microvillus inclusion disease (MVID). Recently, missense mutations in myo5b were also associated with progressive familial intrahepatic cholestasis (MYO5B-PFIC). Here, we thoroughly characterized the ultrastructural and immuno-cytochemical phenotype of hepatocytes and duodenal enterocytes from a unique case of an adult MYO5B-PFIC patient who showed constant hepatopathy but only periodic enteric symptoms. Selected data from two other patients supported the findings. Advanced methods such as cryo-fixation, freeze-substitution, immuno-gold labeling, electron tomography and immuno-fluorescence microscopy complemented the standard procedures. Liver biopsies showed mislocalization of Rab11 and bile canalicular membrane proteins. Rab11-positive vesicles clustered around bile canaliculi and resembled subapical clusters of aberrant recycling endosomes in enterocytes from MVID patients. The adult patient studied in detail showed a severe, MVID-specific enterocyte phenotype, despite only a mild clinical intestinal presentation. This included mislocalization of numerous proteins essential for apical cargo transport and morphological alterations. We characterized the heterogeneous population of large catabolic organelles regarding their complex ultrastructure and differential distribution of autophagic and lysosomal marker proteins. Finally, we generated duodenal organoids/enteroids from biopsies that recapitulated all MVID hallmarks, demonstrating the potential of this disease model for personalized medicine.
Collapse
|
19
|
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. J Clin Med 2021; 10:jcm10030481. [PMID: 33525641 PMCID: PMC7865828 DOI: 10.3390/jcm10030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling.
Collapse
|
20
|
Leng C, Rings EHHM, de Wildt SN, van IJzendoorn SCD. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J Clin Med 2020; 10:jcm10010022. [PMID: 33374831 PMCID: PMC7794843 DOI: 10.3390/jcm10010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Microvillus inclusion disease (MVID) is a rare inherited and invariably fatal enteropathy, characterized by severe intractable secretory diarrhea and nutrient malabsorption. No cure exists, and patients typically die during infancy because of treatment-related complications. The need for alternative treatment strategies is evident. Several pharmacological interventions with variable successes have been tried and reported for individual patients as part of their clinical care. Unfortunately, these interventions and their outcomes have remained hidden in case reports and have not been reviewed. Further, recent advances regarding MVID pathogenesis have shed new light on the outcomes of these pharmacological interventions and offer suggestions for future clinical research and trials. Hence, an inventory of reported pharmacological interventions in MVID, their rationales and outcomes, and a discussion of these in the light of current knowledge is opportune. Together with a discussion on MVID-specific pharmacokinetic, -dynamic, and -genetic concerns that pose unique challenges regarding pharmacological strategies, we envision that this paper will aid researchers and clinicians in their efforts to develop pharmacological interventions to combat this devastating disease.
Collapse
Affiliation(s)
- Changsen Leng
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Department of Pediatrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Saskia N. de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Intensive Care and Department of Pediatric Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sven C. D. van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-(0)50-3616209
| |
Collapse
|
21
|
van Rijn JM, Werner L, Aydemir Y, Spronck JM, Pode-Shakked B, van Hoesel M, Shimshoni E, Polak-Charcon S, Talmi L, Eren M, Weiss B, H.J. Houwen R, Barshack I, Somech R, Nieuwenhuis EE, Sagi I, Raas-Rothschild A, Middendorp S, Shouval DS. Enhanced Collagen Deposition in the Duodenum of Patients with Hyaline Fibromatosis Syndrome and Protein Losing Enteropathy. Int J Mol Sci 2020; 21:E8200. [PMID: 33147779 PMCID: PMC7662532 DOI: 10.3390/ijms21218200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Hyaline fibromatosis syndrome (HFS), resulting from ANTXR2 mutations, is an ultra-rare disease that causes intestinal lymphangiectasia and protein-losing enteropathy (PLE). The mechanisms leading to the gastrointestinal phenotype in these patients are not well defined. We present two patients with congenital diarrhea, severe PLE and unique clinical features resulting from deleterious ANTXR2 mutations. Intestinal organoids were generated from one of the patients, along with CRISPR-Cas9 ANTXR2 knockout, and compared with organoids from two healthy controls. The ANTXR2-deficient organoids displayed normal growth and polarity, compared to controls. Using an anthrax-toxin assay we showed that the c.155C>T mutation causes loss-of-function of ANTXR2 protein. An intrinsic defect of monolayer formation in patient-derived or ANTXR2KO organoids was not apparent, suggesting normal epithelial function. However, electron microscopy and second harmonic generation imaging showed abnormal collagen deposition in duodenal samples of these patients. Specifically, collagen VI, which is known to bind ANTXR2, was highly expressed in the duodenum of these patients. In conclusion, despite resistance to anthrax-toxin, epithelial cell function, and specifically monolayer formation, is intact in patients with HFS. Nevertheless, loss of ANTXR2-mediated signaling leads to collagen VI accumulation in the duodenum and abnormal extracellular matrix composition, which likely plays a role in development of PLE.
Collapse
Affiliation(s)
- Jorik M. van Rijn
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| | - Yusuf Aydemir
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey; (Y.A.); (M.E.)
| | - Joey M.A. Spronck
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Ben Pode-Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- The Institute for Rare Diseases, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Marliek van Hoesel
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.S.); (I.S.)
| | - Sylvie Polak-Charcon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Liron Talmi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Pediatric Department A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Makbule Eren
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir 26040, Turkey; (Y.A.); (M.E.)
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| | - Roderick H.J. Houwen
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Institute of Pathology, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- Pediatric Department A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel; (E.S.); (I.S.)
| | - Annick Raas-Rothschild
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
- The Institute for Rare Diseases, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Sabine Middendorp
- Division of Pediatrics, Department of Pediatric Gastroenterology, Wilhelmina Children’s Hospital, University Medical Center Utrecht (UMCU), Utrecht University (UU), 3584 CT Utrecht, The Netherlands; (J.M.v.R.); (J.M.A.S.); (M.v.H.); (R.H.J.H.); (E.E.S.N.)
- Regenerative Medicine Center, UMCU, UU, 3584 CT Utrecht, The Netherlands
| | - Dror S. Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 5262100, Israel; (L.W.); (B.W.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel; (B.P.-S.); (S.P.-C.); (L.T.); (I.B.); (R.S.); (A.R.-R.)
| |
Collapse
|
22
|
Tang BL. SNAREs and developmental disorders. J Cell Physiol 2020; 236:2482-2504. [PMID: 32959907 DOI: 10.1002/jcp.30067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family mediate membrane fusion processes associated with vesicular trafficking and autophagy. SNAREs mediate core membrane fusion processes essential for all cells, but some SNAREs serve cell/tissue type-specific exocytic/endocytic functions, and are therefore critical for various aspects of embryonic development. Mutations or variants of their encoding genes could give rise to developmental disorders, such as those affecting the nervous system and immune system in humans. Mutations to components in the canonical synaptic vesicle fusion SNARE complex (VAMP2, STX1A/B, and SNAP25) and a key regulator of SNARE complex formation MUNC18-1, produce variant phenotypes of autism, intellectual disability, movement disorders, and epilepsy. STX11 and MUNC18-2 mutations underlie 2 subtypes of familial hemophagocytic lymphohistiocytosis. STX3 mutations contribute to variant microvillus inclusion disease. Chromosomal microdeletions involving STX16 play a role in pseudohypoparathyroidism type IB associated with abnormal imprinting of the GNAS complex locus. In this short review, I discuss these and other SNARE gene mutations and variants that are known to be associated with a variety developmental disorders, with a focus on their underlying cellular and molecular pathological basis deciphered through disease modeling. Possible pathogenic potentials of other SNAREs whose variants could be disease predisposing are also speculated upon.
Collapse
Affiliation(s)
- Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
23
|
Kar SK, van der Hee B, Loonen LMP, Taverne N, Taverne-Thiele JJ, Schokker D, Smits MA, Jansman AJM, Wells JM. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers. J Anim Sci Biotechnol 2020; 11:51. [PMID: 32467755 PMCID: PMC7232837 DOI: 10.1186/s40104-020-00443-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Abstract Here, we describe the use of monolayers of intestinal epithelial cells derived from intestinal organoids and transcriptomics to investigate the direct effects of dietary protein sources on epithelial function. Mechanically dissociated 3D organoids of mouse duodenum were used to generate a polarized epithelium containing all cell types found in the tissue of origin. The organoid-derived cell monolayers were exposed to 4% (w/v) of 'undigested (non-hydrolysed)-soluble' fraction of protein sources used as feed ingredients [soybean meal (SBM) and casein], or alternative protein sources (spray dried plasma protein, and yellow meal worm), or controls for 6 h prior to RNA isolation and transcriptomics. All protein sources altered expression of unique biological processes in the epithelial cells. Exposure of intestinal organoids to SBM downregulated expression of retinol and retinoid metabolic processes as well as cholesterol and lipid biosynthetic pathways, consistent with the reported hypotriglyceridaemic effect of soy protein in vivo. These findings support the use of intestinal organoids as models to evaluate complex interactions between dietary ingredients and the intestinal epithelium and highlights some unique host effects of alternative protein sources in animal feed and potentially human food. Graphical abstract Schematic representation of the study. 3-dimensional organoids were generated from mouse duodenum (1). The organoids were subsequently dissociated into single cells (2) and grown as 2-dimensional polarised monolayers (3). Polarized monolayers of organoid cells were exposed to different protein sources [CAS, SBM, SDPP, YMW, or medium control (MC)] for 6 h (4) and further processed for imaging (5) gene expression (6), and biochemical assays (7), to investigate the effects of undigested protein sources on the duodenal epithelium.
Collapse
Affiliation(s)
- Soumya K Kar
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Bart van der Hee
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands.,2Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Linda M P Loonen
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Nico Taverne
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Johanna J Taverne-Thiele
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Dirkjan Schokker
- 3Wageningen Livestock Research, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Mari A Smits
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands.,3Wageningen Livestock Research, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Alfons J M Jansman
- 3Wageningen Livestock Research, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Jerry M Wells
- 1Host Microbe Interactomics Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
24
|
AP1S1 missense mutations cause a congenital enteropathy via an epithelial barrier defect. Hum Genet 2020; 139:1247-1259. [PMID: 32306098 PMCID: PMC7497319 DOI: 10.1007/s00439-020-02168-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Congenital diarrheal disorders (CDD) comprise > 50 monogenic entities featuring chronic diarrhea of early-onset, including defects in nutrient and electrolyte absorption, enterocyte polarization, enteroendocrine cell differentiation, and epithelial integrity. Diarrhea is also a predominant symptom in many immunodeficiencies, congenital disorders of glycosylation, and in some defects of the vesicular sorting and transporting machinery. We set out to identify the etiology of an intractable diarrhea in 2 consanguineous families by whole-exome sequencing, and identified two novel AP1S1 mutations, c.269T>C (p.Leu90Pro) and c.346G>A (p.Glu116Lys). AP1S1 encodes the small subunit of the adaptor protein 1 complex (AP-1), which plays roles in clathrin coat-assembly and trafficking between trans-Golgi network, endosomes and the plasma membrane. An AP1S1 knock-out (KO) of a CaCo2 intestinal cell line was generated to characterize intestinal AP1S1 deficiency as well as identified mutations by stable expression in KO background. Morphology and prototype transporter protein distribution were comparable between parental and KO cells. We observed altered localization of tight-junction proteins ZO-1 and claudin 3, decreased transepithelial electrical resistance and an increased dextran permeability of the CaCo2-AP1S1-KO monolayer. In addition, lumen formation in 3D cultures of these cells was abnormal. Re-expression of wild-type AP1S1 in CaCo2-AP1S1-KO cells reverted these abnormalities, while expression of AP1S1 containing either missense mutation did not. Our data indicate that loss of AP1S1 function causes an intestinal epithelial barrier defect, and that AP1S1 mutations can cause a non-syndromic form of congenital diarrhea, whereas 2 reported truncating AP1S1 mutations caused MEDNIK syndrome, characterized by mental retardation, enteropathy, deafness, neuropathy, ichthyosis, and keratodermia.
Collapse
|
25
|
Abstract
There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.
Collapse
|
26
|
Eloseily EM, Weiser P, Crayne CB, Haines H, Mannion ML, Stoll ML, Beukelman T, Atkinson TP, Cron RQ. Benefit of Anakinra in Treating Pediatric Secondary Hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol 2019; 72:326-334. [PMID: 31513353 DOI: 10.1002/art.41103] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the benefit of the recombinant human interleukin-1 receptor antagonist anakinra in treating pediatric patients with secondary hemophagocytic lymphohistiocytosis (HLH)/macrophage activation syndrome (MAS) associated with rheumatic and nonrheumatic conditions. METHODS A retrospective chart review of all anakinra-treated patients with secondary HLH/MAS was performed at Children's of Alabama from January 2008 through December 2016. Demographic, clinical, laboratory, and genetic characteristics, outcomes data, and information on concurrent treatments were collected from the records and analyzed using appropriate univariate statistical approaches to assess changes following treatment and associations between patient variables and outcomes. RESULTS Forty-four patients with secondary HLH/MAS being treated with anakinra were identified in the electronic medical records. The median duration of hospitalization was 15 days. The mean pretreatment serum ferritin level was 33,316 ng/ml and dropped to 14,435 ng/ml (57% decrease) within 15 days of the start of anakinra treatment. The overall mortality rate in the cohort was 27%. Earlier initiation of anakinra (within 5 days of hospitalization) was associated with reduced mortality (P = 0.046), whereas thrombocytopenia (platelet count <100,000/μl) and STXBP2 mutations were both associated with increased mortality (P = 0.008 and P = 0.012, respectively). In considering patients according to their underlying diagnosis, those with systemic juvenile idiopathic arthritis (JIA) had the lowest mortality rate, with no deaths among the 13 systemic JIA patients included in the study (P = 0.006). In contrast, those with an underlying hematologic malignancy had the highest mortality rate, at 100% (n = 3). CONCLUSION These findings suggest that anakinra appears to be effective in treating pediatric patients with non-malignancy-associated secondary HLH/MAS, especially when it is given early in the disease course and when administered to patients who have an underlying rheumatic disease.
Collapse
Affiliation(s)
- Esraa M Eloseily
- University of Alabama at Birmingham School of Medicine and Assiut University Children's Hospital, Assiut, Egypt
| | - Peter Weiser
- University of Alabama at Birmingham School of Medicine
| | | | - Hilary Haines
- University of Alabama at Birmingham School of Medicine
| | | | | | | | | | - Randy Q Cron
- University of Alabama at Birmingham School of Medicine
| |
Collapse
|
27
|
Baothman A, Almalki H, Abumelha K, Alshegifi A, Baashar A. Type 5 Familial Hemophagocytic Lymphohistiocytosis in a Seven-year-old Girl Post Second Bone Marrow Transplantation with Failure to Thrive: STXBP2 Novel Mutation. Cureus 2019; 11:e6246. [PMID: 31807395 PMCID: PMC6881083 DOI: 10.7759/cureus.6246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Familial hemophagocytic lymphohistiocytosis (HLH) is a fatal autosomal recessive disorder resulting in an exaggerated and ineffective immune response. Genetic defects in familial HLH can lead to the impaired function of the secretory lysosome-dependent exocytosis pathway. We report an STXBP2 homozygous missense mutation c.1139A>G, p.(Gln380Arg) consistent with a genetic diagnosis of familial hemophagocytic lymphohistiocytosis type 5 associated with chronic diarrhea in a seven-year-old girl. She was diagnosed with HLH and achieved remission by the HLH-2004 protocol and allogeneic matched bone marrow transplantation (BMT) from her sibling. However, six years later, she had a relapse of HLH, which required a second BMT. Ever since then, she continued to have persistent chronic watery diarrhea and failure to thrive. Patients with familial HLH type 5 due to STXBP2 gene mutation can manifest as either with or without chronic diarrhea. This unusual relationship directs toward a specific gene mutation of STXBP2 as the cause of chronic diarrhea in familial HLH. The prevalence of familial HLH in Saudi Arabia is underestimated. Due to the high rate of consanguinity and the local customs of marrying within the same community, clinicians should consider familial HLH as a cause of persistent, unexplained, chronic diarrhea among the pediatric age group.
Collapse
Affiliation(s)
- Abdullah Baothman
- Pediatrics, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Hani Almalki
- Internal Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
| | | | - Abobaker Alshegifi
- Internal Medicine, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Abdulrahman Baashar
- Internal Medicine: Diabetes and Endocrinology, King Saud bin Abdulaziz University for Health Sciences, Makkah, SAU
| |
Collapse
|
28
|
Lee H, Kang J, Ahn S, Lee J. The Hippo Pathway Is Essential for Maintenance of Apicobasal Polarity in the Growing Intestine of Caenorhabditis elegans. Genetics 2019; 213:501-515. [PMID: 31358532 PMCID: PMC6781910 DOI: 10.1534/genetics.119.302477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Although multiple determinants for establishing polarity in membranes of epithelial cells have been identified, the mechanism for maintaining apicobasal polarity is not fully understood. Here, we show that the conserved Hippo kinase pathway plays a role in the maintenance of apicobasal polarity in the developing intestine of Caenorhabditis elegans We screened suppressors of the mutation in wts-1-the gene that encodes the LATS kinase homolog, deficiency of which leads to disturbance of the apicobasal polarity of the intestinal cells and to eventual death of the organism. We identified several alleles of yap-1 and egl-44 that suppress the effects of this mutation. yap-1 encodes a homolog of YAP/Yki, and egl-44 encodes a homolog of TEAD/Sd. WTS-1 bound directly to YAP-1 and inhibited its nuclear accumulation in intestinal cells. We also found that NFM-1, which is a homolog of NF2/Merlin, functioned in the same genetic pathway as WTS-1 to regulate YAP-1 to maintain cellular polarity. Transcriptome analysis identified several target candidates of the YAP-1-EGL-44 complex including TAT-2, which encodes a putative P-type ATPase. In summary, we have delineated the conserved Hippo pathway in C. elegans consisting of NFM-1-WTS-1-YAP-1-EGL-44 and proved that the proper regulation of YAP-1 by upstream NFM-1 and WTS-1 is essential for maintenance of apicobasal membrane identities of the growing intestine.
Collapse
Affiliation(s)
- Hanee Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junsu Kang
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Gwanak-gu 08826, Korea
| |
Collapse
|
29
|
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J Cell Biol 2019; 218:3647-3662. [PMID: 31562230 PMCID: PMC6829668 DOI: 10.1083/jcb.201902063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, Bio5 Institute, University of Arizona, Tucson, AZ
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN.,The Nashville VA Medical Center, Nashville, TN
| |
Collapse
|
30
|
Bidaud-Meynard A, Nicolle O, Heck M, Le Cunff Y, Michaux G. A V0-ATPase-dependent apical trafficking pathway maintains the polarity of the intestinal absorptive membrane. Development 2019; 146:dev174508. [PMID: 31110027 PMCID: PMC7376742 DOI: 10.1242/dev.174508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Intestine function relies on the strong polarity of intestinal epithelial cells and the array of microvilli forming a brush border at their luminal pole. Combining a genetic RNA interference (RNAi) screen with in vivo super-resolution imaging in the Caenorhabditiselegans intestine, we found that the V0 sector of the vacuolar ATPase (V0-ATPase) controls a late apical trafficking step, involving Ras-related protein 11 (RAB-11)+ endosomes and the N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) synaptosome-associated protein 29 (SNAP-29), and is necessary to maintain the polarized localization of both apical polarity modules and brush border proteins. We show that the V0-ATPase pathway also genetically interacts with glycosphingolipids and clathrin in enterocyte polarity maintenance. Finally, we demonstrate that silencing of the V0-ATPase fully recapitulates the severe structural, polarity and trafficking defects observed in enterocytes from individuals with microvillus inclusion disease (MVID) and use this new in vivo MVID model to follow the dynamics of microvillus inclusions. Thus, we describe a new function for V0-ATPase in apical trafficking and epithelial polarity maintenance and the promising use of the C. elegans intestine as an in vivo model to better understand the molecular mechanisms of rare genetic enteropathies.
Collapse
Affiliation(s)
- Aurélien Bidaud-Meynard
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Ophélie Nicolle
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Markus Heck
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Yann Le Cunff
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
31
|
Hemophagocytic Lymphohistiocytosis: Clinical Presentations and Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:824-832. [DOI: 10.1016/j.jaip.2018.11.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
|
32
|
Lehmberg K, Moshous D, Booth C. Haematopoietic Stem Cell Transplantation for Primary Haemophagocytic Lymphohistiocytosis. Front Pediatr 2019; 7:435. [PMID: 31709205 PMCID: PMC6823612 DOI: 10.3389/fped.2019.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
Haematopoietic stem cell transplantation currently remains the only curative treatment of primary forms of haemophagocytic lymphohistiocytosis (HLH). Rapid diagnosis, efficient primary treatment of hyperinflammation, and conditioning regimens tailored to this demanding condition have substantially improved prognosis in the past 40 years. However, refractory hyperinflammation, central nervous system (CNS) involvement, unavailability of matched donors, susceptibility to conditioning-related toxicities, and a high frequency of mixed chimaerism remain a challenge in a substantial proportion of patients. Gene therapeutic approaches for several genetic defects of primary HLH are being developed at pre-clinical and translational levels.
Collapse
Affiliation(s)
- Kai Lehmberg
- Division of Paediatric Stem Cell Transplantation and Immunology, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Despina Moshous
- Department of Immunohematology, Necker-Enfants Malades Hospital, APHP, and Imagine Institute, Inserm U 1163, Descartes University, Paris Sorbonne Cité, Paris, France
| | - Claire Booth
- Department of Paediatric Immunology, Great Ormond Street Hospital, London, United Kingdom.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
33
|
Engevik AC, Goldenring JR. Modeling Microvillus Inclusion Formation In Vitro. Cell Mol Gastroenterol Hepatol 2018; 6:472-473. [PMID: 30364797 PMCID: PMC6198021 DOI: 10.1016/j.jcmgh.2018.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
34
|
Mosa MH, Nicolle O, Maschalidi S, Sepulveda FE, Bidaud-Meynard A, Menche C, Michels BE, Michaux G, de Saint Basile G, Farin HF. Dynamic Formation of Microvillus Inclusions During Enterocyte Differentiation in Munc18-2-Deficient Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2018; 6:477-493.e1. [PMID: 30364784 PMCID: PMC6198061 DOI: 10.1016/j.jcmgh.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Microvillus inclusion disease (MVID) is a congenital intestinal malabsorption disorder caused by defective apical vesicular transport. Existing cellular models do not fully recapitulate this heterogeneous pathology. The aim of this study was to characterize 3-dimensional intestinal organoids that continuously generate polarized absorptive cells as an accessible and relevant model to investigate MVID. METHODS Intestinal organoids from Munc18-2/Stxbp2-null mice that are deficient for apical vesicular transport were subjected to enterocyte-specific differentiation protocols. Lentiviral rescue experiments were performed using human MUNC18-2 variants. Apical trafficking and microvillus formation were characterized by confocal and transmission electron microscopy. Spinning disc time-lapse microscopy was used to document the lifecycle of microvillus inclusions. RESULTS Loss of Munc18-2/Stxbp2 recapitulated the pathologic features observed in patients with MUNC18-2 deficiency. The defects were fully restored by transgenic wild-type human MUNC18-2 protein, but not the patient variant (P477L). Importantly, we discovered that the MVID phenotype was correlated with the degree of enterocyte differentiation: secretory vesicles accumulated already in crypt progenitors, while differentiated enterocytes showed an apical tubulovesicular network and enlarged lysosomes. Upon prolonged enterocyte differentiation, cytoplasmic F-actin-positive foci were observed that further progressed into classic microvillus inclusions. Time-lapse microscopy showed their dynamic formation by intracellular maturation or invagination of the apical or basolateral plasma membrane. CONCLUSIONS We show that prolonged enterocyte-specific differentiation is required to recapitulate the entire spectrum of MVID. Primary organoids can provide a powerful model for this heterogeneous pathology. Formation of microvillus inclusions from multiple membrane sources showed an unexpected dynamic of the enterocyte brush border.
Collapse
Key Words
- 3D, 3-dimensional
- Apical Vesicular Transport
- Brush Border Formation
- DAPI, 4′,6-diamidino-2-phenylindole
- Disease Modeling
- EGFP, enhanced green fluorescent protein
- FHL5, familial hemophagocytic lymphohistiocytosis type 5
- IWP-2, inhibitor of WNT production-2
- KO, knock-out
- MVID, microvillus inclusion disease
- MVIs, microvillus inclusions
- Microvillus Atrophy
- PBS, phosphate-buffered saline
- STXBP2, syntaxin binding protein 2
- Stx3, syntaxin 3
- TEM, transmission electron microscopy
- VPA, valproic acid
- WT, wild-type
Collapse
Affiliation(s)
- Mohammed H. Mosa
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Ophélie Nicolle
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Sophia Maschalidi
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Fernando E. Sepulveda
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France
| | - Aurelien Bidaud-Meynard
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Birgitta E. Michels
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Faculty of Biological Sciences, Goethe University Frankfurt, Germany
| | - Grégoire Michaux
- University Rennes, Centre national de la recherche scientifique, Institut de Génétique et Développement de Rennes UMR6290, Rennes, France,Correspondence Address correspondence to: Grégoire Michaux, PhD, University Rennes, Institut de Génétique et Développement de Rennes, Rennes, France.
| | - Geneviève de Saint Basile
- INSERM UMR1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France,Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, France,Centre d’Etudes des Déficites Immunitaires, Assistance Publique-Hôpitaux de Paris, France,Geneviève de Saint Basile, MD, PhD, INSERM, Paris, France.
| | - Henner F. Farin
- German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung), Heidelberg, Germany,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany,German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany,Henner F. Farin, PhD, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Hess MW, Vogel GF, Yordanov TE, Witting B, Gutleben K, Ebner HL, de Araujo MEG, Filipek PA, Huber LA. Combining high-pressure freezing with pre-embedding immunogold electron microscopy and tomography. Traffic 2018; 19:639-649. [PMID: 29673018 DOI: 10.1111/tra.12575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Immunogold labeling of permeabilized whole-mount cells or thin-sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3-dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation-but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze-substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre-embedding NANOGOLD-silver immunocytochemistry. So obtained thin and semi-thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context.
Collapse
Affiliation(s)
- Michael W Hess
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg F Vogel
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria.,Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Teodor E Yordanov
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Witting
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Gutleben
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes L Ebner
- Division of Histology and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mariana E G de Araujo
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Przemyslaw A Filipek
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Zomer-van Ommen DD, de Poel E, Kruisselbrink E, Oppelaar H, Vonk AM, Janssens HM, van der Ent CK, Hagemeijer MC, Beekman JM. Comparison of ex vivo and in vitro intestinal cystic fibrosis models to measure CFTR-dependent ion channel activity. J Cyst Fibros 2018; 17:316-324. [PMID: 29544685 DOI: 10.1016/j.jcf.2018.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND New functional assays using primary human intestinal adult stem cell cultures can be valuable tools to study epithelial defects in human diseases such as cystic fibrosis. METHODS CFTR-mediated ion transport was measured in rectal organoid-derived monolayers grown from subjects with various CFTR mutations and compared to donor-matched intestinal current measurements (ICM) in rectal biopsies and forskolin-induced swelling of rectal organoids. RESULTS Rectal organoid-derived monolayers were generated within four days. Ion transport measurements of CFTR function using these monolayers correlated with ICM and organoid swelling (r = 0.73 and 0.79 respectively). Culturing the monolayers under differentiation conditions enhanced the detection of mucus-secreting cells and was accompanied by reduced CFTR function. CONCLUSIONS CFTR-dependent intestinal epithelial ion transport properties can be measured in rectal organoid-derived monolayers of subjects and correlate with donor-matched ICM and rectal organoid swelling.
Collapse
Affiliation(s)
- Domenique D Zomer-van Ommen
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eyleen de Poel
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hugo Oppelaar
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Annelotte M Vonk
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marne C Hagemeijer
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Optimized procedures for generating an enhanced, near physiological 2D culture system from porcine intestinal organoids. Stem Cell Res 2018; 28:165-171. [PMID: 29499500 DOI: 10.1016/j.scr.2018.02.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
An important practical limitation of the three-dimensional geometry of stem-cell derived intestinal organoids is that it prevents easy access to the apical epithelium for testing food components, microorganisms, bioactive and toxic compounds. To this end, we here report on a new robust method for generating confluent intestinal cell monolayers from single-cell suspensions of enzymatically-dissociated porcine organoids using modified culture conditions. With this method, cell seeding densities can be standardised, overcoming problems with methods based on mechanical dissociation of organoids. Confluent monolayers formed tight junctions with high transepithelial electrical resistance in three days and could be used in experiments for up to two weeks. Multilineage differentiation of ileal stem cells was demonstrated by immunohistochemistry and RT-qPCR of cell-specific transcripts, also unequivocally confirming the controversial existence of Paneth-like cells in the porcine small intestine. The method described here is useful to standardize primary epithelial monolayer formation from intestinal organoids and allows rapid and robust studies of intestinal physiology.
Collapse
|
38
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
39
|
Dhekne HS, Pylypenko O, Overeem AW, Zibouche M, Ferreira RJ, van der Velde KJ, Rings EHHM, Posovszky C, van der Sluijs P, Swertz MA, Houdusse A, van IJzendoorn SCD. MYO5B, STX3, and STXBP2 mutations reveal a common disease mechanism that unifies a subset of congenital diarrheal disorders: A mutation update. Hum Mutat 2018; 39:333-344. [PMID: 29266534 PMCID: PMC5838515 DOI: 10.1002/humu.23386] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open‐access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non‐MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno‐/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID‐associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.
Collapse
Affiliation(s)
- Herschel S Dhekne
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olena Pylypenko
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Arend W Overeem
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Malik Zibouche
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosaria J Ferreira
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Joeri van der Velde
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Carsten Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Morris A Swertz
- Genomics Coordination Center, Department of Genetics, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anne Houdusse
- Structural Motility, Institute Curie, Centre de Reserche, Paris, France
| | - Sven C D van IJzendoorn
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|